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1. INTRODUCTION

The Earth’s atmosphere has a significant bearing on the quality of images of the Earth’s
surface as observed from space by reflected sunlight. This atmospheric effect is caused by absorp-
tion and scattering of sunlight by molecules and aerosols. The molecular effects can be accounted
for, but the aerosol effects are variable and poorly known during satellite observations. The op-
tical parameters used to ccmpute the atmospheric effects are: its optical depth to determine the ex-
tinction of light; the single scattering albedo, which is the fraction of light scattered from total ex-
tinction; and the scattering phase function giving the probability of scattering in a particular
direction.

The atmosphere tends to make dark surfaces appear brighter and bright surfaces darker, but

the resultant effect depends on the surface reflectapce pattern itself. Atmospheric, suulcnng dif-

fuses the boundaries between adjacent fields. This effect, called the adjaccncy effect, is due to
light reflected from the ground surrounding a sensor’s field-of-view and then scattered into the
field-of-view. The adjacency effect depends on the above mentioned optical parameters and on the
depth of the aerosol layer.

Theoretical analyses of atmospheric effects, ground-based measurements of atmospheric
parameters, and analysis of satellite data are reported on here. This work occurred during the
period 1982-4.

2. JUSTIFICATION, OBJECTIVES, AND APPROACH

2.1. Justification

Recently developed theoretical models of radiative transfer in the atmosphere can be used to
perform a(mosphenc corrections for known aerosol characteristics. The development of correction
algorithms requires testing the models agamsl measurements to investigate the main atmospheric
characteristics that affect certain remote sensing techniques, and to develop methods to measure
these characteristics from ground and from space.
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2.2. Objectives

To study the atmospheric effect on remote sensing by theoretical modeling and to measure
(h.lS effect. To relate the effects of the atmosphere to the aerosol characteristics in order to deter-
mine which are the main characteristics that affect a given remote sensing function. The specific
goals are:

a. Laboratory simulation and analysis of ficld measurement of the atmospheric effect to study
the effect and to validate theoretical models.

b. Development of a theoretical model that can simulate the atmospheric effect over any variable
surface.

c. Study the atmospheric effect on the spatial resolution of satellitc images of the surface and on
classification of surface features.

d. Analyze the relative importance of aerosol scattering and absorption on remote sensing of the
surface in order to determine if atmospheric corrections based on the optical thickness alone
are feasible.

e. To measure the atmospheric characteristics that are important for atmospheric corrections: op-
tical thickness, path radiance, scattering phase function, and single scattering albedo, and find
the relations between them in order to establish the minimum information required for at-
mospheric corrections,

2.3 Approach

a. In order to measure the atmospheric effect and test theoretical models, a field and controlled
laboratory experiments are performed in the presence of nonuniform surface reflectance.

b. The simulation of the atmospheric effect over a general varying surface reflectance is perform-
ed by the calculation of the atmospheric Modulation Transfer Function (MTF) and application
of two-dimensional Fourier Transforms for the calculation.

_c. -Analyze the aerosol effect on spatial reduction and ciassification by means of the atmospheric.

MTF and application of the 2-D Fourier Transform technique.

d. Radiative transfer computations are used to derive the relative importance of aerosol scattering
and absorption on remote sensing of the surface albedo, vegetation index, and classification.

e. A system is developed to measure simultaneously from the ground the optical thickness, the
path radiance, the scattering phase function, and the single scattering albedo. The covariance
between these parameters is studied. Inversion procedures are developed to derive from the
observations the aerosol optical-thickness, scattering phase function, and absorption.
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3. RESEARCH RESULTS
3.1. Mcasurement of the aimaspheric effect

A laboratory experiment [6] was conducted in which a half white, half black plate repre-
sented the nonuniform surface and a dish with hydrosol of latex spheres represented the hazy at-
mosphere. A solar simulator irradiated the dish and a detector scanned the upward radiance across a
line perpendicular to the border between the white and black area. Fig. 1A shows an example of
the measured radiance and the theoretical fit [1] as a function of the distance from the boundary
X (normalized by the hydrosol height H). In this experiment the adjacency effect (the effect of a
bright object on the radiance above a nearby dark object) was measured as a function of hydrosol
optical thicknesses for nadir and off nadir observation directions. Good agreement was found be-
tween theory and experiment. The measured adjacency effect had an amplitude 20% higher than
the theoretical one, and a range 25% shorter than in theory.

