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A CONSISTENT SPATIAL DIFFERENCING SCHEME FOR THE TRANSONIC 

FULL-POTENTIAL EQUATION IN THREE DIMENSIONS 

Scott D. Thomas* and Terry L. Holst 

Ames Research Center 

SUMMARY 

A full-potential, steady, transon1c w1ng, flow solver has been mod1fied so that 
free-stream density and residual are captured 1n reg10ns of constant velocity. The 
numerically precise free-stream cons1stency is obtained by slightly alter1ng the 
differencing scheme without affecting the 1mplicit solution algor1thm. The changes 
chiefly affect the fifteen metr1Cs per gr1d point, Wh1Ch are computed once and 
stored. W1th this new method, the outer boundary condition 1S captured accurately, 
and the smoothness of the solution is especially improved near regions of grid 
discontinuity. 

INTRODUCTION 

Free-stream cons1stency is def1ned as the ability to numerically capture the 
free-stream dens1ty and vanishing res1dual from the transformed govern1ng equations 
on an arbitrary computational mesh. The calculation of these quantities must be 
algebraically precise; that is, accurate to with1n machine roundoff, 1nstead of to 
within some order of magnitude assoc1ated w1th the mesh spacing. 

Following the work of Flores et al. (ref. 1), mod1f1cations have been made to 
the three-d1mens1onal (3-D) full-potential flow solver descr1bed by Thomas and Holst 
(ref. 2) 1n order to implement a free-stream-consistent spatial d1fferencing 
scheme. This program uses a coordinate transformation from phys1cal to computa
tional space 1n order to represent accurately the aerodynam1c surface. It models 
the 1nvisc1d, compress1ble, 1rrotational flow of air past a lifting w1ng mounted on 
a wall. The vector1zed computer code TWING, Cycle 3, has been upgraded to 
Cycle 4. It 1S designed to run on a Cray supercomputer. 

The sp1rit of the present approach follows the descr1ption 1n reference 1 in 
that it only requires careful numer1cal def1nit1on and use of metr1c terms required 
by the coordinate transformat1on. Th1S is distinct from other approaches involving 
the subtraction of "artif1cial flux" terms as mentioned, for example, by Caughey and 
Jameson (ref. 3). 

*Informatics General Corporation, Palo Alto, CA 94303. 



Beneficial features of TWING, Cycle 4, include: 

1. Elimination of grid-induced perturbations in the flow fIeld near the outer 
(or free-stream) boundary 

2. Reduction of perturbations in the flow field that otherwise would be intro
duced by grid discontinuities 

3. Improved abilIty to treat wings with sharp leading edges 

On the negative side, instead of seven metric quantities per pOint, now fifteen 
are required. However, a new data compaction and expansion technique keeps the 
storage requirement close to that for the previous cycle. 

The operation count per iteration per grid point remains about the same as 
before, reduced by the elImination of some averagIng operations, but this is offset 
by the additIon of the data expansion operations. The number of iterations requIred 
for convergence, WhICh is usually taken as a two-order drop in the maxImum modulus 
of the residual, increases for some cases, yet decreases for others. The initial 
residual for Cycle 4 is usually less than two orders of magnitude smaller than 
before. 

GOVERNING EQUATIONS 

This description is taken from reference 2 and is included here for future 
reference. The 3-D full-potentIal equation wrItten in strong conservation-law form 
in Cartesian coordInates is given by 

( 1a) 

(1b) 

where the denSIty p is scaled by the stagnation denSIty PS' the velocity compo
nents ~x' ~Y' ~z are scaled by the critIcal speed of sound a*, and y IS the 
ratio of specific heats. The value 1.4 is assIgned to y in all cases under 
discussion. 

