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1.0 INTRODUCTION

Under contract to NASA, Mechanical Technology, Inc. has developed a method for
balancing rotors at low speed, which ensures smooth high-speed operation (i.e.,
operation above bending critical speeds). This method has been targeted for
eventual hardware application to Space Shuttle Main Engine (SSME) pumps with
particular attention given to the High Pressure Oxidizer Turbopump (HPOTP). The
need for development of this low-speed flexible rotor balancing method arises
from the fact that satisfactory operation of SSME turbopumps requires that shaft
response amplitudes and forces transmitted through the bearings (to the housing)
be minimized. Because rotor imbalance is a major cause of large amplitudes and
high forces, it is necessary that these pumps be well balanced throughout their

operating speed range.

In general, shaft response and transmitted force due to unbalance are greatest
at or near critical speeds. The two SSME turbopumps, the HPOTP and the HPFTP,
operate above their first bending critical speeds. Furthermore, the maximum
operating speed for the HPOTP is above its second bending critical speed, and as
the desired power level of the HPOTP is increased, its operating speed also
approaches its second flexible critical speed. Thus, a method of balancing

either rotor through two bending critical speeds is needed.

There are two general approaches to balancing rotating equipment: low-speed
rigid and "high-speed" flexible methods. For the HPOTPs and HPFTPs, low-speed
rigid balancing, by itself, is not adequate. In particular, correction weights
predicted during rigid body balancing may worsen the state of balance at operat-
ing speed (i.e., resulting in increésed rotor response and bearing forces) since
the SSME turbopumps operate above flexible critical speeds. This leaves at
speed flexible balancing of the SSME turbopumps as the only viable way to ensure
smooth, balanced operation at high speeds. The ideal situation is to balance at
critical and maximum operating speeds using a conventional multiplane, multi-
speed flexible rotor balancing method. Furthermore, balancing should be
performed in the actual housing, but out-of-housing balancing at critical and
maximum operating speeds could be a satisfactory alternative if suspension char-
acteristics are similar to those in the housing. However, these balancing

approaches are impractical for the HPOTP for several reasons:
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* Operating speeds are above one critical speed and approaching the second,
yet only one plane is readily available for in-housing balancing of the

assembled rotor

* Balancing speed is limited to 1500 rpm when performing in-housing balanc-
ing of the rotor since no coolant is available for the bearings during
the balancing operation other than a liquid oxygen (LOX) compatible

lubricant

* Bearing life is very short precluding a significant number of high-speed

balancing runs regardless of a coolant/lubricant

* Bearing pairs are uniquely matched to each rotor, thereby preventing
approaches where sacrificial bearings might be wused during an

out-of-housing assembled rotor-balancing procedure

* Excessive bearing loads that limit the already short life must be mini-

mized

* Only LOX-compatible substances can be used to cool and lubricate the
bearings to avoid system contamination if speeds higher than those

currently used are anticipated

* Rotor vibration data are extremely difficult to record from in-hcusing

operation since only case-mounted accelerometers are currently used.

As a result of these hardware constraints, neither in-housing nor out-of-hous-

ing, high-speed, flexible balancing can be used on SSME turbopumps.

Despite the difficulties, a method has been developed that shows promise in
overcoming many of these limitations. This method establishes one or more "win-
dows" for low-speed, out-~of-housing balancing of flexible rotors. These windows
are regions of speed and support flexibility where two conditions are simultane-
ously fulfilled. First, the rotor system behaves flexibly: therefore, there is
separation among balance planes. Second, the response due to balance weights is

large enough to reliably measure.
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This report describes the analytic formulation of the low-speed flexible rotor
balancing method. In addition, the results of proof-of-principle tests
conducted under the program are presented. Based on this effort, it is
concluded that low-speed flexible rotor balancing is a viable technology. In
particular, the method can be used to balance a rotor bearing system at low
speed which results in smooth operation above more than one bending critical
speed. Furthermore, this balancing methodology is applicable to SSME turbopump

rotors.
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2.0 LOW-SPEED FLEXIBLE ROTOR BALANCING

The objective of developing a low-speed flexible rotor balancing methodology
under this program is to overcome limitations that low-speed rigid and
high-speed flexible balancing methods present when applied to SSME turbopumps.
Specifically, the developed approach eliminates the need for high-speed balance
runs, but nonetheless reduces rotor response to unbalance during high-speed

operation.

2.1 Formulation

The objective of rotor balancing methods is to predict weights to be added (or
removed) from a rotor-bearing system to minimize unbalance response. That 1is,
weight distributions are predicted which, ideally, produce amplitudes at meas—
urement planes equal to those resulting from rotor unbalance, only 180 degrees
out of phase. The vector sum of response at those measurement planes is there-
fore nil, at the balancing speed(s), but this may not be the case at other
speeds. With the low—-speed flexible rotor balancing method, weights are
predicted at a low speed(s) for balance planes located at the major sources of
potential wunbalance, such that response is minimized at both the balancing

speeds and also at higher speeds (i.e., the operating speed).

To perform low-speed flexible balancing, the following steps are required:

* Select the required balance planes

° Determine speeds at which there is separation among the selected balance

planes (i.e., is the rotor sufficiently flexible?)

° Determine speeds at which the rotor response is acceptable (i.e., is the

response measurable with sufficient accuracy?)

* Perform influence coefficient balancing where the rotor is both flexible

and responsive.
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Balance plane selection is based on several considerations. First, only balance
planes which are compatible with actual hardware can be used (i.e., axial planes
where weight can be added or removed at any circumferential location). Second,
balance planes which are active (i.e., not at nodes) at the speeds of interest
and at the maximum operating speed of the equipment should be used. Finally,
the balance planes must be active at the speed(s) where low-speed balancing will
be performed. This last condition is, to some extent, controllable by proper
configuration of the balancing hardware (in particular, by proper selection of
bearing support flexibilities). In all cases, engineering judgment is required

to select the proper balance planes to be used with the balancing method.