A field experiment was also conducted [8] in which the upward radiance above and below the
haze layer was measured simultaneously with ground and airborne measurements of the at-
mospheric characteristics. Fig. 1B shows an example of the upward radiance from the nadir below
and above the base. The radiances are measured over the dark water as a function of the distance
from the bright vegetated land (the wavelength is 773 nm). The reflectance of the vegetated surface
was approximately 0.35. A comparison with theory shows similar good agreement as in the
laboratory study, with the adjacency effect somewhat stronger and narrower than in theory (as
was found in the laboratory study). This difference can be due to the approximations in the theory
and due to errors in accounting for very large particles.

3.2. Resolution and classification

The experimental verification of the radiative transfer theory and the application of Fourier
Transform [7] to generalize the theory so that the upward radiance can be simulated for any 2-D
varying surface, enables the application of the theory to study the atmospheric effect on spatial
resolution and classification of surface features [3], (5] and [7]. It was found (see Fig. 1C) that the
atmospheric effect reduces the spatial resolution substantially. For the Thematic Mapper (TM) the
spatial resolution of 30m (defined for Modulation transfer value of 0.35) is reduced to 100m by a
hazy atmosphere (aerosol optical thickness=0.5, A= 550nm). An atmospheric correction that ig-
nores the adjacency effect can correct the resolution to 50m. Similarly, significant effects were

.. found on classification of surface features (3] and on separability between field classes [7]. . |

3.3 Scattering versus absorption

A theoretical study was conducted [9, 12] to test the common hypothesis that the atmospheric
effect depends mainly on one atmospheric parameter—the optical thickness (74). An increase in
the amount of aerosol tends to brighten dark surfaces and darken bright surfaces (see Fig. 2A). In
the brightening process aerosol scattering has a dominant effect and absorption is of secondary
importance; but in the darkening process the absorption has an important role. For a given bright
surface the atmospheric effect can be of brightening or darkening depending on the ratio of
acrosol scattering and extinction optical thicknesses (w,). A reliable estimate of such effects can
not be made until more is known about atmospheric absorption and its variability. However, Fig.
2B shows that remote sensing of contrast such as vegetation index is weakly affected by absorp-
tion, but still affected by changes in the optical thickness. The vegetation index is a function of the
slope of a line in this figure and thus does not change appreciably with absorption (from model |
to 2 and from model 3 to 4). Figure 2B also shows how the reflectance of the earth-atmosphere
system is altered by the atmosphere.
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3.4 Ground-based experiment

In order to learn about the optical characteristics of the atmopshere as they affect remote
sensing, a ground experiment is being performed in order to collect and analyze a substantial data
base. Simultaneous measurements in the visible and near infrared spectrum are made of the solar
transmissicn, the sky radiance in the direction of the North Star and also in the almucantar
through the sun and the degree of polarization of the skylight. The aerosol optical thickness is
derived from the solar transmission. The path radiance is measured in the direction of the North
Star in order to minimize geometric effects and observe changes associated with aerosols. During a
day the angle between the observer, sun, and North Star is essentially constant.

Attempts have been made to relate atmospheric corrections to only one parameter—namely
the aercsol optical thickness, in only one spectral band. Figure 3A shows the strong correlation
between path radiance (at 870nm) and optical thickness (at 6i0nm). 94 percent of the radiance
variance is associated with optical thickness variance for these wavelengths. The correlation bet-
ween the radiance at 870nm and the optical thickness at 610nm was bigger than the correlation
with optical thickness at 870nm. This is due to a different size dependence of the radiance and the
optical thickness. The correlation between path radiances in two spectral bands (Fig. 3B) shows
the accuracy of estimating the path radiance in one band from that in another band. The radiance
at 870nm can explain 74 percent of the radiance variance at 480nm, and 62 percent of the radiance
variance at 1670am. ‘

