NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

RF Project 762142/712834

Final Technical Report
 CONTINUED ULTRAVIOLET STUDIES OF SOME BE STARS OP LATER TYPE

Arne Slettebak Department of Astronony

For the Period
May 15, 1980 - August 31, 1985

NATIONAL AEROMAUTICS AND SPACE ADMINISTRATION Goddard Space Flight Center Greenbelt, Maryland 20771

Grant No. NGG 5-52
from NASA CP-2238, "Advances in Ultraviolet Astronomy: Four Years of IUE Research", ed. Y. Kondo, J. M. Mead, and R. D. Chapman, 1982, p. 579

ULTRAVIOLET SPECTRA OF SOME BRIGHT LATER-TYPE 3e STARS AND $A-$? SHELI STARS

Arne Slattebak

Perking Observatory
Ohio State and Ohio Wesleyan Universities

ABSTRACT

Anomalous ionization (C IV and Si IV) is seen in IUE spectra of Be stars as late as $B 8$, and occurs also in standard stars of similar spectral typa. Asymmerical lines suggesting mass loss are present in all the Be stars and several of the standard stars as well, with no obvious correlation wirh v sin 1. Enission shoulders are present in the Mg II lines of two B5e stars but not in Be stars of later type. Again there is no correlation with v sin 1. The $A-F$ shell stars show rich Fe II absorption spectra in the ultraviolet, in one case with velocity structure.

I. INTRODUCTION

Early ultraviolet spectroscopic observations of Be stars (e.g. Marlborough and Snow 1976) concentrated on the stars of early type, demonstrating mass-loss effects in their apectra. More recently, these investigations have been extended to cooler Be stars. Thus, Snow (1981) found mass-loss effects in the spectra of Be stars as late as B6, and Marlborough and Peters (1982) detected anomalc ss ionization (C IV and Si IV) in Be stars as late as B 8 . This investigation concentrates on the ultraviolet spectra of the later-type Be stars and A-F shell stars, with emphasis on msse-loss effects and anomalous ionization.

II. THE PROGRAM

High-dispersion IUE spectra of 13 bright later-type Be stars and A-F shell stars were obtained in both the short and long wavelength regions, pius 8 standard stars of corresponding spectral types. These are listed in Tables la and lb , with spectral types and rotational velocieles from a recent study of the brighter Be stars (Slettebak 1982). The program and standard stars were selecter to include bceh sharp-lined and broad-lined stars of various spectral cypes between 33 and FO.

Special attention was paid to resonance lines, for possible mass-10ss effects, and lines which indicated anomalous ionization in earlier investigations. These included SI II 1190.418, 1193.284, 1260.418, 1264.730; SI III 1206.310; C II 1334. ¿32, 1335.708; S1 IV 1393.755, 1402.769; C IV 1548.202, 1550.774; A1 II 1670.787; A1 III 1854.716, 1862.790; Fe II multiplets 1,62 , and 63; and Mg II 2795.523, 2802.698. Some of these are illustrated in Figures $1-4$.

III. RESULTS AND DISCUSSION

A. The Be Stars of Later Type.

The approach taken in this investigation is that of spectral classification: standard non-emission-line stars with MK spectral types close to those of the program stars were observed along with the program stars for direct comparison purposes. Furthermore, both sharp-lined and broad-1Ined standard stars were included, to mstch as closely as possible the sharp-lined (interpreted as pole-on, according to the rotational model) Be stars and broad-1ined (absorption-line shell-type) Be stars. An unexpected result is that the standard star ultraviolet spectra are almost as interesting as the Be spectra, from the point of view of mass loss and anomalous ionization.

1. Anomalous Ionization

According to Marlborough and Peters (1982), the coolest spectral type at which C IV or Si IV would be expected under radiative equilibrium conditions, either in the photosphere or in a cool circumstellar envelope, is 30 and B 2 , respectively. They observed both ions in IUE spectra of Be stars as late as 38, however. My results, obtained with different stars, confirm their conclusion: the B8e and B7e stars B Cyg B and 7 Tau have both C IV (see Fig. 1) and Si IV lines in their spectra. On the other hand, C IV seems not to be present in the spectrum of the BSe star B Psc not in the $86.5 e$ star ϕ And (see Fig. 1), though both are pole-on stars like n Tau. Si IV (see Fig. 2) is present in all the $35-$ ofe stars as well as the later-type stars shown in Fig. 1.

Among the standard non-emission-line stars, anomalous ionization effects also exist. Thus, C IV is seen weakly in the B8 standard 1 And (Fig. 1) but is very weak or not present in the B5 standards 0 Aur and ψ^{2} Aqr. Si IV, on the hand, is visible in the spectra of all three standard stars.

2. Mass-ioss

Fig. 1 shows that the C IV doublet is asymmetrical and shifted toward shorter wavelengtins in both η Tau and B Cyg B. The same is true for the shell stars $48 \mathrm{Lib}, \psi$ Per, and 0 And. Fig. 2 shows that the S1 IV doublet is prasent and asymetrical for the B5-6e stars shown there. The lines are also asymetrical for the $86.5-8 \mathrm{e}$ stars shown in Fig. 1. The Al III resonance doublet is also strongly asymetrical in the spectrum of ψ Per. Thus, mass-loss effects appear to be present in the spectra of both shell and pole-on Be stars of spectral types B3 to B8.

Interestingly, the standard nen-emission line stars also show asymmetrical lines, suggestive of mass-loss effects. Thus, Fig. 2 shows the S1 IV lines in the sharp-lined $B 5$ standard ρ Aur to be strongly asyometrical, as are the Al III resonance lines in the broad-ined 35 s=andard ψ^{2} Aqr. In Fig. 3, the Mg II resonance lincs are clearly asymmetrical in the spectrum of ρ Aur.

3. Emission Lines

Emission wings in the Mg II and Fe II resonance lines were observed in nearly all the Be stars of earlier type studied with IUE by Dachs (1980). Fig. 3 shows the resonance doubiet of Ig II in the spectrum of a number of Be and standard stars. Note that the lines have emission shoulders in the spectra of both B Psc and. ψ Per. Both are of spectral type B5, but β Psc is a pole-cr star and ψ Per a shell star. The only other emission lines detected in this investigation are the short-wavelength shoulders of the Fe I multiplet 1 ines in ψ Per, but this is not a certain identification.

B. The A-F Shell Stars

The four $A-F$ shell stars in Table la are identified as shell stars in the optical wavelength region because of the simultaneous presence of rotationally-broadened lines, from the underlying star, and sharp absorption lines from ground states or low-lying metastable levels, presumably from some kind of shell. All four show rich Fe II absorption spectra in the ultraviolet (especially from multiplets 1,62 , and 63) which are considerably stronger than in the standard star of corresponding type. Fig. 4 shows a portion of the spectrum of one of the A-type shell stars, B Pic, with the AS standard δ Gas. Note that the F II lines are not only stronger and deeper in the shell star, but asymetrical, indicating velocity structure.

It is a pleasure to acknowledge the very kind hospitality shown to me during a stay at the Insticute for Astronomy oi the University of Vienna, where much of this work was done. I am grateful also to Ted Snow for very helpful discussions, Ken Carpenter for much help with computer aspects of this investigation, Bob Wing for permission to use his spectra of $B C y g B$, Charlie Wu and A1 Holm for their spectra of $\eta U M a$, and the IUE team at Goddard for their help and cooperation.

REFERENCES

Dachs, J. 1980, Proc. of Second European IUE Conf. (ESA SP-157. April 1980), p. 139.

Marlborough, J. M., and Perers, G. J. 1982, IAU Symp. 98, "Be Stars", ed. M. Jaschek and H.-G. Groth (Dordrecht-Reidel), p. 387.

Marlborough, J. M., and Snow, T. P. 1976, IAU Symp. 70, "Be and Shell Stars", ed. A. Slettebak (Dordrechr-Reidel), p. 179.

Slettebak, A. 1982, Ap. J. Suppl. (in press).
Snow, T. P., Jr. 1981, Ap. J. 251, 139.

Name	Sp. Type	$\begin{array}{r} v \sin _{1}^{1} \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \\ \hline \end{array}$
48 LIb	B3:IV:e	400
ψ^{4} Per	B5 IIIe	280
8 Psc	B5 Ve	100
0 And	B6 IIIe	260
¢ And	B6.5 IIIe	80
ก Tau	B7 IIIe	140
B Cyg B	B8 Ve	250
28 Tau	B8 (V:)e	320
1 Del	B8-9e	280
$B \mathrm{Plc}$	As IV-shell	120
21 Vul	AS IV-shell	200
\dagger Leo	A7 IV-shell	230
14 Cum	50 III-shell	200

Name	Sp. Type	$\begin{gathered} \mathrm{v} \sin 1^{1} \\ \left(\mathrm{~km} \mathrm{~s}^{2}\right) \end{gathered}$
$\cap \mathrm{U}$ Ma	B3 V	150
ρ Aur	B5 V	90
$\psi^{2} \mathrm{Aq} \mathrm{I}$	B5 V	280
α Leo	B7 V	280
1 And	B8 V	90
α Lyr	AO V	< 10
θ Leo	A2 V	15
δ Cas	A5 III-IV	100

E18. 1. The C IV resonance doublet in the spectra of $86.5-8$ stars.

Fig. 2. The Si IV resonance doublet in the spectra of $B 5-6$ stars.

Fig. 4. Fe II multiplet 62 and 63 ines in the spectra of an AS stancard and an AS shell star.

Fig. 3. (left). The Mg II resonance doublet in the spectra of $85-6$ stars.

The Astmofhysical Jounnal Supplement Senies, 53:869-892, 198'; Decemert

- 1983. The Amencan Astromomical Socery. All .ithis reserved Prinisd is U.S.A.

ULTRAVIOLET SPECTROSCOPIC OBSERVATIONS OF SOME Be STARS OF LATER TYPE AND A-F TYPE SHELL STARS

Arne Slettebak ${ }^{1}$ and Kenneth G. Carpenter
Perkins Observatory, Ohio State and Ohio Wesleyan Universities Received 1983 April 12; wccepted 1983 July 6

ADSTRACT
High-dispersion IU', rectra of 18 later type Be and A-F type shell stars plus eight standard non-emission-line stars were analyzed for anomalous ionization and mass-loss effects. We find that superionization exists in Be stars of the latest spectral subtypes (B8-B9) and is strongest in the Be shell stars, but does not seem to be present in the A-F type shell stars. We also observe superionization in normal B-type stars as late as B5 and pussibly B7-B8, but not later. Asymmetrical or violet-displaced resonance lines, suggesting mass loss, were observed in all of our Be program stars but one, and also in a number of our standard stars, but not in the A-F type shell stars. Lower limits to the mass-loss rates conrputed from Si IV lines range between 5.3×10^{-12} and $3.5 \times 10^{-11} \mathrm{M}_{\odot} \mathrm{yr}^{-1}$. with the Be shell stars showing the largest values. Terminal velocities measured from the asymmetrical or violet-displaced resonance-line profiles show no clear correlation with ienization potential. Mass loss is correlated with luminosity and effective temperature in the sense that the B-type stars show mass-loss effects while the A-type stars do not, but seems to be uncorrelated with rotation. Emir sion was observed only in the Mg il resonance doublet for two BSe stars in our sample. All of the A-F type shell stars show strong Fe II and Mg II absorption spectra relative to standard stars of similar spectral type. We conclude from our results that (l) although Be stars are nearly indistinguishable from normal B stars in the uluaviolet, there are differences in degree; and (2) the bot ircumstellar envelope surrounding Be stars which gives rise to superionized iines and mass loss appears not to he as nearly equatorially confined as the cool circumstellar eavelope.
Subject headings: stars: Be - stars: circumstellar sheils - stars: mass loss - ultraviolet: spectra
I. INTRODUCTION

Early ultraviolet spectroscopic observations of Be stars concentrated on the stars of early type (see, e.g., papers in IAU Symposium 70 [1976]). More recently, these observations have been extended to cooler Be stars. Thus, Snow (1981) found mass-loss effects in the ultraviolet spectra of Be stars as late as B6, while Marlborough and Peters (1982) and Doazan (1982) detected anomalously high ionization (superionization) in Be stars as late as B7-B8. This investigation concentrates on the Be stars of later type, with observations also of the A- and F-type shell stars, which are believed to represent an extension of the Be phenomenon to later types. The object is to ascertain the degree to which mass loss and superionization effects persist to later types in the Be and A-F type shell stars, to compare the ultraviolet spectra of the program stars with those of normal, nonemission standard stars of similar spectral types, and to search for correlations of the effects found
${ }^{1}$ Guest Investigator, International Uliravioier Explorer Satellite.
with stellar parameters such as $v \sin i$. luminosity, and effective temperature.
II. ObSERVATIONS

High-dispersion IUE spectra of 16 prograen stars and seven standard non-emission-line stars were obtained in both the short ($-1200-1900 \dot{A}$) and long ($-1900-3200$ \dot{A}) waveiength regions during several US 2 shifts in 1980-1982. Archival IUE spectra for two additional program stars and one additional standard star were obtained from the National Space Science Data Center (NSSDC).