The orthogonal phYSIcal coordinates x, y, z are oriented in the flOW, span, 
and vertical directions, respectively. A general coordinate transformation is 
applIed to the above equatIons, and the impliCIt AF2 relaxation takes place in the 
new coordinate system. Equation (1), after the transformation, is 

(pU/J)~ + (pV/J) + (pW/J) = 0 
" T) Z; 

(2a) 
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p = [1 -~ (U~ + V~ + w~ )] [1/(y-1)] 
y + 1 f; n I; (2b) 

where f;, n, and I; represent wraparound, spanwise, and radial-like directions, 
respectively, and the contravar1ant velocity components U, V, and Ware defined by 

U ~f; 

V = HTH ~n (3) 

W ~I; 

The quantities Hand J are def1ned by 

f;x nx I;x 

H = a(~lnll;) = f;y ny I;y a(x,y,z) (4) 

f;z nz I;z 

and J = det(H). Dirichlet boundary conditions for the potential are imposed at the 
outer free-stream boundaries, and Neumann boundary conditions that yield flow tan
gency are imposed at the symmetry wall and wing surface boundaries. 

The discretization of the coordinate space replaces the real variables f;, n, 
and I; with integer variables 1, j, and k, respect1vely. 

CONSISTENT FREE-STREAM DENSITY 

Assume that the free-stream potential funct10n 1S given by 

~ = umx + vmy + wmz (5) 

so that the gradient, v~ = (u ,v ,w )T, gives the free-stream velocity vector. From m m m 
equation (1b) 1t is seen that the density is a function of the magnitude of the 
velocity vector, so that 

222 
p = p(u + v + W ) (6) 

CD CD CD m 

The method used to capture the free-stream density is simply to difference ~ in 
i, j, and k the same way that x, y, and z are d1fferenced in order to find the 
metrics. The metrics are defined to be the elements of the matrix HTH (see 
eqs. (3) and (4) above). An algebraic proof that th1S yields free-stream density is 
given below. This will also serve as an 1ntroduct10n to the next section on consis
tent residual computation. 
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From equation (2b), one sees that it will suffice to show that 

222 
U~ + V~ + W~ = u + v + w 

I:; n I; CD CD CD 
(7) 

when finite differences replace derivatives. Equation (3) can be used to establish 
that the inner product 

(8) 

T where the column vector A = H(~ ,~ ,~ ) . The method used to compute H is f1rst 
to form a matr1x of f1n1te diffe~engesl;of x, y, and z, 

XI:; yl:; zl:; 

K = 
a(xzyzz) 

= X Yn z (9) a(l:;,n,l;) n n 

xI; yl; zl; 

and then invert to f1nd H = K- 1. For instance, the quantity xI:; at (i+1/2,j,k) is 
found to be X X i+1,j,k - 1,j,k' 

By the chain rule, the following holds analytically: 

= X n 
z n ( 10) 

When differenced numerically, this becomes an approximation. The symbol K* shall 
denote the matrix on the r1ght-hand of equation (10) when the difference formulas 
for ~ are identical to those used for x, y, and z. Thus K* 1S the same as K 
of equation (9). Finally, 1t is seen that equation (3) and the definition of $ 
leads to the identity 

A = K- 1K*(A. A. A.)T ( )T '" ,,,,,,,, = u ,v ,w x y z CD CD CD 
( 11) 

Equation (7) follows from (8) and (11), which completes the proof. 

This technique has been implemented in TWING Cycle 4 to find the densit1es at 
the (i+1/2,j,k) grid locat1ons. Six density metrics are requ1red per grid point 
Slnce the metric array, HTH, is symmetr1c. Whenever the dens1ty is needed at other 
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locations, like (i,j+1/2,k), the value is obtained from an average of neighboring 
points. In a free-stream region of flow all of the densities will be the same, so 
that the generality of the formulation is retained. 

