JPL PUBLICATION 85-57

Dynamic Modeling and Adaptive Control for Space Stations

CSCL 22B

G3/18

Che-Hang Charles Ih Shyh Jong Wang

(NASA-CR-176442) DYNAMIC MODELING AND ADAPTIVE CONTROL FOR SPACE STATIONS (Jet Propulsion Lab.) 301 p HC A14/MF A01

N86-16251

Unclas

05156

-Jųly 15, 1985,

National Aeronautics and Space Administration

Jet Pròpulsion Laboratory California Institute of Technology Pasadena, California

Dynamic Modeling and Adaptive Control for Space Stations

Che-Hang Charles Ih Shyh Jong Wang

July 15, 1985

NVSV

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

ABSTRACT

Of all large space structural systems, space stations present a unique challenge and requirement to advanced control technology. Their operations require control system stability over an extremely broad range of parameter changes and high level of disturbances. During shuttle docking the system mass may suddenly increase by more than 100% and during station assembly the mass may vary even more drastically. These coupled with the inherent dynamic model uncertainties associated with large space structural systems require highly sophisticated control systems that can grow as the stations evolve and cope with the uncertainties and timevarying elements to maintain the stability and pointing of the space stations.

This report first deals with the aspects of space station operational properties including configurations, dynamic models, shuttle docking contact dynamics, solar panel interaction and load reduction to yield a set of system models and conditions. A model reference adaptive control algorithm along with the inner-loop plant augmentation design for controlling the space stations under severe operational conditions of shuttle docking, excessive model parameter errors, and model truncation are then investigated. The instability problem caused by the zerofrequency rigid body modes and a proposed solution using plant augmentation are addressed. Two sets of sufficient conditions which guarantee the globally asymptotic stability for the space station systems are obtained.

The performance of this adaptive control system on space stations is analyzed through extensive simulations. Asymptotic stability, high

iii

rate of convergence, and robustness of the system are observed under the above-mentioned severe conditions and constraints induced by control hardware saturation. It is also found that further actuation level reductions can be achieved by using model switching and disturbance modeling techniques.

TABLE OF CONTENTS

CHAPTER	I	INTRODUCTION	1
	1.1	Adaptive Control and Large Space Structures	1
	1.2	Objectives and Motivations	3
	1.3	Literature Review	4
	1.4	Outline of this Report	10
CHAPTER	II	CONFIGURATIONS AND MASS PROPERTIES OF SPACE STATIONS	12
	2.1	Two-Panel Baseline Configuration	12
	2.2	Four-Panel Planar Configuration	14
CHAPTER	111	DYNAMIC MODELS FOR SPACE STATIONS	23
	3.1	Finite-Element Model for the Two-Panel Station Configuration	23
		 3.1.1 Dynamic Variables, Coordinates, and Parameters 3.1.2 The Stiffness Matrix 3.1.3 The Consistent-Mass Matrix 3.1.4 The Lumped-Mass Matrix and System-Mass Matrix 3.1.5 Equations of Motion 3.1.6 Modal Coordinates and Modal Properties 	23 25 31 33 33 34
	3.2	Finite-Element Model for the Four-Panel Station Configuration	36
		 3.2.1 Dynamic Variables, Coordinates, and Parameters 3.2.2 The Stiffness Matrix 3.2.3 The Consistent-Mass Matrix 3.2.4 The Lumped-Mass Matrix and System Mass Matrix 3.2.5 Payload Dynamics and Hinge Torque Model 3.2.6 Equations of Motion 3.2.7 Modal Coordinates and Modal Properties 	36 39 47 52 52 54 57
	3.3	Frequency Characterization of Space Station Dynamical Systems	62

v

Page

÷ķ.

CHAPTER	IV I	PROBLEM FORMULATION	65
CHAPTER	V CO	ONTROL ARCHITECTURE	67
	5.1	Control Architecture for the Two-Panel Configuration	67
	5.2	Control Architecture for the Four-Panel Configuration	69
CHAPTER	VI	ADAPTIVE CONTROL ALGORITHM	73
	6.1	The Command Generator Tracker Theory	74
	6.2	Direct Model Reference Adaptive Control	78
	6.3	Instability Problem Caused by Rigid Body Modes	83
	6.4	Plant Augmentation	87
	6.5	Sufficient Conditions for Global Asymptotic Stability	90
CHAPTER	VII	PERFORMANCE ANALYSIS AND PRACTICAL CONSIDERATIONS .	108
	7.1	Shuttle Reaction Control Subsystem Residual Rates .	109
	7.2	Design of Shuttle Docking Devices	111
	7.3	Performance of Adaptive Control on the Two-Panel Space Station	113 114 116 117 120
	7.4	Performance of Adaptive Control on the Four-Panel Space Station	127
		7.4.1 Augmented Plant Modal Properties	128
		7.4.2 The Selection of the Reference Model	128
		7.4.3 Adaptive Regulator Control with High Initial Transient	130
		7.4.4 Adaptive Control During Shuttle Hard Docking	133
CHAPTER		CONCLUSIONS	138

•

.

.

v1

.

APPENDICES	Α.	DEVELOPMENT OF HINGED PAYLOAD DYNAMICS USING LAGRANGIAN APPROACH FOR FOUR-PANEL CONFIGURATION	226
	в.	DEFINITION OF POSITIVE REALNESS AND STRICTLY POSITIVE REALNESS OF MATRICES	237
	с.	DERIVATION OF FORMULAS FOR CALCULATING THE SPRING CONSTANTS AND DAMPING FACTORS OF DOCKING DEVICE	238
•	D.	PROGRAM LISTING FOR THE SIMULATION OF ADAPTIVE CONTROL DURING SHUTTLE HARD DOCKING TO FOUR- PANEL SPACE STATION	241
	E.	NUMERICAL OUTPUTS FOR THE SIMULATION OF ADAPTIVE CONTROL DURING SHUTTLE HARD DOCKING TO FOUR- PANEL SPACE STATION	261
BIBLIOGRAPH	Y		280

LIST OF TABLES

LIST OF FIGURES

			Page
Figure	1	Adaptive Control Problems for Space Stations	5
Figure	2	Two-Panel IOC Baseline Configuration	, 13
Figure	3	IOC Baseline Configuration with Payloads	15
Figure	4	IOC Baseline Configuration Closest to the 6-DOF Dynamic Model	. 16
Figure	5,	Four-Panel CDG Split-Module Planar Configuration	. 17
Figure	6	6-DOF Finite-Element Model for the Two-Panel Configuration	, 24
Figure	7	Uniform Beam Elements	28
Figure	8_	Combined Uniform Beam Elements	, 30
Figure	9	Modal Properties for the 6-DOF Two-Panel Configuration Model	on , 37
Figure	10	19-DOF Finite-Element Model for the Four-Panel Planar Configuration	38
Figure	11	Elastic Model for Solar Panels South	41
Figure	12	Elastic Model for Solar Panels North	, 41
Figure	13	Elastic Model for the Main Structure	42
Figure	14	Distributed Mass Model for Solar Panels - South	48
Figure	15	Distributed Mass Model for Solar Panels North	, 48
Figure	16	Distributed Mass Model for the Main Structure	, 49
Figure	17	Payload Dynamics and Hinge Model	53
Figure	18	Modal Properties for the Four-Panel Configuration Model	, 59
Figure	19	Frequency Characteristics of Space Station Dynamical Systems	63
Figure	20	Space Station Adaptive Control System Block Diagram	91

ix

	Figure	21	Shuttle Reaction Control Subsystem (RCS) Residual Rates	110
	Figure	22	Concept and Design of Shuttle Docking Device	112
	Figure	23	Augmented Plant Modal Properties for the 6-DOF Two- Panel Configuration Model	115
	Figure	24	Adaptive Regulator Control for Two-Panel Configuration Plant and Model Outputs	141
	Figure	25	Adaptive Regulator Control for Two-Panel Configuration Plant and Model Translational State Responses	142
•	Figure	26	Adaptive Regulator Control for Two-Panel Configuration Plant and Model Rotational State Responses	143
	Figure	27	Adaptive Regulator Control for Two-Panel Configuration Plant and Model Modal Responses	144
	Figure	28	Adaptive Regulator Control for Two-Panel Configuration High Frequency Plant Modal Responses	145
	Figure	29	Adaptive Regulator Control for Two-Panel Configuration Adaptive Control Inputs	146
	Figure	30	Adaptive Regulator Control with Measurement Noise for Two-Panel Configuration Plant and Model Outputs	147
	Figure	31	Adaptive Regulator Control with Measurement Noise for Two-Panel Configuration Adaptive Control Inputs	148
	Figure	32	Adaptive Control During Shuttle Hard Docking for Two- Panel Configuration — Plant and Model Outputs	149
	Figure	33	Adaptive Control During Shuttle Hard Docking for Two- Panel Configuration Plant and Model Translational State Responses	150
	Figure	34	Adaptive Control During Shuttle Hard Docking for Two- Panel Configuration Plant and Model Rotational State Responses	151
	Figure	35	Adaptive Control During Shuttle Hard Docking for Two- Panel Configuration Plant and Model Modal Responses	152
	Figure	36	Adaptive Control During Shuttle Hard Docking for Two- Panel Configuration — High Frequency Plant Modal Responses	153
			x	

x

.

.

•

Figure 3	7 Adaptive Control During Shuttle Hard Docking for Two- Panel Configuration — Shuttle Angular Position and Rate	154
Figure 3	8 Adaptive Control During Shuttle Hard Docking for Two- Panel Configuration Docking Force and Torque	155
Figure 3	9 Adaptive Control During Shuttle Hard Docking for Two- Panel Configuration Adaptive Control Inputs	156
Figure 4	0 Adaptive Control During Shuttle Soft Docking for Two- Panel Configuration Plant and Model Outputs	157
Figure 4	1 Adaptive Control During Shuttle Soft Docking for Two- Panel Configuration Plant and Model Translational State Responses	158
Figure 4	2 Adaptive Control During Shuttle Soft Docking for Two- Panel Configuration Plant and Model Rotational State Responses	159
Figure 4	3 Adaptive Control During Shuttle Soft Docking for Two- Panel Configuration Plant and Model Modal Responses	160
Figure 4	4 Adaptive Control During Shuttle Soft Docking for Two- Panel Configuration High Frequency Plant Modal Responses	161
Figure 4	5 Adaptive Control During Shuttle Soft Docking for Two- Panel Configuration Shuttle Angular Position and Rate	162
Figure 4	6 Adaptive Control During Shuttle Soft Docking for Two- Panel Configuration Docking Force and Torque	163
Figure 4	7 Adaptive Control During Shuttle Soft Docking for Two- Panel Configuration Adaptive Control Inputs	164
Figure 4	8 Comparative Shuttle Soft Docking Responses Relative Panel Tip Displacements	165
Figure 4	9 Comparative Shuttle Soft Docking Responses Relative Panel Tip Acceleration	166
Figure 5	O Adaptive Control During Shuttle Hard Docking with Actuator Saturation for Two-Panel Configuration — Plant and Model Outputs	167

Figure	51	Adaptive Control During Shuttle Hard Docking with Actuator Saturation for Two-Panel Configuration Plant and Model Translational State Responses	168
Figure	52	Adaptive Control During Shuttle Hard Docking with Actuator Saturation for Two-Panel Configuration Plant and Model Rotational State Responses	169
Figure	53	Adaptive Control During Shuttle Hard Docking with Actuator Saturation for Two-Panel Configuration Plant and Model Modal Responses	170
Figure	54	Adaptive Control During Shuttle Hard Docking with Actuator Saturation for Two-Panel Configuration High Frequency Plant Modal Responses	171
Figure	55	Adaptive Control During Shuttle Hard Docking with Actuator Saturation for Two-Panel Configuration Shuttle Angular Position and Rate	172
Figure	56	Adaptive Control During Shuttle Hard Docking with Actuator Saturation for Two-Panel Configuration Docking Force and Torque	173
Figure	57	Adaptive Control During Shuttle Hard Docking with Actuator Saturation for Two-Panel Configuration Adaptive Control Inputs	174
Figure	58	Adaptive Control During Shuttle Hard Docking with More Severe Actuator Saturation for Two-Panel Configuration Plant and Model Outputs	175
Figure	59	Adaptive Control During Shuttle Hard Docking with More Severe Actuator Saturation for Two-Panel Configuration Adaptive Control Inputs	176
Figure	60	Adaptive Control During Shuttle Hard Docking with Model Switching and Disturbance Modeling for Two- Panel Configuration — Plant and Model Outputs	177
Figure	61	Adaptive Control During Shuttle Hard Docking with Model Switching and Disturbance Modeling for Two- Panel Configuration — Plant and Model Translational State Responses	178 _.
Figure	62	Adaptive Control During Shuttle Hard Docking with Model Switching and Disturbance Modeling for Two- Panel Configuration — Plant and Model Rotational State Responses	179

Figure	63	Adaptive Control During Shuttle Hard Docking with Model Switching and Disturbance Modeling for Two- Panel Configuration — Plant and Model Modal	
		Responses	180
Figure	64	Adaptive Control During Shuttle Hard Docking with Model Switching and Disturbance Modeling for Two- Panel Configuration — High Frequency Plant Modal Responses	181
Figure	65	Adaptive Control During Shuttle Hard Docking with Model Switching and Disturbance Modeling for Two-	100
		ranel configuration Adaptive control inputs	182
Figure	66	Augmented Plant Modal Properties for the Four-Panel Configuration Model	183
Figure	67	Adaptive Regulator Control for Four-Panel Configuration	n
		Plant and Model Outputs	186
Figure	68	Adaptive Regulator Control for Four-Panel Configuratio	n 189
			,
Figure	69	Adaptive Regulator Control for Four-Panel Configuratio Plant and Model Physical State Rate Responses	n 193
Figure	70	Adaptive Regulator Control for Four-Panel Configuration Plant and Model Rigid Body Modal Responses	n 197
Figure	71	Adaptive Regulator Control for Four-Panel Configuratio Plant and Model First Bending Group Modal Responses	n 198
Figure	72	Adaptive Regulator Control for Four-Panel Configuratio Plant Second Bending Group Modal Responses	n 200
Figure	73	Adaptive Regulator Control for Four-Panel Configuratio Adaptive Control Inputs	n 202
Figure	74	Adaptive Control During Shuttle Hard Docking for Four- Panel Configuration Plant and Model Outputs	205
Figure	75	Adaptive Control During Shuttle Hard Docking for Four- Panel Configuration Plant and Model Physical State Responses	208
Figure	76	Adaptive Control During Shuttle Hard Docking for Four- Panel Configuration Plant and Model Physical State Rate Responses	212

Figure	77	Adaptive Control During Shuttle Hard Docking for Four- Panel Configuration Plant and Model Rigid body Modal Responses	216
Figure	78	Adaptive Control During Shuttle Hard Docking for Four- Panel Configuration — Plant and Model First Bending Group Modal Responses	217
Figure	79	Adaptive Control During Shuttle Hard Docking for Four- Panel Configuration — Plant Second Bending Group Modal Responses	219
Figure	80	Adaptive Control During Shuttle Hard Docking for Four- Panel Configuration Adaptive Control Inputs	221
Figure	81	Adaptive Control During Shuttle Hard Docking for Four- Panel Configuration Shuttle Linear and Angular Position	224
Figure	82	Adaptive Control During Shuttle Hard Docking for Four- Panel Configuration - Docking Force and Torque	225

CHAPTER I

INTRODUCTION

1.1 Adaptive Control and Large Space Structures

Most of the well-developed control theory, either in the frequency domain or in the time domain, deals with systems whose mathematical representations are completely known. However, in many practical situations, the parameters of the systems are either poorly In such situations the usual fixed-gain known or time-varying. controller will be inadequate to achieve satisfactory performance in the entire range over which the characteristics of the system may Hence, some type of monitoring of the system's behavior, vary. followed by the adjustment of the control input, is needed and is adaptive control. In other words, while a referred to as conventional control system is oriented toward the elimination of the effects of state perturbations, the adaptive control system is oriented toward elimination of the effects of structural the perturbations upon the performance of the control system.

