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1. INTRODUCTION

Reflector antennas are widely uséd in communication satellite systems
becausé of their relatively godd radiation characteristics, low éost, and
light weight. A central problem in the analysis of a reflectof antenna 1is
the secondary pattern computation. As sketched in Figure 1, for an inci-

dent field from a feed located at P the problem is to calculate the scat-

1’
tered field ES from a known reflector I at a far-field oBservatiqn point ;.

Several methbds exist for calculating the high-frequency asymptotic solu-

tion of ES(;), as explained below.

(i) Physical Optics Method (PO, Fig. la) [1]-[7]. The induced

current on the reflector is approximated by 2n x ﬁi. An integra-
tion of this current over the curved reflector L gives the far
fleld E°.

(ii) Geometrical Theory of Diffraction (GTD, Fig. 1b) [8]-[10]. At a
far-field observation point.;, ghe scattered field ES consists of

two terms: the reflected field on ray PIO , and thebedge

diffracted field on ray Ploj}
(111) Apertufe Integration Method (AI,_FLg. le) [1],[11]-[13]. The
. ~ field on aperture plane,Za is first calculated by tracing a

reflected ray P Oer using geometrical optics theory and an edge

1

diffracted ray PIOdP2 using GTD. Next, we integrate the field

over Za via FFT to obtain the scattered far-field ES.

The accuracy of the above three methods 1is discussed below. As a
reference, let us represent the exact solution of ES by a high-frequency

asymptotic series, namely,
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B3y ~ IESD [KO(F) + k'l/le(r*) + 1;'122(?)-+ ce] ) fork e e (L.1)
Tﬁen, we may summarize the accuracy and limitations of the three methods in
the following table:

TABLE l“

ACCURACY AND LIMITATIONS OF PO, AI, AND GTD .

Methods "': o Accuracy ' . 'Limitation

PO ‘ e ' ' not accurate for
. >
recover 36 and partial A1

Al wide~angle lobes

GTD recover Ko and Kl predicts infinite
. : field in main
beam direction

(caustics)

In this report, we will study the main reflector far-field pattern

using the aperture integration (AI) method for the following reasons:

(1) Uniiké'théhothe; two methods,'A; giQes‘the near-field (aperture
fielﬂ) és well.ag the far‘field.  M6st of today;s large rgﬁleétor
"measdremehts_éré d;nelip\a near field.raﬁge. Thus, 6n;y AT
.prévidés a convenient theoretical cﬁeck for the near f;eld':‘
measurements. .

(ii) The accuracy of AI is comparable to the popular PO. The use of
FFT in AI makes it'numerically efficient. Furthermore, as will
be discussed later;.the present AI formulation is most suitab}e

for extension to multiple (2 or more) reflectors.

There exists an extensive list of published literature on AL - notably,

Silver [1], kauffmahAand_Croéwell.lll], Acosta [12], ‘and Hwang, Tsao, and



Han [13]. In comparisbn with these prior works, the preseﬁt AI analysis may
be considered as an extension iﬂ one or -more of the following areas:
(1) The surface of the reflector 1is compietely arbitrafj. It can be ;
numerically specified surface. |
(11) The edge of the reflector is not restricted to a circulér curve,
| It can be‘an arbitrary-cutvé ly;ng}bn_an elliptical cone or
.cylinder. “ | o
(iii) The divgrgencelfé;tor ofiﬁhe>GO_fié1d is correctly computed.
Hence, ourlanalyéislis not restricted to feeds 1o§atéd very close
to the focai point (in which case tﬁe divergence factor is nearly
unity and is ignofed by several researchers).; |
: .(iv) The edge diffractedAfield is included in the épertufe‘fiéld
bcalcu}atién. Neaf.thé 1ﬁc£den£ ;nd reflecté@_Shadow.bounQafies{
two ﬁniform theories [16]—[15] are used so tﬁaé the apergure

field is continuous from the lit to the shadow region.

In short,_éhe present AI ‘analysis repreéents a‘gengfalizeé and imp;qved
version sf previous wb;k. in particula;;fit is émendéble»for a éonVeﬁieﬁt
extension foruanalyziné ﬁultiple refiectofs. N

The organization of this feportfis as follows: The deécriptibn_of the
problem is déséribed in Section 2. The'incident'fiéid, feed coordinates,
and power radiated from the-feed_éfe cqveréd in Secfioﬁ 3. .Sections.4 and‘
5 gi?e a steﬁ-byrstep procédure,f& compute ﬁhe various é;ntributions.that
make up the aperture field, namely,:tﬁe geometrical optics ;nd edgé;
diffracted fields. Section 6 covers'the"aperture field theory, the appliga—
tion of the FFT, and gain normalizgtiop; Ndmérical results and:conqluding

remarks will be presented in Sections 7 and 8.



2. DESCRIPTION OF PROBLEM

The geometry of the problem undér consideration is sketched in

¥

Figures 2 and 3. A reflector I is illuminated by the incident field from

a point source at P . 'The problem is’ (a) to determine the high-frequency

1
asymptoﬁic solution of the total field at an observation point on the aper—
ture grid Za as shown in Figure 2, and (b) to determine the seqohdary

pattern using the FFT as depicted in Figure 3. In this section, we shall

describe the various elements inyolved.in the problem.

2.1. Coordinate Systgms and‘Tiaé Convention

| The main coordinate syste@ iS'the.rectahgdlaf system (x,y,zz, whose
origin éhd'orientagion are arbitrarily chosen. 1In calculating the edge
diffracted field which’involves the>b0undary.of the reflector, we émploy
- a primed rectanguiar system (xf,y’,z‘); whose relation with (x,y,z) is
f,yf,zf) required to

describe_thé polarization and incident field is related to the main coor-

explicitly stated later. The feed coordinate system (x

dinate system by Eulerian angles [16}. This will be discussed in detail in

Section 3. .The time factor is exp(+jmt) and is suppressed throughout.

2.2. Source
We assume that. the source has a well-defined “phase centerflat Pi'with
, . R . = ‘ ﬁi >i A
coordinates (xl’yl'zl)’ and radiates a spherical wave denoted by (H ,E").

If the feed is an array, it is necessary to consider each element in the

array separately and superimpose their final scattered fields.

2.3. Reflector I

The perfectly conducting surface is described by the equation



Pa(x5,¥225)

o P (% ¥ 2))
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Figure 2. A reflector Z with edge I"being"filluminated by
‘ ‘the incident field from a point source at Pl.'

| typical Pz
- FFT
—_—
v _ - Secondary
Aperture . - Pattern:

Figure 3. Secondary pattern ﬁsing the Fast Fourier Transform. -



z=f(x,y) , foradx<b and c<y<d - (2.1)

It is not necessary to gnow the analytical form of the fuﬁction f(x,y)s In
fact, the present computer program;rquiyeg only'a set of disérete data
points (xh,yn,fn) with.h = 1,2,..,,N-as the»descgiption of i.' Those points
are fitted by a cubic spline which gilves aﬁtbmatically first and second
partial derivatives of f, namely, 3£/dx, 3E/3y, 32¢/3x2, ale/axdy, 32£/3y”.
There are p&o réquirements on,the:cqbic-spline fic: (1) the dafa points
cah be distributed over a random;grid,vbut they'hust be dense enouéﬁ'to
describé the fine detaills of L; (ii) fhevdomain of the data points

(a < x < bye <y < d) must be some&ﬁat greaﬁer than the area defined by the.
- boundary T of thevrefléctdf. .Thus, Qe ﬁus; know surface Zﬂin the shaded
region in Figure 4 as we}lf Typicélly, Eﬁe_"width" of the shaded region is
about‘3 to 4 wéveleﬁgths. Our present program contains an extrapqlation
subroutine, which automagically e#;ends Z”outwérd "smoothiy to obtain the
vnecéssary data points in tﬁe shaded_regién." The final scattered field,
for all practipél purposés, is indeééndent'of the surface outside T'.
Conséquently, the  exact manner in which tﬁe extrapoiatioﬁ is done is

unimportant.

2f4‘. Boundary F“

fwo types of.refleétor boundaries are moéf frequéntTy used in prac-
tice, and tﬁeyAreéeivebqur"special agtentton. |

fa) Cylinder Case. In the first?case;_r is the intersection -of sur-

face I and an elliptical cylinder (Figure 5a). The parameters of the

cylinder are:



A y=c

X=a " b

Figure 4. Projection of reflector 2 and its boundary T on x-y plane.
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be I on elliptical cone.