After balance planes have been selected, the next step in the low-speed flexible
balancing method is to determine plane separation. One obvious case of when
balance planes are not separated occurs when they are in close proximity to one

another. In this case, a weight in either plane causes the same rotor response.

In general, however, plane separation depends on the rotational speed of the
shaft and flexibility of the rotor supports (i.e., bearing supports to ground).
The following three cases, which depend on rotational speed and support flexi-

bility, are possible:

° There is only one required plane at any critical speed since (at these
speeds) the entire rotor vibration is controlled by any one active imbal-

ance on the rotor,

* At off-critical speeds where the supports are flexible (as compared to
the rotor), the rotor behaves as a rigid body and two balance planes are
necessary. At these speeds, the rotor can be balanced by counteracting
the forces and moments due to unbalance. Two balance planes provide the

required two degrees of freedom.
* At off-critical speeds where the rotor is flexible, plane separation
exists for all balance planes (other than those in close proximity to one

another).

These regimes are shown schematically in Figure 2-1.
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One approach for determing plane separation uses the influence coefficient
matrix. With this approach, separation among selected balance planes can be
assessed for different support flexibilities and speeds. Regions of expected
plane separation are then mapped out as a function of support flexibility and

speed.

In addition to locating plane separation regimes, it is necessary to determine
the expected levels of rotor response. This is particularly important because
low-speed flexible rotor balancing will be performed at off-critical speeds
where response is usually small. ''Responsiveness' needs to be assessed so as to
determine when expected response is large enough to measure and to select probes
that have the desired resolution. Responsiveness of the rotor at the speeds
being considered for balancing can be assessed by performing a forced response
rotordynamics calculation. This is done by including a distributed unbalance in
a rotordynamics model of the rotor-bearing system. To ensure that the magnitude
and phase of the unbalance(s) used in the calculation are realistic, they should
first be used to calculate response at speeds where measured response data are
known. For example, if response at maximum operating speed is known, the magni-
tude and phase of the distributed unbalance can be ad justed until the predicted
response is similar to measured response. Then, when this unbalance is used to
predict response at the balance speeds, it will yield an indication of expected
response at these speeds. These results are used to select the required instru-
mentation sensitivity, or, conversely, to rule out ranges where responsiveness

is too small to be accurately measured.

The purpose of this balancing method is to determine the lowest speed at which
balancing can be performed where the rotor is flexible. The approach previously
described is used to determine the parameters needed for successful low-speed
balancing: that 1is, required balance planes, plane separation regimes and
instrumentation sensitivity requirements. Actual balancing is performed in
regimes where plane separation exists and response can be measured using a
multiplane influence coefficient balance method at the balance speed determined

with these results.




2.2 HPOTP Low-Speed Flexible Balancing Assessment

The low-speed flexible rotor balancing method described in the previous section
has been applied analytically to the HPOTP. This assessment was made to deter-
mine the overall feasibility of applying the low-speed flexible balancing method

to this pump. The evaluation method consisted of the following:

l. Balance plane selection
2. Determination of plane separation
3. Determination of responsiveness

Balance plane selection was based on a review of HPOTP drawings and design
information provided to MTI. Based on this review, available balance planes
were identified as shown in Figure 2-2. From this set of available planes,
three planes were selected for use with Step 2 above. The major criterion used
for selecting these three planes was that they be active in the modes within the
operating speed range of the HPOTP in its in-housing configuration. The HPOTP
has one critical speed below its current maximum speed and a second near the
maximum speed at increased power levels. The mode shapes for these two critical
speeds are shown in Figure 2-3. Figure 2-2 shows the model used for rotordynam-
ic calculations (i.e. critical speeds, mode shapes, influence coefficients, and
response), Based on the available planes and the critical speed mode shapes,
three balance planes were selected for determination of plane separation: main

impeller, preburner impeller and first stage turbine end.

As stated earlier, one objective of the low-speed flexible balancing method is
to determine the lowest speed at which the selected balance planes are sepa-
rated. Plane separation generally depends on the rotational speed of the shaft
and the flexibility of the rotor supports (i.e., bearings to ground). An
assessment of plane separation for different values of speed and support flexi-
bility for the HPOTP was made using a model of the HPOTP. Influence coefficient
matrices using these three planes were calculated for rotational speeds below

10,000 rpm and selected ranges of support flexibility. The influence coeffi-
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HPOTP ROTOR
Mode Number 1: 11,537 rpm
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cient matrices were used to determine speeds at which the HPOTP behaves in a

flexible manner for each value of support flexibility considered.

In addition to plane separation, HPOTP response to unbalance was assessed to

determine '

'responsive" regimes. This was accomplished by performing a response
calculation with a randomly distributed unbalance. An unbalance distribution
which caused a response of approximately 1 G at the bearings (at 30,000 rpm) was
used. This level of unbalance was selected since it nominally represents the
amount of unbalance seen in the HPOTP. This same distributed unbalance was used
to predict response at lower speeds with the support flexibilities used for the
plane separation assessment. To use these results, it was assumed that response
of 0.05 mils could be accurately measured (this is the resolution of a capaci-
tance probe system for this application). Thus, at speeds where response is
greater than 0.05 mils, the HPOTP was considered to have measurable response

(i.e., it is "responsive").