CONSISTENT FREE-STREAM RESIDUAL 

This section examines how the metrics must be defined in order to have the 
numerically obtained residual vanish identically, independent of the shape of the 
grid. Since the Jacobian of the transformation appears in the denominator, we make 
the assumption that it remains positive. This corresponds to the condition that 
grid lines of the same family do not cross. The denslty is constant, so it may be 
removed from equatlon (2a), leavlng: 

(U/J)~ + (V/J) + (W/J) = 0 
~ n ~ 

(12) 

Treating thlS analytically, the left-hand side of equation (12) may be rewritten as 
an inner product: 

~x 

[det(K 1)(K;1)TK3 1]K* ~y 

~z 

(13) 

Once again, the letter K denotes a transformation matrlx as defined in equa
tion (10). The superscript and subscrlpts on K will be used below to indicate 
slightly different differenclng methods used to approxlmate the analytically 
defined K. As in the prevlous sectlon, K* denotes the matrlx that arises from the 
method used to dlfference ~. 

In equatlon (13) we actually have control over the part of the right-hand slde 
that appears in square brackets. It is eVldent that by ~~rming K3 with the same 
difference formulas as those used in formlng ~,then K3 K* = I may be dropped 
from the equation. The free-stream condition on ~ then allows us to rewrite this 
expression as: 

(~F;' ~n' (14) 

It only remains to show how to form the remalnlng K matrlces so that this expres
sion will vanish identically when flnite differences replace the derivatives. 
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The values assigned to u~, v~, and w~ are arb1trary, and equation (14) is 
linear, so it will suffice to treat the case for which u = 1 and v = w = o. 

~ ~ ~ 

This amounts to an assumption about the direction of the free-stream velocity. The 
general case will follow by permutation. 

Make the assumption that K1 = K2 = K (drop the subscripts), since analytically 

Ynzl; - y Z 
1; n 

(K-1) T 1 (15) = det(K) yl;zf; - y Z 
f; I; 

yf;zn - y Z n f; 

so the determinant will divide out. Six elements of the matrix 1n equation (15) 
have been omitted because the assumption on the free-stream direction renders them 
immaterial. The problem has been reduced to showing how the following expression 
can be made to vanish: 

YnZI; - Yl;zn 

(~f;' ~n' ~I;) Yl;zf; - Yf;zl; (16) 

Yf;zn - Ynzf; 

This is known as the "third consistency condition" in reference 1. It should be 
clear that, if this were an analytic expression, then it would 1ndeed van1sh by the 
property of equality of mixed partial der1vatives. 

The first summand of equat10n (16), (y Z - Z Y )~, 1S approximated by n I; n I; .. 

(YnZt - ZnYt)i+1/2,j,k - (YnZI; - ZnYI;)1-1/2,j,k 

A natural way to expand the first derivative in this expression, Yn, is 
(Yi+1/2,j+1/2,k - Yi+1/2,j-1/2,k)· Now replace Yi+1/2,j+1/2,k w1th an average 

(17) 

of Y at cell centers, namely (Yi+1/2,J+1/2,k+1/2 + Yi+1/2,J+1/2,k-1/2)/2. Such 
averages may be applied to all the other terms 1n equat10n (17). Th1S procedure may 
be carried to the point where every term in equation (16) is replaced by finite 
difference express10ns involv1ng only the values of x, Y, and z at the eight 
neighboring cell centers surrounding the grid point at (l,j,k). 

Complete cancellation can be obtained by form1ng the primitive quantities for 
x, Y, and z at the cell centers uS1ng averages of the eight nearest neighbors. For 
instance, 

xi +1/2 ,j+1/2,k+1/2 = (1/8)(x i ,j,k + X1+1,j,k + Xi ,j+1,k + xi +1,j+1,k 

+ Xi ,j,k+1 + xi +1,j,k+1 + Xi ,j+1,k+1 + xi +1,j+1,k+1) (18) 
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As a pOint of interest, Pulliam and Steger (ref. 4) suggested a similar averaging 
for the Euler equations, but they studied this "third consistency condition" without 
the other features ment10ned above. 

Verification of the cancellation property is left as an exercise for the 
reader. Numerical verif1cat1on has been conducted with a small Fortran program 
called RFTEST. It was set up to run through a sequence of random perturbations of a 
39-point difference molecule surrounding the single pOint of interest. The res1d
ual, the left-hand side of equation (2a), was found to be consistently close to zero 
when three different machine precisions were used. Four, eight, and sixteen-byte 
real-number representations were tested on a DEC VAX computer. 