The 18 program stars are listed in Table 1A in order of spectral type, with spectral types and rotational velocities ($u \sin i$) from the listio- by Slettebak (1982). Stars with narrow lines (small $c \cdot \sin i$) were included, as well as stars with broad lines (large $v \sin i$). The former may be thought of as "poie-on" stars, if Be stars are interpreted according to Struve's (1931) rotational model, while the latter are then viewed nearly equatorially. These bioadlined stars also often show "shell spectra" (sharp absorption lines which arise from ground states or meta-

Table la
The Proomm Stars

HD	Name/HR	Spectral Type	$\begin{gathered} v \sin i \\ \left(\mathrm{~km} \mathrm{~s}^{-\mathrm{l}}\right) \end{gathered}$	SWP	LWR	Date of Observation
142983	48 Lib	B3: IV:e-shell	400	11212	9829	1981 Feb L
22192	$\stackrel{\sim}{*}$ Per	BS IIIe-shell	280	10388	9071	1980 Oct 17
217891	β Psc	BS Ve	100	10386	9069	1980 Oct 17
217675	- And	B6 IIIe-sbell	260	15508	11983	1981 Nov 15
183656*	HR 7415	B6e-shell	300	14478	11064	1981 Jul 15
6811	- And	B6.S IIIe	80	10387	9070	1980 Oct 17
23630	\dagger Tau	B7 IIle	140	10378	9060	1980 Oct 16
23862	28 Tau	B8 (V:)e-shell	320	10377	9059	1980 Oct 16
183914 ${ }^{\circ}$.	β Cys ${ }^{\text {B }}$	B8 Ve	250	5369	4609	1979 May 26
195325	1 Del	B8-9:e-shall	280:	15514	11991	1981 Nov 17
88195	17 Sex	A1 V-shell	150	18819	14847	1982 Dec 19
$42111^{\text {c }}$	HR 2174 (br)	A1 IV-shell	180	18821	14849	1982 Dec 19
$112028{ }^{\text {d }}$	HR 4893	A1 IV-shell	200	18822	14850	1982 Dec 19
38090	12 Lep	A III-thell	180	18820	14848	1982 Dec 19
39060	β Pic	AS IV-shell	120	11216	9835	1981 Feb !
192518	21 Vul	AS IV-shell	200	15511	11988	1981 Nov 17
98058	- Leo	A7 IV-shell	230	15504	11980	1981 Nov 15
108283	14 Com	FO III-shell	200	15506	11982	1981 Nov 15

${ }^{4}$ HD 183656: IUE spectra obutined by Y. Kondo and J. Sahade.
${ }^{\circ}$ HD 183914: IUE spectra cblained by R. F. Wing.
${ }^{\text {c }}$ HD 42111: This is the brighter component of a visual binary system (ADS 4749; 5.8:6.9; 29' separation). The fainter component is a normal A0 V star with $u \sin$ i $\$ 100 \mathrm{~km} 3^{-1}$ (Slettebak 1963).
${ }^{\circ}$ KD 112028: This is the brighter compogent of a visual binary system (ADS 8682; 5.3: $5.8 ; 22$ " separation). The fainter component is itself a binary, showing a composite spectrum corresponding to two sharp-lined spectra of types A 0 V and A 2 V (Slettebat 1963).

TABLE 1B
The Standald Stars

HD	Name/HR	Spectral Type	$\begin{gathered} v \sin i \\ \left(\operatorname{kos} s^{-1}\right) \end{gathered}$	SWP	LWR	Date of Cbservation
120315*.	7 UMa	B3 V	150	3170	2518	1978 Oct 1 and 27
34759.	ρ Aur	B5 V	90	10389	9072	1980 Oct 17
219688	$\psi^{2} \mathrm{Aqr}$	BS V	280	10385	9068	1980 Oct 17
87901	α Leo	B7 V	280	10379	9061	1980 Oct 16
222173.	- And	B8 V	90	10376	9057	1980 Oct 16
172167	a Lyr	A0 V	<10	11213	9830	1981 Febl
97633.	θ Leo	A2 V	15	15505	11981	1981 Nov 15
8538.	8 Cas	AS III-IV	100	11214	9831	1981 Feb 1

${ }^{4} \mathrm{HD}$ 120315: IUE spectra obtined by A. Holm and C. C. Wu.
stable levels and presumably are formed in an equatorial shell)-examples at various spectral types were selected and are listed in lable 1A. It should also be noted that while the Be stars all show emission, at least at H α, the A-F type shell stars in Table 1 A do not-they are recognized as shell stars because of the simultaneous presence of rotationally broadened lines, on the one hand. and sharp lines arising from ground states and metastable levels, on the other.
The presence of the B3e shell star 48 Lib in 1 list of Be stars of later types also deserves some explanation. This star has been classified as B5 in the literature, but
this classification was probably based on the attribution of its rather strong Si II lines at 4128 and $4131 \dot{A}$ to the underlying star rather than to the shell. The correct spectral type appears to be close to B3. but we have retained 48 Lib as a program star because of its very interesting spectrum.

Table 1B lists the eight standard stars. These were selected to match, approximately, the spectral types of the program stars, and also to show a range of line broadening from sharp to broad. The spectral types are from Morgan, Abt, and Tapscott (1978), Morgan and Keenan (1973), or Johnson and Morgan (1953). The
rotational velocities ($v \sin i$) are from Slettebak et al. (1975) or are recent determinations by us based on that system.

III. SUPERIONIZATION

An important result oi ultraviolet observations of the hotter stars was the discovery in the spectra of some 0 and B-type stars of atoms in higher stages of ionization than would be expected if normal photospheric radiation were the only ionizing source. Thus, lines of 0 n , N v, C IV, and Si IV were observed in the spectra of stars with photospheres too cool to form these ions, calling for an additional source of ionization. This effect, usually called "superionization," has been reviewed recently by Mar!borough (1982) and Doazan (1982).

a) Be Stars and A-Type Shell Stars

Examples of superionization in the Be stars have been reported by a number of investigators, including Doazan (1982), Henize et al (1976), Lamers and Soow (1978), Marlborough (1977), Mariborough and Snow (1976), Morton (1976, 1979), and Panek and Savage (1976). Recently, using IUE spectra of 23 be Stars with spectral types 09-B8 and luminosity classes III-V, Marlborough and Peters (1982) reported the probable presence of N V lines in Be stars as late as B, C IV lines as late as B8 (B7, according to Slettebak 1982), and Si Iv lines also as late as B8 (also B7, according to Slettebak 1982). They compare these observational results with theoretical estimates of the coulest spectral types (based on the work of Lamers and Snow 1978) at which each ion would be expected under radiative equilibrium condi-
tions, either in the photosphere or in a cool circumstellar envelope: O 7 for $\mathrm{N} v, \mathrm{Bl}$ for C rv, and B3 for Si iv.

One object of this investigation was to determine whether superionization extends to spectral types later than B7 in the Be stars and, indeed, whether the phenomenon reaches even into the A-type shell stars. Fig. ures 1-6 illustrate the Si IV resonance doublet (multiplet UV 1) at 1393.755 and $1402.770 \dot{A}$, and the C IV resonance doublet (multiplet UV 1) at 1548.188 and 1550.7C. \dot{A} in the spectra of a number of the program stars.

In Figures 1 and 2, both the Si Iv and C iv lines are strong in absorption in the spectrum of the B3 shell star 48 Lib . Note that there is some distortion of the profiles by lines of Fe II from the shell. Figure 3 shows that the Si IV doublet is clearly present in the three B5-B6e stars shown there and is stronger in the two shell stars (ψ Per and o And) than in β Psc. The behavior of the C IV lines is consistent with that of Si IV: Figure 4 shows the lines clearly in the spectra of the same two B5-B6e shell stars but very weak or absent in β Psc.

Figures 5 and 6 show the Si IV and C Iv doublets in some B6.5-B8e stars. The Si IV $\lambda 1393.755$ line seems to be present in the three Be stars shown there, although other lines distort the spectrum somewhat. The C iv doublet also appears to be present in the spectra of η Tau and β Cyg B, but is very weak or absent in the B6.Se star ϕ And. The presence of both Si Iv and C Iv in the B8e star β Cyg B confirms the findings of Marlborough and Peters (1982) and Doazan (1982) that these lines persist into the late Be subtypes.

It is interesing that neither SiI IV nor C IV is visible in the spectrum of the B3 shell star 28 Tau (Pleione). This

Fig. 1
Fio. l.-Spectrai region including the Si IV resonance doublet at 1393.755 and $1402.770 \dot{A}$ in the $B 3$ shell star 48 Lib and the B3 V standard star η UMM. Rest wavelengths of the Si IV lines are iodicated by arrows. The Fe it lines which distort the Si iv profiles in the spectrum of 48 Lib are at 1392.15. 1392.82, 1393.21, 1401.77. and 1403.25 A.

Fio. 2. - Spectral rejion including the C iV resonance doublet at 1548.188 and $1550.762 \dot{A}$ in the B3 shell star 48 Lib and the B3 V standard star η UMa Rest wavelengths of the C IV lines are indicated by arrows. An Fe it line at 1550.27 A distorss one of the C iv profiles.

Fic. 3-Spectral region including the Si iv resonance doublet at 1393.755 and $1402.770 \dot{\mathrm{~A}}$ (rest wavelengths indicated by arrows) in three B5-B6e stars and two BS V standard stars.

Fig. 4. - Spectral region including the C iv resonance doublet at 1548.188 and 1550.762 A (rest wavelengths indicated by arrows) to three B5-R6e stars and two BS V standerd stars.
object still has an extremely opaque shell. both in the visible and in the ultraviolet regions of the spectrum (see Figs. 16 and 21), which may affect the visibility of the Si iv and C iv lines. On the other hand, the late-type shell star 1 Del clearlv shows Si iv 11393.755 absorption. Its shell is no: as dense as that of 28 Tau, but is sufficiently opagre in the visible porion of the spectrum to make the underlying star very difficult to classify. The estimated spectral type of 1 Del is B8-B9, making it one of the litest Be stars to show superionization effects.
Marlborough and Peters (1982) have noted some dependence of the strength of superionized lines in their B2e-B3e stars on $v \sin i$. Visual inspection of their spectra revealed that the range of strengths of C IV lines depends on $v \sin i$: while stars of large $v \sin i$ may bave a range of C iv line strengths, stars of low $\theta \sin$ i seem to have only weak C iv lines. Although our sample is small. our spectra would seem to confirm this result. Inspection of Figures $3-6$ shows that Be stars with small $v \sin i$ generally have weaker lines of Si Iv and C iv than Be stars oi the same spectral type with large $v \sin i$. A possible interpretation, as Marlborough and Peters (1982) point out, is that the hot component of the circumstellar envelope in which the superionized lines arise is not spherically symmetrical.
Is superionization also a feature oi A-type shell spectra? The answer seems to be no. There is no trace of the C rv resonance doublet in the spectra of our A-F typshell stars. The Si iv lines are also probably not present. although there is a dip in the i-type shell star spectra near the Si Iv $\lambda 1393.755$ line. Figure 7 shows this wavelength region for the Al IV shell star HP, 4893, with the A 0 V tandard a Lyr also shown for comparison. The Fe II lines at 1392.15, 1392.83. and 1393.21 \dot{A} are prominent, and probably account for the observed depression. This conclusion is strengthened by the fact that the other component of the Si IV doublet at 1402.769 \dot{A} appears not to be present. Unfortunately, our spectra are weak at these wavelengths. which makes the reality of broad features difficult to ascertain.
Of course. superionization may occur in the form of lines other than those of Si IV and Civ , and, indeed. in the A-type shell stars we might expect less ionized species than in the Be stars. In particular. if the Auger ionization mechanism proposed by Cassinelli and Olson (1979) is correct, the dominant stage of ionization in the stellar wind expected under radiative equilibrium conditions is doubly ionized by X-rays. Unfortunately. the resonance lines of Cm , Si mi, N ni-IV, add $\mathrm{O} \mathrm{II}-\mathrm{V}$ are either outside the spectral range of IUE or too weak to detect in our ! UE spectra, but we were abic to examine the resonance lines of a number of other species:

1. Si il multiplet UV 2 (1533.445 and $1526.719 \dot{\text { A }}$), These lines increase in streagth through the B -type stars

Fio. S - Spectral region including the Si Iv resonance doublet at 1393.755 and 1402.770 A (rest wavelengths indicated by arrows) in thre B6 S-B8e stars and a B8 V standard star.
and are very strong at $\mathbf{A} 2$, with co significant difference berween A-rype shell stars and A-type standard stars. Other IUE spectra are too weak to show the lines for types later than \mathbf{A}.
2. C n multiplet UV 1 (1335.708 and $1334.532 \dot{A}$). Our IUE specira show these lines to strengthen from the middle to the late B rypes and remain strong through A2 (again, our sensitivity is too low for detection later than A2), with no appreciable difference between shell-type and normal stars.
3. A1 1 multip.et UV 2 ($1670.787 \dot{\text { A }}$). This line is weak at B3, strengthens through the B rypes, and be-
comes very strong in the range B8-As (AS being the limit of our derection). The line is shown in A0- 45 stars in Figures 8 and 9, where agan no significant difference between shell-stars and standard stars is apparent.
4. A1 In multiplet UV 1 (1854.716 and 1862.790 A). These lines are strong in the middle B-type stam as shown in Figure 10, which also shows them :a se somewhat stronger and asymmetrical in the two sbell stars (ψ Per and o And), indicating contributions from a stellar wind. This will be discussed in the next section. The Al in lines exhibit a general weakening from B8 into the late A types, with no striking differences be-

Fig. 6. - Spectral regiop including the C. iv resonance doublet at 1548.188 and 155 C 762 A (rest wavelengths indicated by arrows) th taree B6.5-B8e sta, and : B8 V standard star.
tween the A shell and the A-type standard stars. The lone exception is β Pic (AS Iv shell), which has rather stroag Al ur lines relative to standard stars.