Model Reference Adaptive Control (MRAC) and Self Tuning Regulators (STR) are two principal approaches to the adaptive control problems. In MRAC, the objective is to make the output of an unknown plant asymptotically approach that of a given reference model which specifies the desired performance of the plant. With STR, a controller for a plant with assumed parameters is first chosen and the control gains are then updated with the recursively estimated parameters of the unknown plant.

MRAC can be classified into the following two types based on the adaptation method used:

- (1) Indirect Control, in which the plant parameters are estimated and these in turn are used to adjust the controller parameters to meet the performance requirement dictated by the reference model.
- (ii) Direct Control, in which no effort is made to identify the plant parameters, the control parameters are adjusted directly so that the error between the plant outputs and the model outputs approaches zero asymptotically.

Since the adaptive control systems are highly nonlinear closedloop feedback systems, there is a distinct possibility that such systems can become unstable. In fact, the proof of global stability of adaptive control schemes had been a long standing problem for two decades and was not resolved until around 1979-1980. One ideal application area for adaptive control is in large space structures (LSS). The purposes of applying adaptive control to LSS are to reduce the structural and parameter sensitivities of the controller. This is due to the fundamental difficulties of obtaining an accurate model for a distributed parameter system. One often has to deal with linearized reduced-order models; hence, a great deal of uncertainties in the mathematical model describing the dynamics of LSS exist. In addition, time variation in the parameter values are quite common in LSS environments. Slow time-varying effects may be

caused by structural settling, thermal distortions, or reorientations of system or subsystems. Spontaneous changes can also happen, especially for space stations.

1.2 Objectives and Motivations

After the space shuttle, the next major space endeavor will be a permanent manned space station. The launching of an initial space station is planned for the early 1990's. By virtue of its mission and function, the space station is a large space structure with a very unique operational environment. As such, it suffers the same drawbacks as other large space structures. These are related to its large size, flexibility, and the way it is built and deployed. The size and flexibility prevent it from comprehensive ground measurement and test, which implies that pre-flight knwoledge of the spacecraft dynamics will be far from precise. In-flight system identification will enhance out knowledge on flight cannot totally eliminate the model parameter dynamics but it Structural flexibility implies infinite dimensionality; uncertainites. hence, model truncation is inevitable. With current technology, only a relatively small number of states can be handled in control design and state estimation. Previous studies of control large antennas, for instance, have concluded that of space destabilization can occur when the parameters of a design model deviate from those of the actual plant by a significant amount [1,2].In addition to model errors, dynamic disturbances of many

greater than those of the conventional orders of magnitude spacecraft will be routine for space stations. Shuttle docking can cause an instantaneous change of mass of more than 100% accompanied high intensity shock load. Station assembly, payload by а articulation, crew motion, launching and retrieving of satellites, etc., will all contribute to disturbance and model parameter The adaptive control problems for space stations are variations. summarized in Fig. 1. Although fixed-gain robust control designs can desensitize the system performance, it is only effective to a limited extent, i.e., for cases where parameter values deviate slightly from their nominal values [3]. All these have motivated us to investigate the feasibility of applying adaptive control techniques to space stations to maintain the stability and pointing.

1.3 Literature Review

Indirect adaptive control was first proposed by Kalman [4] in 1958. The control task may be divided into two parts: a prestructured controller and a recursive plant identification scheme. The parameter estimates are used by the controller to compute appropriate control actions. Feldbaum [5] called this dual control because of the two steps involved in finding the control. In Ref. 6 Iserman et al. compared six on-line identification and parameter estimation methods that can be used for indirect control. Ljung [7,8] has proposed a general technique for analyzing the convergence of discrete-time stochastic adaptive algorithms, yet the problem of boundedness has not been resolved. More recently, Landau [9] and Martin-Sanchez [10] have proven the stability of certain

ORIGINAL

PAGE

IS

Figure 1 Adaptive Control Problems for Space Stations

types of indirect adaptive controllers. These results had been extended by Johnstone [11] in 1979. Narendra and Valavani [12] derived, in 1979, some indirect adaptive control laws by employing a specific controller structure and the concept of positive realness and showed that these laws are identical to those obtained in the case of direct control. Goodwin [13] has utilized a projection algorithm to obtain a class of globally convergent adaptive algorithms in 1980 and established global convergence of a stochastic adaptive control algorithm for discrete-time linear systems [14] in 1981.

Direct adaptive control was first designed using the performance index minimization method proposed by Whitaker [15] of the MIT Instrumentation Laboratory in 1961 and has since then been referred to as the MIT design rule. The performance index used is the integral square of the response error. An improved design rule with respect to the speed of response had been proposed in 1963 by Donalson et al. [16], who used a more general performance index than that of Whitaker. Winsor [17] had also modified the MIT rule in 1968 to reduce the response sensitivity to the loop gain, at the expense of additional instrumentation. Although some progress was made then, none of the design rules mentioned so far are globally stable. From then on, stability has become a major concern for subsequent studies.

The most common application of stability theory to direct MRAC had been Lyapunov's second method. The adaptive rule is obtained by selecting the design equations to satisfy conditions derived from Lyapunov's second method. Butchart and Shackcloth [18] first suggested the use of a quadratic Lyapunov function, which was

employed later in 1966 by Parks [19] to redesign a system formerly designed by the MIT rule. The use of a different Lyapunov function by Phillipson [20] and Gilbart et al. [21] has resulted in the introduction of feedforward loops that would improve the damping of adaptive response. Unfortunately, all these algorithms are difficult to realize in practice because of the requirement of measuring the entire state vector, which is often impossible.

Landau [22] was the first one to apply Popov's hyperstability criterion [23] to multi-input multi-output continuous MRAC systems subject to perfect model following conditions. He also used the same technique to treat the discrete-time MRAC problems [24,25], as did Bethoux et al. [26]. Anderson has given a lucid proof of Popov's hyperstability criterion in Ref. 27. An important contribution was made by Monopoli [28] (1974), who proposed an ingenious control scheme for continuous single-input single-output systems involving an auxiliary signal fed into the reference model and a corresponding augmented error between the model and the plant outputs, so that the use of pure differentiators in the algorithm can be avoided. However, as pointed out in Ref. 29 (1978), the arguments given in Ref. 28 concerning stability are incomplete. Following the augmented error signal concept, Narendra [30] (1978) and [31] (1980) and Morse [32] (1978) and [33] (1980) succeeded in designing globally stable, asymptotic output tracking algorithms for continuous single-input single-output Both Narendra and Morse have assumed that the relative systems. degrees of the plant transfer function are known. Besides, Morse's algorithm is much too complex for use in practical applications. The

application of augmented error technique to discrete-time singleinput single-output systems was made by Ionescu [34], Narendra [35] and Suzuki [36]. Johnstone et al. [37] have extended Suzuki's technique to solve some simple non-minimum phase problems by optimizing an augmented optimization criterion. Goodwin [13] took a different approach. Instead of relying upon the use of augmented errors or auxiliary inputs, he used the projection theorem to establish the global convergence of a class of adaptive control algorithms for discrete-time deterministic linear multi-input multioutput systems.

Narendra and Valavani have proved that the direct and indirect control would arrive at the same result [38]. Using a typical error model, they also found that when all the signals in the plant are uniformly bounded, hyperstability and asymptotic hyperstability are achieved under exactly the same conditions as stability and asymptotic stability in the sense of Lyapunov [39].

Most stability proofs for direct model reference adaptive control systems have been restricted to single-input single-output or at best, multi-input single-output systems [40] (1975). Results pertaining to direct MRAC for multi-input multi-output continuous systems which do not satisfy the perfect model following conditions are limited. Also, the assumption made by the above algorithms that the relative degrees (difference between the number of poles and zeros) of the plant are known is too restrictive from the engineering point of view.

One particular adaptive control algorithm applied to multi-input multi-output (MIMO) systems was proposed by Sobel et al. [41] (1979) and [42] (1982). Using the Command Generator Tracker (CGT) law developed by Broussard [43] and a direct Lyapunov stability approach, they designed a direct MRAC algorithm that, without the need for parameter identification, forced the error between the outputs of plant and model (which need not be of the same order as the plant) to approach zero. Like all other MIMO adaptive control algorithms, this one also requires that the number of controls equals the number of outputs and the plant input-output transfer function matrix is strictly positive real for some feedback gain matrix.

As far as applications of adaptive control to large space structures is concerned, direct control is superior to indirect control. Since large space structures are infinite dimensional, the identification of all or a large number of parameters of the plant is clearly impossible or unfeasible. As described in Ref. 44, the adaptive controller must then be based on a reduced-order model (ROM) whose order is substantially lower than that of the plant. However, when the adaptive controller operates in closed-loop with the plant, it interacts with the unmodeled residual subsystems, this may cause great difficulties or disastrous problems [45].

The literature which deals with the application of adaptive control to large space structures is very limited. This is due to the difficulties associated with LSS in both the model truncations and parameter uncertainties.

Rohrs et al. [46] (1982) developed a method of analyzing stability and robustness properties of a wide class of adaptive control algorithms for systems that have unmodeled dynamics and output disturbances. According to their investigation, none of the algorithms they tested including those of the widely recognized researchers are stable under these conditions.

Bar-Kana et al. [47] (1983) applied and extended the algorithm proposed by Sobel et al. [42] to the control of large space structural systems, in which they have treated the problems of unmodeled dynamics and other model uncertainties. This work also suffers from some drawbacks, e.g., it cannot handle rigid body modes which always play an important role in large space sructural systems; the design and analysis are specific to the control of a simply supported beam while LSS are usually much more complex; the sufficient conditions for stability are too restrictive, etc. All these necessitate further investigation for the application of adaptive control to large space structures in general, and to space stations in particular.

1.4 Outline of This Report

In Chapter II, two space station configurations and their mass properties are described. Finite-element dynamic models for both the two-panel and four-panel station configurations are developed in Chapter III. In Chapter IV, the adaptive control problem is formulated. The control structure is addressed in Chapter V. In Chapter VI, a direct model reference adaptive control algorithm together with the plant augmentation design is presented and two sets of sufficient

conditions for asymptotic stability of the system are derived. In Chapter VII, extensive performance analyses through simulation are discussed, and conclusions are summarized in Chapter VIII.

CHAPTER II

CONFIGURATIONS AND MASS PROPERTIES OF SPACE STATIONS

During the last few years, many space station configurations have been proposed and studied. The configuration development is indeed an evolutionary process, since there are so many factors that need to be considered and assessed against various configuration concepts [48,49].

Two configurations have drawn particular attention -- the NASA Space Station Task Force Initial Operation Center (IOC) Baseline Configuration and the Concept Development Group (CDG) Split-Module Planar Configuration [49]. They are also referred to as the two-panel baseline configuration (or 6 degree-of-freedom model) and four-panel planar configuration (or 19 degree-of-freedom model), respectively, hereafter.

2.1 Two-Panel Baseline Configuration

Figure 2 shows the Task Force IOC Baseline Configuration which was developed by the Space Station Task Force with the Jet Propulsion Laboratory. The system dynamics of this configuration is dominated by the two very large solar panels measuring 250 ft x 40 ft and weighing 4000 lbs each on the ground. It also has a 50 ft x 10 ft radiator panel, a central bus structure consisting of a resource module, habitat module, logistics module, laboratory module, berthing truss, payloads, etc. The entire station weighs 134,000 lbs. Note that the lighter weight of this configuration compared with that of the four-panel configuration is due to the fact that fewer modules

Figure 2 Two-Panel IOC Baseline Configuration

were considered for this configuration rather than the structural differences between the two concepts.

The moments of inertia for this configuration are $I_{xx} = 8.75 \times 10^6$ slug-ft², $I_{yy} = 1.58 \times 10^6$ slug-ft², and $I_{zz} = 8.60 \times 10^6$ slug-ft². Due to the asymmetric design, the products of inertia are quite high, $I_{xy} = -9.57 \times 10^4$ slug-ft², $I_{yz} = -4.89 \times 10^4$ slug-ft², and $I_{xz} = 5.18 \times 10^4$ slug-ft². With the selection of the reference coordinates as shown in Fig. 2, the center of mass has a high bias of X = 27 ft, Y = -2.3 ft, and Z = 5 ft.

Figure 3 shows a similar configuration with additional modules and payloads attached. The 6 degree-of-freedom (DOF) dynamic model that is developed in Chapter III and used extensively for feasibility analysis is based on the mass properties of the configuration shown in Fig. 2. As far as dynamic properties are concerned, the 6-DOF model is closer to that illustrated in Fig. 4.