It is customary to discretize equation (2a) as a sum of three flux terms (shown 
one per line) 

(pU/J)i+1/2,j,k - (pU/J)i_1/2,j,k + (pV/J)i,j+1/2,k - (pV/J)i,j_1/2,k 

+ (pW/J)i,j,k+1/2 - (PW/J)1,j,k_1/2 = 0 (19) 

The flux terms at adjacent paints are shared, so at each pOint of the mesh there are 
three "flux metrics" requ1red for each of the three coordinate directions. Although 
three of these metrics are computed at the same half-points as the dens1ty metrics, 
they must be kept separate for free-stream consistency. Thus, six plus n1ne (or 
f1fteen) metrics per point are computed 1n order to impose free-stream cons1stency 
for the full-potent1al equat10n in three d1mens1ons. 

It is an interest1ng exercise to show that if the 3-D grid 1S composed of a 
stack of parallel 2-D gr1ds, then some of the density and flux metrics may be shared 
wh1le retaining free-stream consistency. At the same t1me, the compactness of the 
d1fferenc1ng molecule for density and resIdual may remain as described above. In 
thIS case, thirteen metrIc quantItIes would be needed per grid point. An early 
version of the RFTEST program was used to show that this property does not hold for 
a general computational mesh. ThIS method was also tested in TWING but was later 
replaced by the fifteen-metric method described above. It should be noted that a 
remnant of the earlier method remains implemented in Cycle 4 1n the wing extension 
region beyond the t1P for the Innermost k plane. 

In reference 1 it IS shown that a consIstent differencIng scheme can be formu
lated with only thIrteen metrics by formIng the ~ differences for densIty in a 
manner consistent with the way the metrics are formed for the residual. This would 
lead to a larger density differencing molecule and, thus, to more numerIcal smearing 
of the solution in the vlcin1ty of a shock; therefore, it IS not recommended. 

PERFORMANCE NEAR A GRID DISCONTINUITY 

There are several cases in Wh1Ch it 1S convenient to use a computational gr1d 
that does not have opt1mal smoothness. A SImple example of th1S is In the treatment 
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of a wing with break discontinuities in which the sweep angle of the leading and 
trailing edges may change abruptly. The consistency method guarantees good results 
uS1ng a simple grid which may propagate the break d1scont1nuity to the outer bound
ary. In another example, one may wish to use a block approach in which a transonic 
wing flow solver just treats wing-like elements of a complicated geometry. In this 
case, 1t may be necessary to make the outer boundary of the wing block conform to 
the surfaces presented by the other blocks. 

Figure 1 shows an example of a gr1d about a wing that 1S mounted on a fuselage
like bump on a wall as an example of a case for which one m1ght want to use a grid 
that is not made of a stack of two-dimensional grids. In this case, we may choose 
to propagate the bump throughout the grid from the root wall to the Oppos1te free
stream boundary. The approach presented above appl1es 1n a limited sense to regions 
of the flow field where the velocity changes slowly, such as fore and aft of the 
wing. The region near the wing enJoys denser packing of grid points oW1ng to the 
topology chosen for the flow solver, so cons1stent d1fferencing 1S not as major an 
1ssue. 

Figure 1.- Grid about a wing on a fuselage. 

In the follow1ng discussion, computed results of Cycle 3 and Cycle 4 of the 
transonic wing analys1s code TWING are compared. Cycle 4 of TWING uses the consis
tent spatial differencing described in the previous section, but the earlier Cycle 3 
version does not. 
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Compar1son of Cycle 3 and Cycle 4 