In summary, the various resminace lines we examined in our IUE spectra show no gencral tendency toward superionization in the A-type shell stars.

Fic. 7.-Spectral region aear the Si iv resonance line at 1393.755 A in an A1 shell star and the A0 V standard a Lvr irest wavelength indicated by an arrow). The dip near the Si iv line appears to be due to the $F e$ II lines at 1392.15, 1392.82, and 1393.21 A.

b) The Standard Stars

An interesting result of this investagation is that some. but not all. of the sinndard, non-emission-line stars also show superionization effects in their ultraviolet spectra. Figures 1 and 2 show that the B 3 V standard η UMa has Si iv but not C IV absorption, as might be expected at this spectral type. However, both the sharp-lined (ρ Aur) and broad-lined (ψ^{2} Aqr) BS V standards show strong Si iv absorption (Fig. 3), while the C IV doublet is weak or absent in both (Fig. 4).

For later spectral types it is very difficult to be certan whether superionized species exust. The broad-lined B7 V standard a Leo appears to show a broad and shallow Si IV $\lambda 1393.755$ line, but the other component of the doublet is difficult to see. Figure S shows the depression at the position of the Si Iv $\lambda 1393.755$ line in the spectrum of. And. but it is distoned by the presence of a number of Fe il lines. Si iv $\lambda 1402.769$ seems not to be present. The C iv resonance doublet is not detectable in the spectrum of a Leo but may be present in : And (see Fig 6). Moving to suill later types, Figure 7 shows a depression near Si rv $\lambda 1393.755$ in the spectrum of ae A0 V standard a Lyr, but this is probably due enturely to the confluence of the several Fe II lines in that wavelength region. There is do trace of the C iv resonance doublet, nor does the A2 V standard θ Leo show ether Si IV of C IV absorption.

Fig. 8. - Wavelingth region including the C I resGance multiplet (UV 2) centered at $1657 \dot{A}$ and the $A l$ a resonance line (UV 2) at 1670.787 A in three A1 shell stars and an A0 V and A2 V standard star.

Fig. 9.-Wavelength region including the C I resonance muitiplet (UV 2) centered at 1657 A and the Al iI resonance line (UV 2) at 1670.787 A in two A3-AS shell stars and an AS III-IV standard star.

We have already discussed resonance lines of other species in the last section and found no strong evidenc. for unusual line strengths in either the program or standard stars of later types. Our observations thus show that superionization exists in standard, non-emis-sion-line stars as late as B5 and, possibly, as late as B7-B8, but probably not later.

IV. STELLAR WINDR AND MASS LOSS

There is now a considerable literature on stellar winds and mass loss from Be stars. Marlborough (1982) and Doazan (1982) have summarized the ultraviolet data which have been used to infer or demonstrate mass loss in Be stars. Much of the work has centered on Be stars earlier than B 2 (e.g., γ Cas, $59 \mathrm{Cyg}, \zeta$ Tau, ϕ Per). We note here two papers which include also Be stars of somewhat later type: Dacks's (1980) IUE observation of
eight bright Be stars, and the work of Snow (1981) based on Copernicus scans. The latter determined mass-loss rates for 19 Be stars from analysis of Si HI and Si IV resonance lines, including objects as late as spectral type as B6.

Asymmetrical or violet-displaced resonance absorption lines, suggesting mass loss, were observed in all (except 28 Tau) of our Be program stars and also in a number of our B-type standard stars, but not in the A-F type shell stars. This is shown for the Si iv and C IV doublets in Figures 1-6. In addition to these lines, stellar winds are also suggested in the profiles of resonance lines of Si II (multiplet UV 5), A.1. III (multiplet UV 1), and Mg il (multiplet UV 1) in some of our stars. Figure 10 shows the Al III resonance doublet at 1854.716 and $1862.790 \dot{A}$ in the spectra of three B5-B6e stars and two $\mathrm{B} \leq$ standard stars. Note the asymmetrical structure

Fig. 10. - Spectral region including the Al in resonance doublet at 1854.716 and 1862.790 A (rest wavelengths indicated by arrows) in three BS-B6e stars and two BS V standard stars.
in the shell stars ψ Per and o And, as well as in the broad-lined standard ψ^{2} Aqr. On the other hand, the relatively sharp-lined (pole-on) Be star η Tau also shows a slight asymmetry in the same sense.

The standard B5 V star ρ Aur also shows asymmetrical resonance lines of other ions, including Si II and Mg II. The Mg II resonance doublet at 2795.528 and $2802.704 \dot{A}$ in the spectra of several Be and standard stars is shown in Figure 11, where the lines are clearly seen to be asymmetrical in the spectrum of ρ Aur.

Attempts to determine quantitatively the rates of mass loss associated with the winds from Be stars from ultraviolet line profiles have been summarized by Snow (1982a). A number of investigators, including Snow (1981), have utilized the atlas of theoretical P Cygni and stellar wind profiles by Castor and Lamers (1979). The latter assume resonance scattering and use the Sobolev approximation. They characterize the expanding envelope by two functions: the velocity law $v(r)$ and the optical depth $\tau(v)$. Thus, if v_{∞} is the terminal velocity and R. the photospheric radius, they define

$$
w=v / v_{\infty}, \quad x=r / R_{*},
$$

and choose a velocity law of the type

$$
w=0.01+0.99(1-1 / x)^{\beta} \quad(\beta>0) .
$$

For an optical depth law Castor and Lamers adopt, for the radial optical depth $\tau_{\text {rad }}(w)$, a law giving zero residual intensity at the violet edge of the line profile (i.e., at $w=-1$):

$$
T_{\mathrm{rad}}(w)=T(\gamma+1)\left(1-w_{0}\right)^{-1-\gamma}(1-w)^{\gamma} \quad(\gamma \geq 0)
$$

where

$$
T=\frac{\pi e^{2}}{m c} \frac{f \lambda_{0}}{v_{\infty}} N_{i}
$$

f is the absorption oscillator strength, λ_{0} is the rest wavelength of the transition, and N_{t} the column density of the absorbing ion in the envelope. Castor and Lamers take $w_{0}=0.01$ for the flow speed at the base of the envelope, choose $\beta=0.5,1,2$, and 4 , and point out that the absorption part of their \mathbf{P} Cygni profiles is very insens.ive to the velocity law. Values of γ range between C.S and 4. They then give theoretical stellar wind profiles for a variety of combinations of β, γ, and T.

Sinc: the lines being studied may be formed in the photosphere as well as in the winds of the stars under consideration, it is necessary to correct for the presence of underlying photospheric profiles. Castor and Lamers suggest a procedure for this correction, which requires that the photospheric profile be known. We follow their

Fig. 11. - Spectral region including the Mg it resonance doubiet at 2795.528 and $2802.704 \dot{A}$ (rest wavelengths indicated by arrows) in three B5-B6e stars and two B5 V standard stars.

TABLE 2
The Atomac Data

Ion	$\begin{gathered} A_{E} \\ (H=1.0) \end{gathered}$	$\begin{aligned} & \lambda_{0} \\ & (\mathbf{A}) \end{aligned}$	f	$\begin{gathered} \text { IP } \\ (\mathrm{eV}) \end{gathered}$
Si IV	4.5×10^{-9}	$\left\{\begin{array}{l}1393.755 \\ 1402.770\end{array}\right.$	$\begin{aligned} & 0.528 \\ & 0.262 \end{aligned}$	45.14
Si il.	4.5×10^{-5}	1190.416	0.251	16.35
CIV	4.2×10^{-4}	$\left\{\begin{array}{l}1548.188 \\ 1550.762\end{array}\right.$	0.194 0.097	64.49
A1 III	3.3×10^{-6}	\{1854.716	0.539	28.33
A1	3.3×10^{-6}	[1862.790	0.268	
Mg II	4.0×10^{-5}	$\{2795.528$	0.592	14.97
		(2802.704	0.295	

method here and adopt also the procedure by Snow (1981), who derived the photospheric profiles directly from the observational data. He assumed that the long-wavelength side of a photospheric line profile will be virtually unaffected by the wind if it is optically thin, and folded the long-wavelength side of his observed profiles over to obtain an approximation to the underlying photospheric profile.

Still following Snow's (1981) application of the Castor and Lamers (1979) theoretical profiles, we calculated our mass-loss rates from

$$
\dot{M}=1.74 \times 10^{-18} \tau(w) \frac{v_{x}^{2} R_{E}}{f \lambda_{0} g A_{E}},
$$

where $\tau(w)$ is calculated for $w=0.5, v_{\infty}$ is in units of $\mathrm{km} \mathrm{s}^{-1}, R_{*}$ is in solar radii, λ_{0} is in angstroms, g is the ionization fraction for the observed species, A_{E} is the assumed abundance of the observed element with respect to hydrogen, and the mass-loss rate is computed in solar masses per year.

Table 2 lists the atomic data for the lines analyzed in this investigation. The element abundances A_{E} are solar values from the compilation by Ross and Aller (1976), while the wavelengths and f-values are from Morton (1978).

There are many uncertainties in the: computation of mass-loss rates from line profiles, some of which we will discuss later in this section. The greatest uncertainty is probably the estimation of the ionization fraction g. This is because we have no complete physical picture of how superionization arises; collision and radiative processes may both play a role (see the discussion and references in Marlborough 1982 and Snow 1981). In the absence of definitive ionization equilibrium models, we will assume that all of a particular atomic species exists in the form of the ion being observed; i.e., we will take $g=1$ in all cases. This means that our mass-loss rates will be lower limits in every case, since the atom may exist in other stages of ionization which could also contribute to the mass flow.

Table 3 lists the computed lower limits to the mass-loss rates for both the program stars and those standard stars which show asymmetrical or violet-shifted resonance line profiles. The stars are listed approximately in order of spectral type, from the hottest to the coolest. The Castor and Lamers (1979) parameter β has the value of 0.5 for all cases and is not listed in Table 3 with their other parameters γ and T. The stellar radii were estimated from the papers by Code et al. (1976) and Harris, Strand, and Worley (1963).

In addition to the unknown ionization balance in the stellar winds, other uncertainties affect the computation of mass-loss rates. These have been pointed out by Snow (1981) and, in a different context, by Kurucz (1974). One difficulty lies in the determination of the terminal velocity v_{x}, which has considerable uncertainty because the short-wavelength wing of the line profile merges very gradually into the continuum. Snow (1981) points out, however, that the error in estimating v_{∞} is partially cancelled out in the profile fitting process, with the mass-loss rate not affected radically. Another possible source of error is the blending of the short-wavelength wing of Si IV $\lambda 1393.755$ with lines of Fe II, as can be seen in Figures 1 and 7. This effect would be especially troublesome for the shell stars and may lead to values of the terminal velocity which are too large and therefore also lead to excessive mass-loss rates. The assumption of spherical symmetry in the Castor and Lamers (1979) analysis may also not be valid for winds from Be stars, although the evidence is somewhat mixed at this time (see references in Snow 1981). Kurucz (1974), in a sampie spectral synthesis near the C IV resonance doublet for a B2 star, has pointed out that the continuum level and equivalent widths will be affected by rotational line broadening. Furthermore, he shows that the central wavelengths of the rotated features are a function both of the blending with many weaker lines and the rotational velocity. Wavelength shifts produced in this way might then be erroneously interpreted as Doppler shifts due to mass motion in the stellar atmosphere.