2.2 Four-Panel Planar Configuration [48,49]

Figure 5 shows a version of the CDG Split-Module Planar Configuration. The basic difference between this configuration and that of Fig. 2 is that this configuration consists of 4 smaller solar panels (100 ft x 50 ft) and 4 larger radiator panels (70 ft x 20 ft) and, in addition, this configuration is a dynamically balanced design with structural symmetry. Since the solar panels are of much smaller size and a more reasonable aspect ratio, the structural strength improves and the fundamental modal frequencies increase.

The main structure of this configuration measures 280 ft in length and it supports two resource modules, several pressurized

Figure 3 IOC Baseline Configuration with Payloads

Figure 5 Four-Panel CDG Split-Module Planar Configuration

modules, a 30-ft service truss, and payloads. The pressurized modules are sized 22 ft x 14 ft diameter determined by the space shuttle payload bay size. The solar panels are hinged to rotate about the axes parallel to roll (X) and pitch (Y) axes, respectively, for solar inertial pointing. The radiators are also hinged for articulation, and the core or the bus of the station is pointed to the nadir direction. Again due to its large size and flexibility, the solar panels are the dominant factor for the flexible body dynamics.

Referring to Fig. 5, Table 1 lists the dimensions and masses of the major components. Using the body coordinates with origin placed at the geometric center of the station, the center of mass is,

$$x_{cm} = \frac{\sum_{i=1}^{M} X_{i}}{\sum_{i=1}^{M} M_{i}} = -1.235 \text{ ft}$$

$$f_{\rm cm} = \frac{\sum_{i}^{M_i \dot{Y}_i}}{\sum_{i}^{M_i}} = 0$$

$$z_{cm} = \frac{\sum_{i}^{M_{i}} z_{i}}{\sum_{i}^{M_{i}} M_{i}} = 0$$

The self moments of inertia of each component are computed using the mass and dimension data shown in Table 1. Each of the components falls in one of the three basic structures — a rectangular plate, a rectangular cube, or a right cylinder. For simplicity, all the component masses are assumed uniformly distributed throughout the

respective component structure. Table 2 shows the self moments of inertia for each component and Table 3 shows the component moments of inertia with respect to the center of the reference frame which is also the center of mass if we ignore the small offset along the X-axis. Table 1

Component Dimension and Mass for Four-Panel Configuration

Component	Dimension Feet	Unit Weight Lbs	Weight Lbs
Solar Panels (4)*	100 × 50	2,000	8,000
Radiators (4)*	70 × 20	1,875	7,500
Resource Modules (2)	22 x 14 Dia	30,000	60,000
Laboratory Modules (2)	22 x 14 Dia	26,000	52,000
Habitat Module	22 x 14 Dia	17,000	17,000
Payload Module	22 x 14 Dia	32,000	32,000
Logistic Module	22 x 14 Dia	50,000	50,000
Service (Berthing) Structure	30	3,000	3,000
Other Equip. & Struc. Weight	236	40 Lbs/Ft	9,440
Total Weight, Lbs		223,440	
Total Mass, Slugs		6,946	
*Weight of solar arrays and rad modules.	istors are include	ed in the resour	

Component Self Moment of Inertia for Four-Panel Configuration

Table 2

5.637 × 10⁴ 5.284 × 10³ 3.960 x 10⁴ 1.295 × 10⁴ 8.171 x 10⁴ 2.590 × 10⁵ 9.520 × 10⁴ 7.274 × 10⁴ *Masses of solar panels and radiators are excluded for this computation Slug-Ft² 1_{SZZ} 2.779 × 10⁴ 5.637 × 10⁴ 2.072 × 10⁵ 7.772 × 10³ 8.500 × 10⁴ 8.171 x 10⁴ 3.390 x 10⁴ 5.284 × 10³ I_{SYY} Slug-Ft² 1.030 × 10⁵ 4.500 × 10⁴ 2.779 × 10⁴ 2.437 × 10⁴ 3.046 × 10³ 7.274 × 10⁴ 3.807 × 10⁴ 5.180 × 10⁴ Slug-Ft² 1 SXX Equip. & Main Structure Laboratory Modules Resource Modules* Service Structure Logistic Module Habitat Modules Component **Payload Module** Solar Panels Radiators
Table 3

Component Moment of Inertia w.r.t. the Center of Reference Frame

for the Four-Panel Configuration

Component	I _{XX} Slug-Ft ²	I _{YY} Slug-Ft ²	I _{ZZ} Slug-Ft ²
Solar Panels	4.926 × 10 ⁶	1.256 × 10 ⁶	6.184 × 10 ⁶
Radiators	7.790 × 10 ⁵	1.010 × 10 ⁵	6.780 × 10 ⁵
Resource Modules*	2.177 × 10 ⁶	3.390 × 10 ⁴	2.177 × 10 ⁶
Laboratory Modules	8.673 × 10 ⁵	8.673 × 10 ⁵	3.960 × 10 ⁴
Habitat Modules	2.779 × 10 ⁴	2.779 x 10 ⁴	1.295 x 10 ⁴
Payload Module	2.437 × 10 ⁴	3.787 × 10 ⁵	3.787 × 10 ⁵
Logistic Module	3.807 × 10 ⁴	5.852 x 10 ⁵	5.852 × 10 ⁵
Service Structure	3.046 × 10 ³	1.068 × 10 ⁵	1.068 × 10 ⁵
Equip. & Main Structure	6.096 x 10 ⁶	9.586 x 10 ³	6.096 × 10 ⁶
Total Station	1.494 × 10 ⁷	3.368 × 10 ⁶	1.626 x 10 ⁷

CHAPTER III

DYNAMIC MODELS FOR SPACE STATIONS

The development of space station control technology requires results of the following nature:

- (1) First order assessment of problems that will have significant effects on the space station designs. In order to guide the concept formulation and design, these types of results must be generated at a high rate of return.
- (2) Analysis of problems that involve multiple interactive elements which require somewhat complex implementation. Recause of the complexity of the problem, more time will be required for development and implementation.

For the first purpose stated above, a 6-DOF finite-element dynamic model is developed for the two-panel space station. Because of its tractability and reasonable simulation turnaround time and cost, it is used extensively to evaluate adaptive control problems and performance. For the second purpose, a 19-DOF finite-element dynamic model is developed for the four-panel space station. However, the analysis in this report is, in general, configuration independent.

3.1 Finite-Element Model for the Two-Panel Station Configuration3.1.1 Dynamic Variables, Coordinates, and Parameters

The 6-DOF finite-element model is shown in Fig. 6, in which only plane motions are considered. The motions of interest are the rotations about the X-axis which are tightly coupled with the displacements along the Z-axis. Hence, this model has six degrees of

Figure 6 6-DOF Finite-Element Model for the Two-Panel Configuration

MODEL PARAMETERS

e, *1*

freedom — three linear displacements Z_1 , Z_2 , Z_3 and three bending angles θ_1 , θ_2 , θ_3 of the central bus and the two outer tips of the solar panels. The solar panels are modeled as two uniform beams with length L, linear mass density ρ , and flexural rigidity EI. The bus and modules are modeled as a rigid core body with mass M_2 and moment of inertia I_2 located at the center of the structure.

3.1.2 The Stiffness Matrix

A finite-element technique is used to derive the stiffness and mass matrices for the model [50]. To obtain the stiffness matrix by using this technique, one starts by dividing the structure into a finite number of elements, the properties of each element are then determined. The properties of the entire structure are obtained by superimposing those of the elements at the associated nodes. There are two nodal points associated with each element, and two degrees of freedom at each node if only transverse plane displacements are considered. The deflected shape of the beam element may be described by a set of cubic Hermitian polynomials, as follows, when unit displacement is applied at the left end,

$$\psi_{1}(x) = 1 - 3\left(\frac{x}{L}\right)^{2} + 2\left(\frac{x}{L}\right)^{3}$$
(3.1)
$$\psi_{3}(x) = x\left(1 - \frac{x}{L}\right)^{2}$$
(3.2)

The shape functions for unit displacement at the right end are,

$$\Psi_2(x) = 3\left(\frac{x}{L}\right)^2 - 2\left(\frac{x}{L}\right)^3$$
 (3.3)

$$\Psi_4(x) = \frac{x^2}{L} \left(\frac{x}{L} - 1\right)$$
 (3.4)

The general shape expression is the superposition of these functions,

$$v(x) = \psi_1(x) v_a + \psi_2(x) v_b + \psi_3(x) \theta_a + \psi_4(x) \theta_b$$
 (3.5)

The stiffness coefficient associated with the beam flexure is

$$k_{ij} = \int_{0}^{L} EI(x) \psi_{i}^{"}(x) \psi_{j}^{"}(x) dx = k_{ji}$$
(3.6)

For a uniform beam segment, the stiffness matrix becomes

$$\begin{bmatrix} F_{a} \\ F_{b} \\ T_{a} \\ T_{b} \end{bmatrix} = \frac{2EI}{L^{3}} \begin{bmatrix} 6 & -6 & 3L & 3L \\ -6 & 6 & -3L & -3L \\ 3L & -3L & 2L^{2} & L^{2} \\ 3L & -3L & L^{2} & 2L^{2} \end{bmatrix} \begin{bmatrix} v_{a} \\ v_{b} \\ \theta_{a} \\ \theta_{b} \end{bmatrix}$$
(3.7)

where F_a , F_b , T_a , and T_b are the nodal forces and torques at nodes a and b, respectively, and v_a , v_b , θ_a , and θ_b are the corresponding nodal displacements -- translation and rotation. The stiffness of the complete structure is obtained by adding the element stiffness appropriately. For instance, the structural stiffness of node i at which elements 1, m, and n are attached is

$$k_{ii} = \hat{k}_{ii}^{(1)} + \hat{k}_{ii}^{(m)} + \hat{k}_{ii}^{(n)}$$
(3.8)

where the hat implies that all the variables are expressed in a common global coordinate system, or they have been transformed to a common system from their local systems.

Now we shall use Eqs. (3.7) and (3.8) to derive the stiffness matrix for the 6-DOF model. Consider the uniform beam element in Fig. 7. If the two nodal points taken are located at its ends, there will be a total of four DOF -- one translation and one rotation at each node. Through the finite-element method the stiffness matrix K_A is

$$\begin{bmatrix} F_{1} \\ T_{1} \\ F_{2} \\ T_{2} \end{bmatrix} = K_{A} \begin{bmatrix} z_{1} \\ \theta_{1} \\ z_{2} \\ \theta_{2} \end{bmatrix} = \frac{2EI}{L^{3}} \begin{bmatrix} 6 & 3L & -6 & 3L \\ 3L & 2L^{2} & -3L & L^{2} \\ -6 & -3L & 6 & -3L \\ 3L & L^{2} & -3L & 2L^{2} \end{bmatrix} \begin{bmatrix} z_{1} \\ \theta_{1} \\ z_{2} \\ \theta_{2} \end{bmatrix}$$
(3.9)

where F_1 and F_2 are the forces, T_1 and T_2 are the torques applied at the nodes. For a similar beam element (see Fig. 7), the stiffness matrix K_B is

$$\begin{bmatrix} F_{2} \\ T_{2} \\ F_{3} \\ T_{3} \end{bmatrix} = K_{B} \begin{bmatrix} 2_{2} \\ \theta_{2} \\ z_{3} \\ \theta_{3} \end{bmatrix} = \frac{2EI}{L^{3}} \begin{bmatrix} 6 & 3L & -6 & 3L \\ 3L & 2L^{2} & -3L & L^{2} \\ -6 & -3L & 6 & -3L \\ 3L & L^{2} & -3L & 2L^{2} \end{bmatrix} \begin{bmatrix} z_{2} \\ \theta_{2} \\ z_{3} \\ \theta_{3} \end{bmatrix}$$
(3.10)

By using Eq. (3.8) to combine Eqs. (3.9) and (3.10), i.e., adding the element stiffness at the joining point, the stiffness matrix K for the combined uniform beam elements (Fig. 8) is obtained as

 $\begin{bmatrix} \mathbf{F}_1 \\ \mathbf{T}_1 \\ \mathbf{F}_2 \\ \mathbf{T}_2 \\ \mathbf{F}_3 \\ \mathbf{T}_3 \end{bmatrix} = \mathbf{K} \begin{bmatrix} \mathbf{Z}_1 \\ \theta_1 \\ \mathbf{Z}_2 \\ \theta_2 \\ \mathbf{Z}_3 \\ \theta_3 \end{bmatrix}$

	6	3L	-6	3L	0	0	[z ₁]		
= <u>2EI</u> L ³	3L	2L ²	-3L	L ²	0	0	θ1		
	-6	-3L	12	0	-6	3L	z2	(3.11)	
	3L	L ²	0	4L ²	 -3L 	L ²	θ2		
	0	0		-3L	6	-3L	z ₃		
	0	0	 3L	L ²	-3L	2L ²	θ3		

. .