The grid generator suppl1ed w1th TWING 1S designed to build a three-dimens1onal 
gr1d by stack1ng two-d1mensional grids, located at J = constant values, along the 
spanw1se d1rect1on. Near the t1P of the wing there 1S an abrupt trans1tion from 
airfo11 cross sections of pos1t1ve thickness to zero thickness. The gr1d propagates 
this abrupt change from the 1nner to the outer boundar1es, and ltS effect can be 
clearly seen by observing the velocity vectors in a fixed k plane. F1gure 2 was 
generated by Cycle 3 w1th the default M6 w1ng at Mach 0.84 and zero angle of attack 
on a grid of 40,050 points (89 x 25 x 18). It shows a plot of the proJect1ons of 
the velocity vectors 1n the computational plane for k = 6 (about one root chord 
downstream) into a plane that 1S located aft of the w1ng that is al1gned perpend1cu
lar to the free-stream direct1on. Since the angle of attack 1S zero, we expect that 
the projections will have almost no magnitude. Observe that th1S does not happen at 
points IY1ng in the three J planes just beyond the t1p. In additlon, the d1rec
t10ns of the projections change abruptly as we move from j planes that contain 
wing sections to j planes beyond the wing tip, Wh1Ch do not. In f1gure 3, we see 
the same case as above except that the veloc1ty vectors were generated with 
Cycle 4. We see that each projection does have almost zero magnitude and also that 
the directions of the proJect1ons transition smoothly throughout the entire reg10n 
that 1S shown. 
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Figure 2.- Velocity vector projection for Moo = 0.84, a = 0°, TWING Cycle 3. 
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TWING Cycle 4. 

Aga1n we compare the two cycles of TWING 1n the next two f1gures, but in th1S 
case the angle of attack assumes its default value of 3.06°. Figure 4 shows the 
project10ns of the veloc1ty vectors for the same k plane as before, uS1ng 
Cycle 3. Since the angle of attack 1S nonzero, the plane of projection has been 
incl1ned 3.06° so the wake reg10n appears to be offset from the w1ng locat10n. A 
pattern that resembles a vortex 1S generated at the edge of the wake reg10n near the 
tip, desp1te the inherent potential assumpt10n of flow 1rrotat10nality. The appear
ance of this flow pattern can be explained by the fact that a circulat10n model 1S 
added to the governing equat10ns 1n order to slmulate a lift1ng w1ng. Th1S 1S a 
common approach among wing codes (flow solvers) that are based on a potent1al formu
lation. Upon comparison w1th f1gure 5, which was generated by Cycle 4, we see that 
the irregularities in the flow f1eld near the tip have been eliminated. 

CONSIDERATIONS FOR A SHARP LEADING EDGE 

Some applications requ1re the analys1s of a w1ng with a sharp leading edge. 
This is considered to be another type of grid discontinuity, especially with the "0" 
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TWING Cycle 3. 

mesh topology used in TWING. It was found that Cycle 4 (with cons1stent spatial 
differencing) is capable of treat1ng a w1ng w1th a sharp lead1ng edge, as opposed to 
Cycle 3 which 1S not. To demonstrate th1S p01nt, a simple w1ng shape was dev1sed 
having rectangular planform and an airfo11 cross sect10n for Wh1Ch the upper part 1S 
taken from a 12%-th1Ck c1rcular-arc airfo11 and the lower part 1S taken to be a flat 
plate. This results in an a1rfoil that 1S 6% thick. 

F1gure 6 shows a plot of the coeffic1ent of pressure for two w1ng stations 
(root and m1d-span) Wh1Ch 11lustrates that a Solut1on generated by Cycle 3 exh1b1ts 
erratic behav10r near the lead1ng edge d1scontinu1ty. Th1S exceSS1ve grad1ent can 
cause stability problems under some cond1t1ons. The Mach number for this case 1S 
subson1c, at 0.2, and the angle of attack 1S zero. The leading edge d1d not present 
as much of a problem for Cycle 4. F1gure 7 shows the k1nd of Solut1on that can be 
expected for the same case as above. Th1S figure was generated w1thout any of the 
options discussed in the follow1ng paragraphs. 