Kecognizi that our assumptions are the same as his, and that the - is evidence (see Marlborough 1982: Doazan 1982) that Be winds are variable with time, it is nevertheiess interesting to compare our resuits with those of Snow (1981). For three stars in common ($48 \mathrm{Lib} . \psi$ Per, and o And), our terminal velocities are within 25% of his, and our mass-loss rates derived from the Si IV $\lambda 1393.755$ line (adopting his ionization fractions) agree with his to within a factor of 2 . On the other hand. Table 3 shows that our mass-loss rates as derived from the C iv lines are systematically lower and those from the Al in lines systematically higher than the Si iv mass-loss rates for a given star. A partial explanation may lie in the unknown ionization equilibria for all three elements. Also, we have already mentioned that possible blending of Fe it lines with the short-wavelength wing of

TABLE 3
Termanal Velocities and Lower Limits to the Mass-Loss Rates

Star	R_{*} / R_{\odot}	$M_{\text {bot }}$	$\stackrel{T}{T_{\mathbf{K}}}$	Line	$\begin{gathered} v_{\infty} \\ \left(\mathrm{kms}^{-1}\right) \end{gathered}$	γ	T	Lower Limit to M ($\mathrm{M}_{\circ} \mathrm{yr}^{-1}$)
48 Lib	6	-4.1	18,000	$\{$ Sirv 11393.755	610	2	0.25	2.2×10^{-11}
				CCiv $\lambda 1548.188$	490	1	0.25	5.2×10^{-12}
ψ Per	6	-3.5	15,000	SSi iv 11393.755	530	2	0.5	3.5×10^{-11}
				$\{\mathrm{Civ} \lambda 1548.188$	450	1	0.5	8.5×10^{-12}
				Al ill $\lambda 1854.716$	420	2	0.5	2.2×10^{-10}
β Psc	4	-2.4	15,300	Si iv 11393.755	480	0.5	0.1	5.3×10^{-12}
ρ Aur	4	-2.4	15.300	Si rv $\lambda 1393.755$	700	1	0.25	2.7×10^{-14}
				$\{$ Si in $\lambda 1190.416$	200	2	1	1.6×10^{-11}
				(Mg II $\mathbf{\lambda}^{2802.704}$	230	2	0.25	2.1×10^{-12}
$\psi^{2} \mathbf{A q r} \ldots \ldots$	4	-2.4	15,300	S Si iv A1393.755	480	1	0.1	4.8×10^{-12}
				Al III $\lambda 1854.716$	320	1	0.1	2.2×10^{-11}
o And.......	5	-3.1	14,000	(Sirv X1393.755	740	2	0.25	2.7×10^{-11}
				\{ C iv $\lambda 1548.188$	410	0.5	0.25	3.1×10^{-12}
				Al in $\lambda 1854.716$	380	2	0.25	7.2×10^{-11}
HR 7415	5	-2.5	14,000	\{Si iv A1393.755	600	0.5	0.25	2.6×10^{-11}
				(C iv $\lambda 1548.188$	300	0.5	0.1	6.8×10^{-13}
ϕ And	5	-2.9	13,700	Si iv 11393.755	570	0.5	0.1	9.4×10^{-12}
η Tau	5	-2.7	13,200	$\left\{\begin{array}{l}\text { Si rv } \lambda 1393.755 \\ \text { Civ }\end{array}\right.$	550	0.5	0.1	8.7×10^{-12}
				\{ Crv $\lambda 1548.188$	450	0.5	0.25	3.8×10^{-12}
				(Al ill $\lambda 1862.790$	230	1	0.1	2.8×10^{-11}
α Leo	3.6	-1.6	13.400	Si iv 11393.755	530	0.5	0.1	5.8×10^{-12}
β Cyg B ...	3	-0.7	12,000	$\left\{\begin{array}{l}\text { Si IV } \lambda 1393.755 \\ \text { Civ }\end{array}\right.$	590	0.5	0.1	6.0×10^{-12}
			12,000	CCiv 11548.188	260	1	0.5	1.4×10^{-12}
1 Del	3	-1.0	11,500	Si iv $\lambda 1393.755$	600	0.5	0.25	1.5×10^{-11}

Si Iv $\lambda 1393.755$ may have resulted in systematically large Si IV mass-loss rates.

Based on computed mass-loss rates, Snow (1982b) found the three non-Be stars in his sample to be indistinguishable from the Be stars and suggested that the Be phenomenon itself is not uniquely linked to the presence of stellar winds. Although our mass-loss rates in Table 3 may be quite uncertain, there is some validity in comparing the stars listed among themselves, as Snow has done. We then also find no striking differences between the Be stars and the standard stars, with one exception: the five Be shell stars as a group appear to have somewhat larger mass-loss rate lower limits than the other stars in the table. This is also shown in Figures 12, 13, and 14. Obviously, more observations of both normal stars and Be stars are necessary to see whether this correlation is valid.

The terminal velocities v_{∞} listed in Table 3 range between 200 and $740 \mathrm{~km} \mathrm{~s}^{-1}$, somewhat lower than either the values measured by Dachs (1980) or these listed by Marlborough (1982) for hotter Be stars. Our

FIG. 12. - Lower Limits to the mass-loss rates derived from the Si iv $\lambda 1393.755$ line for 12 Be and standard stars vs. their bolometric absolute enagnitudes. Dashed line represents a least-squares fit to the data.

Fic. 13. -Lower limits to the mas-loss rates derived from the Si iv $\lambda 1393.755$ line for 12 Be and standard stars vs. their effective temperatures.
measured terminal velocities show no clear correlation with ionization potential. In general, v_{∞} is largest for Si Iv , followed by $\mathrm{C} \mathrm{Iv}, \mathrm{Al} \mathrm{m}, \mathrm{Mg} \mathrm{II}$, and Si n . Three Be stars in particular (ψ Per, o And, and η Tau) show simultaneously asymmetrical resonance lines of Si IV , C IV, and A1 m, with terminal velocities decreasing in that order. This result is not consistent with the usual assumption that ionization increases outward. in which case the C IV lines should show the larges: terminal velocities. Again, however, the Si IV terminal velocities could be systematically high due to blending of Fe II lines with the short-wavelength wing of Si IV $\lambda 1393.755$.

We may attempt to correlate our mass-loss rates with various stellar parameters. Snow (1982b) has discussed the extension of $O B$ star winds to lower luminosities, finding that luminosity is the dominant factor in driving the mass loss from Of to mid-B main-sequence stars. Specifically, he believes that the winds in Be stars may represent a straightforward extension of the OB star wind phenomenon to lower luminosities. Insofar as we find stellar winds in the Be stars of later type but not in the A-F shell stars, which are of lower luminosity than the Be stars, our results are consistent with Snow's suggestion.

Is there a correlation between the mass-loss rates and the luminosities of our B-type stars? Figure 12 shows our lower limits to the mass-loss rates derived from the Si IV $\lambda 1393.755$ line for 12 stars versus their bolometric absolute magnitudes. The latter were estimated from the calibrations by Blaauw (1963) and Keenan (1963) and the bolometric corrections of Code et al. (1976) and Flower (1977), and are listed in Table 3. Again, a correlation seems to be present in the sense of Snow's (1982b) conclusion: the more luminous stars show

Fig. 14.-Lower limits to the mass-loss rates derived from the Si iv $\lambda 1393.755$ line for 12 Be and standard stars vs. their rotational velocities ($v \sin i$).
somewhat larger mass-loss lower limit. The dashed line in Figure 12 represents a least-squaies fit to the data and has a correlation coefficient $r=0.50$.

A correlation between mass loss and effective temperatures also exists in the sense that mass-loss effects are found in the B-type stars but not in the A-type stars. Within the B-type stars which show mass-loss effects, however, no correlation with effective temperatures is evident. This is shown in Figure 13, in which our mass-loss lower limits derived from the Si iv $\lambda 1393.755$ line are plotted versus effective temperatures for 12 stars. The latter were estimated from the papers by Code et al. (1976) and Flower (1977), and are listed in Table 3. A straight-line least-squares fit to the data in Figure 13 has a correlation coefficient $r=0.26$, which we consider not to be significant.

Figure 14 shows our lower limits to the mass-loss rates derived from the Si Iv $\lambda 1393.755$ line for the same 12 stars plotted against their rotational velocities $v \sin i$. Here we might expect a correlation for the Be stars if stellar winds are related to the Be phenomenon, since the latter is cleariy related to stellar roiation. No correlation is evident: a straight-line least-squares fit to the data in Figure 14 has a correlation coefficient r of only 0.26 .

Plots of bolometric absolute magnitudes, effective temperatures, and rotational velocities for the B-type stars versus lower limits to their mass-loss rates derived from C IV and A1 in lines were also made. Although fewer observations were involved, these generally showed the same erends as the Si IV plots: no correlations of mass loss with effective temperatures and rotational velocities, but a mild correlation with bolometric absolute magnitudes.

V. EMISSION LINES

Be stars are characterized by Balmer emission in the visible portion of the spectrum, but show little or no emission in the ultraviolet. In a study of eight bright Be stars, selected because their optical spectra show very strong Balmer line emission, Dachs (1980) found emission in IUE spectra only in the wings of the Mg in resonance doublet and (for two stars only) in the wings of the Fe II resonance multiplets UV 1 and UV 2. Brubweiler, Morgan, and van det Hucht (1982) observed $\mathrm{Mg} \mathrm{II} h$ and k emission in the spectra of the early-type Be stars ϕ Per, v Cyg, and γ Cas using the balloon-bome ultraviolet stellar spectrometer (BUSS), and suggested that a Bowen mechanism driven by Ly β is responsible.
Only two of our program stars show definite emission in the wings of the Mg II resonance lines: β Psc and ψ Per. These lines are shown in Figure 11. It is interesting utat both are B5 stars, but ψ Per is a shell star with a lauge $u \sin i$, whereas ψ Psc has a small $u \sin i$ and is presumably a pole-on star. The Mg a resonance-line region in the spectrum of the B 3 shell star 48 Lib is shown in Figure 15, along with the corresponding wavelength region in the standard B3 V star η UMa. Notice that the Mg II lines in 48 Lib are deep and show velocity structure, suggesting motions in the shell but no obvious emission. Dachs (1980) also found Mg II emission in 48 Lib to be uncertain.
In order to check for possible variability of the Mg II emission features in the spectra of the aforementioned stars, additional IUE spectra of ψ Per (LWR 9832 on 1981 February 1 and LWR 11990 on 1981 November 17) and β Psc (LWR 11989 on 1981 November 17) were obtained. No significant differences are discernable in these spectra, indicating no major changes in the Mg in emission over time periods of the order of a few months to a year for these stars.

Fig. 15. - Spectral region including the Mg II resonance doublet at 2795.528 and 2802.704 A (rest wavelengths indicated by arrows) in the B3 shell star 48 Lib and the B 3 V standard star η UMa.

The Mg II resonance doubiet in the spectra of other program and standard stars is shown in Figures 16, 17, and 18. There is no obvious emission for any of the stars, and we conciude that Mg II emission does not occur in spectral types later than BS in our sample.

It is interesting that Blanco et al. (1982) find faint chromospheric emission in the Mg II k line of a Aql. a rapidly rotating A7 which is on or near the main sequence. On the other hand, they find no Mg II emission in HD 192518-21 Vul, which is one of our A-type shell program stars. We also see no Mg II emission in the spectrum of 21 Vul (see Fig 18), nor is emission present in any of our other A-F type shell stars.

Figures 19, 20, and 21 show the wavelength region which includes the strongest lines of the Fe II multiplet UV 1 in some of our Be stars and standard stars. Figures 22 and 23 show lines of the multiplets UV 62, UV 63, and UV 64 of Fe 1 I in the spectra of our A-F type shell stars plus standard stars. The only object which may have faint Fe I emission wings is the B5 shell star ψ Per (see Fig. 20 , in which the short-wavelength wings of the Fe II multiplet UV 1 lines appear to be somewhat higher than the long-wavelength wings), but this is uncertain.

VI. THE A-F TYPE SHELI STARS

The eight A-F type shell stars listed in Table 1A range in spectral types from Al to FO. In the optical spectrum, all show rotationally broadened lines ($v \sin i$ ranging from 120 to $230 \mathrm{~km} \mathrm{~s}^{-1}$) plus sharp lines which arise from ground states or metastable levels, the latter presumably formed in some kind of shell around the rapidly rotating underlying star. None of the stars show Balmer emission, although the hotter ones may have sharp Balmer absorption cores, which presumably also form in the shell. While the hotter A-type shell stars may also have sharp Fe in lines in the optical spectrum (arising from metastable levels 2.6 to 2.8 eV above the ground state), the cooler ones are more likely to show the Ti_{1} I lines at 3685,3759 , and $3761 \dot{\mathrm{~A}}$ (arising from metastable levels $\sim 0.6 \mathrm{eV}$ above the ground state) and the H and K resonance lines of Cam .

We have already noted that the A-F type shell stars seem not to show superionized lines, nor do they have asymmetrical or violet-displaced resonance lines suggesting mass loss. Figures 22 and 23 show the strongest lines of Fe II multiplets UV 62, UV 63, and UV 64 (with lower metastable energy levels at $\sim 1 \mathrm{eV}$) in the spectra of A-F type sheli stars and standard stars. In Figures 8 and 9 we show the wavelength region around the A1 II resonance line at $1670.787 \dot{A}$, including also the resonance multiplet of C 1 centered at $1657 \dot{\mathrm{~A}}$, for five A-type shell stars plus three standard stars. We bave already noted that the A-F type shell stars seem not to

Fig. 16. - Spectral region including the Mg iI resonance doublet at 2795.528 and 2802.704 A (rest wavelengths indicated by arrows) in four B6.5-B8e stars and an 88 V standard star.

Fig. 17. - Spectral region including the Mg 11 resonance doublet at 2795.228 and 2802.704 A (rest wavelengths indicated by arrows) in three Al shell stars and an A0 V and A2 V standard star.

Fic. 18. - Spectral region including the Mg uresoance doublet at 2795.528 and $2802.704 \dot{A}$ (rest wavelengthe makated by arrows) in four AS-FO sbell stars and an AS III-IV standard star.

Fig 30 - Spectra i region including the strongest lines of the Fe it multupiet UV 1 in three B5 -Br* stars and iwo BS V standard stars The Fe it lines at 2585876 and 2599395 A are indicated by arrows.