Figure 8 Combined Uniform Beam Elements

3.1.3 The Consistent-Mass Matrix

The consistent-mass matrix is the mass matrix for the distributed mass of the flexible structure. For a beam element of length L, mass density $\rho(x)$, the mass influence coefficient m_{ij} can be expressed as

$$m_{ij} = \int_{0}^{L} \rho(x) \psi_{i}(x) \psi_{j}(x) dx = m_{ji} \qquad (3.12)$$

where $\psi_1(x)$ and $\psi_j(x)$ are the shape functions. The term "consistent" signifies that this mass matrix is obtained using the same shape functions $\psi_i(x)$ as those used for deriving the stiffness matrix. The cubic Hermitian polynomials are generally used for straight beams. Therefore, for the straight uniformly distributed beam element shown in Fig. 7, the consistent-mass matrix M_A is

$$\begin{bmatrix} \mathbf{F}_{1} \\ \mathbf{T}_{1} \\ \mathbf{F}_{2} \\ \mathbf{T}_{2} \end{bmatrix} = \mathbf{M}_{A} \begin{bmatrix} \ddot{\mathbf{z}}_{1} \\ \ddot{\mathbf{\theta}}_{1} \\ \ddot{\mathbf{z}}_{2} \\ \ddot{\mathbf{\theta}}_{2} \end{bmatrix} = \frac{\rho L}{420} \begin{bmatrix} 156 & 22L & 54 & -13L \\ 22L & 4L^{2} & 13L & -3L^{2} \\ 54 & -13L & 156 & -22L \\ -13L & -3L^{2} & -22L & 4L^{2} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{z}}_{1} \\ \ddot{\mathbf{\theta}}_{1} \\ \ddot{\mathbf{z}}_{2} \\ \ddot{\mathbf{\theta}}_{2} \end{bmatrix}$$
(3.13)

Similarly, the consistent-mass matrix M_B for the adjoining beam element is

$$\begin{bmatrix} F_{2} \\ T_{2} \\ F_{3} \\ T_{3} \end{bmatrix} = M_{B} \begin{bmatrix} \ddot{z}_{2} \\ \ddot{\theta}_{2} \\ \ddot{z}_{3} \\ \ddot{\theta}_{3} \end{bmatrix} = \frac{\rho L}{420} \begin{bmatrix} 156 & 22L & 54 & -13L \\ 22L & 4L^{2} & 13L & -3L^{2} \\ 54 & -13L & 156 & -22L \\ -13L & -3L^{2} & -22L & 4L^{2} \end{bmatrix} \begin{bmatrix} \ddot{z}_{2} \\ \ddot{\theta}_{2} \\ \ddot{z}_{3} \\ \ddot{\theta}_{3} \end{bmatrix}$$

$$(3.14)$$

Hence, the combined consistent-mass matrix M_C for the 6-DOF model can be obtained by using an approach similar to that for obtaining the stiffness matrix as,

$$\begin{bmatrix} F_1 \\ T_1 \\ F_2 \\ T_2 \\ F_3 \\ T_3 \end{bmatrix} = M_C \begin{bmatrix} \ddot{z}_1 \\ \ddot{\theta}_1 \\ \ddot{z}_2 \\ \ddot{\theta}_2 \\ \ddot{\theta}_2 \\ \ddot{z}_3 \\ \ddot{\theta}_3 \end{bmatrix}$$

	156	22L	54	-13L	0	0	[\ddot{z}_1]
	22L	4L ²	13L	-3L ²	0	0	θ ₁
$= \frac{\rho L}{100}$	54	13L	312	0	5 4	-13L	Ϊz ₂
420	-13L	-3L ²	0	8L ²	13L	-3L ²	ë ₂
	0	0	1 54	13L	156	-22L	; z ₃
	0	0	 -13L	-3L ²	-22L	4L ²	θ ₃

(3.15)

3.1.4 The Lumped-Mass Matrix and System Mass Matrix

The consistent-mass matrix accounts for the effect of distributed mass only, the effect of concentrated mass is accounted for by the lumped-mass matrix M_D ,

$$M_{\rm D} = {\rm diag} \ (0, \ 0, \ M_2, \ I_2, \ 0, \ 0) \tag{3.16}$$

The total system mass matrix is, then

$$M = M_{\rm C} + M_{\rm D} \tag{3.17}$$

3.1.5 Equations of Motion

The equations of motion for the 6-DOF model can then be written as

$$M \ddot{z}_{p} + K Z_{p} = F = B u_{p}$$
(3.18)
$$y_{p} = C(\alpha Z_{p} + \dot{z}_{p})$$
(3.19)

where

$$Z_{p} = [Z_{p1} \theta_{p1} Z_{p2} \theta_{p2} Z_{p3} \theta_{p3}]^{T}$$

$$= [Z_{1} \theta_{1} Z_{2} \theta_{2} Z_{3} \theta_{3}]^{T}$$

$$F = [F_{1} T_{1} F_{2} T_{2} F_{3} T_{3}]^{T}$$

$$u_{p} = M-\text{dimensional plant control input vector}$$

$$y_{p} = M-\text{dimensional plant output vector}$$

 $B \approx 6 \times M$ control influence matrix

C = M x 6 measurement distribution matrix

α is the weighting factor of the position vs. rate measurement 3.1.6 Modal Coordinates and Modal Properties

To carry out the analysis of this dissertation, modal coordinates are used. The modal model is obtained by setting F = 0in Eq. (3.18) and solving the eigenvalue problem. Let ϕ be the normalized eigenvector matrix which is selected such that

$$\phi^{\mathrm{T}}\mathsf{M}\phi = \mathbf{I} \tag{3.20}$$

$$\phi^{\mathrm{T}}\mathrm{K}\phi = \Lambda \qquad (3.21)$$

where Λ is the diagonal eigenvalue matrix. Let η be the modal amplitude vector, and $Z_p = \phi \eta$. Substitute this into Eq. (3.18) and premultiply both sides by ϕ^T , one has the following dynamical equation in modal form,

$$\dot{n} + \Lambda \eta = \phi^{T} B u_{p}$$
 (3.22)

After adding damping terms, Eq. (3.22) becomes

$$n + diag (2\zeta_1\omega_1, \dots, 2\zeta_6\omega_6)n + diag(\omega_1^2, \dots, \omega_6^2)n = \phi^T Bu_p$$
 (3.23)

The corresponding damped dynamical equation in physical coordinates can be obtained through transformation. Let D be the damping factor matrix, one has

$$D = \phi^{-T} \operatorname{diag} (2\zeta_1 \omega_1, \dots, 2\zeta_6 \omega_6) \phi^{-1}$$
 (3.24)

Hence, the system equations of motion in physical and modal coordinates are, respectively

$$MZ_p + DZ_p + KZ_p = Bu_p$$
 (3.25a)

$$y_p = C (\alpha Z_p + \dot{Z}_p)$$
 (3.25b)

and

$$\ddot{n} + \text{diag} (2\zeta_1 \omega_1, \dots, 2\zeta_6 \omega_6) \dot{n} + \text{diag} (\omega_1^2, \dots, \omega_6^2) n = \phi^T Bu_p (3.26a)$$

 $y_p = C(\alpha \phi n + \phi \dot{n})$ (3.26b)

The modal properties of the 6-DOF model are obtained by using the parameters given in Fig. 6. The modal frequencies are,

$$\omega_1 = 0$$

$$\omega_2 = 0$$

$$\omega_3 = 0.04 \text{ Hz}$$

$$\omega_4 = 0.0637 \text{ Hz}$$

$$\omega_5 = 0.3885 \text{ Hz}$$

$$\omega_6 = 0.3947 \text{ Hz}$$

(3.27a)

and the mode shape matrix (eigenvector matrix) ϕ is

_	.872E-1	•194E-1	127	961E-1	.178	.178	
	352E-3	157E-4	•720E-3	.719E-3	545E-2	549E-2	
	693E-3	•155E-1	•301E-2	360E-7	•151E-2	174E-5	
φ =	352E-3	157E-4	•727E-8	450E-3	•126E-6	117E-3	
	886E-1	•116E-1	127	.961E-1	.179	117	
	352E-3	157E-4	720E-3	.719E-3	•546E-2	548E-2	
						(3.2	7b)

Figure 9 shows the mode shapes corresponding to the above mode shape matrix. Of the six modes, there are two zero-frequency rigid body rotational and translational modes, two first hending modes -symmetric and antisymmetric, and two second bending modes.

3.2 Finite-Element Model for the Four-Panel Station Configuration3.2.1 Dynamic Variables, Coordinates, and Parameters

Referring to Fig. 10, the main or backbone structure is modeled as two flexible beams rigidly attached to the core body (the bus); and the solar panels are also modeled as flexible beams with two beams jointed together and attached to the ends of the main structure. The two payloads, assumed rigid here, are hinge connected to the core body to form a balanced structure. To keep the model to a tractable size, the beams are assumed torsionally stiff, and hence, only bending angles and the associated deflections are modeled here.

This model consists of 19 dynamic variables, 7 translations and 12 rotations, as indicated in Fig. 10. Since the beams are assumed torsionally stiff, ϕ_2 (ϕ_6) represents the roll angles for the entire length of the beams associated with the south (north) panels. For

Figure 9 Modal Properties for the 6-DOF Two-Panel Configuration Model

Figure 10 19-DOF Finite-Element Model for the Four-Panel Planar Configuration

the same reason, θ_4 is the pitch angle for the entire main structure, therefore, the following constraints apply:

 $\theta_2 = \theta_6 = \theta_4 \tag{3.28}$

The payload motions are modeled by the hinge angles, γ_{8x}^{i} , γ_{8y}^{i} , γ_{9x}^{i} , γ_{9y}^{i} , where in Fig. 10, γ_{8x}^{i} , γ_{8y}^{i} , γ_{9x}^{i} , γ_{9y}^{i} are the corresponding inertial attitude angles. The translations at the c.m. of the payloads can be computed using the hinge angles. Therefore, the translation variables are Z_1 , Z_2 , Z_3 , Z_4 , Z_5 , Z_6 , Z_7 , and the rotation variables are θ_1 , ϕ_2 , θ_3 , θ_4 , ϕ_4 , θ_5 , ϕ_6 , θ_7 , γ_{8x}^{i} , γ_{8y}^{i} , γ_{9x}^{i} , and γ_{9y}^{i} .

The model parameters are basically the flexural rigidity (EI), the length, and the mass density for the beam elements in the model; the mass, moment of inertia and length for the payloads and the core station. The values for the mass-related parameters are computed based on information discussed in Chapter II.

3.2.2 The Stiffness Matrix

First, the 19-DOF model is divided into three parts, the solar panels -- south, the solar panels -- north, and the main structure. The payloads will not be considered until later. The finite-element technique used is the same as that for the 6-DOF model.

Consider Fig. 11, the two "south" panels are modeled as two uniform beams, each 115 ft in length. Referring to Eq. (3.11), one has

 $\begin{bmatrix} F_{1} \\ T_{10} \\ F_{2} \\ T_{20} \\ F_{3} \\ T_{30} \end{bmatrix} = \frac{2(E1)_{s}}{L_{s}^{3}} \begin{bmatrix} 6 & 3L_{s} & -6 & 3L_{s} \\ 3L_{s} & 2L_{s}^{2} & -3L_{s} & L_{s}^{2} \\ 0 & -6 & -3L_{s} \\ 3L_{s} & L_{s}^{2} \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & -6 & -3L_{s} \\ 3L_{s} & L_{s}^{2} \end{bmatrix} \begin{bmatrix} 2 & 0 & -6 & 3L_{s} \\ 0 & 0 & -6 & -3L_{s} \\ 0 & 0 & -6 & -3L_{s} \\ 0 & 0 & 3L_{s} & L_{s}^{2} \\ -3L_{s} & -3L_{s} & 2L_{s}^{2} \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 2 \\ 2 \\ 3 \\ 0 \end{bmatrix}$ (3.29)

Similarly, referring to Fig. 12, the stiffness matrix for the north panels is obtained as

$$\begin{bmatrix} F_{5} \\ T_{59} \\ F_{6} \\ T_{69} \\ F_{7} \\ T_{79} \end{bmatrix} = \frac{2(EI)_{g}}{L_{g}^{3}} \begin{bmatrix} 6 & 3L_{g} & -6 & 3L \\ 3L_{g} & 2L_{g}^{2} & -3L_{g} & L_{g}^{2} \\ -6 & -3L_{g} & 12 & 0 \\ 3L_{g} & 2L_{g}^{2} \end{bmatrix} \begin{bmatrix} 2 \\ 9 \\ -6 \\ -3L_{g} \end{bmatrix} \begin{bmatrix} 2 \\ -6 \\ -3L_{g} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 2 \\ -6 \\ -3L_{g} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 2 \\ -6 \\ -3L_{g} \end{bmatrix} \begin{bmatrix} 2 \\ -6 \\ -3L_{g} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 2 \\ -6 \\ -3L_{g} \end{bmatrix} \begin{bmatrix} 2 \\ -6 \\ -3L_{g} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 2 \\ -6 \\ -3L_{g} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 2 \\ -6 \\ -3L_{g} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 2 \\ -6 \\ -3L_{g} \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 2 \\ -6 \\ -7 \\ -2L_{g} \end{bmatrix} \end{bmatrix} \begin{bmatrix} 2 \\ -6 \\ -7 \\ -2L_{g$$

The elastic model for the main structure is shown in Fig. 13. The main structure is also modeled as two flexible beams, but with higher flexural rigidity than those of the solar panels. These beams are uniform and have a length of 140 ft each. The stiffness matrix for this structure is shown in the following equation,

· Figure 11 Elastic Model for Solar Panels -- South

Figure 12 Elastic Model for Solar Panels -- North

 $\begin{bmatrix} F_{2} \\ T_{2\phi} \\ F_{4} \\ T_{4\phi} \\ F_{6} \\ T_{6\phi} \end{bmatrix} = \frac{2(EI)_{e}}{L_{e}^{3}} \begin{bmatrix} 6 & 3L_{e} & -6 & 3L_{e} \\ 3L_{e} & 2L_{e}^{2} & -3L_{e} & L_{e}^{2} \\ 0 & -6 & -3L_{e} \\ 3L_{e} & L_{e}^{2} \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & -6 & -3L_{e} \\ 3L_{e} & L_{e}^{2} \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 \\ -6 & -3L_{e} \\ 3L_{e} & L_{e}^{2} \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 \\ -6 & -3L_{e} \\ 0 & 0 \\ 3L_{e} & L_{e}^{2} \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 \\ -6 & -3L_{e} \\ -3L_{e} & L_{e}^{2} \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 \\ 0 \\ 0 \end{bmatrix}$ (3.31)

Applying the same principle of Eq. (3.8), the stiffness matrices of Eqs. (3.29), (3.30) and (3.31) can be combined to yield the system stiffness matrix. Reorder the force and displacement vectors and the corresponding rows and columns of Eq. (3.29) as follows,

$$\begin{bmatrix} T_{29} \\ F_1 \\ T_{10} \\ F_3 \\ T_{30} \\ F_2 \end{bmatrix} = \frac{2(EI)_s}{L_s^3} \begin{bmatrix} 4L_s^2 & 3L_s & L_s^2 & -3L_s & L_s^2 \\ 3L_s & 6 & 3L_s & 0 & 0 & -6 \\ L_s^2 & 3L_s & 2L_s^2 & 0 & 0 & -3L_s \\ -3L_s & 0 & 0 & 6 & -3L_s & -6 \\ L_s^2 & 0 & 0 & -3L_s & 2L_s^2 & -3L_s \\ 0 & -6 & -3L_s & -6 & 3L_s & 12 \end{bmatrix} \begin{bmatrix} \theta_2 \\ 2_1 \\ \theta_1 \\ \theta_1 \\ Z_3 \\ \theta_3 \\ Z_2 \end{bmatrix}$$
(3.32)

The purpose of this reordering process is to move $T_{2\theta}$ and θ_2 to the top for later use and F_2 and Z_2 to the bottom so that the "south" panels can be combined with the main structure.