In Cycle 4, the user may request the gr1d generator to use a double spline 
interpolation, one for each of the upper and lower surfaces, that will guarantee the 
midpoint 1n the ~ d1rection to be pos1t1oned at the lead1ng edge. This feature 
was added because the flow solver makes an assumpt10n about the flow direction at 
the wing surface when its magnitude 1S superson1c. It arose from the considerations 
that some w1ng cross sections have d1fferent upper and lower arc lengths, and that a 
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large velocity gradient is expected near a sharp leading edge, especially at nonzero 
angle of attack. To select this option in the grId generator, set SLEG = 1.0 in 
the input list. 

Assuming that the above option has been taken, another problem arises. Call 
the leading edge point i = IHALF, the wing surface at k = NK, and assume that j 
ranges along wing span stations. With the consistent differencing scheme, three 
metrics at (IHALF, j+1/2, NK) must be computed. It is not unusual for such pOInts 
to have grid lines leaving the surface at obtuse angles. Since one-sided dIffer
ences are still used at inner boundary points, the Jacobian may be numerIcally zero 
or even slightly negative at such pOints. Given a sophisticated grId generator, 
this problem can be elIminated. In the present case, however, a different approach 
was taken. The metrics and fluxes at the leading edge are split into upper and 
lower contributions, located at (IHALF-1/4, j+1/2, NK) and (IHALF+1/4, j+1/2, NK), 
respectively (identical to trailIng edge treatment). A study Involving the M6 wing, 
built into TWING, shows negligible impact on a wing with a blunt leading edge, whIle 
some improvement has been observed for a wing with a sharp leadIng edge. FInally, 
the user has the option of averaging the densItIes at the (IHALF-1/2, j, NK) and 
(IHALF+1/2, j, NK) points with their two neighbors at IHALF-3/2 and IHALF+3/2. 
To turn this on, set SLET = 1.0 in the input list. This leads to a more accurate 
plot of the coefficient of pressure in the vicinIty of the leadIng edge for sharp 
leadIng edge cases. 

COMPARISONS WITH A TWO-DIMENSIONAL FLOW SOLVER 

The 2-D flow solver developed by Flores et al. in reference 1 was a modified 
verSIon of TAIR, descrIbed In reference 5. It is a 2-D full-potentIal transonIc 
flow code for airfoIls, and IS very sImIlar to TWING. The features of the former 
flow solver are embedded In the code known at NASA Ames Research Center as 
TAIR10K. It was used in order to make two fInal comparIsons. 

Using the same cross sectIon as that of the wing presented in fIgures 6 and 7, 
we show the effect of higher Mach number. For these comparisons, the wing grId 
cross sectIons of TWING and the TAIR10K grid have the same number of pOInts, 
151 x 31, and the wing has aspect ratio 20.0. FIgure 8 shows a good comparIson 
between the two codes for Mach 0.70. The flow on the upper surface is slightly 
supersonic without a shock. The wIng code does not exhIbit the peak at the leading 
edge as does the airfoil code. This is a consequence of the double interpolation at 
the leading edge lower and upper surfaces In TWING. FIgure 9 shows what happens at 
Mach 0.75. In this case, a strong shock forms at about 80% of chord. The pressure 
peak at the leading edge for the 2-D flow solver IS observed agaIn. It IS Interest
ing that the shock for the wing is located slightly forward of the shock for the 
airfoil. It probably is caused by a 3-D relief effect In the wing calculation. 
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CONCLUSIONS 

The full-potential, steady, transoniC, wing-flow solver, TWING, has been modi
fied so that free-stream density and vanishing residual are captured in regIons of 
constant velocity. Numerically precise consistency, which does not depend on the 
fineness of the computational grid, is obtained by slightly altering the differenc
ing scheme without affecting the implicit AF2 solution algorithm. 
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The computational efficiency remains about the same as before because the 
changes chiefly affect the fifteen metrics per grid point, which are computed once 
and stored. For each iterat10n, operat1ons that were added for data expansion are 
offset by averaging operations that were eliminated. The number of iterations to 
convergence has been observed to increase for some cases, but decrease for others. 

With this new method, the outer boundary condition is accurately captured. We 
have seen that the smoothness of the solution is especially improved near regions of 
grid dlscontinuity. 
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