Figure 5. Two examples of boundary T' of the reflector.



(xc,yc) = center of the ellipse ..

(KI’KZ) = semiaxis along (x,y) direction.

Using a point on the axis of the cylinder as the origin, we introduce the

second rectangular coordinates system (x*,y",z") such that

(
x* = x - X
c
Ty =y- Y, (2.2)
27 =z

The curve I' may be described by a parametric equation with parameter ¢~ ,

0< ¢” < 2m,

e
|

©=g,(¢7) =p7 cos ¢7

P:y y7 = 2,(¢7) = p” sin ¢~
L 27 = 8y(7) = f(x = x_+ g,y =y + gz) (2.3)
where
[ J2 [ I2_1/2 ‘
p* = co; ¢ + si; ¢ (2.4)
I

The projection of T on the x-y plane is always an ellipse.

(h) Cone Case. 1In the second case, I' is the intersection of surface
I and an elliptical cone (Figure 5b). The axis of the cone lies in the
y~ - z© plane and its parameters are

(x =0,y =0,z = -p) = tip of cone

(o]
I

inclination angle of cone axis measured from z-axis

= half-cone angles in the x* - 2* and y* - z° plane
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Using the cone tip as the origin, the primed coordinates (x>,yf,z;) are

introduced such that

<«
]

-y cos 63 - (z -Ip) s?n 63

N
]

y sinle3 = (z - p) cos 0, A ‘ - '. o , " (2.5)

Using parameters. ¢, the curve P is deséribe& by

x” =g (¢7) ='p" cos ¢~
r: {y* = 8,(¢7) = p” sin ¢~
Lz.‘ -_-'-g3( 6) =’.p‘[(cot 8. cos '¢‘)2 + ‘(cot 92 sin (})’)2]1/2 (2.6)

1
To determine p~ as a function of ¢”, we must solve the follbwing'nonlinear

equation:

£(x,y) - p + v~ sin 0, + z~ cos 8, = 0. . ‘ (2.7)

For élgiveh ¢‘; there»is a uﬁique'root p” ft6q1<é.7), The ééir'(¢‘,p‘)

giVeé ﬁhe Aesired.relation'p‘“= p‘(@és; wﬁich ié fitted by splinebfunctions.

The projection pf ' on the x-y plane is, in general, a peaf—shaped curve.
“(c) Arbitréry Case. 1In a&ditioh‘to the above-#ﬁé'fféquently used

special cases, T may be an»arbitfary curve described by
" =g (67,y" = g,(47),2" = g,(¢7)

where (x°,y”,z”) is related to (x,y,2z) by either (2.2) or (2.5). The func-

tions (gl,gz,g3) can be specified either analytically orAanerically.

11



2.5. Aperture Grid Points

A general point oﬁ the éperture plqne Za 1s denoted by P2 with coor-
dinates (xz,yz,zz). Each point on Za as shown in Figure 3 is fed into the
computer for repeated calculations of the scattered field. It is essential
that successive observation points are.adjacent, because of the following
fact. In determining the reflection (specular) points on the reflector, we
make an exhaustive search only for the first observation point in a batch.
From the second point on, we use thebreflection point of the previous
observation point as the initial guess for the'tqrrent reflection point.

It 1s only when successive observation points are adjacent that such an
initial guess ensures fast convergence. In the cases that were considered,
only one iteration was needed to obtain the reflection point for all obser-

vation .points other than the first observation point.

2.6. Method of Solution

For a given incident field (ﬁi,Ei) from the source at Pl’ the asymp-
totic solution of the total field (ﬁt,ﬁt) at point Pz is determined by
Keller's geometrical theory of diffraction (GTD) [17]. Explicitly, the

total magnetic field is asymptotically given by

d

Reller: H°(p,) = B + f + o)), k> = | (2.8)

R .
Here Hg, the geometrical optics field, is of order k° relative to the inci-

dent field and is the dominant term. The second term ﬁd is the edge-

-1/2

diffracted field and is of order k « It is well-known that ﬁd becomes

infinite and (2.8) fails if observation point P2 is close to the incident
or reflected shadow boundary. In the latter case, we will use the uniform

asympto;ic theory (UAT) [14], {18]-[21], which amounts to replacing ﬁd‘in

12



(2.8) by a new term ﬁD (with capital D):
> -
uaT: Hf(e,) = BE + B0 + o(k Ly, k= (2.9)

d

14

Once ' is found, we calculate ﬁt from it by using the fact that ﬁg’ ﬁ
and f° are ;ll the so-calléd “ray fields™ which are locally plane anes.

( Oncevﬁhé tangential fiélds (Et orlﬁg) on Ea are obtained, the Fourier
transform of these fields will-essentially produce the secondary pattern.

This will be discussed in detail in Section 6.
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3. INCIDENT FIELD

The definition of the incident field is given. The incident power
from an arbitrarily polarized feed is derived so that the secondary pattern
has the correct gain level. Finally, the computation of the incident field

at a point on the reflector in the reflector system is described.

3.1. Definition of Incident Field

The surface current at the radiating aperture of the feed element may

be expressed as

3(x,y) = I(x aed¥ + yb) | (3.1)
where'(a,b,wf'are real and

a®+b2 =1 . (3.2)

"By choosing (a,b, V), one may obtain any feed polarization. Table 2 shows

the values of a,b, { corresponding to linear and circular polarizations.

TABLE 2

VARIOUS FEED POLARIZATIONS

a b Y

lineaf X 1 0 0

linear y 0 1 0
RHCP /Y2 ) 1/vZ) 90°
LHCP 1/72| 1//2} -90°

14



The radiated eleptric:field,due'tp j given by (3.1) is

- =jkr ' . o ' -
E~ei £(0,4) h N (3.3)

where %(6,¢) 1s the active element pattern; The_function §(6;¢) may be

approﬁimatély expressed by
Ee,0) = aUE(Q)(aejw cos ¢ +b sin ¢) 4~$UH(6)(b cos ¢ - aed? sin $) (3.4)

where

UE(G)l E-plane active patfern

Uye)

H-plane active pattern

Typically, these active pattepné may be épproximated by (cos 9)9, i.e.,

Ug(8) = (cos B)qE' _ o : : - - (3.53)

U,(8) = (cos e)qH_ | R . ‘ (3.5b)

3.2. Incident Power Radiated

From (3.3) and.(3.4), the radiated electric field-is given by

> -jkr . - '}\ ’ ’ . ~
E ~ Sij?‘“ [UE(G)(aer cos ¢ + b_Siﬂ $)8 + UH(G)(b cos ¢ -:aer sin ¢)¢]
L (3.6)
'The pover radiated, assuming forward radiation only, is _.‘
- 2 E/Z-* > R ;.
P, = [ [ EE . 2ginedd o (3.7)
ine " 420 "8=0 %o . =
where
ZO = 120m ohms. . A‘ : : a (3.8)
Using (3.2), (3.6), and (3;8); the incident power radiated is
/2 * . * ' ‘ _
Pie = mfo_ [ugug + vyuy] sinede ,. ©(3.9)

15.



For (cos 8)1 type patterns,

+q +
b = gt 9yt !
inc 60(2'qE + l)(ZqH + 1)

(3.10)

3.3. Determining the Incident Field on the Reflector

The geometry of this problem is illustrated in Figure 6. The feed
coordinate system (xf,yf,zf) and the hain reflector system (x,y,z) are
related by Eulerian angles YI’YZ’Y3° In the mos t general case, these
Cartesian systems can be aligned by three rotations. The angles of these
rotations are known as Eulerian angles. Figure 7 iliustrates the Eulerian
angles YI’YZ’Y3° The definitions of these angles [22] are as follows.
Angle Yy describes a counterclockwise (ccw) rotation about the z axis which
brings the x axis to the x" axis‘aligned with the line of nodes (line of

planes), angle Y2 defines a rotation about

intersection between xy and XeYe

the line of nodes in a ccw sense as indicated so that this brings the 2z

axis to zf, and angle Y3 is another rotation about the zf axis and aligns

the x" axis with the X¢ axis in a.ccw sense. Typically, X, and z, are

given. Let these unit vectors be expressed by

~ - ~ . ~

= + + X,z
Xe X X+ X,y + X,z (3.11)
= + +
ze zlx zzy z3z | (3.12)
Then, the Eulerian angles are given hy
i -1 %1 _
Y, = tan — (3.13)
2
.
2
-1 1 - z,
Yo T tan : (3.14)
3 .