Reorder the rows and columns of Eq. (3.31) so that F_2 and Z_2 are placed on the top and F_6 and Z_6 are on the bottom,

$$\begin{bmatrix} F_{2} \\ T_{2\phi} \\ F_{4} \\ T_{4\phi} \\ T_{6\phi} \\ F_{6} \end{bmatrix} = \frac{2(EI)_{e}}{L_{e}^{3}} \begin{bmatrix} 6 & 3L_{e} & -6 & 3L_{e} & 0 & 0 \\ 3L_{e} & 2L_{e}^{2} & -3L_{e} & L_{e}^{2} & 0 & 0 \\ -6 & -3L_{e} & 12 & 0 & 3L_{e} & -6 \\ 3L_{e} & L_{e}^{2} & 0 & 4L_{e}^{2} & L_{e}^{2} & -3L_{e} \\ 3L_{e} & L_{e}^{2} & 0 & 4L_{e}^{2} & L_{e}^{2} & -3L_{e} \\ 0 & 0 & 3L_{e} & L_{e}^{2} & 2L_{e}^{2} & -3L_{e} \\ 0 & 0 & -6 & -3L_{e} & -3L_{e} & 6 \end{bmatrix} \begin{bmatrix} z_{2} \\ \phi_{2} \\ z_{4} \\ \phi_{4} \\ \phi_{6} \\ z_{6} \end{bmatrix}$$
(3.33)

Reorder Eq. (3.30) so that F_6 and Z_6 sit on the top and $T_{6\theta}$ and θ_6 at the bottom,

$$\begin{bmatrix} F_{6} \\ F_{5} \\ T_{59} \\ F_{7} \\ T_{79} \\ T_{69} \end{bmatrix} = \frac{2(EI)_{s}}{L_{s}^{3}} \begin{bmatrix} 12 & -6 & -3L_{s} & -6 & 3L_{s} & 0 \\ -6 & 6 & 3L_{s} & 0 & 0 & 3L_{s} \\ -3L_{s} & 3L_{s} & 2L_{s}^{2} & 0 & 0 & L_{s}^{2} \\ -3L_{s} & 3L_{s} & 2L_{s}^{2} & 0 & 0 & L_{s}^{2} \\ -3L_{s} & 0 & 0 & 6 & -3L_{s} & -3L_{s} \\ -6 & 0 & 0 & 6 & -3L_{s} & -3L_{s} \\ 3L_{s} & 0 & 0 & -3L_{s} & 2L_{s}^{2} & L_{s}^{2} \\ 3L_{s} & 0 & 0 & -3L_{s} & 2L_{s}^{2} & L_{s}^{2} \\ 0 & 3L_{s} & L_{s}^{2} & -3L_{s} & L_{s}^{2} & 4L_{s}^{2} \end{bmatrix} \begin{bmatrix} 2_{6} \\ Z_{5} \\ \theta_{5} \\ Z_{7} \\ \theta_{7} \\ \theta_{6} \end{bmatrix}$$
(3.34)

ORIGINAL PAGE IS OF POOR QUALITY

 $\alpha = \frac{2(EI)_s}{L_s^3}, \text{ and } \beta = \frac{2(EI)_e}{L_e^3}$ (3.35)

combine Eqs. (3.32), (3.33) and (3.34) one has

(3.36)

Now we shall use the constraints of Eq. (3.28) and

 $T_{2\theta} = T_{6\theta} = T_{4\theta}$ (3.37)

to combine $T_{6\theta}$ and $T_{2\theta}$ and rename it as $T_{4\theta}$, and θ_6 and θ_2 and rename it as θ_4 and rearrange the rows and columns so that they appear between F_4 and $T_{4\phi}$ and between Z_4 and ϕ_4 , respectively. In addition, we also exchange the orders of $T_{6\phi}$ and F_6 , and ϕ_6 and Z_6 . Thus if we let F_8 , Z_8 , and K_8 be the force vector, displacement vector, and

45

Let

the stiffness matrix, respectively, Eq. (3.36) becomes

$$\mathbf{F}_{\mathbf{s}} = \mathbf{K}_{\mathbf{s}} \mathbf{Z}_{\mathbf{s}} \tag{3.38}$$

where

$$F_{s} = (F_{1} T_{1\theta} F_{3} T_{3\theta} F_{2} T_{2\phi} F_{4} T_{4\theta} T_{4\phi} F_{6} T_{6\phi} F_{5} T_{5\theta} F_{7} T_{7\theta})^{T}$$
(3.39)

$$Z_{s} = (Z_{1} \ \theta_{1} \ Z_{3} \ \theta_{3} \ Z_{2} \ \phi_{2} \ Z_{4} \ \theta_{4} \ \phi_{4} \ Z_{6} \ \phi_{6} \ Z_{5} \ \theta_{5} \ Z_{7} \ \theta_{7})^{T}$$
(3.40)

and K_s is shown in Eq. (3.41).

	60	31,5œ	0	0	-60	0	0	βlsα	0	0	0	0	0	Ú	þ	7
	3Lsa	21 <mark>2</mark> 0	0	0	-3Lsa	Ģ	0	٤ ² α	0	0 0	0	Ō	0_	0	0	Ì
	. 0	0	60	-3Lsa	-6 a	0	0	-3Lsa	0	0	0	D	0	0	0	
	0	0	3Lsa	215ª a	3l₅œ	0	0	۱ŝα	0.	0	0	0	0	0	0	
	-601	-315a	-60	31,5 a	12 a + 6ß	3ι _e β	-6 β	0	3L _e ß	0	, 0	0	0	0	0	
	0	0	0	0	3Leβ	2LeB	-3L _e ß	. 0	ւ <mark>2</mark> թ	0	0	0	0	0	0	
м	0	0	0	0	-6 β	-3L _e β	12 <i>β</i>	0	0	-6 β	3L _e ß	0	0	0	0	
K_=	3Lsα	د دsa	-31,5a	ιŝα	0	0	0	8L5ª	0	0	0 _.	3Lsa	isa	−3L _S α	ί <mark>s</mark> α	
····	0	,0	.0	0	3L _e β	ι²β	0.	0	41 <mark>2</mark> β	-3LeB	ι <mark>ε</mark> β	.0 .	0	0	· - 0	
	0	0	0	0	0	0	-6 B	0	-3L _e ß	12 a +6/3	-3L _e ß	-6 a	-3Lsa	-602	3lsœ	
	0	0	0	0	0	0	3L _e ß	0	ц <mark>2</mark> В	-3L _e ß	21 <mark>2</mark> 8	0	0	0	0	
	0	0	0	0	0	0	C	3Lsa	0	-60	0	60	3 Lsa	0	0	
	O	0	0	0	0	0	0	لأع	0	-3Lsa	0	3Lsa	21,5ªª	0	0	
	0	0	0	0	0	0	0	-3L5a	0	-6 a	0	0	0	. 6a	3L <mark>s</mark> a	
	0	0	0	0.	0	0	0	ιζα	0	3 L <u>s</u> a	0	0	0	-31,a	۶۱ <mark>۶</mark> ۵	

(3.41)

where $\alpha = \frac{2(EI)_8}{L_8^3}$ and $\beta = \frac{2(EI)_e}{L_e^3}$.

A quick check of symmetry, K_s is symmetric as it is supposed to be. 3.2.3 The Consistent-Mass Matrix

Consider Figs. 14, 15, and 16 which show the distributed mass models for the south and north solar panels and the main structure, respectively. By using the same finite-element technique, the consistent-mass matrices for the component structures are,

a. Solar Panel -- South

Figure 14 Distributed Mass Model for Solar Panels - South

ь.

Solar Panel -- North

c. Main Structure

Employing a similar approach for obtaining the stiffness matrix, the following equation can be obtained:

 $F_8 = M_{sc} \ddot{Z}_8$

(3.45)

 $F_{s} = (F_{1} T_{1\theta} F_{3} T_{3\theta} F_{2} T_{2\phi} F_{4} T_{4\theta} T_{4\phi} F_{6} T_{6\phi} F_{5} T_{5\theta} F_{7} T_{7\theta})^{T}$

 $\vec{z}_{s} = (\vec{z}_{1} \ \vec{\theta}_{1} \ \vec{z}_{3} \ \vec{\theta}_{3} \ \vec{z}_{2} \ \vec{\phi}_{2} \ \vec{z}_{4} \ \vec{\theta}_{4} \ \vec{\phi}_{4} \ \vec{z}_{6} \ \vec{\phi}_{6} \ \vec{z}_{5} \ \vec{\theta}_{5} \ \vec{z}_{7} \ \vec{\theta}_{7})^{\mathrm{T}}$

and the consistent-mass matrix $M_{\rm SC}$ is shown in Eqs. (3.46) and (3.47).