Fic. 21. - Spectral region including the strongest lines of the Fe II mulupter UV I in four Bo.5-Bke stars and a B8 V standard star The Fe 18 lines at 2585.876 and 2599395 A are indicated by arrows.

FIG. 22. - Spectral region including the strongest lines of the Fe II multiples UV 62, UV 63, and UV 64 in three AI shell stars and an A0 V and A2 V standard star.

Fig. 23. - Spectral region including the strongest lines of the Fe II multiplets UV 62 , UV 63, and UV 64 in four A5-F0 shell stars and an AS III-IV standard star.
11. The only definite emission we observe is in the wings of the Mg II resonance doublet in two B5e stars in our sample-no Be stars of later type nor any of the A-F ivpe shell stars show definite emission in any ultraviolet line.
2. All of our A-F type shell stars show strong ultraviolet $\mathrm{Fe} I \mathrm{I}$ and Mg II absorption spectra relative to standard stars of similar spectral type.

From these results, we draw the following conclusions:
i) Although Be stars are indeed nearly indistinguishat'e from normal B stars in the ultraviolet, as has been pointed out by Snow (1982c) and Doazan (1982), there are differences in degree: Be stars show superionization to later spectral types, generally have stronger superionized lines at a given spectral type, and, at least for the shell stars, show larger mass-loss rates.
ii) If correlations between the existence of superionized lines and mass loss versus $u \sin i$ exist for be stars, they are weaker than correlations (from optical
spectra and polarization measurements) involving the cool circumstellar envelope. This suggests that the latter is more nearly equatorially confined than the hot envelope which gives rise to the superionized lines and mass loss.

We are grateful to Mike Mariborough, Ted Snow, Paul Barker, and George Collins for very useful discussions. Some of this work was done while one of us (A. S.) was a visitor at the Institute for Astronomy of the University of Vienna, and the kind bospitality offered there is gratefully acknowledged. We thank also the IUE team at Goddard Space Flight Center for their help and cooperation, and the Ohio State University Instruction and Research Computer Center for providing computer time and facilities. The many drawings in this paper were prepared by Peter D. Stoycheff. We are also grateful to Mark Wagner for obtaining optical spectrograms of 17 Sex for us. Finally, we thank NASA for support via grant NAG 5-52.

REFERENCES

Blaauw, A 1963, in Stars and Stellar Systems, VoL 3, Basic Astronomical Data, ed. K. Al Strand (Chicago: University of Chicago Press), p. 383.
Blanco. C.. Bnuca, L.. Catalano, S., and Mariili, E 1982. Astr. Ap., 115, 280.
Bruhweiler, F. C., Morgan. T. H., and van der Hucht, K. A. 1982. Ap. J.i 262675.
Cassinelli. J. P., and Olson. G. L. 1979, Ap. J., 229, 304.
Castor, J. L.. and Lamers. H. J. G. L. M. 1979. Ap. J. Suppi., 39. 481.

Code. A. D.. Davis. J., Bless. R. C., and Hanbury Brown. R. 1976. Ap. J., $203,417$.
Dachs, J. 1980, in Proc. Id European IUE Conf. (ESA SP-157), p. 139.

Doazan. V., 1982, in B Stars with and witiout Emission Lines, ed. A. Undertill and V. Doazan (NASA SP-456), p. 375.

Flower, P. J. 1977, Astr. Ap, 54, 31 .
Harris, D. L., III. Strand. K. A2, and Worley. C. E. 1963, in Siars and Stellar Sustems. Vol. 3, Basic Astronomiral Data, ed. K. Aa Strand (Chicago: University of Chicago Pre ;), p. 273
Henize. K. G.. Wray, J. D., Parsons, S. B., and Benedici, G. F 1976, in IAU Symposium 70. Be and . ihell Stars, ed. A. Slettebak (Dordrecht: Reidel), p. 191.
Johnson. H. L.. and Morgan. W. W. 1953, Ap. J., 117. 313.
Keenan. P. C. 1963, in Stars and Stellar Systems. Vol. 3, Bastc Astronomical Data, ed. K. Aa Strand (Chicago: University of Chicago Press), p. 78.
Kurucz. R. L. 1974. Ap. J. (Letrers), 188. L21.
Lamers. H. J. G. L. M., and Snow. T. P. 1978. Ap. J., 219. 504.
Marlborough. J. M. 1977, Ap. J., 216. 446.
1982, in JAU Symposium 98. Be Stars. ed. M. Jaschek and H.-G. Groth (Dordrecht: Reidel), p. 361.

Marlborough. J. M. and Peters. G. J. 1982 in IA \cup Symposium 98, Be Stars, ed. M. Jaschek and H.-G. Groth (Dordrecht: Reidel), p. 387.

Marborough. J. M, and Snow, T. P., Jr. 1976, in IA U Symposium 70. Be and Shell Stars, ed. A. Slettebak (Dordrecht: Reidel), p. 179.

Morgan. W. W., Abt, H. A., and Tapscott. J. W. 1978, Revised MK Spectral Ailas for Siars Earlier than the Sun (Yerkes Observatory, Uaiversity of Chicago and Kitt Peak National Observatory).
Morgan, W. W., and Keenan, P. C. 1973, Ant . Rev. Astr. Ap., 11. 29.

Morton. D. C. 1976. Ap. J.. 203, 386.
1978, Ap. J., 222. 863
1979, M. N.R.A.S., 189. 57
Panek. R. J., and Savage. B. D. 1976. Ap. J., 206. 167
Ross. J. E., and Aller, L. H. 1976. Science, 191, 1223.
Slettebak, A. 1963, Ap. J., 138. 118.
1976, ed. IAU Symposıum 70. Be and Shell Stars (Dordrecht: Reidel).
1982. Ap. J. Suppl., $50,55$.

Slettetak A. Coilins, G. W., II. Boyce, P. B., White, N. M., and Parkinson. T. D. 1975, Ap. J. Suppl., 29, 137.
Snow. T. P. 1981, Ap. J., $251,139$.
Snow, T. P., Jr. 1982a, in IA U Sympasium 98. Be Stars, ed. M. Jascher and H.G. Groth (Dordrecht: Reidel), p. 377.
_ 1982j. Ap. J. (Letters), 253, L39.
IVE $1982 c$, in Advances in Ultraviolet Astronomy: Four Years of IUE Research, ed. Y. Kondo, J. M. Mead, and R. D. Chapman (NASA CP-2238), p. 61.
Struve. O. 1931, Ap.J., 73, 94

Kenneth G Carpenter: JILA, University of Colorado, Bouldet, CO 80309
Arne Slettebak: Perkins Observatory, PO Box 449, Delaware, OH 43015

ROTATIONAL VELOCITIES OF LATER B TYPE AND A TYPE STARS AS DETERMINED FROM ULTRAVIOLET VERSUS VISUAL LINE PROFILES

Kenneth G. Carpenter, Arne Slettebak. ${ }^{1}$ and George Sonneborn
Perkins Observatory, Ohio State and Ohio Wesleyan Universities
Received 1984 March 12: accepted 1984 June 6

Abstract

Theoretical line profiles of the Si mi 1299 and Fe II 2756 lines are computed for rotating B5-A7 model stars. and compared with observed profiles from IUE spectra to derive rotational velocities. Real differences in widths for ultraviolet as compared with visual line profiles exist in our sample of B type stars but not for the A type rapidly rotating stars), although these are not as large as previously reported in the literature. Comparison with our theoretical line profiles gives rotational velocities that are in good agreement with visually determined $v \sin i$ values for the same stars, which suggests that our shape-distorted, gravity-darkened models are reasonable.

iubject headings: line profiles - stars: early-type - stars: rotation - ultraviolet: spectra

I. [N:RODUCTION

Most recently, Marlborough (1982) reviewed and commented on the observed discrepancy between rotational velocities ($v \sin i$) of Be stars as estimated from widths of absorption lines in ultraviolet as compared with visual spectra. He pointed out that perhaps the first to find such an effect were Morton et al. (1972), who observed several ultraviolet absorption lines (primarily C II and C mI) in the rapidly rotating star; Ophiuchi to be unusually narrow. They suggested that the narrow lines may be formed predominantly in the more slowly rotating polar regions or that they may originate in a sheil that has a lower rotational velocity than the visual photosphere. Not long after. Heap (1975, 1976, 1977) found ultraviolet lines of C m, C rv, Si m, and Si Iv in the spectrum of the shell star, Tauri to be relatively narrow, corresponding to a considerably lower rotational velocity than is estimated from visual line profiles.

Hutchings (1976a), in attempring to interpret Heap's (1975, 1976. 1977) observations, suggested also that in the farultraviolet spectrum of a star with a temperature gradient across its surface, the underlying continuum radiation may come preferentially from polar regions, where $v \sin i$ is expected to be small He followed this up (Hutchings i976b) with a quantitative analysis, finding that $v \sin i$ from an assumed line profile at $4500 \AA$ may be twice that at $1000-1200 \AA$ under certain conditions. Sonneborn and Collins (1977) performed a similar but more refined analysis by assuming a rotationally distorted star and including the temperature and gravity dependence of actual lines. Their results were qualitatively similar to those of Hutchings (1976a, b), but they found a smaller variation in rotational line broadening than that predicted by Hutchings or observed in ; Tauri by Heap.

There are problems in both the observational and theoretical areas, however, as Marlborough (1982) pointed out. In light of more recent ultraviolet observations of a number of Be stars, Heap's (1975, 1976, 1977) assumptions that all strong resonance lines in the ultraviolet are photospheric and that the circumstellar envelope would not contribute to lines of high stages of ionization are probably not correct. On the theoretical side, not only rotational shape distortion and the

[^0]temperature-gravity variations of the line profile across the gravity-darkened stellar disk should be included but also in principle) the effects of stellar winds, nonradial pulsations, and (possibly) differential rotation. All of the latter may affect the line profiles, but cannot easily be aken into account at this time.

As Huichings (1976b) and Sonneborn and Collins (1977) have pointed out. if rotational broadening is indeed a measurable function of wavelength, it becomes possible in principle to gain knowledge of global properties of rotating stars and, specifically, to determine v and i separately. Indeed. such determinations have been attempted in recent years by Hutchings and Stoeckley (1977), Hutchings. Nemec. and Cassidy (1979), and Ruusalepp (1982). Are these results meaningful, in view of the uncertain assumptions and difficulties that have been pointed out by Marlborough (1982)?

In the hope of clarifying the situation somewhat. we have calculated new theoretical line profiles based on line-blanketed rotating model atmospheres, which include shape distortion and gravity darkening, plus the latest atomic data. and compared our results with ultraviolet line profiles in a number of later B type and A type stars observed with the IUE satellite.

II. THE THEORETICAL ULTRAVIOLET LINE PROFILES

Atomic absorption lines chosen for rotational velocity analysis should be (1) as free as possible from broadening or profile-distorting mechanisms other than rotation and (2) sufficiently strong and isolated from other lines to allow accurate profiles to be determined. These conditions present difficulties in the ultraviolet, where the lines tend to be crowded together and the strongest lines are inevitably resonance lines. Resonance line profiles can indeed often be measured with high precision but are also likely to be distorted by stellar winds, in normal B type as well as in Be stars, even in the later B types (cf. Marlborough 1982; Snow 1982; Slettebak and Carpenter 1983).

We have chosen two moderately strong nonresonance lines. which we assume to be photospheric and broadened essentially by rotation in our sample of later B type and A type stars. For the spectral range B5-B8. we use the feature near 1299 A which is produced by the Si mil (UV4) lines at 1298.960 and 1298.891 A . These lines have their lower states at about 6.5 eV and their
higher energy levels near 16.1 eV . The neighboring Si min lines at 1297 and 1301 A were included in our calculations but were judged to be too weak in the observed spectra to be useful in the analysis. Finding suitable lines for the A type stars is more difficult, since they have little energy shortward of 1500 A and the spectra are crowded with iines. The best compromise we could make was the 2755.733 A line of multiplet UV62 in the spectrum of Fe a. This line is fairly strong and relatively isolated, and is produced from a lower energy level at 0.98 eV to a higher level at 5.46 eV .

While not resonance lines, both the Si II $\lambda 1299$ and Fe II $i 2756$ lines have lower levels that do not connect strongly to the ground state. In this sense, these are metastable levels, and absorption lines arising from them will be enhanced under low-density conditions, which will overpopulate these le:els. Our lines, therefore, should not be used for determining rotational ve!orities of shell stars, since they would yieid estimates too low relative to the values of $v \sin i$ measured from lines that originate solely in the photosphere.