For this HPOTP analysis, Figure 2-4 shows the regions where plane separation
occurs and the rotor is responsive, for different values of speed and support
flexibility. The regimes where these two conditions occur simultaneously are
the low-speed flexible rotor balance regimes. As shown in the figure, for a
support flexibility of 1,000 lbs./in., balancing could be performed as low as
6,000 rpm. As flexibility is decreased, the speed at which successful balancing
is predicted decreases. In particular, for support stiffness values between
10,000 lbs./in. and 100,000 lbs./in., there are "windows' between the first and
second mode where low-speed flexible balancing regimes are predicted. These
occur where plane separation and rotor responsiveness coincide. The lowest
predicted balance speed in these regions is approximately 3,000 rpm and is for a

support stiffness of 10,000 lbs./in.

In Figure 2-4, it is interesting to note that for support stiffnesses of 50,000
lbs./in. and 100,000 lbs./in., plane separation is predicted at very low speeds.
However, this figure also shows that for these speeds, predicted response is
below the measureable regime. This demonstrates that instrumentation sensitiv-
ity may be a key parameter in this low-speed flexible balancing method. In
particular, lower balance speeds will be predicted for instrumentation with

greater sensitivity.
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In summary, a method for predicting low-speed flexible balance regimes has been
developed. This method predicts "windows' of support flexibility and speed
where a rotor exhibits plane separation and where response can be reliably meas-
ured. Furthermore, this method has been applied to an HPTOP rotor model and

balance speeds as low as 3,000 rpm have been predicted.
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3.0 EMPIRICAL EVALUATION

An empirical evaluation of the flexible rotor balancing method was conducted
using a rotordynamic test rig. The objective of this proof-of-principle testing
was to determine the effectiveness of low-speed flexible rotor balancing in a
controlled laboratory environment. Furthermore, test hardware and test condi-
tions were selected based on the fact that the eventual application of the meth-

od is for the HPOTP.

To perform the empirical evaluation, it was necessary to use a suitable test
rig. A set of criteria were established so that various in-house rigs could be
evaluated for this use. For example, since the rig was to be used to determine
the effectiveness of the low-gpeed flexible rotor balancing method for smooth
supercritical operation, it needed to have bending criticals below its maximum
speed. Furthermore, since the eventual application of the method is for the
HPOTP, similarity between the test rig mode shapes and the HPOTP mode shapes was
considered to be an important criterion. As described in Section 2, the
low-speed flexible balancing method is based on finding plane separation regimes
for different values of support stiffness. Thus, it was necessary to have a rig
whose bearing support stiffness could be varied. In summary, the test rig

selection criteria were as follows:

* Bending critical speeds within the operating speed range
* Mode shapes similar to the HPOTP

° Ease of incorporation of variable support flexibility

Initially, a cursory assesment of several rigs was made and compared to the
above criteria. The results of this assessment showed that one of these rigs
was particularly suitable for this test effort. This rig was further analyzed
and subsequently was selected for empirical evaluation. The remainder of this

section describes the test rig, analysis and test results.

3.1 Test Rig Description

The rig which was selected for the empirical evaluation test was orginally

designed to simulate the power turbine of a gas turbine engine and included:
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* Flexible shaft with an integral drive turbine and overhung disk
* Maximum speed of 24,000 rpm
* Two pairs of duplex ball bearings for shaft support

* Bearing pedestals with interchangeable supports

A schematic of the test rig shaft assembly is shown in Figure 3-1. This assembly
consists of a slender shaft with a disk attached to each end. Both of these
disks were originally designed to simulate inertias on the original power
turbine. One of the disks also serves as a drive turbine. Both of these disks
were also used as balance planes. For insertion of balance weights, the drive
turbine disk has 24 axial holes on a 2.5 inch diameter, and the larger titanium
disk has 36 axial holes on a 9.5 inch diameter. A maximum of about 1 gram can be
installed in each of the holes. There are two additional balance planes, both
along the slender shaft which are integral rings with 12 flats. Each flat has a
radial hole for insertion of a balance weight. The maximum amount of weight
which could be installed in each hole of these center balance planes is also 1

gram.

The shaft assembly is supported on two duplex pairs of rolling element bearings
and their locations are shown in Figure 3-1. A schematic of the bearing support
pedestals is shown in Figure 3-2. The pedestals provide lubrication and cooling
0il supply/drain, and were originally designed to accept interchangeable
cartridges with elastomer supports. For this balancing evaluation, elastomer
supports were not considered acceptable since they generally introduce substan-
tial external damping to the rotor-bearing system. However, the pedestals were
ideal for use in the current test program since support flexibility could be

easily changed by a redesign of the cartridges.

The redesigned support cartridges used for the balancing evaluation are shown
schemetically in Figure 3-3, As seen in this figure, the cartridges were
designed to accept spring washers so that different sized washers (i.e., wavy or
belleville) could be used to achieve different support flexibilities. A photo-
graph of a cartridge during the assembly process is shown in Figure 3-4. The

design values for support flexibility were selected using the results of the

low-speed balancing assesment which is discussed in Section 3.2. In particular,
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pedestal support flexibilities of 2, 4, 20, and 100 thousand lbs./in. were

required.

To design for the desired support stiffness values, a method for predicting
total stiffness based on individual washer stiffness was established. 1In
particular, the stiffness of each cartridge is twice the individual washer
stiffness since these are parallel springs. From Ref. [1] the stiffness of the
bearing pedestal assembly, which consists of three cartridges 120° apart, is
equal to 1.5 times the cartridge stiffness. This assumes that the cartridge has
radial stiffness only and no shear (i.e., tangential) stiffness. This is a valid
assumption since the cartridges offer no significant resistance to tangential

forces. In summary, the total pedestal stiffness k¢ is:
where kg 1s the washer stiffness.