16
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. (INTERSECTION OF xy

VX' AND xy; PLANES)

Figure 7. Eulgrlian angles.-
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From [16], it can be shown that

A A A A A A

T = T
[xf Ve zf] = Axy 7]
where

(cosY1cosY3—sinchosstinY3

>
1]

sinYlsinY2

L.

—cosYlsinY3—silecosyzcosY3 cosYlcosyzcosYS—sinYlsinY3 sinyzcosv3

(3.15)

(3.16)

siny lcosY 3+cosv lcosY 2siny 3 siny 28 iny 3

-cos'{lsiny2 COSY2

(3.17)

Thus, a point with coordinates (x,y,z) in the main coordinate system on

L has coordinates (xF,yF,zF) in the feed coordinate system given by

F 9 -
x5 bk ~ x,
F =
A z -2z
7 |
The corresponding spherical coordinates are
( F F
e = [T+ D2+ @DH?YV2
B -1, F
{ ef = cos (z /rf)
-1, F, F
¢ = tan (y /x) (3.19)

- 18



From the feed function given by (3.6), the incident E-field may be
obtained. To find the incident H-field, the following equation is used:

>
H

A : T _ inc ) :
T o (3.20)

where Zo is given by (3.8). Next, the incident field is converted from .

sphericallcompdnenté to rectangular components using .

Ffo- Fsinefcos¢f _ cbsﬂfcos§f ' -sin¢; (HrET

'Hyf. = | sinB¢sindg R cosefsin¢f - cosd ¢l | Hy. ' - (3.21)
, , : £

H ‘ -sind . 0 H

RET I R TE AL

Finally, the incldent H-field in the (xf,yf,zf) system is converted to the

(%x,y,2) system using the following equation

—H‘ 4 -
X T fo
=1 . ) ) . .
y 'Yf ) C ] (3 22)
Hz " Hz
_ - — f._J

where A is given by (3.17).

A]Q.



4. GEOMETRICAL OPTICS FIELD

The geometrical optics field H® in (2.8) consists of two components:

the incident field‘ﬁi and the reflected field ﬁr which 1s calculated in

this section.

It should be noted that the incident field at an observation

point on the aperture grid is taken to be zero because the incident field

does not ‘contribute to the secondary pattern.

4.1, Reflection Point

For a given source point P, and an‘'observation point P, (Figure 2), a -

reflection point of may exist on the reflector I, and we denote its coor-

dinates by (x,y,z=f(x,y)). The vectors

204
il

x(x = %)) + y(y = y)) + 2(£Cx,y) = 2))

[N
]

):(xz - x) + ):(y2 - y) + ;(22 - f(x,‘y)i)

(4.1a)

(4.1b)

are the connecting vectors between P1 and Or, and 0° and PZ’ respectively.

The condition on the reflection point is that the distance (d1 + d2) nmust

be stationary, i.e.,
2_(d, +4d,) =0 2.4 +4d) =0
ox 1 2 o3y 1 2%

which is explicitly given by

!

20

-‘% {(x = %) + [Ex,y) - 2] oo} _+ <11—:2 ((x = %)) + [£CGoy) -

of 1
-;—1 {(y - yl) + [f(x’y) - ZI]TY:} +Ez- {(y - }'2) + [f(X,y) -

(4.2)

of | _
22]'&- =0
of, _
z2]—3)7} =0
(4.3a)



A root (x,y,z=f) of the two nonlinear equations in (4.3a) gives the loca-
tion of a reflection point. For a given Pl and Pz, there may be none, one,
or more than one reflection point. It may be shown that (4.3a) is equiva-

lent to the.satisfaction of Snell's law. .

- The syétem of equations (4.3a) can: be also satisfied if P Or, and P

1’

are collinear. Such a spufious root may be eliminated by an additional

2

condition

X - X X = %, |2 y =~y y = y,12 |z -z z"-'zj 2
(d1+ d2 + d1+_ d2,+‘al+ 'd'z > 8
{4 B 0 N G "4y LY :

| (4.3b)
where § is a émali'positive number. AWe'égtAS = 0.0001.
A fodt of-(d.B) may or may notvfail.inéide the boundary I' of the
reflector (Figure‘&); Thus, for géch roét_(x,y,2=f) or its correéponding
_coordin;tes.(x',Y‘;z;) in thé priqu system; the following test musﬁ be

performed. 1If

N S LS T L ~ (4.4)

then the root is. inside [ and it is indeed a reflection point on the
reflector. TIf (4.4) is not satisfied) then the-foot should be discarded.
The parameter £, in (4.4) 1is giveﬁ by -
: 172 T2 AN20-1/2 - :
_ ~\2 ~y2 X y
2'1 = [(X YT+ () ] {'q‘) + [—K—z-] : (4.5a)

if I' lies on an elliptical cylinder,(Figdre_Sa); and

1/2 -1/2

'21 = I%’l[(x‘)z 4 (y‘>2] [(x‘.éot 6'1)2 + (y' cot 02)2] (4.55)

if T lies on an elliptical cone (FigureVSb).

21



4,2. TFormula for Reflected Field

The reflected magnetic field at P, is given by

> -jkd
¥(p,) = (DF) e 2

) oy - o[#tco%)eN]n} (4.6)

. i
which is given in terms of the incident field H at the reflection point
r

~ r
0, the surface normal N of the reflector at 0 , and a divergence factor

Y A A

DF. We choose N pointing toward the source; thus, (Nez) is always greater

than zero (Figure 8). Explicitly, N is given by
N=A(-fx -fy+ 2) 4.7)
X y

/2

-1
‘where A = +(fi + fi + 1) and the subscript x of fx’ for example, means

partial derivative with respect to x. The divergence factor in (4.6) is

DF = L . 1 (4.8)

/1 o+ (dz/Rf) /1 + (dz/R;)

where the square roots take positive real, negative imaginary, or zero
value (so that DF is positive real, positive imaginary or infinite).

(RT,RE) are the principal radii of curvature of the reflected wavefront

r
passing through 0 . Their computation is given next,

4.3. Curvatures of Reflected Wavefront
We use the formulas given in Section IV of [18] for calculating

(RT,R;). The three orthonormal base vectors of the incident pencil are

chosen to be (Figure 8)

i ; ;(z - zl) - ;(x - xl)
X, = —= = = (4.9a)
! %l [(z - 21)2 + (x - x1)2]1/2

22



Figure 8. Reflection from reflector }.

! 11
Po(X5 Y5, 25)

P (X ¥y 2))

r

Figure 9. Diffraction from boundary I' of the reflector.
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X =

where (x,y,z) are the coordinates of the reflection point o’.

reflected

Note that (4.10) chosen above is a left-handed system, i.e., xf x x;

1 N 1
*3 % %
Ix% x x{l

x(x - xl) + y(y - yl) + z(z - zl)

[(x - xl)2 + (y - yl-)2 + (z - 21)2}

pencil are chosen to be

A

X - Z(X}-N)N

1

A A

i ~1i
9 = 2(x2-N)N

-

X

x(xy = %) + 3(y, = y) + 2(z, = 2)

172

[(x2 - X)Z + (y2 - y)2 + (z, - 2)21

1/2

-~

(4.9b)

(4.9c)

Those of the

A

(4.10a)
(4.10b)

(4.10¢)

—~<F
3.