Synthetic spectra of regions $6 \AA$ wide, approximately centered on each of the two lines, were computed by using a modified version of the ATLAS6 (Kurucz 1979) model atmosphere code. the global intensity integration routines of Collins and Harrington (1966), and previously computed model atmospheres described in Slettebak. Kuzma, and Collins (1980). The physical parameters for these line-blanketed model atmospheres, which account for the shape distortion and gravity darkening caused by rapid rotation (resulting in the variation of the photospheric continuum brightness with latitude), are given in the latter reference. Data for the atomic lines included in each of these synthetic spectra were obtained by screening the million-line list of Kurucz (1979) to obtain data for the strongest lines in each wavelength region under the physical conditions expected in each model. Since data for the Si III (UV4) lines are not in the Kurucz (1979) compilation, their wavelengths, $g f$-values, and lower energy levels were taken from Wiese, Smith. and Miles (1969). The Kurucz data were screened by cemputing approximate line-center upacities corresponding to the temperatures, pressures, and densities near Rosseland optical depth $\tau \sim \frac{2}{3}$ in the midatitude atmospheres $\left(\sim 45^{\circ}\right)$ of each stellar model. The $100-200$ strongest lines were segregated by retaining for each model only those lines with central opacities greater than $9.0 \mathrm{~cm}^{2} \mathrm{~g}^{-1}$. The Fe II line and all the background lines were computed using the wavelengths. energy levels, and $g f$-values from the Kurucz tape, and the broadening approximations described by Kurucz (1979) and Kurucz and Furenlid (1979). The approximate damping constants are defined as follows:

$$
\begin{gathered}
\Gamma(\text { Stark }) \approx 1 \times 10^{-8} N e n_{\mathrm{eff}}^{\mathrm{s}}, \\
\Gamma(\text { radiative })=\frac{2.223 \times 10^{15}}{i^{2}}(\dot{i} \text { in } \dot{A}) .
\end{gathered}
$$

$\Gamma($ van der Waals $)=2.8393081$

$$
\times 10^{-10}\left(N_{\mathrm{H} 1}+0.42 N_{\mathrm{He} 1}\right) T^{6,3} R^{2}
$$

where

$$
R^{2}=2.5 n_{\text {eff }}^{b} Z_{\text {eff }}^{-2}
$$

and

$$
n_{\text {eff }}^{2}=\frac{13.595 Z_{\text {eff }}^{2}}{\left(\psi-E_{\text {lower lovel }}+0.1\right)}
$$

with $N_{\mathrm{H} 1}$ and $N_{\mathrm{He} 1}$ the number densities of H 1 and He 1. respectively, $n_{\text {eff }}$ the effective quantum number, and $Z_{\text {eff }}$ the ionization stage. The ratio A of the damping to the Doppler width is defined by

$$
A=\frac{\Gamma(\text { radiative })+\Gamma(\text { van der } \text { Waals })+\Gamma(\text { Stark })}{4 \pi \Delta v_{D}}
$$

Collisional broadening of the Si iII (UV4) lines was approximated using the serniclassical results of Sahal-Brechot and Segre (1971), for which

$$
\Gamma_{e}=Q_{1} N_{g} T^{Q_{2}}
$$

The values of $Q_{1}=3.5 \times 10^{-5}$ and $Q_{2}=-0.3$ used in this equation were taken from Kamp (1976). The radiation damping constants, Γ (radiative), for Si III (UV4) were approximated by the upper-state Einstein A-values. A microturbulent velocity of $2 \mathrm{~km} \mathrm{~s}^{-1}$ was assumed for all lines in all of the models. These spectra were calculated with a wavelength spacing $\Delta i=0.05 \AA$, with the central wavelength of each line rounded to the nearest grid point to ensure that each line is represented in the spectrum.

Since rotational broadening dominates the profiles of the lines being considered for the $v \sin i$ values of interest, our results should not be strongly dependent on 'he above assumptions.
Table 1 lists the rotational parameters of the models for which line profiles were computed, including values of the fractional angular velocity $w=\omega / \omega_{c}$ (where ω_{c} is the critical angular velocity for which the centrifugal force at the star's equato: balances the gravitational force), the equatorial rotational velocity v, and the inclination angle i between the rotation axis and the line of sight. Si m line profiles were calculated for the B5-A0 models, and Fe it line profiles for the $\mathrm{A} 0-\mathrm{A} 7$ models. Figures 1-3 show selected examples of these theoretical line profiles. For each profile. the full width of the line at half-maximum depth (FWHM) was measured. with the continuum taken to be at a residual intensity of 1.00 . and assumed to be an indicator of the rotational velocity of that model. The signal-to-noise ratio in the observed $I U E$ line profiles does not justify the use of additional line-width parameters in the analysis. in our opinion. Calibration curves with the measured FWHMs as a function of $v \sin i$ were then plotted for each line and model. Figure 4 shows such calibration curves, as an example, for the Fe II i 2756 line in A5 models.

TABLE 1
Rotatonal Paramfters of Models for Which line Proflees Were Computed

w	1	$v \sin i\left(\mathrm{~km} \mathrm{~s}{ }^{-1}\right)$ at Each Spectral Type					
		B5	B7	A0	A2	A5	47
0	\cdots	0	0	0	0	0	0
0.5	$0^{\text {c }}$	0		0	0	0	0
	30	70		64	66	65	65
	45	98		91	93	92	92
	60	120		111	114	112	113
	90	139		128	132	129	130
0.9	0	0	0	0	0	0	0
	30	145	136	134	138	135	135
	45	205	193	189	195	191	191
	60	251	236	232	239	234	234
	90	290	273	268	276	270	270

Fig. 1.-Theoretical line profiles of Si ill multiplet UV4 lines in the wavelength range $1296-1302 \AA$, computed for B5 models with $w=0.9$ and three values of the inclination i.

III. THE PROGRAM STARS

a) Spectral Types and Rotational Velocities from Visual

Since we already had IUE high-resolution spectra of a number of rapidly rotating standard stars of late B type and A type, we decided to concentrate on this spectral-type range. Our requirements were that the program stars have welldetermined spectral types and rotational velocities (from visual spectra) and that high-resolution IUE spectra exist. We also tried to include stars with a range of rotational velocities in our sample, although highest priority was given to rapid rotators, where gravity-darkening effects are predicted to be the largest. Our 17 program stars are listed in Table 2. The spectral types and rotational velocities are from Slettebak et al. (1975), Slettebak (1982), and Slettebak and Carpenter (1983), or references therein. Details regarding how the visual $v \sin i$ values were determined, as well as error discussions, may be found in the aforementioned references. We estimate uncertainties of $10-15 \%$ of the values listed in Table 2.

b) The Observed Ultraviolet Line Profiles and Rotational Velocities

Table 3 lists the ultraviolet spectroscopic information for our program stars. All were observed with the $I U E$ satellite in the high-dispersion mode, through the large aperture. We obtained eight of the spectra directly during the fifth and sixth observing episodes of the IUE (1982-1983) and the remaining nine from the IUE archives of the National Space Science Data Center (NSSDC). The star name and either the shortwavelength prime (SWP) or the long-wavelength redundant

Fig. 2.-Theoretical line profiles of the $F e$ II multiplet UV62 line at 2755.733 A. computed for A0 models with $w=0.5$ and three values of the inclination i.
(LWR) camera image number are given in the first three columns of the table. Line widths (FWHM) were measured on the $I U E$ spectra, corrected for the finite resolution of the IUE high-resolution camera, and compared with the line widths of the appropriate theoretical line profiles to obtain rotational velocities. Here an ambiguity enters, which is shown in Figure 4 and was discussed earlier by Collins (1974) and by Slettebak et al. (1975). These, as well as our present computations, show

TABLE 2
The Program Stars

Star	HD	Spectral Type	$\begin{gathered} \text { Visual } \\ v \sin i \\ \left(\mathrm{~km} \mathrm{~s}^{-i}\right) \end{gathered}$
p Aur	34759	B5 V	90
$\psi^{2} \mathrm{Aqr}$	219688	B5 V	280
β Psc	217891	BS Ve	100
$\theta \mathrm{CrB}$	138749	B6 III(e)	320
ϕ And	6811	B6.5 Ille	80
z Leo	87901	B7 V	280
${ }_{7}$ Tau	23630	B7 IIfe	140
β Cyg B	183914	B8 Ve	250
; And	222173	B8 V	90
${ }^{1} \mathrm{Peg}$	218045	B9.5 III	120
$\sigma^{\text {Cyg }}$	186882	B9.5 III	140
$\beta \mathrm{Car}$	80007	AIIV	125
\pm PsA	216956	A3 V	85
80 LMa	116842	A5 V	210
¢ Cas	8358	As III-IV	100
x Oph	159561	15 III	215
${ }^{\text {a A }}$ l	187642	A7 V	225

Fig. 3-Thecretical line profiles of the Fe it multiplet UV62 line at 2755.733 A. computed for A5 models with $w=0.9$ and three values of the inclination $:$.
that the half-intensity width does not uniquely specify a rotational velocity for large values of w. We therefore took an average $v \sin i$ where both $w=0.5$ and $w=0.9$ models were applicable. This ambiguity introduces an uncertainty of $15-20 \%$ in our rotational velocities, listed in Table 3.

FWHM($\dot{A})$ F.II 2756

Fic. 4.-Line widths (FWHM) of theoretical line proties of the Fe il 1.2756 line in AS model rotating stars. plotted against their rotational velocitues. c sin i. The circles and crosses represent computed values for $t=0,30^{c}, 45^{\circ} .60^{\prime}$. and 90°; the dashed curves approximate the mean relations. Error bars of $\pm 10 \%$, which should represent maximum errors in view of uncertain continuum piacements, are shown on the FWHM.

IV. RESULTS AND DISCUSSION

Figures 5 and 6 show the ultraviolet rotational velocities derived in this study from the Si III 11299 and Fe 1122756 lines. respectively, plotted against the visually determined r sin i values for the $\mathrm{B} 5-88$ and $\mathrm{B} 8-\mathrm{A} 7$ program stars. The agreement between the values of $v \sin i$ is quite good in both cases. and we conclude that our models reasonably represent the observed line widths.

Sonneborn and Collins (1977) introduced the dimensionless parameter

$$
Q=\left(\mathrm{FWHM} / i_{1},\left(\mathrm{FWHM} i_{2}\right.\right.
$$

TABLE 3
Ultraviolet Data for the Program Stars

Stir	Camera image No.		$\begin{aligned} & \text { Si }\lfloor 1112299 \\ & \text { FWHM }(A) \end{aligned}$	Fe 1122756 FWHM (A)	$\begin{gathered} U V \\ v \sin i \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{gathered}$
	SWP	LWR			
ρ Aur	10389	\cdots	0.80	\ldots	70
ψ^{2} Aqr	10385	\ldots	1.52	\cdots	255
β Psc	10386	\ldots	0.86	$\ldots 1$	35
	15512	\ldots	0.84	..	
$\theta \mathrm{CrB}$	14431	.	1.63	...	335
	16288		1.69	.. ${ }^{\prime}$	335
\triangle And	10387		0.77	\ldots	65
\times Leo	10379	.	1.55	\ldots	280
${ }^{+}$Tau	10378		1.19	\ldots	185
β Cyg B	5369	.	1.41	\ldots	235
1 And	10376		0.82		85
		9057		1.31	80
${ }^{x}$ Peg	\ldots	2386	\ldots	2.23	145
${ }^{3} \mathrm{Cyg}$	\ldots	3041	...	2.11	140
B Car		2970		1.69	105
$y \mathrm{Ps} A$.	11022	.	1.81	110
80 UMa	.	11712	\ldots	2.57	190
¢ Cas	.	11214	...	1.92	75
$x \mathrm{Oph}$	\ldots	5925	.	2.72	220
x Aql	\ldots	2449	\ldots	3.06	190
	\ldots	3012	\ldots	2.791	190

Fig. 5.-Visually determined rotational velocities (v $\sin i$) plotted against uitraviolet v sin i values (from Si il i11299 line profiles) for the BS-B8 program stars. Error bars of $\pm 15 \%$ have been placed on each point. ". he dashed line is a 45° line representing perfect agreement between the visual and ultraviolet v $\sin i$ values.
as a measure of the difference in rotational line broadening as a function of wavelength. We can compute Q from our ultraviolet computations in this paper and the visual line profiles calculated by Slettebak, Kuzma, and Collins (1980). This gives values of Q between 1.2 and 1.3 for B5 models with $w=0.9$ and $i=90^{\circ}$, and agrees quite well with observed Q-values for the rapidly rotating $B 5-B 7$ stars in this study obtained from IUE spectra compared with He : $\lambda 4471$ liiie widths for the same stars in Slettebak et al. (1975). This confirms that there is an

Fig. 6.-Visually determined rotational veioctues $(v$ sin i) plotted aganst ultraviolet v sin i values (from Fe II $i 2756$ line profiles) for th- B8-A 7 program stars. Error bars of $\pm 15^{\prime \prime}$, have been placed on each point. The dashed line is a 45° line representing perfect agreement between the visual and ultraviolet v sini values.
effect of wavelength dependence on rotational line broadening in the B type stars, that it can be understood in terms of gravity-darkened models, but that it is probably not as large as previously thought.

Our Q-values for the A type stars in this study, on the other hand, are near unity, even for the most rapidly rotating objects. There are probably several reasons for this. (1) Even the most rapidly rotating A type stars appear to have fractional angular velocities that are not sufficiently close to unity to produce striking gravity-darkening effects. (2) Since the temperature difference between pole and equator in a rapidly rotating A type star is considerably less than in a rapidly rotating B type star. the gravity-darkening effects would be expected to be much smalier in any case. (3) The Fe II $i 2756$ line. which we chose for analysis in the A type spectra, is not so widely separated in waveiength from the Mg II $i 4481$ line usually chosen for visual v sin i determinations as to show a large wavelengthdependence effect.