															۳,
156a	221. ₅ a	0	0	54a	0	0	- BL _S a	0	0.	0	0	0	O	0	
22Lsa	4L5a	0	0	BLsa	0	0	-31, ² a	0	0	0	0	0	0	0	
0	0	156a	-22Lsª	54a	0	0	13L _s a	0	0	0	0	0	0	0	
0	0	-22L ₅ a	41.5°	- BL _S a	0	0	-315a	0	່	0	Q	0	0	0	
54a	13L _S a	54a	- 13L _s a	312a + 156b	221.eb	546	0	-131, _e b	0	0	0	0	0	0	
٥	0	0	0	221.eb	€.eb	BLeb	0	-31.e ² b	0	0	0	0	0	0	
0.,	0	0	0	54b	BLeb	3125	· O	0	54b	- 13L _e b	0	• 0	. 0	0	
-13L _s a	-3L5ª	13L _S a	-3LSa	0	0	0	16L\$a	0	0	0	- 13Lsa	-3Lsa	13L _s a	-3Ls2a	
0	. 0	0	0	-13Leb	3Leb	0	0	8Leb	13Leb	-31.eb	0	0	0	0	
0	0	0	0	0	0	54b	0	13Leb	1566 + 312a	-22Leb	54a	13L _S a	54a	- 13Lsa	
0	0	0	0	0	0	-BLeb	0	-31, <mark>2</mark> b	-22L ₈ b	41. 2 0	0	0	0	0	
0	0	0	0	0.	0	0	-13L ₅ a	Ŭ,	542	o	156a	22L ₅ a	0	0	
0.	0	G	0	` Q	0.	0	-31,5a	0	13L58	Q	221.5ª	4L5a	0	0	
0	0	0	0	0	0	0	13L _{Sð}	0	54a	O	Q	0	156a	-22L59	
0	0	0	0	0	0	. 0	-31 <mark>2</mark> a	0	-13isa	0.	0	0	-22L58	4. ₅ a	
	156a 224 ₅ a 0 54a 0 54a 0 -134 ₅ a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	156a 22t sa 156a 22t sa 0 0 0 0 54a 13t sa 0 0 -13t sa -3t sa 0 0 -13t sa -3t sa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	156a 221.5a 0 126a 4123a 0 0 0 156a 0 0 -221.5a 54a 131.5a 54a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -312a 131.5a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <th>156a 221, sa 0 0 22L_3a $4L_3^2$a 0 0 0 0 156a -22L_3a 0 0 -56a -22L_3a 54a 13L_3a 54a -13L_3a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>156a 221,53 0 0 54a $2Z1,5a$ $4L_3^2a$ 0 0 $131,5a$ 0 0 156a $-221,5a$ 54a 0 0 156a $-221,5a$ 54a 0 0 $-221,5a$ $4L_3^2a$ $-131,5a$ 54a 131,5a 54a $-131,5a$ $312a + 156b$ 0 0 0 0 221,eb 0 0 0 0 54b -131,5a $-3L_5^2a$ 131,5a -34.5^2a 0 0 0 0 0 221,eb 0 0 0 0 0 54b -131,5a -131,5a $-3L_5^2a$ 131,5a $-3L_5^2a$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0<!--</th--><th>156a 22t sa 0 0 54a 0 $2Zt sa$ $4t sa^2$ 0 0 $13t sa$ 0 $2Zt sa$ $4t sa^2$ 0 0 $13t sa$ 0 0 0 $156a$ $-22t sa$ $54a$ 0 0 0 $-22t sa$ $4t sa^2$ $-13t sa$ 0 $54a$ $13t sa$ $54a$ $-13t sa$ $312a + 156b$ $22t eb$ 0 0 0 0 0 $22t eb$ $a t sa^2 b$ 0 0 0 0 0 $22t eb$ $a t sa^2 b$ 0 0 0 0 0 0 0 $-13t sa$ $-3t sa^2$ 0 0 0 0 0 $-13t sa^3$ $-3t sa^3$ 0 0<th>156a 221,sa 0 0 54a 0 0 $;221,sa$ 41_s^2a 0 0 $;131,sa$ 0 0 0 0 $155a$ $-221,sa$ $54a$ 0 0 0 0 $-221,sa$ 41_s^2a $-131,sa$ 0 0 54a $131,sa$ 54a $-131,sa$ 312a + 156b 221,eb 54b 0 0 0 0 0 221,eb 4_s^2b 131,eb 0 0 0 0 0 221,eb 4_s^2b 131,eb 0 0 0 0 0 221,eb 4_s^2b 131,eb 0 0 0 0 221,eb 4_s^2b 131,eb 1.31,sa -31_s^2a 131,sa -31_s^2a 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>156a 22$h_{s}a$ 0 0 54a 0 0 -13$h_{s}a$ 22$h_{s}a$ 4h_{s}^2a 0 0 13$h_{s}a$ 0 0 -3h_{s}^2a 0 0 156a -22$h_{s}a$ 54a 0 0 13$h_{s}a$ 0 0 -22$h_{s}a$ 4h_{s}^2a -13$h_{s}a$ 0 0 -3h_{s}^2a 54a 13$h_{s}a$ 54a -13$h_{s}a$ 312a + 156b 22$h_{e}b$ 54b 0 0 0 0 0 0 22$h_{e}b$ 4h_{e}^2b 13$h_{e}b$ 0 0 0 0 0 22$h_{e}b$ 4h_{e}^2b 13$h_{e}b$ 0 0 0 0 0 22$h_{e}b$ 4h_{e}^2b 13$h_{e}b$ 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 <</th><th>156a 22$\lambda_{s}a$ 0 0 56a 0 0 $-12\lambda_{s}a$ 0 22$\lambda_{s}a$ 4λ_{s}^2a 0 0 13$\lambda_{s}a$ 0 0 $-3\lambda_{s}^2a$ 0 0 0 156a $-22\lambda_{s}a$ $54a$ 0 0 $-3\lambda_{s}^2a$ 0 0 0 $-22\lambda_{s}a$ $4\lambda_{s}^2a$ $-13\lambda_{s}a$ 0 0 $-3\lambda_{s}^2a$ 0 54a 13$\lambda_{s}a$ 54a $-13\lambda_{s}a$ 312a + 156b 22$\lambda_{e}b$ 54b 0 $-3\lambda_{s}^2a$ 0 0 0 0 0 22$\lambda_{e}b$ $4\lambda_{e}^2b$ 13$\lambda_{e}b$ 0 $-3\lambda_{e}^2b$ 0 0 0 0 22$\lambda_{e}b$ $4\lambda_{e}^2b$ 13$\lambda_{e}b$ 0 $-3\lambda_{e}^2b$ 0 0 0 0 22$\lambda_{e}b$ $4\lambda_{e}^2b$ 13$\lambda_{e}b$ 0 $-3\lambda_{e}^2b$ 0 0 0 0 0 0 0 0 0 0</th><th>IS6a 22x,sa 0 0 54a 0 0 $-13i,sa$ 0 0 22x,aa 44xaa 0 0 131,aa 0 0 $-3i_s^2a$ 0 0 0 0 156a $-22t_sa$ 54a 0 0 $-3i_s^2a$ 0 0 0 0 $-22t_sa$ $4t_s^2a$ $-13t_sa$ 0 0 $-3i_s^2a$ 0 0 0 0 $-22t_sa$ $4t_s^2a$ $-13t_sa$ 0 0 $-3i_s^2a$ 0 0 54a 13t_sa 54a $-13t_sa$ 312a + 156b 22t_eb 54b 0 $-3t_s^2b$ 0 0 0 0 0 0 22t_eb $4t_e^2b$ 13t_eb 0 0 54b 0 0 54b 0 0 54b 0 0 0 54b 0 0 0 54b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>156a 221_sa 0 0 54a 0 0 $-131_{s}a$ 0 0 0 221_sa 41_s^2a 0 0 131_sa 0 0 -31_s^2a 0 0 0 0 0 156a -221_sa 41_s^2a 0 0 0 131_sa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <t< th=""><th>156a 22k za 0 0 54a 0 0 -13i za 0 0 0 0 22L za 4L za 0 0 131 za 0 0 -31 za 0 0 0 0 0 0 0 156a -22L za 54a 0 0 -131 za 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>1560 221,sa 0 0 54a 0 0 $-131,sa$ 0 0 0 0 0 221,sa 41_{s}^2a 0 0 .131,sa 0 0 -31,sa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><th>156a 22x, a 0 0 54a 0 0 11, s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th></t<></th></th></th>	156a 221, sa 0 0 22L_3a $4L_3^2$ a 0 0 0 0 156a -22L_3a 0 0 -56a -22L_3a 54a 13L_3a 54a -13L_3a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	156a 221,53 0 0 54a $2Z1,5a$ $4L_3^2a$ 0 0 $131,5a$ 0 0 156a $-221,5a$ 54a 0 0 156a $-221,5a$ 54a 0 0 $-221,5a$ $4L_3^2a$ $-131,5a$ 54a 131,5a 54a $-131,5a$ $312a + 156b$ 0 0 0 0 221,eb 0 0 0 0 54b -131,5a $-3L_5^2a$ 131,5a -34.5^2a 0 0 0 0 0 221,eb 0 0 0 0 0 54b -131,5a -131,5a $-3L_5^2a$ 131,5a $-3L_5^2a$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </th <th>156a 22t sa 0 0 54a 0 $2Zt sa$ $4t sa^2$ 0 0 $13t sa$ 0 $2Zt sa$ $4t sa^2$ 0 0 $13t sa$ 0 0 0 $156a$ $-22t sa$ $54a$ 0 0 0 $-22t sa$ $4t sa^2$ $-13t sa$ 0 $54a$ $13t sa$ $54a$ $-13t sa$ $312a + 156b$ $22t eb$ 0 0 0 0 0 $22t eb$ $a t sa^2 b$ 0 0 0 0 0 $22t eb$ $a t sa^2 b$ 0 0 0 0 0 0 0 $-13t sa$ $-3t sa^2$ 0 0 0 0 0 $-13t sa^3$ $-3t sa^3$ 0 0<th>156a 221,sa 0 0 54a 0 0 $;221,sa$ 41_s^2a 0 0 $;131,sa$ 0 0 0 0 $155a$ $-221,sa$ $54a$ 0 0 0 0 $-221,sa$ 41_s^2a $-131,sa$ 0 0 54a $131,sa$ 54a $-131,sa$ 312a + 156b 221,eb 54b 0 0 0 0 0 221,eb 4_s^2b 131,eb 0 0 0 0 0 221,eb 4_s^2b 131,eb 0 0 0 0 0 221,eb 4_s^2b 131,eb 0 0 0 0 221,eb 4_s^2b 131,eb 1.31,sa -31_s^2a 131,sa -31_s^2a 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>156a 22$h_{s}a$ 0 0 54a 0 0 -13$h_{s}a$ 22$h_{s}a$ 4h_{s}^2a 0 0 13$h_{s}a$ 0 0 -3h_{s}^2a 0 0 156a -22$h_{s}a$ 54a 0 0 13$h_{s}a$ 0 0 -22$h_{s}a$ 4h_{s}^2a -13$h_{s}a$ 0 0 -3h_{s}^2a 54a 13$h_{s}a$ 54a -13$h_{s}a$ 312a + 156b 22$h_{e}b$ 54b 0 0 0 0 0 0 22$h_{e}b$ 4h_{e}^2b 13$h_{e}b$ 0 0 0 0 0 22$h_{e}b$ 4h_{e}^2b 13$h_{e}b$ 0 0 0 0 0 22$h_{e}b$ 4h_{e}^2b 13$h_{e}b$ 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 <</th><th>156a 22$\lambda_{s}a$ 0 0 56a 0 0 $-12\lambda_{s}a$ 0 22$\lambda_{s}a$ 4λ_{s}^2a 0 0 13$\lambda_{s}a$ 0 0 $-3\lambda_{s}^2a$ 0 0 0 156a $-22\lambda_{s}a$ $54a$ 0 0 $-3\lambda_{s}^2a$ 0 0 0 $-22\lambda_{s}a$ $4\lambda_{s}^2a$ $-13\lambda_{s}a$ 0 0 $-3\lambda_{s}^2a$ 0 54a 13$\lambda_{s}a$ 54a $-13\lambda_{s}a$ 312a + 156b 22$\lambda_{e}b$ 54b 0 $-3\lambda_{s}^2a$ 0 0 0 0 0 22$\lambda_{e}b$ $4\lambda_{e}^2b$ 13$\lambda_{e}b$ 0 $-3\lambda_{e}^2b$ 0 0 0 0 22$\lambda_{e}b$ $4\lambda_{e}^2b$ 13$\lambda_{e}b$ 0 $-3\lambda_{e}^2b$ 0 0 0 0 22$\lambda_{e}b$ $4\lambda_{e}^2b$ 13$\lambda_{e}b$ 0 $-3\lambda_{e}^2b$ 0 0 0 0 0 0 0 0 0 0</th><th>IS6a 22x,sa 0 0 54a 0 0 $-13i,sa$ 0 0 22x,aa 44xaa 0 0 131,aa 0 0 $-3i_s^2a$ 0 0 0 0 156a $-22t_sa$ 54a 0 0 $-3i_s^2a$ 0 0 0 0 $-22t_sa$ $4t_s^2a$ $-13t_sa$ 0 0 $-3i_s^2a$ 0 0 0 0 $-22t_sa$ $4t_s^2a$ $-13t_sa$ 0 0 $-3i_s^2a$ 0 0 54a 13t_sa 54a $-13t_sa$ 312a + 156b 22t_eb 54b 0 $-3t_s^2b$ 0 0 0 0 0 0 22t_eb $4t_e^2b$ 13t_eb 0 0 54b 0 0 54b 0 0 54b 0 0 0 54b 0 0 0 54b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>156a 221_sa 0 0 54a 0 0 $-131_{s}a$ 0 0 0 221_sa 41_s^2a 0 0 131_sa 0 0 -31_s^2a 0 0 0 0 0 156a -221_sa 41_s^2a 0 0 0 131_sa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <t< th=""><th>156a 22k za 0 0 54a 0 0 -13i za 0 0 0 0 22L za 4L za 0 0 131 za 0 0 -31 za 0 0 0 0 0 0 0 156a -22L za 54a 0 0 -131 za 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>1560 221,sa 0 0 54a 0 0 $-131,sa$ 0 0 0 0 0 221,sa 41_{s}^2a 0 0 .131,sa 0 0 -31,sa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><th>156a 22x, a 0 0 54a 0 0 11, s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th></t<></th></th>	156a 22t sa 0 0 54a 0 $2Zt sa$ $4t sa^2$ 0 0 $13t sa$ 0 $2Zt sa$ $4t sa^2$ 0 0 $13t sa$ 0 0 0 $156a$ $-22t sa$ $54a$ 0 0 0 $-22t sa$ $4t sa^2$ $-13t sa$ 0 $54a$ $13t sa$ $54a$ $-13t sa$ $312a + 156b$ $22t eb$ 0 0 0 0 0 $22t eb$ $a t sa^2 b$ 0 0 0 0 0 $22t eb$ $a t sa^2 b$ 0 0 0 0 0 0 0 $-13t sa$ $-3t sa^2$ 0 0 0 0 0 $-13t sa^3$ $-3t sa^3$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <th>156a 221,sa 0 0 54a 0 0 $;221,sa$ 41_s^2a 0 0 $;131,sa$ 0 0 0 0 $155a$ $-221,sa$ $54a$ 0 0 0 0 $-221,sa$ 41_s^2a $-131,sa$ 0 0 54a $131,sa$ 54a $-131,sa$ 312a + 156b 221,eb 54b 0 0 0 0 0 221,eb 4_s^2b 131,eb 0 0 0 0 0 221,eb 4_s^2b 131,eb 0 0 0 0 0 221,eb 4_s^2b 131,eb 0 0 0 0 221,eb 4_s^2b 131,eb 1.31,sa -31_s^2a 131,sa -31_s^2a 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>156a 22$h_{s}a$ 0 0 54a 0 0 -13$h_{s}a$ 22$h_{s}a$ 4h_{s}^2a 0 0 13$h_{s}a$ 0 0 -3h_{s}^2a 0 0 156a -22$h_{s}a$ 54a 0 0 13$h_{s}a$ 0 0 -22$h_{s}a$ 4h_{s}^2a -13$h_{s}a$ 0 0 -3h_{s}^2a 54a 13$h_{s}a$ 54a -13$h_{s}a$ 312a + 156b 22$h_{e}b$ 54b 0 0 0 0 0 0 22$h_{e}b$ 4h_{e}^2b 13$h_{e}b$ 0 0 0 0 0 22$h_{e}b$ 4h_{e}^2b 13$h_{e}b$ 0 0 0 0 0 22$h_{e}b$ 4h_{e}^2b 13$h_{e}b$ 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 <</th> <th>156a 22$\lambda_{s}a$ 0 0 56a 0 0 $-12\lambda_{s}a$ 0 22$\lambda_{s}a$ 4λ_{s}^2a 0 0 13$\lambda_{s}a$ 0 0 $-3\lambda_{s}^2a$ 0 0 0 156a $-22\lambda_{s}a$ $54a$ 0 0 $-3\lambda_{s}^2a$ 0 0 0 $-22\lambda_{s}a$ $4\lambda_{s}^2a$ $-13\lambda_{s}a$ 0 0 $-3\lambda_{s}^2a$ 0 54a 13$\lambda_{s}a$ 54a $-13\lambda_{s}a$ 312a + 156b 22$\lambda_{e}b$ 54b 0 $-3\lambda_{s}^2a$ 0 0 0 0 0 22$\lambda_{e}b$ $4\lambda_{e}^2b$ 13$\lambda_{e}b$ 0 $-3\lambda_{e}^2b$ 0 0 0 0 22$\lambda_{e}b$ $4\lambda_{e}^2b$ 13$\lambda_{e}b$ 0 $-3\lambda_{e}^2b$ 0 0 0 0 22$\lambda_{e}b$ $4\lambda_{e}^2b$ 13$\lambda_{e}b$ 0 $-3\lambda_{e}^2b$ 0 0 0 0 0 0 0 0 0 0</th> <th>IS6a 22x,sa 0 0 54a 0 0 $-13i,sa$ 0 0 22x,aa 44xaa 0 0 131,aa 0 0 $-3i_s^2a$ 0 0 0 0 156a $-22t_sa$ 54a 0 0 $-3i_s^2a$ 0 0 0 0 $-22t_sa$ $4t_s^2a$ $-13t_sa$ 0 0 $-3i_s^2a$ 0 0 0 0 $-22t_sa$ $4t_s^2a$ $-13t_sa$ 0 0 $-3i_s^2a$ 0 0 54a 13t_sa 54a $-13t_sa$ 312a + 156b 22t_eb 54b 0 $-3t_s^2b$ 0 0 0 0 0 0 22t_eb $4t_e^2b$ 13t_eb 0 0 54b 0 0 54b 0 0 54b 0 0 0 54b 0 0 0 54b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th> <th>156a 221_sa 0 0 54a 0 0 $-131_{s}a$ 0 0 0 221_sa 41_s^2a 0 0 131_sa 0 0 -31_s^2a 0 0 0 0 0 156a -221_sa 41_s^2a 0 0 0 131_sa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <t< th=""><th>156a 22k za 0 0 54a 0 0 -13i za 0 0 0 0 22L za 4L za 0 0 131 za 0 0 -31 za 0 0 0 0 0 0 0 156a -22L za 54a 0 0 -131 za 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>1560 221,sa 0 0 54a 0 0 $-131,sa$ 0 0 0 0 0 221,sa 41_{s}^2a 0 0 .131,sa 0 0 -31,sa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><th>156a 22x, a 0 0 54a 0 0 11, s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th></t<></th>	156a 221,sa 0 0 54a 0 0 $;221,sa$ 41_s^2a 0 0 $;131,sa$ 0 0 0 0 $155a$ $-221,sa$ $54a$ 0 0 0 0 $-221,sa$ 41_s^2a $-131,sa$ 0 0 54a $131,sa$ 54a $-131,sa$ 312a + 156b 221,eb 54b 0 0 0 0 0 221,eb 4_s^2b 131,eb 0 0 0 0 0 221,eb 4_s^2b 131,eb 0 0 0 0 0 221,eb 4_s^2b 131,eb 0 0 0 0 221,eb 4_s^2b 131,eb 1.31,sa -31_s^2a 131,sa -31_s^2a 0 0 0 0 0 0 0 0 0 0 0 0 0 0	156a 22 $h_{s}a$ 0 0 54a 0 0 -13 $h_{s}a$ 22 $h_{s}a$ 4 h_{s}^2a 0 0 13 $h_{s}a$ 0 0 -3 h_{s}^2a 0 0 156a -22 $h_{s}a$ 54a 0 0 13 $h_{s}a$ 0 0 -22 $h_{s}a$ 4 h_{s}^2a -13 $h_{s}a$ 0 0 -3 h_{s}^2a 54a 13 $h_{s}a$ 54a -13 $h_{s}a$ 312a + 156b 22 $h_{e}b$ 54b 0 0 0 0 0 0 22 $h_{e}b$ 4 h_{e}^2b 13 $h_{e}b$ 0 0 0 0 0 22 $h_{e}b$ 4 h_{e}^2b 13 $h_{e}b$ 0 0 0 0 0 22 $h_{e}b$ 4 h_{e}^2b 13 $h_{e}b$ 0 0 0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0 0 <	156a 22 $\lambda_{s}a$ 0 0 56a 0 0 $-12\lambda_{s}a$ 0 22 $\lambda_{s}a$ 4 λ_{s}^2a 0 0 13 $\lambda_{s}a$ 0 0 $-3\lambda_{s}^2a$ 0 0 0 156a $-22\lambda_{s}a$ $54a$ 0 0 $-3\lambda_{s}^2a$ 0 0 0 $-22\lambda_{s}a$ $4\lambda_{s}^2a$ $-13\lambda_{s}a$ 0 0 $-3\lambda_{s}^2a$ 0 54a 13 $\lambda_{s}a$ 54a $-13\lambda_{s}a$ 312a + 156b 22 $\lambda_{e}b$ 54b 0 $-3\lambda_{s}^2a$ 0 0 0 0 0 22 $\lambda_{e}b$ $4\lambda_{e}^2b$ 13 $\lambda_{e}b$ 0 $-3\lambda_{e}^2b$ 0 0 0 0 22 $\lambda_{e}b$ $4\lambda_{e}^2b$ 13 $\lambda_{e}b$ 0 $-3\lambda_{e}^2b$ 0 0 0 0 22 $\lambda_{e}b$ $4\lambda_{e}^2b$ 13 $\lambda_{e}b$ 0 $-3\lambda_{e}^2b$ 0 0 0 0 0 0 0 0 0 0	IS6a 22x,sa 0 0 54a 0 0 $-13i,sa$ 0 0 22x,aa 44xaa 0 0 131,aa 0 0 $-3i_s^2a$ 0 0 0 0 156a $-22t_sa$ 54a 0 0 $-3i_s^2a$ 0 0 0 0 $-22t_sa$ $4t_s^2a$ $-13t_sa$ 0 0 $-3i_s^2a$ 0 0 0 0 $-22t_sa$ $4t_s^2a$ $-13t_sa$ 0 0 $-3i_s^2a$ 0 0 54a 13t_sa 54a $-13t_sa$ 312a + 156b 22t_eb 54b 0 $-3t_s^2b$ 0 0 0 0 0 0 22t_eb $4t_e^2b$ 13t_eb 0 0 54b 0 0 54b 0 0 54b 0 0 0 54b 0 0 0 54b 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	156a 221_sa 0 0 54a 0 0 $-131_{s}a$ 0 0 0 221_sa 41_s^2a 0 0 131_sa 0 0 -31_s^2a 0 0 0 0 0 156a -221_sa 41_s^2a 0 0 0 131_sa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <t< th=""><th>156a 22k za 0 0 54a 0 0 -13i za 0 0 0 0 22L za 4L za 0 0 131 za 0 0 -31 za 0 0 0 0 0 0 0 156a -22L za 54a 0 0 -131 za 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>1560 221,sa 0 0 54a 0 0 $-131,sa$ 0 0 0 0 0 221,sa 41_{s}^2a 0 0 .131,sa 0 0 -31,sa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th><th>156a 22x, a 0 0 54a 0 0 11, s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th></t<>	156a 22k za 0 0 54a 0 0 -13i za 0 0 0 0 22L za 4L za 0 0 131 za 0 0 -31 za 0 0 0 0 0 0 0 156a -22L za 54a 0 0 -131 za 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1560 221,sa 0 0 54a 0 0 $-131,sa$ 0 0 0 0 0 221,sa 41_{s}^2 a 0 0 .131,sa 0 0 -31,sa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	156a 22x, a 0 0 54a 0 0 11, s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