To achieve the desired pedestal assembly stiffness, different sizes and types of
commercially available washers were assessed. Stiffness values, (or equations
for calculating stiffness), were obtained from manufacturers' specifications
for these washers. Table 3-1 summarizes calculated stiffness for the washers

used in the cartridge.

To verify the stiffness values shown in Table 3-1, the cartridges were cali-
brated. Calibrations were performed on the cartridge assembly (not the individ-
ual washers) shown in Figure 3-3. The calibration set up is shown in Figure 3-5.
The procedure consisted of applying a compressive load through the center of the
cartridge assembly and measuring applied force and displacement. Force and
displacement measurements were made for increasing and decreasing load, so that
hysteresis could be qualitatively assessed. The maximum force used for cali-

brating each cartridge assembly was based on manufacturers' specifications.

A typical force vs. displacement curve obtained during calibration is shown in
Figure 3-6. The assembly is seen to be nearly linear over the load range and the
amount of hysteresis is not significant. For each cartridge/washer assembly,
the stiffness was determined by taking the slope of the force vs. displacement

curve. In addition, the force vs. displacement curve was used to determine how
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TABLE 3-1

PREDICT SPRING CARTRIDGE AND PEDESTAL STIFFNESS

Washer Cartridge Assembly Pedestal Assembly
Spring No. Stiffness (lbs./in) Stiffness (lbs/in) Stiffness (lbs/in)
1 600 1200 1800
2 1167 2333 3500
3 7733 15466 23200
4 33438 66876 100314
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much preload to apply to each cartridge/washer assembly when installed in the
bearing pedestals. In particular, the preload (in mils) was selected as the
deflection at the midpoint of the linear range. Table 3-2 is a summary of the
measured cartridge displacement as compared to the predicted stiffness. These
results show that the predicted and measured values of cartridge stiffness are

in reasonable agreement.

The test rig was instrumented with a series of capacitance and eddy current
measurement probes. The probe locations are shown in Figure 3-1. The capaci-
tance probes were used for balancing since they provide greater accuracy than
the eddy current probes. Their locations were selected based on the balancing
assesment discussed in Section 3-2., The eddy current probes were used for
initial debugging and for monitoring rig response during high-speed operation.
In particular, the latter probes were installed with a probe/shaft gap of
approximately 15 mils and, therefore, there was less risk of damage should large
shaft orbits be encountered. On the other hand, the capacitance systems
required a probe/shaft gap of approximately 6 mils. This gap requirement was
not a limitation during actual balance runs since amplitudes were typically on

the order of 3 mils.

In summary, the selected test rig was modified to include variable support
stiffness and instrumented with probes for balancing and for monitoring
high-speed operation. Figure 3-7 is a photograph of the assembled rig. The
following section describes the rotordynamics and balancing assesment of the

test rig.

3.2 Test Rig Analysis

A rotordynamic model of the test rig was prepared so that the rig system could be
analyzed. Initially, the rig was analyzed to determine its critical speeds.
Next, the low-speed flexible balance regimes were calculated using the method

discussed in Section 2.
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TABLE 3-2

CARTRIDGE STIFFNESS - MEASURED VERSUS PREDICTED
Predicted Cartridge Measured Cartridge
Spring Number Assembly Stiffness (1bs/in) Assembly Stiffness (lbs/in)
1 1200 1100
2 2333 2083
3 15466 13800
4 66876 85000
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The test rig was modeled so that it could be analyzed with PERFECT - MTI's finite
element rotordynamic analysis computer program. The model is comprised of a

three level system:

* Level 1 - Shaft and disk attachments
* Level 2 - Nonrotating components between the shaft and pedestal support

cartridge on the drive turbine end

* Level 3 - Nonrotating components between the shaft and pedestal support

cartridge on the titanium disk end

Each level is a mass/elastic model of the appropriate hardware components and
takes into account geometry and material properties. In addition to the
mass/elastic model of each level, there are several interlevel connections.

Following is a summary of these interlevel connections:

* Level 1 to 2 - ball bearings between the shaft and the turbine end nonro-
tating components (modelled as two springs, one for each of the duplex

pair)

* Level 1 to 3 - ball bearings between the shaft and the disk end nonrotat-

ing components (modelled as two springs, one for each of the duplex pair)

* Level 2 to Ground - flexibility of the spring support cartridge on the
turbine end pedestal (modelled as two springs, one for each of the wavy
washers in the assembly - each spring has one half the stiffness of the
pedestal assembly)

* Level 3 to Ground - flexibility of the spring support cartridge on the
disk end pedestal (modelled as two springs, one for each of the wavy
washers in the assembly - each spring has one half the stiffness of the

pedestal assembly)

The spring support cartridge models were based on nominal stiffness values. The
ball bearings were modelled as infinitely stiff. This provided the best corre-

lation with measured critical speeds.




A sample critical speed run is provided in Appendix A, and includes a tabular
listing of the rotordynamic model. A graphic representation of the model is
shown in Figure 3-8. The sample run in Appendix A represents the test rig
configuration with supports selected to match the HPOTP critical speed mode
shapes. Figures 3-9 and 3-10 show the predicted first and second critical speed
mode shapes for the HPOTP and for the test rig (upper and lower plots in each
figure, respectively). These figures show that the mode shapes for the test rig
are similar to those of the HPOTP - the first mode being a ''disk bounce'" mode,
and the second a bending mode. In addition, measured test rig mode shape data
points are added to the lower plot on each figure. Mode shape measurements were
made at the speeds indicated by using the capacitance displacement probes. The
measured data were normalized and added to the predicted mode shape plots.
There is good agreement between the measured and predicted shapes for the first

mode, and excellent agreement for the second mode.