Before our conclusions are taken too seriously by the reader. however, we feel it is necessary to comment on the accuracy of our observed and theoretical line profiles, as well as on some ambiguities in our analysis:

1. Placing the continuum for the observed line profiles is extremely uncertain. The high-resolution IUE spectra are obtained with an echelle spectrograph, and establishing continuity between echeile orders is difficult and not always successful. The probiem of locating the continuum becomes worse when the line profiles to be measured are broad and other strong lines are in the vicinity. Also, for broad lines, a small error in continuum placement can result in a relatively large error in measured line width and, therefore, rotational velocity.
2. There is also some uncertainty in the location of the continuum for the theoretical line profiles, because of the restricted (by limitations on available computing time) wavelength extent of the spectra computations.
3. Figure 4 shows two problems introduced in using the FWHM versus $v \sin i$ calibration curves. The first, which we have already discussed, is that there is an essential ambiguity in using line widths to estimate rotational velocities for rapidly rotating stars, as is shown by the difference between the $w=0.5$ and $w=0.9$ curves. A second source of uncertainty arises from the flattening out of the FWHM versus $t \sin i$ curves for large values of $v \sin i$. A small difference in the measured line width thus leads to a large change in $v \sin i$.

The above discussion suggests that Figures 5 and 6 be regarded with some caution. The rather good correlation Letween the visually determined and uitravinlet $v \sin i$ values shown there is probably somewhat fortuitous. On the other hand, we feel that our analysis is sufficiently accurate to reveal striking differences, and these do not seem to be present.

Improvements in both theory and observation could be made in future work. As we have already stated. we feel that our theoretical treatment is sufficiently accurate to deal with this problem in view of the fact that rotational broadening iominates the line profiles. It would be advantageous. mowever, to compute synthetic spectra covering a larger waveength range than was possible in this paper, to define the theoretical continuum more precisely. On the observational side, we anticipate that the quality of the line profiles obtained with the high-resolution spectrograph on the Space Telescope would permit a comparison of the entire line profile, rather than oniy the F HMs used in this investigation, and therefore would lead to more accurate results. The choice of iuitable
lines for analysis presents real problems. since all strong, unblended ultraviolet lines seem to arise either from ground states or from metastable levels. We have chosen what we consider to be the best lines for our purpose, but higher resolution, less noisy data may permit the use of more suitable lines.

The many uncertainties inherent in analyses involving large rotational line broadening also suggest to us that attempts to separate v and i from line profiles must be carried out with great caution, and, indeed, it is not clear to us that such a separation is even feasible.

We can summarize our results as follows. Real differences in widths for ultraviolet versus visual line profiles in rapidly rotating B type stars exist, but these are not as large as previously reported in the literature. This discrepancy may be due in part
to the earlier use of resonance and metastable lines that have substantial nonphotospheric contributions from winds and/or circumstellar envelopes. The good agreement we obtain between ultraviolet and visually determined rotational velocities suggests that our shape-distorted, gravity-darkened models are reasonable and may bear some resemblance to the real world.

We acknowledge very helpful conversations with George Collins. The IUE team at Goddard Space Flight Center was most cooperative. as was Wayne Warren of the National Space Science Data Center at Goddard. We thank also the Ohio State University Instruction and Research Computer Center for providing computer time and facilities, and NASA for support via grant NAG 5-52.

REFERENCES

Collins. G. W.. II. 1974. Ap. J., 191. 157
Collins G. W. II. and Harrington, J. P. 1966, Ap. J. 146.152
Heap, S. R. 1975 , Phil Trans Roy. Soc. London, A, 279 , 371.
(Don 1976. in IAU Symposium 70, Be and Shell Stars, ed. A. Slettebak
(Dordrecht: Reidell, p. 165 .
-_ 1977, Ap. J. (Letters), 218. L17
Hutchings. J. B. 1976a. in IAU Symposium 70. Be and Shell Stars, ed. A. Slettebak (Dordrecht: Reidefl p. 450.

- 1976b. Pub. A.S.P. 88, 5 .

Hutchings. J. B. Nemec, J. M., and Cassidy, J. 1979, Pub. A.S.P. 91.313.
Hutchings. J. B., and Stoeckley. T. R. 1977, Pub. A.S.P., 89, 19.
Kamp. L. W. 1976. Statistical Equilibrium Calculations for Silicon in EarlyType Model Stellar Atmospheres (NASA TR R-455).
Kuruez R. L. 1979. Ap. J. Suppl.. 40.1.
Kuruez R. L.. and Furenlid. 1. 1979. Smithsonian Ap. Obs. Spec. Rept., No. 387.
Marborough. J. M. 1982, in IAU Symposium 98. Be Stars, ed. M. Jaschek and H.G. Groth (Dordrecht: Reidel), p. 361.

Morion. D. C., Jenkins. E. B. Matilsky, T. A., and York. D. G. 1972. Ap. J., 177.219.

Ruusalepp, M. 1982 in IAU/ Symposium 98, Be Stars, ed. M. Jascher and H.-G. Groth (Dordrecht: Reidel), P. 303.
Sahal-Brechot, S., and Segre, E. R. A. 1971, Astr. Ap., 13. 161.
Slettebak. A. 1982 Ap. J. Suppl. $50,55$.
Slettebak. A.. and Carpenter. K. G. 1983, Ap. J. Suppl., 53, 869
Sletrebak. A.. Collins. G. W.. II. Boyce. P. B.. White. N. M., and Parkinson. T. D. 1975. Ap. J. Suppl. 29. 137.

Slettebak. A.. Kuzma. T. J., and Collins. G. W.. II. 1980. Ap. J.. 242171
Snow. T. P. Jr. 1982 in IAU Symposium 98, Be Stars, ed. M. Jaschek and H.-G. Groth (Dordrecht: Reidel), p. 377.

Sonneborn, G. H., and Collins. G. W...II. 1977, Ap. J.. 213.787
Wiese, W. L.. Smith, M. W. and Miles. B. M. 1969, Atomec Transition Probabilities, Vol. 2 (NSRDS-NBS 22).
a) Ultraviolet spectra of some brighte: Lambda Bootis stars
b) A. Slettebak ${ }^{1}$
c) Perkins Observatory, Ohio State and Ohio Wesleyan Universities Delaware, Ohio 43015, U.S.A.
d) ULTRAVIOLET SPECTRA OF LAMBDA BOOTIS STARS
e) Perkins Observatory
P. O. Box 449

Delaware, Ohio 43015, U.S.A.
f) Stellar Atmospheres
g) Supplement Series
${ }^{1}$ Guest Investigator: International Ultraviolet Explorer Satellite

Sumary. - Strengths of ultr: iolet lines from IUE spectra of six bright λ Bootis or suspected λ Bootis stars are compared with line strengths in standard "normal" s:ars of similar spectral types. In five of the six stars (the sixth, ε Sgr, apfears to be nomal in the ultraviolet) the lines of carbon and nitrogen are stronger than in the standard stars, while the lines of magnesium, aluminum, and (to a lesser extent) iron are weaker. These abnormal line strengths, which seem not to be due to luminosity effects, might be interpreted either in terms of diffusion processes or by nucleosynthesis. The line profiles of ultraviolet resonarce lines do not show the asymmetries associated with mass loss in the hotter stars, but the low mass-loss rates suggested in the diffusion theory are probably not excluded by the observations. On the other hand, the observed strength of ultraviolet carbon and aitrogen lines is suggestive of nucleosynthetic processes, and the possibility exists that the λ Boo stars are evolved objects in which nuclearlyprocessed CNO elements have somehow found their way to the surfaces.

Key Words: UV spectra -- Lambda Bootis stars -- peculiar A stars -stellar atmospheres

I. Introduction

Morgan et al. (1943) described the spectrum of λ Bootis, the prototype of this class of stars, as follows: "The spectral type of λ Boo is near AO, as far as can be determined. The spectral lines, while not unusually broad, are vely weak, 80 that the only features easily visible are a weak $K-l i n e$ and the Balmer series of hydrogen". Additional members were proposed by Andersen and Nordstróm (1977), Graham and Slettebak (1973), Parenago (1958), Slettebak (1952, 1954, 1975), and Slettebak et al. (1968), but it was obvious that the Class was rather 111 defined. Hauck and Slettebak (1983) therefore profosed the following spectroscopic definition: " λ Boo stars are $A-F$ type stars with metallic lines which are too weak for their spectral types, when the latter are determined from the ratio of their K-line to Balmer-ine strengths. They are distinguished from weak-lined Population II (horizontal branch) stars by the fact that they have normal space velocities and moderately large rotational velocities." Based on this definition, they listed nine stars which appear to be λ Boo stars. Meanwhile, Abt (1984), suggesting that "... an easy way to discover λ Bootis stars is to search for stars near AO that have weak (Mg II) 4481", presented a list of 26 stars near AO selected from the Bright Star Catalogue which have weak Mg II 4481, and which he provisionally refers to as λ Bootis stars.

Abundance analyses of some of we brighter λ Boo stars have been carried out by a number of investigators. Burbidge and Purbidge (1956), using curve-cf-growth methods, found λ Boo to have only about 10 percent of the "normal" abundance of F and only about 3 percent of the "normal" abundance of Ca, with gmaller underabundance ratios for 29 Cyg. Kodaira (1967) found " Boo and
π^{1} Ori to have normal oxygen abundance, in contrast to the underabundance of magnesium by a factor of more than 5." For 29 Cyg , on the other hand, he found the magnesium abundance to be "rather normal". Baschek and Searle (1969) carried out a curve-of-growth abundance analysis of a number of objects which had been classified as λ Boo stars, and found that "only λ Boo, 29 Cyg, and π^{1} Ori form a distinct group from the composition point of view. The composition characteristics of the λ Boo group are (1) a deficiency of about a factor 3 in the iron-group elements; (2) nearly normal oxygen abundance; 3) deficiencies by Mg and Ca that are at least as large as those of the irongroup elements and sometimer pice larger."

Baschek and Searle (1969) agreci with Sargent's (1965) suggestion that the λ Boo stars are related to the peruliar A stars, and stated further that "... they form a separate type of Ap star, and their surface composition does not reflect that of the material form which they formed." More recently, Michard et al. (1983) have suggested that the λ Boo stars may be related to the A-type metallic-line (Am) stars. They propose that the diffusion process (Michaud 1970) plus a mass-loss rate of the order of $10^{-13} \mathrm{M} / \mathrm{yr}$ could lead to the \AA Boo phenomenon.

An ultraviolet study of nine λ Boo or suspected λ Boo-type stars was carried out by Bascheik et al. (1984) using IUE spectra. Of five stars listed by Hauck and Slettebak (1983) as i Boo atars based on optical specta, they found that four (λ Boo, π^{1} Ori, HR 4831, and HD 105058) also show λ Boo characteristics in the ultraviolet. while the fifth (29 Cyg) shows only marginal agreement. A study of high-resolution IUE spectra of i Boo itself
led them to conclude that "the line strengths indicate that carbon (and perhaps also aitrogen) may be normal or even enhanced in λ Boo in contrast to the underabundance of the heavier elements."

The work of Baschek et al. (1984) was not known to we when I also obtained IUE spectra of some of the brighter λ Boo stars in October 1983 and January 1984. My goal was to compare high-resolution IUE spectra of λ Boo stars with spectra of standard "normal" stars of similar spectral type, ro determine which chemical elements have stronger, weaker, or normal lines in the λ Boo stars. This paper presents these results, based on independent IUE obser.. vations. No artempt is made to analyze the results or derive abundances, since the data do not warrant a refined analysis, in my opininn. The lines of certain elements do appear to be strong and others weak, relative to their appearance in sc:-dard stars, however, and these will be pointed out.

II. Observations

Table la lists the six λ Boo or suspected λ vo-type stars for which highresolution IUE spectra were obrained, including the image numbers. Table ib gives the same information for 14 standard stars with nomal eptical spectra, of spectral types B8 to AS. Spectral types and rotacional velocities for the peculiar stars are referenced in the paper by Hauck and Slettebak (1983), except for 15 And (see the Note to Table la), while those for the standard stars are from Slettebak et al. (1975) or references therein.

Identlfying representative spectrum lines of various chemical elements which are undended and at the same time strong enough to permit accurate
equivalent width measurements is a near impossibility for ultraviolet spectra of hot stars. Furthermore, many or most such candidate lines are resonance lines, which introduces complications due to interstellar and/or chromospheric contributions. Recognizing these difficultias, Table 2 lists the lines (many of them blended) which seemed least objectionable for the comparison of line strengths, which is the purpose of this investi, ation.

IUE calcomp tracings of the spectra of al: the :ogram stars and all the standard stars but two (18 Tau and $\lambda \mathrm{UMa}$) were available with a paper scale of 2 A/inch. Equivalent widths were measured on these tracings, using a planimeter. In addition, equivalent widths of certain lines in the spectra of 18 Tau and λ UMa, as well as in some of the program stars, were measured using a reduction program at the IUE Regicnal Data Analysis Facility in Boulder, Colorado. Because a considerable range of continum is necessary on either side of each spectrum line to be measured in order to obtain meaningful equivalent widths, the Boulder reduction program was found, unfortunately, to be useful only for certain lines.