This choice, of course, does not affect the final solutions of (RI,R;).

r
The three orthonormal base vectors of reflector I at 0O are chosen to be

>

~x
X3

(1 + £

~ ~

x + zf
X

= 2.1/2

(1 + fx

y + zf
2,172
y)

H

From (4.9) and (4.11) the elements

24
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, mmn-=1,2,3 o (4.12)

can be calculated with the results

pi . (z - zl) - fx(x - xll).vl. - 13
’ . a
e 212 ((x - x? + (2 - 2?2
ot - __ht ) (4 13b)
12 (1+ f}2’11/2 [(x _<x1)2 + (z - 21')2]1/2 .
pi ] . ‘. v - —(x—xl)(yéyl)-fx(y-yl)(zezl)
21 [1+fi11/?{(x-xl)z(y-y1)2+[fzfz1)2+(x-x1)21Zf‘y-yl)z(z—zl)z}1/2
(4.13¢)
' (z-z )2+(X‘X )Z-f k&‘y >(z—z )
ol . 1 Ty 1
22 llffsl1/'2{(x-xl)z(y-yl)zﬂ(z—z’1)2+(x-x1)2]2+(y-y1)2(z-zl)2}172
(4.134)
P§3’=:%; AL (x - %) + fy(y -y -z - zl)]. , | “ . §4'13¢)

The first four elements in (4.13a) through (4.13d) form the 2 x 2 matrix

i =i

P'. Because of the -particular choice in (4.10), we have B’ = P*. The

- curvature matrix of the incident péncil is

Q= - - e o (4a14)
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The curvature métrix of reflector L at 0" is’
AZ(eG - fF) Az(fE - eF)
k= ’ '.  (4.15)

82(£G - gF) - A%(gE - fF) ]

where

1
]
XN

1+£ |, F=fFf , G=1 +_f§

e = -Afkg , f=-Af ., g=Af

A.is defined juét'belqw (4.7)

The desired curvatufe matrix QF may be calculated from the following matrix
equation

of =gt 412P§3[(51)T]'1'52(F1)'1 | o - C(416)

Let us denote the four elements of'3r~by

,ar'= .", : . vz" i‘ . . -”¢ N . 1“(4,17)
21 Q2
Then the desired radii of curvaturé'of ﬁhelreflected anefront at'Or'ére

given by

L
r
1

9

s

L1 2 0 -
2 (€@ + 9y i_/QQll *Q5p)", = 400y, = @)y )} ,
Ry A o (4.18)
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r
1

is'positive (negative), the corresponding normal section of the reflectéd

r

Both R1

and~R; are real. Their signs have thé following meaning: If R

r

wavefront is divergent (convergent). The same convention applies to R2°

Two f;nal remarks about the calchlation of the reflected field:
(1) ‘For a givgn Pl and P2, there méy;bé'more than one reflec;idn'point on
L. Theﬁ the total reflected fiéid is the supérp&sition of the’contribu;
tions from eéch reflectioﬁ:poinﬁ.' If’thgre is no reflection point on Z;E
the reflected fie?d is zeré; (i1) Iffthé ;efleéfion p§int is:close to the
boundary T, wé églli'qalcﬁléte its reflec#éd field in the usual manner. We
shall Adjust the diffracted fiéld‘ﬁd later by using UAT so that the Eotal

field ﬁt in this case is correct.

27



5. EDGE-DIFFRACTED FIELD

5.1. Diffraction Points

To calculate the edge-diffracted field, the diffraction points on the

boundary T of the reflector must be located first. Consider a source point

Pl at (xl,yl,zl) and -an observation point P, at (xé,yz,zz), with their

" coordinates given in the primed system (Figure 9). A diffraction point

0d with coordinates (x”,y“,z”) can be determined from the law of diffrac-

tion

P ot T mmm [} of (501)
dy 73 d, %4 A .

‘Here t is the unit tangent of T at Od, and

-) - Ed A‘ - - - - - rd - P
d3 = x"(x" - xl) + y“(y yl) + z°(z zl) (5.2a)
* " -, A‘ -~ - - A‘ - - 4
d, = x (x2 -x7) +y (y2 y°) + z (22 z”) (5.2b)

From Fermat's principle, (5.1) is equivalent to
4 @, +4d,)=0 (5.3)
d¢” 73 4

From (5.2), (5.3) may be written as a ndnlinear equation for unknownv¢‘:

(8, - %) 8 - x%7) % (g, -y 8 - v5| %,

+ - + -
[ dq d, 3¢ [ dq d, | 39
g, -z g, - 25| 3 '
+ [ 3 L + 3 2 3‘ =0 (5-4)
l dq d, 36~ 3 :

where (gl,gz,g3) are defined in (2.3) if T lies on a cylinder, and in (2.6)

if T lies on a cone. A root of ¢° of (5.4) determines a diffraction point
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on I'. Depending on the geométry;'there exist exambles where as many as

four diffraction pdints have been found.

5.2. Formula for Diffracted Field
Corresponding to each diffraction point Od, there is ‘a contribution
to the diffracted field Hd in (2.8).v Following Equation (5.21) of [18], the

fbfmula for such a contribution reads~.

>d : hi, *s. i
= + D .
HO(R,) = glkd,) T 0 8 [8D Hy a H ] | (5.5)
"Here>g is a cylindrical wave factor
g(x’ - L exp|-j x + 11 ’ . y o h (5.6)
2 2rx ] - 4 . ‘ _

The other factors used in (5.5) are expiained below.

5.3. Divergence Factor

The square root in (5.5) as usual takes positive real, negative imagi-'

nary, or zero value. Rl 1s a radius of curvature of the diffracted

wavefront passing through Od.' It may be céiculated from Equation (5.11) of

[18] which reads

lb_.

*J"“3—33 Tga'»“ " R C )
1 37 sin™ 8 3 ' 4 : _ o ' ‘

x|é
1}
=¥

Here B is the angle between tangent t and 54 (Figure}9)."The factor sin 8

is given by

sin 8 = /1 —'Q2]- S o (5.8a)
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where

%g, L 98 32,
Q = (x* = x71) 357+ 7 = y]) 557+ (2"~ 2)) } (5.8b)
Pd3 [ 1/ 3¢ 1/ 3% 30
2 3g. |2 ag.l2|1/2
N 1 )1 [_fﬁ% . 1253 (5.8¢)
3" 36~ 3~ .
U

- All the derivatives in (5.8) and in the remainder of this section are eval-

uated at the diffraction point Od, whose coordinates are (x*,y",z"). The

-~

d
curvature ¥ and normal n of the curve [' at 0O can be calculated from

Equation (13.9) of [23]. The results are

K = 33. (5.9a)
P
I; - L -~ ,~, - » ;o - » , e A, - - e (5 9b)
PR|B283 T 83f 8381 ~ 8183 8182 T 838 .
&1 82 83

" where the prime on g; signifies the. partial derivative with respect to ¢~

and

/

"A

- -, -~ AJ 2 - , g el -, 1 2
R = [(gzg3 - 8385 )T+ (g387" - g1g3 ) + (27857 -~ 858 ) 1 (5.10)

.Summarizing the results in (5.7) through (5.10), we obtain the final

expression for the divergence factor of the diffracted field

1 1
DFD = = (5.11)

/1 + (dA/Rl) Yl + G
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d4 dg [[x’ - xi x° - xé
G + 1 — + — LA LSRR ACT A A A
) (sin B8)? l[ dg - 4, 3 3 2°°1%2 5281
Yoy ¥V -y Y o
+ T + 3 (57 (g 182 fgzgl ) - 85(g%83 -g3g2 )]
( 1. - » ‘W
z - zl z - zz » el P o » l) o,
+ 3 + 1 [gz(g?_g3 - g38,7) - g1(g38]" - 818y7)]

S5S.4. Diffraction Coefficients

The soft and hard Keller's diffraction coefficients D and Dh are

defined in Equation (5.22) of [18], namely,

bs,h i

L}
>
+
>

]

-sec %—(¢ - ¢i)'t sec %J(¢v+ ¢i) o (5.12)

The angles ¢i and ¢ are shown in Figure 10. Because of the fact that-
Nez > 0, it can be shown that vector t x N is tangent to I at OF, and
points away from (not toward) I. -We calculate ¢i and ¢ from the‘rélations

(Proj d)e(t x N)

It

cos ¢t (-1) | ' (5.13)

|Proj 33|

(Proj da)-(c x N) .

cos & (5.14)

|Proj EQI

~

> > )
Here Proj d; is the projection of dj on the plane perpendicular to t,

némely;
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Plane L ?

\

Figure 10. Projection of Figure 9 on a plane perpeadicular to tangent t.
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Proj '33 =

> >
d3 - (d3°t)t

LY

= X 331 + y‘S32 +
where.

s' = (x° e
31 = X
S35 = (¥7
S33 = (z

Similarly Proj

[92]
|

41 = (x5

wn
|

42 = (93

43 = (23

B Ul vig

Sy - d4Q 3g,
Y1 P 3¢

Ly - 3028
2] T

3& is given by

~

z’S

z°S

33

43

(5.15)

(5.16)

The normal N of the reflector at Od is given in (4.7). For the present

application, it is convenient to change its base vectors to those 1n the

primed coordinate system.