51

(3.46)

where
$$a = \frac{\rho_s L_s}{420}$$
 and $b = \frac{\rho_e L_e}{420}$.

(3.47)

T

3.2.4 The Lumped-Mass Matrix and System Mass Matrix

 M_{SC} accounts for the distributed mass for the flexible structure but not the lumped mass associated with the rigid bodies. Let M_{SD} be the lumped-mass matrix for the station excluding the payloads, then

$$M_{SD} = diag (0,0,0,0,0,0,M_4,I_{4vv},I_{4vv},0,0,0,0,0,0)$$
(3.48)

where M_4 , I_{4xx} , and I_{4yy} are the mass and moments of inertia of the core station defined in Fig. 10.

The total mass matrix, excluding payloads is,

$$M_{\rm S} = M_{\rm SC} + M_{\rm SD} \tag{3.49}$$

The corresponding dynamic equation due to mass and inertia is

$$\mathbf{F}_{S} = \mathbf{M}_{S} \ddot{\mathbf{z}}_{S} \tag{3.50}$$

3.2.5 Payload Dynamics and Hinge Torque Model

The dynamic model for the payloads (identified as bodies 8 and 9) and the hinge coordinates are shown in Fig. 17.

To include the payload dynamics and the dynamic interactions between the payloads and the station, the following expressions are obtained using the Lagrangian approach:

 $\gamma'_{8X} = \gamma_{8X} - \phi_4$ = HINGE ANGLE FOR "PAYLOAD 8" ABOUT X-AXIS $\gamma'_{8Y} = \gamma_{8Y} - \theta_4$ = HINGE ANGLE FOR "PAYLOAD 8" ABOUT Y-AXIS $\gamma'_{9X} = \gamma_{9X} - \phi_4$ = HINGE ANGLE FOR "PAYLOAD 9" ABOUT X-AXIS $\gamma'_{9Y} = \gamma_{9Y} - \theta_4$ = HINGE ANGLE FOR "PAYLOAD 9" ABOUT Y-AXIS

Figure 17 Payload Dynamics and Hinge Model

$$F_4 - (M_8 + M_9)\ddot{z}_4 + (M_8L_8 - M_9L_9)\ddot{\theta}_4 + M_8L_{8b}\ddot{\gamma}_{8y} - M_9L_{9b}\ddot{\gamma}_{9y}$$
 (3.51)

$$T_{4\theta} + (M_8L_8 - M_9L_9)\ddot{z}_4 - (I_{8ys} + M_8L_8^2 + I_{9ys} + M_9L_9^2)\ddot{\theta}_4 \qquad (3.52)$$

- (I_{8ys} + M_8L_{8a}L_{8b} + M_8L_{8b}^2)\ddot{\gamma}_{8y} - (I_{9ys} + M_9L_{9a}L_{9b} + M_9L_{9b}^2)\ddot{\gamma}_{9y}

$${}^{T}_{4\phi} - (I_{8xs} + I_{9xs})\ddot{\phi}_{4} - I_{8xs}\ddot{\gamma}_{8x} - I_{9xs}\ddot{\gamma}_{9x}$$
 (3.53)

Eqs. (3.51), (3.52) and (3.53) are used to replace F₄, T₄₀, and T_{4 ϕ} in Eq. (3.50).

The torques applied at the payload hinges are,

$$I_{8x} = I_{8xs}\dot{\phi}_4 + I_{8xs}\dot{Y}_{8x}$$
 (3.54)

$$I_{9x} = I_{9xs}\phi_4 + I_{9xs}\gamma_{9x}$$
 (3.55)

$$T_{8y} = -M_{8}L_{8b}Z_{4} + (I_{8ys} + M_{8}L_{8a}L_{8b} + M_{8}L_{8b})\theta_{4} + (I_{8ys} + M_{8}L_{8b})\gamma_{8y} (3.56)$$

$$T_{9y} = M_{9}L_{9b}Z_{4} + (I_{9ys} + M_{9}L_{9a}L_{9b} + M_{9}L_{9b}^{2})\theta_{4} + (I_{9ys} + M_{9}L_{9b}^{2})\theta_{9y} (3.57)$$

where γ_{8x} , γ_{8y} , γ_{9x} , and γ_{9y} are the hinge angles for payloads 8 and 9 about the X- and Y-axes.

The above equations are derived using the Lagrangian approach with more general assumptions and then linearized for small angles. The detailed derivation is shown in Appendix A.

3.2.6 Equations of Motion

Let $F_p = (T_{8x}, T_{9x}, T_{8y}, T_{9y})^T$ and $Z_p = (\gamma_{8x}, \gamma_{9x}, \gamma_{8y}, \gamma_{9y})^T$ be the payload forcing and displacement vectors, the corresponding vectors for the system can be partitioned as follows,

$$\mathbf{F} = \begin{bmatrix} -\frac{\mathbf{F}}{\mathbf{S}} \\ -\frac{\mathbf{S}}{\mathbf{F}} \\ \mathbf{F} \\ \mathbf{p} \end{bmatrix} \text{ and } \mathbf{Z} = \begin{bmatrix} \mathbf{Z} \\ -\frac{\mathbf{S}}{\mathbf{Z}} \\ \mathbf{Z} \\ \mathbf{p} \end{bmatrix}$$

The system mass matrix becomes,

$$M = M_{\rm C} + M_{\rm D}$$

where

 $M_{\rm C} = \begin{bmatrix} M_{\rm SC} & 1 & 0_{15x4} \\ - & - & - & - \\ 0_{4x15} & 0_{4x4} \end{bmatrix}$

and

 $M_{\rm SC}$ is defined in Eq. (3.46) and $M_{\rm SD}$ in Eq. (3.48), and $M_{\rm SD}^{'},~M_{\rm PD}^{'},$ $M_{\rm PSD}$ are,

(3.58)

(3.59)

(3.60)

$$M_{PD} = \begin{bmatrix} I_{8xS} & 0 & 0 & 0 \\ 0 & I_{9xS} & 0 & 0 \\ 0 & 0 & I_{8yS}^{+m} B^{L} B^{2} & 0 \\ 0 & 0 & 0 & I_{9yS}^{+m} 9^{L} 9^{2} \end{bmatrix}$$
(3.63)

$$M_{PSD} = \begin{bmatrix} 0 & 0 & I_{8xS} \\ 0 & 0 & I_{9xS} \\ 0_{4x6} & 0 & I_{9xS} \\ 0_{4x6} & 0 & I_{8yS}^{+m} 8^{L} 8$$

The system stiffness matrix is

$$K = \begin{bmatrix} K_{g} & | & 0_{15x4} \\ - & - & - & - \\ 0_{4x15} & | & 0_{4x4} \end{bmatrix}$$

where K_{g} is defined in Eq. (3.41).

The equation of motion is

$$MZ + KZ = F$$
 (3.66)

(3.65)

3.2.7 Modal Coordinates and Modal Properties

Let n(t), Λ , and ϕ be the modal amplitude vector, eigenvalue matrix, and normalized eigenvector matrix, respectively. Let $Z(t) = \phi n(t)$, substitute this into Eq. (3.66) and premultiply Eq. (3.66) by ϕ^{T} , then $\phi^{T}M\phi = I$ and $\phi^{T}K\phi = \Lambda$, one has the following dynamical equation in modal form,

$$\ddot{n} + \Lambda \eta = \phi^{\mathrm{T}} \mathbf{F}$$
 (3.67)

where $\Lambda = \text{diag} (\omega_1^2, \dots, \omega_{19}^2)$. Adding damping terms, Eq. (3.67) becomes,

$$h + \text{diag} (2\zeta_1 \omega_1, \dots, 2\zeta_{19} \omega_{19}) n + \text{diag}(\omega_1^2, \dots, \omega_{19}^2) n = \phi^T F$$
 (3.68)

The corresponding damped dynamical equation in physical coordinates can be obtained through transformation. Let D be the damping factor matrix, one has

$$D = \phi^{-T} \operatorname{diag} \left(2\zeta_1 \omega_1, \dots, 2\zeta_{19} \omega_{19} \right) \phi^{-1}$$
(3.69)

and the equation of motion becomes,

$$M\ddot{Z} + D\dot{Z} + KZ = F$$
 (3.70)

For the purpose of control, let B and C be the control influence matrix and measurement distribution matrix, respectively, the system equation in physical and modal coordinates are, respectively,
$$\begin{cases} \vec{wz} + \vec{Dz} + \vec{Kz} = Bu_{p} \\ y_{p} = C (\alpha Z_{p} + \dot{Z}_{p}) \end{cases}$$
(3.71)
(3.72)

and

$$\begin{cases} \ddot{n} + \text{diag} (2\zeta_1 \omega_1, \dots, 2\zeta_{19} \omega_{19}) \dot{n} + \text{diag} (\omega_1^2, \dots, \omega_{19}^2) n = \phi^T B u_p (3.73) \\ y_p = C(\alpha \phi n + \phi \dot{n}) \end{cases}$$
(3.74)

obtain modal properties, i.e., to determine То the the eigenvalues and eigenvectors, for the open-loop system, one can either free the hinges for the payloads or clamp them. For the latter case, a 15-DOF system results with 12 flexible modes and 3 rigid body modes. For the former case, however, a 19-DOF system results since the payloads are considered rigid bodies and the hinges are freed, it ends up with 4 additional rigid or zero frequency modes. Since this does not yield additional information, only the clamped-hinge case is considered in this dissertation.

The modal frequencies and mode shapes for the four-panel configuration with clamped-hinge case are shown in Fig. 18. These modes are divided into three groups. The first bending group consists of 6 modes with frequencies ranging from 0.115 Hz to 0.302 Hz. These modes are formed with the first symmetric or antisymmetric bending of the three major structures, i.e., the two solar panel pairs and the main structure. The second bending group is caused by

Figure 18 Continued

the second symmetric or the antisymmetric bending of the three major structures. The frequencies for this group are much higher than those of the first group, ranging from 1.67 Hz to 2.34 Hz. The third group consists of three rigid body modes with zero frequency.