The calibrated rotordynamic model of the test rig described above was analyzed
for application of the low-speed flexible rotor using the method discussed in
Section 2. In particular, rotor responsiveness and plane separation of the rig
were assessed for different speed and support flexibility ranges. Support flex-
ibility was varied by using different values for the stiffness of the

connections which represent the spring support cartridges.

To determine the rotor responsiveness, forced response calculations. were
performed by including a distributed unbalance in Level l. The distributed
unbalance was used to model forces caused by eccentricity of the balance planes.
In addition, a small amount (1 lb.-sec./in.) of damping was included at each of
the support ball bearings. A response greater than 0.5 mils at the capacitance
probe locations was considered '"measureable'". This value of response was the

expected resolution of the probes used on this rig.

Plane separation was also assessed using the rotordynamic model. As discussed
in detail in Section 2, plane separation is assessed by using analytically
predicted influence coefficients. Influence coefficients were calculated over
the rig's speed and support flexibility range, and were used to determine plane

separation.
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Figure 3-9 Mode Shape Comparison - First Mode
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HPOTP ROTOR
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Two support configurations which gave good potential low-speed balance 'win-
dows' were selected from the low-speed balancing assessment. One was to use the
supports which simulated the HPOTP mode shapes. The second was to use supports
which were more flexible on the disk end of the rig. The low-speed flexible
balance assessment for these two configuration regions are shown in Figure 3-11.
The results presented in this figure were used to determine the actual balance
test points. For example, with the HPOTP mode shape simulator supports, the
low-speed flexible balancing window is predicted to begin at approximately 8,000

rpm.
In summary, the test rig was modelled as a three~level system, and the model was

used to determine critical speeds and low-speed flexible balancing "windows'. A

discussion of the test method and test results is given in the next section.

3.3 Test Results

The test rig described in the previous sections was assembled and used to evalu-
ate the effectiveness of the low-speed flexible rotor balancing method.
Initially, the rig was assembled in the test lab and instrumentation was cali-
brated and installed. During testing, laboratory equipment was used to contin-
uvally monitor rig performance. This equipment included oscilloscopes for the
displacement probes, an FFT analyzer with a channel selector switch, and thermo-
couples with temperature readouts to monitor lubricating oil. The FFT was also
used 1in conjunction with a digital plotter to generate amplitude vs. speed
plots. A computer data acquisition system was used for acquiring balance data.
This MTI laboratory system consists of a PDP 11/03 mini-computer coupled with an
analog-to-digital converter board. Several MTI programs available on the PDP
11/03 were used for acquiring vibration data (i.e., synchronous amplitude and
phase) from the displacement probes. These data were used with a least squares
influence coefficient balancing routine which automatically calculates

correction weights.

For initial debugging, the test rig was run with hard mounts (i.e., the spring
cartridges were not used during this phase). This configuration was used to
debug the lubrication, instrumentation, and data acquisition systems. No major

difficulties were encountered during these runs except that the maximum speed of

3-19




21958

del Supouereg 9TqIXa1Jg-paads mo1 Y 3ISSL 11-€ 2an314g

sadeys a2pol (pud MSTA X g = puy aufrqan] e ssdujjris [eIOL)
dLOdH 2@3eTnuis

4oty s1zoddng ("uT/qT) Pug NSTA I puUNOIH 03 SSIUFITIS [€IO]

\\\(l/ ) RS I —
sOt S v ¢ c vOL Sv € ¢ 0l .m v € c 4] 8
| L L AL L L T ) TTTr 11 T L L B B L T
N
Uno_,
—¢
-1€
\ 1
-1S
! aaTsuodsay g -1+01
‘ uotjeaedas sueld [J
\
Jdz

3-20

(udx EOT) paadg




24,000 rpm could not be reached. However, with the hard mounts there was misa-
lignment between the bearings which increased power losses and limited maximum
rig speed. When this initial debugging was completed and the spring cartridges

were installed, maximum speed could be attained.

With the initial debugging completed, the first spring cartridges installed were
those for which the test rig mode shapes are similar to the HPOTP (See Figures
3-9 and 3-10). During one of the initial runs on spring mounts, a change in
response and critical speed was observed for no apparent reason. Immediately
after this change occurred, an inspection of the rig revealed that one of the
spring washers had failed. This washer was apparently overstressed due to
excessive amplitude at the bearing pedestal. In all runs following this, motion
at the bearing pedestal was carefully monitored and a lower level of response

was maintained. As a result, there were no subsequent spring washer failures.
The debugged rig was then used to assess the effectiveness of the low-speed
flexible balancing method by performing balance runs for several different
spring supports. In each case, the same basic test procedure was followed. The
test steps were:

l. Acquire low-speed runout data

2. Acquire uncorrected rotor data (i.e., no correction weights in the

rotor) at various speeds

3. Install trial weights in the selected balance planes at the speeds from
Step 2

4. Acquire trial weight response data

5. Calculate influence coefficients

6. Use the influence coefficients and baseline data to predict correction

weights

7. Install the predicted correction weights and measure residual response




Several rig support configurations were used to assess different aspects of the
low-speed flexible balancing method. As summarized in Table 3-3, a total of
three different configurations were tested (referred to as I, II and III). The
remainder of this section discusses these configurations and includes

discussions of the test objective, test data and summary of results.

Test Configuration I consisted of support stiffness which simulated the HPOTP
mode shapes. Based on the low-speed flexible balancing analysis of the rig in
these supports, the predicted minimum low-speed flexible balancing speed was
8,000 rpm. The objective of these tests was to balance at different speeds
below and up to 8,000 rpm, and compare the results to uncorrected rotor data.