N = x"N, + y*N

1

where

A

2t 27N,

The result 1s

(5.17)



N3 ="A (5.18)

if boundary T lies on an elliptical cylinder; and

N1 = -Afx | | (5.19a)
N2 = -A(-fy cos 83 + sin 63) ) (5.19b)
N3 = —A(fy sin 63 - cos 63) (5.19¢)

if I 1lies on an elliptical cone. Substitution of (5.15) through (5.19)

into (5.13) and (5.14) gives the final formulas for calculating ¢i and ¢

2 -1/2

cos o = [Sy)M, + Sy,M, + S M85, + 5, + 52, (5.20)
2 2 -
cos ¢ = [SAIMI + 842M + 843M3][841 842 + 843] 1/2 (5.21)
where
- g %, ]
mo=Lin =2 - N, =2
1 Pl 273¢ 3 3¢
i g og
M =L N 1," N 3,
2 P33 1 3¢
3 P 1 3¢' 2 36~
_ The solutions of ¢i and ¢ are subject to the following tests:
(1) ¢i takes the value in the range (0,w) if T3 > 0, and the
range (m,2w7) if T3’< 0, where
= (-Proj 35)-N = =S3,N) = Syl - 53485 (5.22)
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(i1) ¢ takes the value in the range (0,7) if Tz Z{o; and the range

(w,2n) if T4 < 0, where.
> » .
T4 = (Proj dA)'N =_841N1 + S&ZNZ + S&3N3 (5.23)

(1ii) If the observation point P2 is exactly on ;he incident shadow

boundary, then
. i o : ' - - '
$ -¢ -1 =0 : (5.24)

(iv). CIf ;h? observation point P, is exactly on the reflected shadow

boundary, then
. v- . C }

When the observation point-is exactly on the incident shadow bouhdary, ;he
first factof xi in (5.125 becdme§ infinite, and causes éomputational dif-
ficulty. A'simpie remedy ;s to shift Pz,élightly whenever (5.24) is
satisfied. = It should be remarkedvth.‘a_tlwhen.P2 is near but not'ekactly\on
the incident shadow boundary, xivis_large-but finite. It does not cause
any computationai difficulty at the moment., Later on, the aiffracted field
‘ﬁdvin this case”will béAmodified to'becdﬁe P byAusing the uniform agymp-
totic theory sq.that the total field'T{t is correct. Similarly; xr in
(5.12) bécqmés infinite 1if the ohservation point'P2 falls exactly on the
reflected_shadow boundary. Hence, we ghift P2 slightly when (5.25) is

satisfied.

5.5. ‘Spherical Components of  Incident.Field

*1i >i
Fields HB and Ha in (5.5) are the two spherical components in the

Iof the incident magnetic field fit evaluated at Od

. . i -
directions of 8 and a
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A A

The base vectors (Bl,ai) are shown in Figure 11 and may be calculated from

Then

Here

They

if T

if T

1 ~i *

w
|

= (t x §,)/(dy s1n 8)

Q
|

it may be shown that

s = o7 [HH0ee]

-1 Hag1+u-a—g3+nig—2
PsinB | 13p = 23 = 33

==}
|

[}

9g 9g

By = Pd, sin s[ “1[a¢‘ (z7 - 2]) —55= &0 yl;]
3g3

28—4)—;()( —xl)-———;-(z -z

22, g,

+H3F¢—;(Y "Yl)"'ﬁ;r(x - X

(H,,H,,

are given by

i, d .1, d _,i,.d
Hl = HX(O ), H, = Hy(O ), Hy = HZ(O )

lies on elliptical cylinder; and

Hy = #.(0%)

X

_ 1,dy . 1,.d
H2 = —cos 93 Hy(O ): sin 63 HZ(O )

. tody . i.d
H3 = gin 63 Hy(O ) cos 63 HZ(O )

lies on elliptical cone.

36

(5.26a)

(5.26b)

(5.27a)

(5.27b)

H3) are the components of ﬁi in the directions of (x",y",z").

- (5.28a)

(5.28b)



Figure 1ll. Spherical base vectors (31, &i) and 8, a).
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5.6, Rectangular Components of Diffracted Field

The diffracted field ﬁd calculated from (5.5) must be eventually
expressed in terms of rectangular components in the directions of (x,y,z),
so that it can be conveniently superimposed with the geometrical optics

field ﬁg in Section 4. 1In (5.5), the two spherical base vectors (B,a)

(Figure 11) may be calculated from

>

(a x 34)/d4 (5.29a)

™=
[

>

QR
0

(t x 3,/ sin 8) (5.29b)

The diffracted field expressed in terms of the primed base vectors are

>d _ 2. c. ~.
H (P2) = x"h, + y"h, + z"h, | (5.30)
where

_ ph i s i 1 =

h = (D B, HB + D a Ha] g(de) (DFD) sing * "° 1,2,3
L1 53 =gty < 2B e e

@ TP, sing |3 O TV T (e z3)

a = ]. agl (Z‘ - Z‘) - ag3 (X‘ _IxI)

2" Pd, sin B [ 3¢~ 27 T 9

-1 P

%37 Pd, sin B |37 F T2 TR WY TV

- 1__ ) - o
B - d4 [33()' .')’2) az(z 22)]

= 1_. b -— et - -* - -

By 4 [a) (2" = 25) = a (x" = x3)]
1 rd rd - Cd

83 = d [az(x - xz) - Gl(y - yZ)]

4
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The factor g is defined in (5.6), DFD in (5.11), and sin B in (5.8). The
final expressions for the diffracted field in the umprimed coordinate

system are as follows:

>d ~d ~d ~d

H (PZ) = xHx + yHy + sz (5.31a)
where

Hi =h, , 1 = n 1 = h | ' | (5.31b)

if I' lies on an elliptical cylinder; ' and

r . K
H = h1
9 ﬁd = -h, cos 8, - h, sin 8
v 2 3 3 3
Hd = h, sin 8, — h, cos O ‘ (5.31¢)
( z 2 3 3 3 ' *

if T’ lies on an elliptical cone. The corfesponding diffracted electric
field ﬁd at P2 is calculated from

2d _ -1 2>d >

E (Pz) = 120m d& [H (Pz) x d4] _ (5.32)

5.7. Detour Parameter

The diffracted field ﬁd calculated from (5.5) is not valdid when obser-

vation point P, is near the refleéted shadow boundary which is defined by

2
(5.25). To detect if P, is indeed so, we may calculate the so—called

"detour parémeter"-of the reflected field (Section VI of [18]).

£ = clk(dy + d, - d; - dz)jl/2 (5.33)

Here € is the shadow indicator of the reflected field defined by
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+1, if P2 is in the shadow side of the reflected field

-1, if P, is in the lit side of the reflected field

2

It may be shown that
€= Sgn[—cos % (¢ + ¢i):| : . (5.34)

The square root in (5.33) takes positive real, negative imaginary, or
zero value. When the caustic of the reflected field falls on the reflected
shadow boundary, £ is imaginary; otherwise, ¢ is always real. Detour
parameter £ in (5.33) becomes zero when P, is exactly on the reflected
shadow boundary, because the diffraction point Od and reflecﬁion point

0F coincide (Figufe 2). Following the numerical study in [24], we take
lg] = 2 ' - (5.35)

as on the on-set point. Thus, if |g| > 2, P, is considered to be away from
the reflected shadow boundary, and the diffracte§ field ﬁd in (5.5) is
valid. If |g| < 2, P, 1is considered to be near the reflected shadow boun-
dary, and we must replace ﬁd by g0 as stated in (2.9).
When £ is s@all, (d3 + d&) in (5.33) is nearly equal to (dl + dz). In
many practical problems, the reflection point 0" and diffraction point
Od may not be determined with great precision. Thus, when £ is small, a
direct computation of £ from (5.33) can have a numerical accuracy problem.
To clrcumvent thls possible problem, we have given below an alternative formula

for £ when its value is small:

3
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. V4, [T+ (d,/R))]

E = —[c.os -é— (4 + ¢i)j| sin B V2k
- o 1w @y RN+ (4,/RD)

1 1 __ (OFW, |
=|- cos-2-(¢ +¢) sin B8 {'Zk'—(—D—D-F—)— ,' _if |E|'>0 (5.36)

where (DF) of the reflected field is defined in (4.8), and (DDF) of the
diffracted field in (5.11). The derivation of (5.36) is given in
Appendix A of [14]. 1In all of'the following compdtations, we use (5.33) if

|E] > 2, and (5.36) if |g| < 2.