III. Results

Baschek et al. (1984) have nointed out the difficulties in reaching quantitative conclusions regarding the abundance of carbon in the atmospinere of λ Boo in view of saturation effects in the lines (making them sensitive to microturbulent velocities and damping constantis) and the possibility of differential non-LTE effects on the line strengths. There are also a number of difficulties on the observational side: (1) As has already been mentioned, ultraviolet spectra of the hotter stars are crowded with lines and it is
extremely difficult to find lines which are unblended and at the same time strong enough to pemit accurate equivalent-width measurements; (2) the tracings utilized in this study often had poor flux corrections at the ends of the echelle orders ("ripple" corrections), which made continuum placement for IInes at these wavelengths very difficult; (3) unfortunately, a number of my tracings were very noisy, which affected both the line profiles and continua.

For all of the above reasons, only line strengths of the program stars versus standard stars are presented in this paper, with no attempt at analysis. My hope is that, by measuring the lines in the λ Boo stars and in the standard stars of similar spectral types in the identical manner, meaningful comparisons can be made.

The results are shown in Figures $1-24$, one for each of the spectrum lines listed in Tables $2 a$ aild $2 b$. In each case, equivalent width $W(\mathbb{R})$ is plotted against spectral type for both the program and the standard stars.

An inspection of Figures $1-24$ shows, first, a considerable scatter in the points, making it difficult to decide whether a given line in the program stars is weaker, stronger, or cumparable to the line in the standard stars. In a number of cases, the comparison shows a definite difference, however:

1. Figures 3 and, especially 7, suggest that the 1 ines of carbon are decidedly stronger in the λ Boo stars (with the exception of $\varepsilon \operatorname{Sgr}$) than in the standard stars of comparable spectral type. This supports the conclusion of Baschek et al. (1984) that carbon may be normal or even enhanced in λ Boo. 2. Figures $4,5,10$, and 11 suggest that the lines of nitrogen are also decidedly stronger in the λ Boo stars (again, with the exception of ε Sgr) than
in the standard stars of comparable spectral type. Baschek et al. (1984) had also suggested that the lines of nitrogen in λ Boo "perhaps" may be normal or even enhanced. The N I (multiplet UV 4) lines at $1492.63,1492.82$, and 1494.68 \& are, unfortunately, blended with the C I (multiplet 64.06) 1494.74 \& and C I (multiplet 64.08) $1492.74 \AA$ lines in an unknown way, but Figures 10 and 11 show that the N I (multiplet UV 9) Iines at 1743 and 1745% are also strong relative to standard stars.
2. Figures $21-24$ show that the lines of magnesium are decidedly weaker in the λ Boo stars (again, with the exception of ε Sgr) than in the standard stars of comparable spectral type. This might be expected since the weakness of Mg II 4481 is one of the criteria for identifying λ Boo stars. Burbidge and Burbidge (1956), Kodaira (1967), and Baschek and Searle (1969) all found magnesium to be underabundant in the λ Boo stars.
3. Figure 8 shows that the A\& II 1671 resonance line is considerably weaker in the λ Boo stars (again, with the exception of ε Sgr) than in the standard stars of comparable spectral type. It is interesting to note that Sadakane et al. (1983) found the resonance lines of both $A \ell$ II and $A \ell$ III to be abnormally weak in many $B-t y p e$ chemically peculiar stars.
4. Figures $14,16,17,19$, and 20 show the lines of Fe II to be definitely weaker or slightly weaker in the λ Boo stars (again, with the exception of $\varepsilon \mathrm{Sgr}$) than in the standard stars of comparable spectral bype. The effect is not as pronounced as for the Mg II and $A 2$ II lines, but seems to be real. 6. Figure 9 shows the Ni II 1742 line to appear slightly weaker, on the average, in the λ Boo stars (again, with the exception of $\varepsilon \operatorname{Sgr}$) than in the
standard stars of comparable spectral type. This effect may not be real, in view of the uncertainty of the equivalent width measurements.
5. No definite conclusions can be drawn about the strengths of the lines of silicon (Figure 6), sulfur (Figure 12), or manganese (Figures 15 and 18), in view of the uncertain measurements, except to suggest that the lines seem neither to be conspicuously strong nor conspicuously weak relative to the same lines in the standard stars.

A number of other conclusions may be drawn from the data:
The bright star $\varepsilon S g r$ seems not to be a λ Boo star on the basis of the strengths of its ultraviolet lines. In addition to the results already mentioned, Figures 1,2 , and 13 show that lines of Si III, 0 , and Al III, respectively, in ε Sgr appear to have normal strengths relative to standard stars of similar spectral type. On the other hand, the optical spectrum of ε Sgr is peculiar in that the Mg II 4481 line is broad and rather weak while the Balmer absorption cores, Fe II 4233, and the Ca II K-line are considerably narrower, as was pointed out earlier (Slettebak 1975). The spectrum could be composite, but again there is no evidence for abnurmal line intensities in the ultraviolet. Hauck and Slettebak (1983) have pointed out that the colors of ε Sgr are unusual and that its position in both a d vs. (B2-V1) diagram and $a c_{1}$ vs. (b-y) diagram place it in the area of the horizontal-branch A-type stars. This object does indeed deserve further study.

Abt's (1984) suggestion that 15 And is a λ Boo star on the basis of its weak Mg II 4481 line seems to be confirmed by the IUE data. The star shares the strong C I and N I lines, the weak $M g$ II and $A \ell$ II lines, and the slightly
 other hand, Hauck (1985) decided against membership of 15 And in the λ Boo group on the basis of its colors'in the Geneva photometric system. Hauck's criteria for membership are severe, however, and he states that "some stars (of the objects investigated by him) could marginally be members of the group with only one clear exclusion (an obvious supergiant)".

In view of Michaud et al.'s (1983) suggestion that the λ Boo stars may be losing mass, the ultraviolint resonance line profiles were examined for asymmetries in all of the program stars. No asymmetries were found. On the other hand, Michaud et al.'s suggested mass-loss rate of $10^{-13} \mathrm{M}_{9} / \mathrm{yr}$ is not much larger than the mass loss due to the solar wind -- under these circumstances there would probably be no measurable effect on the line profiles.
IV. Conclusions

1. Five of the $s i x \lambda$ Boo stars investigated in this study have similar ultraviolet spectral characteristics: the lines of carbon and nitrogen are stronger than in standard stars of similar spectral type, while those of magnesium, aluminum, and (to a lesser extent), iron are weaker. Nickel may also be weakened.
2. The sixth star investigated. ε Sgr, while showing peculiarities in its optical spectrum and colors, looks normal for its spectral type in the ultraviolet.
3. The data presented in Figures $1-24$ show no striking differences in line strengths between main-sequence and giant stars, suggesting that the behavior
of the ultraviolet lines in the λ Boo stars is not due to luminosity effects. The abnormal line strengths in the ultraviolet spectra of the λ Boo stars might then be interpreted either' in terms of diffusion processes, as suggested by M1chaud et al. (1983), or by nucleosynthesis. The line profiles of ultraviolet resonance lines do not show the asymmetries associated with mass loss in the hotter stars, but the low mass-loss rates suggested by Michaud et al. are probably not excluded by the observations. On the other hand, the observed strength of ultraviolet carbon and nitrogen lines is suggestive of nucleosynthetic processes (Kodaira 1967 and Baschek and Searle 1969 had earlier found that the oxygen abundance is normal in λ Boo stars). The possibility thus exists that the λ Boo stars are evolved objects in which nuclearly-processed $C N O$ elements have somehow found their way to the surfaces.

Acknowledgments. I thank Charles Cowley for restimulating my interest in the and Earle Luck λ Boo stars, and am grateful also to him and to George Collins for valuable discussions. The IUE team at the Goddard Space Flight Center was extremely helpful, as was Wayne Warren at the National Space Science Data center in sending archival material to me. My thanks go also to Edward Brugel and Terry Armitage of the IUE Regional Data Analysis Facility in Boulder, Colorado for their help and cooperation during my visit there, and finally, to NASA for support via grant NAG 5-52.

References

Abt, H. A.: 1984, in The MK Process and Stellar Classification, ed. R. F. Garrison, David Dunlap Obs.P Publ., p. 340.

Andersen, J., Nordstrbm, R: 1977, Astron. Astrophys. Suppl. .29, 309.
Bashek, B., Heck, A., Jaschek, C., Jaschek, M., KUppen, J., Scholz, M., Wehrse, R.: 1984, Astron. Astrophys. 131, 378.

Baschek, B., Searle, L.: 1969, Astrophys. J. 155, 537.
Burbidge, E. M., Burbidge, G. R., 1956, Astrophys. J. 124, 116.
Graham, J. A., Slettebak, A.: 1973, Astron. J. 78, 295.
Hauck, B.: 1985, Astron. Astrophys. (in press).
Hauck, B., Mermilliod, M.: 1980, Astron. Astrophys. Suppl. 40, 1.
Hauck, B., Slettebak, A.: 1983, Astron. Astrophys. 127, 231.
Kodaira, K.: 1967, Pub1. Astron. Soc. Japan 19, 556.
Michaud, G.: 1970, Astrophys. J. 160, 641.
Michaud, G., Tarasick, D., Chariand, Y., Pelletier, C.: 1983, Astrophys. J. 269, 239.

Morgan W. W., Keenan, P. C., Kellman, E.: 1943, Atlas of Stellar Spectra, University of Chicago Press, Chicago.

Parenago, P. P.: 1958, Soviet Astron. - A. J., 2, 151.
Sadakane, K., Takada, M., Jugaku, J.: 1983, Astrophys. J. 274, 261.
Sargent, W. L. W.: 1965, Astrophys. J. 142, 787.
Slettebak, A.: 1952, Astrophys. J. 115, 575.
Slettebak, A.: 1954, Astrophys. J. 119, 146.

Slettebak, A.: 1975, Astrophys. J. 197, 137.
Slettebak, A., Collins, G. W., If, Boyce, P B., White, N. M., Parkinson, T. D.: 1975, Astrophys. J. Supp1. 29, 137.

Slettebak, A., Wright, R. R., Graham, J. A.: 1968, Astron. J. 73, 152.

Table la. IUE observations of λ Boo and suspected λ Boo-type stars

Star	HD	Sp. Type	$\begin{aligned} & \mathrm{v} \sin 1 \\ & (\mathrm{~km} / \mathrm{s}) \end{aligned}$	SWP	LWP
π^{1} Ori	31295	AOp	110	21318	$\begin{aligned} & 2098 \\ & 2557 \end{aligned}$
HR 4881	111786	A3p	-	21945	2561
λ Boo	125162	AOp	100	$\begin{aligned} & 21319 \\ & 21320 \end{aligned}$	2099
$\varepsilon \mathrm{Sgr}$	169022	B9p	100	$\begin{aligned} & 21316 \\ & 21317 \end{aligned}$	2097
29 Cyg	192640	A2p	90	21321	2100
15 And*	221756	A1p	100	21944	2559

* Note: Abt (1984), who first listed 15 And as a probably λ Boo star, gives AlVp (Mg wk) as the spectral type with v sin $1=109 \mathrm{~km} / \mathrm{s}$. On a Perkins $72^{\prime \prime}$ spectrogram of Oct. 23,1985 I confirm the spectral type to be near Al, the Mg II 4481 line does indeed appear weak for that type, and the rotational velocity is in the neighborhood of $100 \mathrm{~km} / \mathrm{s}$.

Table lb. IUE observations of standard stars

Table 2a. Spectrum lines measured in the IUE short-wavelength range

Element	Multiplet	Wavelength (A)
S1 III	UV 4	1298.89, 1298.96
0 I	UV 2	1302.17
C II	UV 1	1334.53, 1335.71
N I	UV 4	$\begin{aligned} & 1492.63,1492.82, \\ & 1494.68 \end{aligned}$
S1 II	UV 2	1533.44
CI	UV 2	$\begin{aligned} & 1656.27,1656.93,1657.01,1657.38, \\ & 1657.91,1658.12 \end{aligned}$
Al II	2	1670.81
Ni II	5	1741.56
N I	UV 9	$\begin{aligned} & 1742.72,1742.73 \\ & 1745.25,1745.26 \end{aligned}$
S I	2	1820.37
Al III	1	1862.78
Fe II	126	1864.74

CAPTION FOR FIGURES

FIGURES 1-24. - Equivalent widths $W(\$)$ of the ultraviolet lines versus
spectral types of the program and standard stars. The λ Boo and suspected-
λ Boo stars are plotted as squares, with symbols designating each star as
follows: $\pi=\pi^{1}$ Ori, $\mathrm{HR}=\mathrm{HR} 4881, \lambda=\lambda$ Boo, $\varepsilon=\varepsilon \mathrm{Sgr}, 29=29 \mathrm{Cyg}$,
$15=15$ And. A colon behind any symbol indicates that the equivalent width
measurement is particularly uncertain. The dashed line in each figure has
been drawn by eye through the standard-sta: points, as a guide to the general
trend of the line strengths for the standard stars; it has no physical meaning
beyond that.

Fir. 1
$W(A)$

Fig. 3

F6.4
$W(A ̊)$

F:6.5
$W(A ̊)$

$116.1 \mid$

$\sqrt{2 \pi}$

FRLMED
\rangle

[^0]: 'Guest Investigator. Internationad Ultraviolet Explorer satellite.