The balance speeds were:

2,500 rpm
5,000 rpm
7,500 rpm
8,000 rpm (predicted optimum)

A second test objective with the rig in this configuration was to perform high-
speed influence coefficient balancing for the first and second critical speeds.

The questions to be addressed with these test results were:
l. Will the method work at the predicted optimum speed?

2. Can successful balancing be performed at 1lower speeds on these

supports?

3. How does low-speed flexible balancing compare to high-speed influence

coefficient balancing?

A summary of the test rig Configuration I is shown in Figure 3-12 and the test
results are shown in Figures 3-13 through 3-17. Figure 3-13 shows the results
for low-speed balancing performed at 2,500 rpm. Balancing at this speed was
unacceptable for operation at all speeds. In particular, response at the first
critical speed after balancing was greater than response before balancing. For
this particular run, there was significant 2/rev response while running above

the first critical. This may have been caused in part by the large amplitudes,
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TABLE 3-3

SUMMARY OF TEST CONFIGURATIONS

Configuration Figure Purpose
I 3-12 Low speed flexible balance with

gsimulated HPOTP mode shapes

11 3-18 Assess effectiveness of low-speed
flexible balance weights when HPOTP
first critical speed location is

simulated

III 3-20 Reduce low-speed flexible balancing

speed
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Total Radial Support Stiffness (nominal design values):

K1 = 100,000 Ibs/in
K2 = 20,000 Ibs/in
Critical Speeds (RPM):
Predicted Measured Type
First 4,967 4,700 Flexible Disk Bounce
Second 23,550 23,400 Bending-Turbine
Precession
Figure 3-12 Test Rig Configuration I
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since the stiffness of the belleville washers can be nonlinear for large
deflections. For all other runs, when response was smaller at the bearings, the

response was primarily synchronous.
p

Figures 3-14, 3-15 and 3-16 show the "before'" and "after" response for balancing
at 5,000 rpm, 7,500 rpm and 8,000 rpm, respectively. These data show that as the
balance speed is increased, the quality of balance (i.e., reduction in response)
is also increased. In particular, for the balance at 8,000 rpm, it was possible
to operate the rig above both the first and second critical speeds. For the
balance at 5,000 rpm and 7,500 rpm, operation above the first critical was

possible whereas operation above the second was not.

Finally, Figure 3-17 shows the balance results for two-speed influence coeffi-
cient balancing (i.e., high-speed balancing). For the two-speed balance it was
possible to operate above both the first and second critical speed. Further-
more, the quality of balance is approximately the same as it was for the

low-speed flexible balance at 8,000 rpm.

Following is a summary of results from the Configuration I tests:

l. Low-speed flexible rotor balancing at the predicted optimum speed
results in satisfactory high-speed operation above the first and

second critical speed

2. Balancing at speeds lower than the predicted optimum is not as success-
ful

3. The quality of balance for low-speed flexible balancing is nearly the

same as for high-speed influence coefficient balancing

For test rig Configuration II, which is shown in Figure 3-18, support stiffness-
es of 100,000 lbs./in. were installed at each pedestal. The objective of using
these supports was to simulate the location (i.e., speed) of the HPOTP first
critical. In this configuration, the weights from Configuration I were

installed and the following question was addressed:
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K1 = 100,000 Ibs/in
. K2 = 100,000 Ibs/in
Critical Speeds (RPM):
Predicted Measured Type
First 11,358 12,100 Bending-Disk
Precession
Second 25,104 >24,000
Figure 3-18 Test Rig Configuration II




1. Are balance weights effective when the critical speed location is

changed?

In terms of the HPOTP, this configuration assesses the effectiveness of using
out-of-housing low-speed flexible balancing to minimize in-housing high-speed
response. The balance results for Configuration II are shown in Figure 3-19.
As this figure shows, before installing the correction weights, the maximum
speed was limited to approximately 9,000 rpm. After installing the Configura-
tion I weights (predicted at 8,000 rpm), it was possible to traverse the first
mode and operate up to the maximum rig speed of 24,000 rpm. These data show
that, for this system, the correction weights predicted using low-speed flexible
rotor balancing supports are satisfactory for other supports. In terms of the
HPOTP, this shows that out-of-housing low-speed flexible rotor balancing may

significantly reduce in-housing high-speed response.

Configurations I and II demonstrated the viability of low-speed flexible rotor
balancing and the potential applicablity to the HPOTP. Configuration III was

planned and tested to address the following question:

1. Can the low-speed flexible balancing regime be reduced (i.e., can a

successful balance be performed below 8,000 rpm?)

To address this question, Configuration III, as shown in Figure 3-20, was test-
ed. In this configuration, the soft supports were installed in the titanium
disk end pedestal. With these supports, balancing was performed at several
different speeds. The results of these balance runs for 3,000 rpm, 5,000 rpm
and 6,000 rpm are shown in Figures 3-21, 3-22 and 3-23, respectively. These
data show that as the balance speed is increased the quality in balance (i.e.,
reduction in response) increases and this behavior is consistent with that seen
in earlier Configuration I tests. In particular, for the balance at 3,000 rpm,
it was not possible to operate above the first critical, whereas for the balance
at 5,000 rpm and 6,000 rpm, it was possible to operate the rig above the first
critical. Furthermore, with balance weights predicted at 6,000 rpm the maximum
attainable speed was 21,000 rpm. These results show that it is possible to

reduce the low-speed balance regime by changing the support flexibilities.