5.8. Uniform Asymptotic Theory

We shall calculate ﬁD by the UAT developed in [14], [19], [21]. The for-

mula reads
e,y = fd¢e,) + [F(E)'-‘ FE) -+ - e)] ey - (5.37)
27 2 ) ., 2 2 ¢

where F is a Fresnel integral defined by

. ™ 2
F(z) = “—1/2 eJ"/4 f efjt'-dt (5.38a)
z ’ . .
and
P(z) = -t expl-j 2+ 5] | | © (5.38b)
2z/n _ 4 . ‘ - ’

The factor (1 - €)/2 in (5.37) is one if P2 is in the 1it region of the
. reflected field, and zero, if P2 is in the shadow. As'expected, ﬁD reduces
“to ¢ when P, is away from the reflected shadow boundary. This is because

of the fact that for IEI > »,
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[F(8) = (D] ~5 (1 - o (5.39)

When P2 is near or on the reflected shadow boundary, ﬁD in (5.37) 1is always
finite, and compensates exactly for the discontinuity in #% so that the

total field ﬁt in (2.9) is everywhere continuous.
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6. SECONDARY PATTERN COMPUTATION

6.1. Aperture Field Theory

Refer to Figure 3. From field équivalence pfinciples, solutions for
the far field may be obtained knowing the tangential fields at Ea. The
' aperture plane Za is taken to be perpendicular to the z-axis.
Let us denote thé tangential electric and magnetic fields at Za by
Ea and ﬁa’ respectively. The field may be determined by using vector
potentials [25]. However,vit is more convenient to express the far field

directly in terms of the aperture fields. Let us define the following vec—

tor quantities:

Fu,v) = [[E (x,y) KO
z

dxdy _ (6.1)
Bu,w) = [ B Gey) o aygy (6.2)
z:a
where
u = sin 6 cos ¢ : ' (6.3)
v = gin 8 sin ¢ : (6.4)
k = 2n/A
8,0 = spherical coordinaﬁes of far fleld point

~

Since the aperturé fields are tangenﬁ to z, let

>
£

]

fx x + fy y | : (6.5)

-

g, X * 8, Y ’ : (6.6)

o ¥ -
]
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From each of the 3 equivalence principle formulations, three different

expressions arise for Ee and E, of the far field, namely,

(1)

(2)

(3)

¢

> >
using Ea and Ha

-jkr
= Jke - :l
Ee e fxcos¢ + fysin¢ + Zocose (gygos¢ gxsin¢)
(6.7a)
ke—jkr
= dke - - +
E¢ ypm= [:cose (fycos¢ fxsin¢) Zo(gysin¢ gxcos¢i]
' (6.7b)
>
using Ha
jk Zo e—jkrcose ‘
Ee = 57T (gycos¢ - gxsin¢) : (6.8a)
jk 2Z_ okt
E¢ = (gysin¢ + gxcos¢) (6.8b)
o
using Ea
.ke-jkr .
Ee = 1_55?—_ (fxcos¢ + fysin¢) (6.9a)
.. —jkr '
_ jke cosf _
E¢ e (fycos¢ fxsin¢) (6.9b)

This method suits large apertures (in terms.of A)lbecause the Fourier

transforms of the aperture field, % and ;, are highly peaked in the fre-

quency domain.
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This method is exact if the fields at Eé were known everywhere.
However, one must truncate Za to finite dimensions in order to employ the '

FFT.

6;2 Fast Fourier Transform

To employ the FFT subroutine, the ihtegréls (6.1) aﬁd (6.2) must be
"réarranged so that the form of the integrallmanhes the defiﬁition given by
the documentaﬁidn of the FFf subroutine. For this particular 2-dimensional
FFT subfoutine; the function being copsidered>is.éssumed to be periodic in
x and y with'peridd 1 in x ‘and y; Hence, the aperture grid as shown in
Figure 12 must Be scaled accordinély.

.Manyvmgnipulations are required:in order to use the FFT. 'These mani-
pulations are cafried oﬁt for fx; .§im11ar1y, this can be applied to obtain
fy’ 8y apé 8ye From (6.1) and (6.5) |

Yy %y .

fx(u,v) = f / Eax(x,y) ejk(ux+v¥)dxdy' : . (6.10)
"\

where Eax is the x-componeﬁt of E;(x,y)‘in (6.1). Using the substitutions

- X = (x-xl)/(xz-xl) Lo o | , (6.11)

X = (y-y)/(y,-y,),s | o | (6.12)
(6.11) becomes

~

1 1. '
£ (u,v) = K g g Eax(x1+‘§ix2-xl), ¥y + ¥(y,-y,)) -

2w i va '
P (ulxy=x X + v(y,~yIY) _ _ | -
e X 2 71 271 qgg! (6.13)

where
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(a) aperture grid .

X e

(b) FFT grid

Figure 12. Aperture grid Za and FFT grid.

AY AY

= X

Figure 13. An offset'pafabolic reflector.
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j%l(ux1+vyl)

K]. = (XZ-XI)(YZ"YI) e . (6'14)
The expression Eax(xl+(x2-xl)§9 y1+(y2—y1fZ) under the integral may be
interpreted as Eax(x,y) scaled to F(a,b) where 0<a{l and 0<b<l (see Figure

12). F(a,b) may be approximated by

N, M, L
F(a,p) =§ § ¢ oi(mkmD (6.15)
n=N1 m=M1 m

wherg Cmn are the Fourier coefficients obtained using the FFT sﬁbroutine.

For a 32x32 FFT,

=z
1]

1 Ml = ~-15

N, = M, = 16

From (6.13) and (6.15),

N a— ——

11 2 bfZ j-z%[(mﬂu(XZ'Xl))é’f(M+v(Y2'Y1))Xl __
£ (uv) =K [ [ } C_ e dXdY
X 1 o mn -

00 n--N1 m=M1

(6.16)
Interchanging the summation and integral signs and noting that
1 Hex  sta® e
[ e dx = ——2 e % (6.17)
0 T
A
the expression for fx is
N M :
z2 z2 J%(m+n) sin[%{mk+u(x2—x1))]sin[;{nx+v(y2-y1))]
f (u,v) =K C_e
X n=N; m=M, ma 7 (mA+u(xo-x]1)) ﬂ(nx+v(y2-y1))
A A
(6.18)
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where

3T (uCxpex2) + viyi+y2))
K = (XZ—XI)(yz-yl)e : (6.19)

In summary, to evaluate the integral (6.10), we first calculate {Cmn} of

1 (6.15) by FFT and then calculate f (u,v) via (6.18).

6.3 Gain Normalization

The secondary pattern is usually decomposed into two orthogonal

polarizations. Following Ludwig's definition 3 [26], the following unitary

“polarization vectors are introduced.

>

5(aejwcos¢ + bsind) + ;(—aejwsin¢ + bcosp) (6.20)

=
]

>

6(ae—j¢sin¢ - beosd) + ;(ae-jwcos¢ + bsing) (6.21)

(9]
1]

Let the secondary pattern be expressed as

3.3t [8 U, + ¢ U¢] (6.22)

r

The reference-polarization and cross—polarization expressions of £ are
> > 2
Reference-pol of E = (E-(R*)*) (6.23a)
+ -~
Cross—-pol of E = (E-(C*)*) (6.23b)

The second conjugate operation in (6.23) results from the change in direc-
tion of the field after being reflected by the reflector.
The directivity for the reference polarization is defined by

4K|E'§I2/Zo
D (8,4) = —p——2 (6.24)

inc
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Similarly, the directivity for the cross polarization is defined by

B2z, x
Do (8,¢) = —5—— - (6.25)
inec

where Pinc is the incident power radiated from the feed. Noting that
e-jkr/r factor is common in both the secondary pattern (6.22) and the inci-

dent radiated field (3.6) the directivity formulas are

4ﬂ|Ue(aej¢cos¢ + bsing) + U¢(—aej¢sin¢ + bcoscb)]2

DR(6,¢) = A (6.26)
' o inc
AﬂIUé(ae—jwsin¢ - bcosp) + U (Qé_jwcos¢ + bsin¢)|2
Do(8,4) = — £ (6.27)
_ o inec

Thus, for any feed polarization (a,b,y), (6.26) and (6.27) give the

reference and cross-polarization directivities.
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7. NUMERICAL EXAMPLES

The present aperture integration method for calculating the secondary

pattern -of a reflector entails the following steps:

(1) Input the reflector geometry, eq. (2.1), and the boundary
description;

(11) Input the feed pattern as described in eq. (3.4).