The aerosol scattering phase function is derived from the radiance of the skylight in the solar
almucantar. The inversion proceeds by an iterative method to account for molecular and multipie
scattering. An inversion of radiances computed for a mode! atmosphere is shown in Fig. 3C. The
true aerosol phase function of scattering angle is given by P,. P would be the estimated phase
function derived from the radiance, if only molecular scattering was accounted for. P, is the first
guess of the aerosol phase function, which is used to estimate the radiance of multiple scattering.
This value-is subtracted from the measured value to obtain the P,-estimate of the aerosol phase
function. The procedure is repeated with this new value of the phase function (P,). After two
more such iterations, the curve P, is obtained, and it is nearly identical to the true value (Po).
Although the simulated radiances are free of errors, an analysis of the error budget has been
made. This inversion method has been applied to measured radiances. Eventually, these functions
will be compared with those derived from solar transmission data.

5. CONCLUSION

Radiative transfer theory (RT) for an atmosphere with a nonuniform surface is the basis for
understanding and correciing for the atmospheric effect on remote sensing of surface properties.
In the present work the theory was generalized and tested successfully against laboratory and field

measurements. There is still a need to generalize the RT approximation for off-nadir directions
and to take into account anisotropic reflectance at the surface.

The adjacency effect results in a significant modification of spectral signatures of the surface,
and therefore results in modification of classifications, of separability of field classes, and of
spatial resolution. Fer example, the 30m resolution of the Thematic Mapper is reduced to 100m by
a hazy atmosphere. The adjacency effect depends on several optical parameters of aerosols: optical
thickness, depth of aerosol layer, scattering phase function, and absorption. Remote sensing in
general depends on chese parameter, not just adjacency effects, but they are not known well
enough for making accurate atmospheric corrections. [t is important to establish methods for
estimating these parameters in order to develop correction methods for atmospheric cffects. Such
estimations can be based on climatological data, which are not available yet, correlations between
the optical parameters and meteorological data, and the same satellite measurements of radiances
that are used for estimating surface properties. Qur knowledge about the atmospheric parameters
impor(ant for remote sensing is being enlarged with current measurements of them.
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Fig. 1: Measurement of the atmospheric P T e i
effect on remote sensing over a nonuni- 10-2 10~ 100 10! 102
formity in the surface reflectance. SPATIAL FREQUENCY (CIKM)

Fo is the solar spectral irradiance

and 6 g=arccosine(ugy), the solar

zenith angle.

A - Laboratory simulation for optical thickness 0.3, nadir observation. The
theoretical fit (....) and the surface reflectance (- - -) are indicated. X is

the distance from the bright area and H the hight of the scattering medium.

B - Field measurements for aerosol optical thickness 0.5. The aircraft measurements
(——) and theory (....) are indicated.

C - The atmospheric effect on spatial resolution of the Landsat Thematic Mapper (™).
ihe modulation transfer functions for the TM(—) alone, with atmospheric effect (....)
and with correction that ignores the adjacency effect (- - =) are shown. The original

resolution (30m) is reduced to 50m by the adjacency effect and to 100m by the total
atmospheric effect.
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B - Radiance of models of the earth-atmosphere system. &
The surface_consists of dense alfalfa. The solar zenith |
angle is S0 ; the direction of observation is given by i
the polar angle 6 ,and azimuth ¢ from the direction of {
propagation of incident sunlight. The number besides !
the plotted points refer to the aerosol models:

Fig. 2: A - Scatter diagram of the radiance from a
Landsat Tmage on a hazy day as a functhn of the
radiance on a clear day taken over Washington, DC;

tor 700-800nm band. The radiance is ncrmalized to |MODEL wo Tt A600M) t12(820nm) 3
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Example of andlysis of ground measurements of the sky radiance.

A - The relatior between the optical thickness t, at(610nm) and the sky radiance (at 8&70nm)

in the direction of the North star. Each symbol represents a different nbservation day.
B ~ The correlation between the sky radiance at 480nm and 870nm; and 870nm and 1670am,

phase function.
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C An example of inversion of the almucantar simulated radiances for the aerosol scatterinag