Finally, Configuration I was retested to address the following questions:
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Total Radial Support Stiffness (nominal design values):

K{ = 100,000 Ibs/in

K2 = 2,000 Ibs/in
Critical Speeds (RPM):
Predicted Measured Type
First 1,830 3,300 Disk Bounce
Second 23,315 > 23,000 -

Figure 3-20 Test Rig Configuration III
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l. Do balance weights predicted with low stiffness also balance Config-

uration I?
2. Do rigid body balance weights balance Configuration I?

The results from the Configuration I retest are shown in Figures 3-24 and 3-25.
In this retest, the weights predicted at 6,000 rpm from Configuration III were
installed. As shown in Figure 3-24, with these weights it was possible to trav-
erse the first critical speed and a maximum speed of approximately 22,000 rpm
was reached (essentially the same speed as with the Configuration III supports).
This shows that these weights are effective but that the quality of balance was

not as good as with those predicted at 8,000 rpm weights.

Finally, a two-plane low-speed rigid body balance was performed and the weights
were installed in the rotor. Figure 3-25 shows that the rigid body balance
weights produced little change in the first mode maximum amplitude and that the
maximum speed was limited to 20,000 rpm. Thus, for this hardware, rigid body

balancing is not effective for high-speed operation.

In summary, a series of tests have been conducted to evaluate the low-speed
flexible rotor balancing method, and compare the results with those from

high-speed flexible rotor and low-speed rigid body techniques.
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4.0 CONCLUSIONS AND RECOMMENDATIONS

4,1 Conclusions

A method for determining low-speed flexible balancing ''windows' has been estab-
lished and demonstrated in the laboratory using a flexible rotor rig. These
"windows" are combinations of support stiffness, balancing speed and probe and
balance plane locations which, when combined with probes of sufficient sensitiv-
ity and a suitable existing balance weight computation method, allow true flex~
ible rotor balancing to be performed at low speeds. Major conclusions from the

test data show that:
* Low-speed flexible rotor balancing is a viable technology.

* The quality of balance achieved with low-speed flexible rotor balancing

is roughly equivalent to high-speed flexible balancing.

* For the test rig used, successful low-speed balancing required operation

above the first mode.

* Lowering the location of the first mode reduces the speed at which satis-

factory\balancing can be achieved.

* Balance speed/stiffness regimes predicted using the low-speed flexible
rotor balancing approach are generally consistent with analytic pred-

ictions. -

* Rigid body balance was found unacceptable for satisfactory high-speed

operation.
* Correction weights predicted using the flexible supports required for
low-speed flexible rotor balancing are acceptable for different support

stiffnesses.

These test results show that the low-speed flexible method is a viable technolo-

gy for balancing at low speed to ensure smooth, high-speed operation. Further-

more, by judicious implementation of this methodology, the range of balance




speeds can be controlled and the state of balance achieved can be satisfactory
for different flexibilities. Therefore, if applied to the HPOTP, the low-speed
flexible rotor method may provide a means for low-speed, out-of-housing balanc-

ing, which results in smooth, high-speed operation.

4,2 Recommendations

Based on the success of the proof-of-principle tests, further implementation of
this method for the HPOTP is recommended. Implementation should include refine-
ment and qualification of the method for the HPOTP, and development of a final-

ized system for out-of-housing balancing of HPOTPs.

Prior to development of a finalized balancing system, the method should be qual-
ified in a laboratory environment. Qualification testing should use actual
HPOTP rotor hardware or hardware that simulates HPOTP rotordynamic performance.
Furthermore, qualification tests should be planned to evaluate the effective-
ness of the method for different balance speeds and suspension characteristics.
In addition, these tests will identify specific hardware requirements (such as
required support flexibility) and computer hardware/software requirements for a

finalized HPOTP low-speed flexible rotor balancing system.

General requirements of a system for qualification testing and for the finalized
HPOTP balancing system are similar. One difference is that the qualification
system can use a test shaft which simulates the rotordynamic performance of the
HPOTP whereas the finalized balancing system will use actual HPOTP rotor hard-
ware. In addition, the rig for qualification tests must have high-speed capa-
bility for performing verification tests at maximum HPOTP speeds whereas the
system for balancing production HPOTPs need only operate at the low-speed flexi-
ble balancing speeds. The remainder of this section contains system specifica-

tions and requirements for the following components:

* Mechanical Hardware

~ Drive system
~ Bearing Lubrication

~ Bearing Suspension
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* Computer/Data Acquisition Hardware

~ Instrumentation
~ Mini/Micro Computer

~ Analog-to-Digital Converter

* Software Architecture

~ Control
~ Data Acquisition
~ Calculation

~ Output/Graphics

4,3 Mechanical Hardware

Drive systems for use during qualification testing and for the finalized system
for balancing production HPOTP rotors are needed. The primary performance
requirements of the drive systems for these two applications are somewhat
different. For evaluation and high-speed verification tests using the HPOTP
rotor simulator, the drive system must have a maximum speed of 35,000 r/min. On
the other hand, the maximum speed for balancing production rotors is not as
high, but quick acceleration and deceleration rates are required to limit bear-

ing life expenditure.

A bearing lubrication method for the qualification test rig must be capable of
lubricating and cooling (to avoid thermal distress to the 440C bearing material)
the support bearings at the low-balance speeds as well as at the high verifica-
tion speeds. In addition, the bearing lubrication method should be compatible
with HPOTP bearing hardware. Note that the current bearing support design makes
no provision for jet or mist-type lubrication, since the bearings are bathed in
LOX. Hence, the envelope available for qualification rig support bearing cool-
ing and lubrication is extremely limited. Little room exists for admitting oil
to, and scavenging it from, the bearings and careful engineering of this system
will be required. For the finalized balance system, the bearing lubrication
method must lubricate and cool the bearings at the low-speed flexible balance
speeds. Furthermore, it must be a method which uses only LOX-compatible materi-

als, therefore, judicious selection of a lubricant is required.
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‘A suspension system for the qualification test rig must have the range of flexi-
bility needed to perform low-speed flexible balancing as well as to simulate the
in-housing suspension of the HPOTP. Other design objectives include satisfac-
tory fatigue life, repeatability, ease of assembly/disassembly, linearity and

lack of a deadband.