(iii) Calculate GO contribution to the aperture field.

(iv) Calculate edge-diffraction contribution to the aperture field.
Use either UAT [14] or UTD [15] for aperture grid points near the
shadow boundary.

(v) Use the FFT, eq. (6.15), to obtain the far field.

(vi) Decompose the far field pattern into reference-pol and cross-pol

compdnents using eq. (6.23). |
(vii) Use eqs. (6.26) and (6.27) to obtain the reference and cross-
| polarization directivities.

In this section, we shall present some numerical results to establish

the numerical accuracy of the present method. Near field, far field and

scan data for a large reflector are presented.

7.1. Effects of Aperture Grid Size and Location on Secondary Pattern

The aperture field theory used tq determine the secondary pattern 1s exact
if the tangential fields are known everywhere on the aperture plane Za.
When employing tﬁe FFT, Za is truncated. To minimize the amount of com-
putef time spent, the size of Za should be as small as possible while cap-
turing almost all of the field. To this end, a study of.varying the aper-

ture grid size and location of Ea was performed to determine their effects on

the secondary pattern.
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The reflector used_for this study is an offset parabolic reflector

(see Figure 13) with typical f/Dp and £/D values:

£ . £, -
D 0.40, = 1foo : , (7.1)

The corresponding values of'Ql, 92, and H are

1
Q, = 64.01° o ’ f (7.2b)
H = 0.25D : R _ ' (7.2¢)

The reflector 1s being illuminated by a §£-polarized feed at focus with
10 dB feed taper.. Assuming (cos 8)d type patterns, eqs (3.5), the E~ and

H-plane fegd paﬁterns are given by
UL(8) = (cos g) L1+ 82 . : ‘ ’ (7.3a)
UH(B) = (cos 0) : (7.3b)

Refer to Figuré 14, Let the éperture plane Za'be locétedva distance L
away from the foéai plane. The focal plane is located at z = £, Plots of
the tangential components of the apertﬁre field along two cuts of Za are

obtained as the distance L is varied. These two cuts are

x-cut: y =H+ 0.5D, z = £ + L

y-cut: x =0 ,z=f+1L

The diameter of this test reflector -is 50A. Due to the choice of feed
polarization, only the y—componeh; Qf the electric field,'Ey, is plotted.

Figures 15(a)~(c) are plots of IEy] for a x~cut for L = 0, 10}, and 20},
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LY - focal

(a) y=~-cut

- ———— x-cut
(y=H+D/2)
> x

(b) x-cut

Figure l4. Two cuts of aperture plane I, at distance L away from focal plane.
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Figuré 15a. | Ey ‘Af'or' a x-cut, L = 0
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- respectively. Figures 16(a)—(c) are plots of |Ey| for a y-cut for L = 0,
10A, and 207, respectively.

From Figures 15(a)=(c) and 16(a)-(c), note that the aperture field
does not spread as L increases. This is so because the feed is at the
focus. To demonstrate that the aperture field does spreaa as L increases,
let's move the feed toward the reflector along Ef by an amount df (see
Figure 17). Figures 18(a)-(c) are plots of lEyl fo; a x~cut for df = 2)
at L = 0, 10A, and 20\, respectively. Figures 19(a)-(c) are for the y-cut.
Figures 18(a)-(c) and 19(a)-(c) show a slight increase of lEyl for grid
points near the edge of the aperture grid. Also note that the width of the
region where the GO field is nonzero increased when L 1s increased. Thus,
to minimize the field strength for a fixed size of Za, L = 0 was chosen.
Let the aperture grid be W by W. Choosing the criterion that the field at
the edge of Za is at least 20 dB below the maximum field value on Za, W=

1.14D centered at the midpoint of the projected aperture was ghosen.

7.2 DBS Antenna
A direct broadcast satellite (DBS) antenna was designed by Lee et al.
[27]. Pattern computation programs using the Jacobi-Bessel serles tech-

nique [4] were developed by Y. Rahmat-Samii. A parabolic reflector was

used and it is described by

D = dish diameter = 108.148) (7 .42)
f = focal length = 94,867A (7.4b)
H = offset height = 16.865\ (7.4¢)

The feed is located at the focus and the primary pattern, eq. (34), is

described by
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Figure 17. Feed located df away from focus along if.
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Figure 18a. |Eyl for a x-cut, d; = 23, L = 0.
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a=1/VT, b=1/VZ, y=90° (RHCP) | - (7.5a)

UL(8) = (cos 8)°*° ) | (7.5b)

U,(8) = (cos 0)® - . (7.5¢)

Using this aperture integratidn technique, the secondary pattern forA¢ = Q°
was cqmputed using GO and GTD constructions. As shown in Figure 20, two
patterns are superimposed with Rahmat-Samii's results. One pattern used éo
fields ohly and in computing the other pattern, the edée—difffacted field
was included in the aperture field calcuiation. The gain and sidelobe-
levels of these two patterns are tabulated versus Rahmat-Samii's results in
Table 3 below. |

TA?tE 3

COMPARISON WITH RAHMAT-SAMII'S RESULTS.

Rahmat-Samii GO + GTD GO
main beam - 48.28 48.33 48.32
1st sidelobe ' 28.42 . 28.29 28.42
2nd sidelobe 22.29 - ©22.18 22.93
3rd sidelobe 18.05 18.02 18.12
4th sidelobe 14.95 o 14,96 13.40
5th sidelobe 12.39 e 11.85 11.14
6th sidelobe 10.31 - 9.05 ‘ 8.41

Due to the limited amount of cbmputer working space, a 48 x 48 FFT Qas
used. Despite the coarse sampling, the results ip Tab1e43 are in.géod
agreement., | :
| The scan performance of this reflector has been studied by Hung [28].
The Fourier-Bessel series technique is used to compute the secoﬁdéry pat-

tern. Using the same feed, eq. (7.5), the feed was displaced 5.8 in the
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Figure 20. Secondary pattern of a DBS antenna using Jacobi-Bessel series,
GO, and GTD.
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-§f direction to produce a pattern with peak diregtivity at 8 = 3° (see

" Figure 21). The H-plane scan pattern waé also computed using the aperture
integration technique with and without the edge-diffracted field. Figure
22 depicts the H-plane scén pattern using the aperture intégration and

Fourier-Bessel series techniques. The patterns are in good agreement.

7.3. TRW Antenna
A dual reflector antenna system was designed by.TRw for NASA-Lewis
Research Center. The dual reflector is an offset Cassegrain reflector.

‘The main reflector is parabolic and it is described by

257.89\ (7.6a)

D = dish diameter =
f = focal length = 318.74) : . - » (7.6b)
H = offset length = 135.51A ' _ (7.6c)

The reflector is being illuminated'b& a §f-polarized feed at focus with
18 dB edge taper. v

Two cuts of Za at the focal plane were taken,

x-cut: y =H+ 0.5D, z = f

y-cut: x =0 y 2 = £, 1

The magnitude and phase of the y-component of the electric fiéld, Ey,;are
plotted in Figures 23(a)-(b) for thé x—cut»and in Figures 24(a)-(b) fbr‘the
y=cut. |

The secondary pattern for ¢.= 0° of this main reflector is shown in

Figure 25. The key features of the reference-pol directivity plot are
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Figure 21. Feed position for scanning.
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Figure 25. Reference-pol. directivity plot of TRW main reflector, ¢ = Q°
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© GO + GTD

GO
Gain (dB) 56.95 56,95
HPBW (deg) |  0.276 0.277
SLL (dB) -32.,00 ~32.26

Figure 26 is a plot of the cross-pol directivity.

The hyperboloid subreflector has a magnification factor of 2. 1In
approximating the performance of thiS;dﬁal refléctor system, we employ the

equiVélent paraboloid [29]. 'The equivalent paraboloid is described by

D= 257.89 (7.7a)
£ = 2(318.74) = 637.48 (7.7b)
H=135.51 (7.7¢)

The corresponding secondary patﬁern for = 0° is shown in Figure 27.

The gain, HPBW, and sidelobe level:(SLL)Iare

GO % GTD | GO
Gain (dB) 56,87. 56.88
HPBW (deg) 0.279 0.280
SLL (dB)v . -33;87“: -35.15

Figure 28 is a plot of the cross—pdl-digectivigy.