One approach for meeting suspension system requirements consists of a cartridge
between the bearing outer race and bearing pedestal. Within this cartridge are
removable spring elements similar to those in Figure 3-2 and 3-3. Such an
arrangement can be redesigned to allow for a wide range of spring stiffness,
long fatigue life and good repeatability. Furthermore, such a suspension system
can be easily incorporated into the final design of the low-speed flexible

balancing system for production HPOTPs.

4.4 Computer/Data Acquisition Hardware

For successful low-speed flexible balancing the ability to measure low levels of
rotor-bearing response is required. In particular, balance data will usually be
required at relatively low speeds that are not at rotor-bearing criticals, so
that little dynamic amplification occurs. One way to accurately measure these
low response levels is with high sensitivity vibration sensors and a mini-compu-
ter-based data acquisition system. Key hardware components required for such a
system are shown in Figure 4-1. It 1is recommended that hardware be selected

which can be used for verification tests as well as for the finalized system.

Vibration sensors with high accuracy need to be used and their support struc-
tures integrated with the overall mechanical design. Both shaft displacement
and bearing force measurement systems can be considered. There are several
types of instrumentation systems available for measuring shaft displacement.
Eddy current proximity probes, fiber-optic probes, and capacitance probes are
often used for rotating equipment. The sensitivity of capacitance measurement
probe and fiber optic measurement systems can be an order of magnitude greater
than that of the eddy current. Thus, based on accuracy, the capacitance or
fiber optic systems are better suited for low-speed flexible balancing than the
eddy current probes. It is important to note that capacitance systems (such as

MTI's Accumeasure System 1000 ™) can measure displacement with a resolution on

4=4
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the order of 0.05 mils. This is an improvement over the 0.5 mil resolution
achieved with the instrumentation used on the test rig discussed in Section 3.
For displacement measurement systems, mechanical and electrical runout can
greatly exceed the small amplitude changes being sought, resulting in degraded
measurement performance. Because this runout is generally repeatable, it can be
measured and subtracted from the probe signals. This is best done using a "'syn-
chronous runout corrector', and such a device or its equivalent must be incorpo-

rated into the system.

In addition to shaft response measurement, it may be desirable to measure force
transmitted through the bearings. If this is the case, a force transducer couid
be incorporated into the design of the bearing pedestals. A variety of trans-
ducers can be used for this application, including piezoelectric and/or strain

gage types.

The vibration sensor signals generally need to be conditioned using low pass
anti-alias filters. These filters are needed to limit the vibration signal
bandwidth to ensure compliance with sampling requirements. The conditioned
signals are then digitized using a high-speed, A/D converter circuit synchro-
nized with the tachometer signal. The A/D converter will require at least
12-bit accuracy to read low levels of response.

Computer hardware requirements include a processor, terminal, printer and
possible graphics plotter. During the selection of the computer system hardware

components, consideration should be given to the following:

* Computational requirements (expected need: 16 bit cpu)
* Memory requirements (expected need: 256 Kb)
* Fixed mass storage requirements (expected need: 10-20 Mb Winchester)
* Removable storage
* Data acquisition requirements, trade-offs, and constraints
~ A/D speed
Resolution
Number of channels
Anti-alias filters
~ Frequency range of data

~ Allowed data collection times
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* Data output requirements (printed, graphical, etc.)
* Computer hardware ruggedness and reliability

* Environmental factors (temperature, humidity, cleanliness, etc.).

4,5 Software Architecture

Modular software should be developed for verification testing and this software
will form the basis for the finalized system software package. The required
software components need to be designed, flowcharted, coded, debugged, inte-
grated, and tested. The verification software should implement the major func-
tions identified in Figure 4-2 and listed below:

° Balancing System Control

Menu-driven operator interfaces
~ Simple and easily understood command sequences
~ Production oriented balance sequence

~ Error message and self-recovery from error status

° Data Acquisition Control Software

~ A/D control
~ Speed measurement
~ Data sampling

~ Data collection sequencing

* Balancing Software

Influence coefficient calculation
~ Balance weight prediction

~ Balance weight constraints (i.e., weight removal limits)
~ Prescribed orbits

~ Use of previously determined influence coefficients

~ Determination of plane independence from empirical data

* Qutput Software

~ Balance reports
~ Plots
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More details of each of these functions are shown in Figures 4-3 and 4-4.

The above recommendations outline a conservative approach to developing a final-
ized integrated system for low-speed flexible out-of-house balancing of HPOTP
rotors. As described above, the four key elements of such a system are: 1)
mechanical components, 2) instrumentation, 3) data acquisition hardware and 4)
computer software. The challenge in developing an effective low-speed flexible
balancing system for SSME turbopumps is the integration of these components and

the judicious application of the low-speed flexible balancing analysis.
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Fig. 4-3 Vibration Data Acquisition
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APPENDIX A

Sample Computer Output for Test
Rig Critical Speed

Description Pages
Summary of Input and Geometry A-2 to A-1l4
Critical Speed Analysis Summary A-15, A-16
First Critical Speed Mode Shape A-17 to A-19
Second Critical Speed Mode Shape A-20 to A-22
Third Critical Speed Mode Shape A-23 to A-25
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