Scan.pérformaﬁces of the TRW main‘aﬁd-equivalent reflector were
studied. The scan plane chosén is the XeYe plane and E- ;ﬁd H—piane scans
were performed (see Figure 21).

For E-plane scan, the coordinates of the feed are
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Figure 26. Cro'ss-_pol. directivity plot of TRW main reflector, ¢ = 0°.
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x=0 . ' . (7.83)

y = ~f tan (N<HPBW) cos 6 ' . ~ (7.8b)
z = f - £ tan (N-HPBW) sin @ ‘ (7.8¢)
where
f = foca} length
. =1 ,H+ 0.5D ‘
8. = 2 tan (T) (7.9)

N = number of beamwidth's scén

HPBW = beamwidth of seccndary'pattern (@ = 90°) with feed at focus.

For H-plane scan, the feed coordinates are glven by

x = =f tan (N;HPBW) o ‘ ‘ : - ' (7.10a)
v =0 A (7.10b)
z = f o o (7.10¢)
where - |
f = focal.length

N = number of beamwidt:h's scan

HPBW = beamwidth of secondary-pattern:(¢ = 0°) with feed at focus.
As the feed méves awéy ftémﬁtﬁé focus;-the secondafy'pattgrn degrades.
The degradation mayvbe cﬁafaéterized by.peak gaih;ldss and half-power ﬁeam-
width. These 2 figures-of-merit are ﬁlotted veréus number of beamwidths
scanned for thelfollow;ng_four cases:
(1) TRW main reflector, E-plaﬁe scan (see Figures 29-30)
(2) TRW eéuivélent reflectof, E-plane scan (see Figures 31-32)
(3) TRW main reflector,.H—piane scan (see Figﬁres 33-34)
(4) TRW gquivalent reflector; H—plane scan (see Figures 35-36).
As expected, the scan performanée of the equivalent reflector is much

better than for the main reflector due ‘to its larger £/D value. For the

same number -of beamwidths scanned,,the peak gain loss and amount of beam
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Figure 29. Peak gain loss versus beamwidths scanned for E-plane scan of TRW
main reflector.

82



0.270 . ee—e—————
' —— GO +GTD

. 0.280

0.290

0.300

HALF-POWER BEAMWIDTH (deg)

0.310

0.320

0.330

0340 »

'0.35;00 - ' : 6 é. 0

BEA‘MW‘IDTHS SCANNED

Figure 30. Half-power beamwidth versus beamwidths scanned for E-plane scan
of TRW main reflector.
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Figure 32. Half-power beamwidth versus beamwidt:hé scanned for E-plane scan -
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Figure 33. Peak gain loss versus beamwidths scanned for H-plane scan of TRW
main reflector.
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Figure 35. Peak gain loss versus beamwidths scanned for H-plane scan of TRW
equivalent reflector.
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broadening were much less for the equi?éien; réflector for both E~ and H-
plane scans. Also,.the cross-pdl directivity‘ﬁas much lowgr for thé equiva-
~ lent reflector. Figures 37(a)—(b)'andi38(a)-tb) are the reference-pol and
¢ross—pol directivity p1ots for 6 beaﬁwiath scan in the H-plaﬁe for the

TRW main and equivalent reflectors, resbectively.- With respect to the ﬁéak
directivity, the maximum cross-pol directivity value is -39.15_dB'fdf the

equivalent reflector and only -27.95 dB for the main reflector.
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Figure 37a. Reference-pol. directivity plo't:‘ of TRW main reflector for 6
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Figure 37b. Cross-pol. directivity plot of TRW main reflector for 6 beam-
width scan in the H-plane. .
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Figure 38a. Reference-pol. dire.ctivit:y plot of TRW equivéleht reflector for
6 beamwidth scan in the H-plane.
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Figure 38b. Cross—pol. directivity plot of TRW equivalent reflector for 6
beamwidth scan in the H-plane.
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8. CONCLUDING REMARKS

We have developed a method of calculating the secondary éattern of an
afbitrarily shaped reflector illuminated by a feed with arbitrary polariza-
tion. An edge-diffracted field was added to the geometrical optiés field in
the aperture field calculation. By'employingAthe FFT, the secondary pat-
‘tern is. computed very efficiently. The results for the secondary pattern
are in good égréement with those §Btained by the physical optics integral.
Furthermore, this method can be conveniently extended to secondary pattern
computation of multiple refiector systems; which will be done in thé next

phase of this project.
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APPENDIX A
INSTRUCTIONS TO RUN COMPUTER PROGRAMS
To ruﬁ the computer programs on the University of Illinois CYBER 175
system to compute the secondafy pattern of an offset parabolic reflector, the

user should perform the following

(1) create input file TAPE2
(2) run program BALl

(3) run programs BPT, BFFT
(4) for plot, use BPLOT3

The computer commands corresponding to steps (1)-(4) are

(first create TAPE2) )
R
BAL1

R
P.LOAD(BPT ,BFFT); EXECUTE

R
BPLOT3

The secondary pattern is stored in TAPE13.
The input file TAPE2 consists of 14 lines. These inputs are described

below.

l. H,D,f,z, = offset parabolic reflector parameters as depicted in
Figure 13 ’

2. 1 == cylinder boundary or 2 -- cone boundary

3. Xos Ya» Kl’ Kz--— cylinder boundary parameters or P, 91’ 62, 63 -

cone boundary parameters as shown in Figure 5

4, Y]sYps Y3 —= Eulerian angles (see Figure 7)
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5. X15¥102% T source point coordinates in main reflector coordinate

system.
6. a,b,y — polarization of feed
7. qE,qHF—- feed taper parameter‘for E~ and H-plane primary patterns

‘8, L =-— location of aperture plane beyond the focal planeuas shown
"in Figure l4a (taken to be zero)

9. type in 1 or 2

10. xl,gz,N X),%,,¥,,¥, are bounds of 25 (see Figure 12a), N'is the

11. yl’YZ’N number of points in sampliég.

12, 0 —- use UAT or 1 -~ use ﬁTD, 0 -- compute GO and edge-diffracted
field or 1 —- computé_GO fieid only .

13. Ol,ez,NFFP -— For a theta _cut,'e1 is the first value and 62 is the

_1aét value of theta. NFFP is the number of 6 values for the
secondary pattern

14. 1 -- use E-fields only for the aperture field calculation or 2 --
use H-fields only, PHI -- this is the constant ¢ value when
computing the. secondary pattern, .

For an arbitrarily shaped reflector, the user should use the binary ver-
sion of MAIN instead of BALl. However,llines 97 to 107 must be replaced with
elither the coordinates of the points that define the reflector or the new
equations that describes the reflector. For an arbitrary reflector, line 1 of

input file TAPE2 has no meaning; Thus, delete line 41 of MAIN and the input

file is lines 2 through 14 of TA?EZ described abo?e;
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APPENDIX B

VIEWGRAPHS FOR A PAPER ENTITLED "CALCULATION OF NEAR-FIELD OF A REFLECTOR BY
GTD" BY P. T. LAM, S. W. LEE, AND R. ACOSTA PRESENTED IN INTERNATIONAL
IEEE/AP-S SYMPOSIUM NATIONAL RADIO SCIENCE MEETING, JUNE 1984

GTD Analgs’ls of Reflector Antennas

P T Lam and S.W. Lee
Elec“t‘romaﬂnejcics Lob
Ur\iversiﬂ 041 Tlinois

a,ﬂd

K. Acocha
Nasa-Leuwis Research Center

Outline

|. Problem descripjcioh
7. Motivation

2. APPmach

L. Rosulks

5 (Conclusion
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THREE METHODS OF CALCULATIG
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(c) Aperture Integration Method
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Comparison of “H)e three methods
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- [CONCLUSION

# With this AT aPProdck; the main beam and
Sidelobe regions of the secondary pattern

IS accurately computed.

* The.” reﬁgd‘or shape is completely arbi{‘ro;rj_,

¥ Thu‘s %ec‘l«n{%p(e‘ is huh;\er.u'ca(lj etlcent
bﬂ e,mP\bﬂ{_nj the FFT | o

¥ Near f(eld meva:sure’mentﬁ may be— clﬁecked,

¥ This AI %ormul_affbn.' 1S S.(,u"fab/e,' for

exfensfon ff‘o MM(%I-P_{ﬁ reflectors.
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