The structural and mass parameters used for generating these modes are shown in Fig. 10. The flexural rigidity $(EI)_8 = 9.48 \times 10^6$ lb-ft² has been used for the solar panels and a value of an order of magnitude higher has been used for the main structure.

3.3 Frequency Characterization of Space Station Dynamical Systems

With the availability of these space station models, the frequency characteristics of the various dynamical systems in the space station environment are identified as shown in Fig. 19.

For a nominal orbital altitude of 400 km, the orbital period is 92.61 minutes or 1.8×10^{-4} Hz rate. For an altitude close to 400 km, the orbital rate will be inside the shaded narrow region in Fig. 19. The solar panel libration frequency for quasi-solar-inertial pointing [51] will be twice the orbital rate, as shown in Fig. 19. A low bandwidth attitude control system for the space station will have a bandwidth in the range of 0.001 Hz to 0.005 Hz. The two-panel low DOF model and the four-panel finite-element model are shown in Fig. 19 with their modeled frequencies identified by vertical lines. The dashed regions extending the modeled modes represent the modal spectra that are not included in the models. The payload attitude control systems for a range of applications will have bandwidth in a range centered at 1 Hz. The core body including the pressurized modules should have structural frequencies above 9 Hz. The figure

63

۰.

indicates that the spectral separations of the orbital rate, the attitude controllers, and the low frequency modes of the station structure are reasonable. However, the same cannot be said about the structural modes and the payload controls. For instance, the payload controller bandwidth falls between the modes of the first and the second bending groups. This result strongly suggests that decoupling control for the payload is required.

CHAPTER IV

PROBLEM FORMULATION

The space station, or the controlled plant can be represented by the following state space model:

$$\int \dot{x}_{p}(t) = A_{p} x_{p}(t) + B_{p} u_{p}(t)$$
(4.1)

$$(y_p(t) = C_p x_p(t))$$
(4.2)

where $x_p(t)$ is the N_p -dimensional plant states, $u_p(t)$ is the Mdimensional plant control inputs, and $y_p(t)$ is the M-dimensional plant outputs. Here it has been implicitly assumed that the number of inputs equals the number of outputs. Physically, control inputs are the forces and torques generated by actuators, such as thrusters, proof masses, Control Moment Gyros, and momentum wheels. The outputs are measurements such as linear and angular displacements and rates measured by accelerometers, rate and integration gyros, etc. A_p , B_p , C_p are the state, control influence, and measurement distribution matrices of appropriate dimensions. (A_p, B_p) is controllable and $(A_p,$ $C_p)$ is observable.

A reference model that serves as a performance measure is required. This model is chosen to be asymptotically stable and can be represented by the following equations:

$$\dot{x}_{m}(t) = A_{m} x_{m}(t) + B_{m} u_{m}(t)$$
 (4.3)
 $y_{m}(t) = C_{m} x_{m}(t)$ (4.4)

where $x_m(t)$ is the N_m -dimensional model states, $u_m(t)$ is the Mdimensional model commands, and $y_m(t)$ is the M-dimensional model outputs. A_m , B_m , C_m are matrices of appropriate dimensions.

Since the space station is infinitely dimensional while the dimension of the reference model has to be reasonably small for practical implementation, the following condition will be necessary for any adaptive algorithms for LSS (large space structures) or space stations:

$$N_{\rm p} \gg N_{\rm m}$$
 (4.5)

Define the output error between the plant and the model as

$$e_{v}(t) = y_{m}(t) - y_{n}(t)$$
 (4.6)

Since the reference model specifies the desired performance of the plant (space station), the objective is then, without assuming the complete knowledge of the plant, to design an adaptation mechanism to generate a suitable plant control input $u_p(t)$, so that the plant output tracks the model output asymptotically, i.e.,

$$\lim_{t \to \infty} e_y(t) = 0 \tag{4.7}$$

CHAPTER V

CONTROL ARCHITECTURE

5.1 Control Architecture for the Two-Panel Configuration

Referring to Fig. 6, the most rigid location on the station is its core on which inertial sensors, accelerometers and actuators are located. Control Moment Gyros (CMC's) are assumed and they are effective only for antisymmetric modes; the symmetric modes are controlled by the thrusters or proof masses. To gain controllability and compensate for vibrations of the large flexible panel structure, reaction wheels at the tips of the panels are postulated. Accelerometers and a target set of vibration sensors for relative attitude and rate measurements are also placed at the panel tips. Although the panel tips are far from ideal for locating hardware components, the choice is nil. For translational control, force actuators are required at the bus.

With the above control architectural design, the control input and output vectors are defined as follows:

$$u_{p} = \begin{bmatrix} u_{p1} \\ u_{p2} \\ u_{p3} \\ u_{p4} \end{bmatrix} = \begin{bmatrix} T_{1} \\ F_{2} \\ T_{2} \\ T_{3} \end{bmatrix} = \begin{bmatrix} control \ torque \ at \ central \ bus \\ control \ torque \ at \ central \ bus \\ control \ torque \ at \ right \ panel \ tip \end{bmatrix} (5.1)$$

and

$$y_{p} = \begin{bmatrix} y_{p1} \\ y_{p2} \\ y_{p3} \\ y_{p4} \end{bmatrix} = \begin{bmatrix} \alpha \theta_{p1} + \theta_{p1} \\ \alpha Z_{p2} + Z_{p2} \\ \alpha \theta_{p2} + \theta_{p2} \\ \alpha \theta_{p3} + \theta_{p3} \end{bmatrix}$$

(5.2)

In order to apply adaptive control techniques to this 6-DOF model, Eqs. (3.26a) and (3.26b), i.e., the plant equations, are written in state space form. Let n_p be the modal amplitude vector, and define the plant state vector x_p as,

$$\mathbf{x}_{\mathbf{p}} = \begin{bmatrix} -\frac{\mathbf{n}_{\mathbf{p}}}{\mathbf{n}_{\mathbf{p}}} \end{bmatrix}$$
(5.3)

we have

the corresponding A_p , B_p , and C_p matrices are

$$C_{p} = [\alpha C \phi_{p} \mid C \phi_{p}]$$
(5.8)

where ϕ_p is the mode shape (eigenvector) matrix for the plant, ω_{pk} and ζ_{pk} are the modal frequencies and damping ratios, respectively.

Based on the control input vector u_p given in Eq. (5.1), the control influence matrix B is given by

	0	0.	0	0	
B =	1	·0	0	0	
	0	1	0	0	
	0	0	1	0	
	0	0	0	0	
	0	0	0	1	

(5.9)

Since the sensors and actuators are colocated, we have, in Eqs. (5.7) and (5.8)

 $C = B^T$

(5.10)

5.2 Control Architecture for the Four-Panel Configuration

With a similar but more complicated control architectural design than that used for the two-panel configuration, the control input and output vectors for the four-panel configuration are defined as follows:

•	u _{pl}		T ₁₀		Y-torque at left south panel tip
	^u p2		т _{зө}		Y-torque at right south panel tip
	^u p3		F ₂		Z-force at the root of south panel
	u _{p4}		т _{2ф}		X-torque (bending) at the root of south panel
	^u p5		F4		Z-force at central bus
^u p =	^u p6	9	T ₄₀	=	Y-torque (twisting) at central bus
į	u _{p7}		Τ _{4φ}		X-torque (bending) at central bus
	^u p8		F ₆		2-force at the root of north panel
	up9		т _{6ф}		X-torque (bending) at the root of north panel
	^u p10		τ _{5θ}		Y-torque at left north panel tip
	^u p11		т _{7 Ө}		Y-torque at right north panel tip

and

	<u> </u>		
	y _{pl}		$\alpha \theta_{p1} + \theta_{p1}$
	у _{р2}		$\alpha \theta_{p3} + \dot{\theta}_{p3}$
	У _{р3.}		$\alpha z_{p2} + \dot{z}_{p2}$
н 1. 1. т. 1. т. т.	У _р 4		$a\phi_{p2} + \phi_{p2}$
	y _{p5}		$\alpha z_{p4} + \dot{z}_{p4}$
у _р =	у _{рб}	-	$\alpha \theta_{p4} + \dot{\theta}_{p4}$
	у _р 7		$\alpha \phi_{p4} + \dot{\phi}_{p4}$
	.y _{p8}		$\alpha z_{p6} + \dot{z}_{p6}$
	у _р 9		$\alpha \phi_{p6} + \phi_{p6}$
	У _{р10}		$\alpha \theta_{p5} + \dot{\theta}_{p5}$
	y _{p11}		$\alpha \theta_{p7} + \theta_{p7}$

(5.11)

(5.12)

11 sets of sensors and actuators are used at 7 locations. The problem becomes more involved now because of the more complicated

structure and the three-dimensional motion instead of plane motion only.

Again, for the application of adaptive control, state-space representations of Eqs. (3.73) and (3.74) are obtained. Let η_p be the modal amplitude vector, and define the plant state vector x_p as,

 $\mathbf{x}_{\mathbf{p}} = \begin{bmatrix} -\frac{\eta}{\mathbf{p}} \\ -\frac{\eta}{\mathbf{p}} \end{bmatrix}$ (5.13)

we have

the corresponding A_p , B_p , and C_p matrices are

(5.16)

$$B_{p} = \begin{bmatrix} 0 \\ - & - \\ \phi_{p}^{T} B \end{bmatrix}$$
(5.17)
$$C_{p} = [\alpha C \phi_{p} \quad C \phi_{p}]$$
(5.18)

where ϕ_p , ω_{pk} , and ζ_{pk} are the eigenvector matrix, modal frequencies and damping ratios, respectively, and the control influence matrix B is

	_											
	0	0	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	
	0	1	0	0	0	0	0	0	0	0	0	
	0	0	1	0	0	0	0	Ò	0	0	0	
	0	0	0	1	0	0.	0	0	0	0	0	
	0	0	0	0	1	0	0	0.	0	0	0	
B =	0	0	0	0	0	1	0	0	0	0	0	
	0	0	0	0	0	0	1	0	0	0	0	
	0	0	0	0	0	0	0	1	0	0	0	
	0	0	0	0	0	0	0	0	1	0	0	
	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	1	0	
	0	0	0	Ņ	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	1	

(5.19)

(5.20)

Again, the sensors and actuators are colocated, hence

$$C = B^{T}$$

in Eqs. (5.17) and (5.18).

CHAPTER VI

ADAPTIVE CONTROL ALGORITHM

The equations of the plant (space station) and the reference model are described in Eqs. (4.1)-(4.4), and are repeated below for convenience:

plant
$$\int \dot{x}_{p}(t) = A_{p} x_{p}(t) + B_{p} u_{p}(t)$$
 (6.1)

$$(y_p(t) = C_p x_p(t))$$
 (6.2)

model
$$\begin{cases} \dot{x}_{m}(t) = A_{m} x_{m}(t) + B_{m} u_{m}(t) \\ y_{m}(t) = C_{m} x_{m}(t) \end{cases}$$
 (6.3) (6.4)

The output error is

$$e_y(t) = y_m(t) - y_p(t)$$
 (6.5)

The objective is to find up such that

$$\lim_{t \to \infty} e_y(t) = 0 \tag{6.6}$$

with the requirement that dimension $N_p >> N_m$ and A_p , B_p , C_p are not completely known.

The adaptive control algorithm under consideration here is an extension of that developed in Ref. 42. Since the Command Generator Tracker theory [43] formed the basis of that algorithm, it is introduced first in the following.

6.1 The Command Generator Tracker Theory

The Command Generator Tracker (CGT) concept developed by Broussard is a type of model reference control. What makes it attractive is that it allows perfect model output tracking even though the plant and the model are not of the same order. The basic idea of CGT is to generate a plant input $u_p(t)$ as a linear combination of the model states $x_m(t)$, model inputs $u_m(t)$, and the output tracking error $e_v(t)$, i.e.,

$$u_p(t) = S_{21}x_m(t) + S_{22}u_m(t) + K_e e_v(t)$$
 (6.7)

so that the output tracking error asymptotically approaches zero. The gain matrices S_{21} and S_{22} are referred to as the CGT gains, and K_e is selected to stabilize $(A_p - B_p K_e C_p)$.

When $y_p(t) = y_m(t)$ (i.e., perfect tracking occurs), the corresponding plant state and control trajectories are called "ideal trajectories" and are denoted as $x_p^*(t)$ and $u_p^*(t)$, respectively. When $u_m(t)$ is constant⁺, $x_p^*(t)$ and $u_p^*(t)$ are assumed to be linearly related to the model command u_m and model state $x_m(t)$ as shown in the following equations:

$$\begin{bmatrix} \mathbf{x}_{p}^{*}(t) \\ \mathbf{u}_{p}^{*}(t) \end{bmatrix} = \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{m}(t) \\ \mathbf{u}_{m}(t) \end{bmatrix}$$
(6.8)

where S_{11} , S_{12} , S_{21} and S_{22} are matrices with appropriate dimensions. By definition, the ideal trajectory $x_p^*(t)$ is such that

+For the more general case, refer to Ref. 54.

$$y_p^*(t) = C_p x_p^*(t) = C_m x_m(t) = y_m(t)$$
 (6.9)

and

To find the CGT gains S_{21} and S_{22} , we first substitute Eq. (6.8) into Eq. (6.9). Thus,

$$C_p x_p^{*}(t) = C_p(S_{11} x_m(t) + S_{12} u_m) = C_m x_m$$
 (6.11)

Hence,

$$c_{p} s_{11} = c_{m}$$
 (6.12)
 $c_{p} s_{12} = 0$ (6.13)

Differentiating Eq. (6.8),

$$\dot{x}_{p}^{*}(t) = S_{11}\dot{x}_{m}(t) + S_{12}\dot{u}_{m} = S_{11}\dot{x}_{m}(t) = S_{11}(A_{m}x_{m}(t) + B_{m}u_{m})$$
(6.14)

and substituting Eq. (6.8) into Eq. (6.10)

and comparing Eqs. (6.14) and (6.15), we have

$$S_{11} A_m = A_p S_{11} + B_p S_{21}$$
 (6.16)

$$S_{11} B_m = A_p S_{12} + B_p S_{22}$$
 (6.17)

Rewriting Eqs. (6.12), (6.13), (6.16) and (6.17) in matrix form, we obtain

$$\begin{bmatrix} A_{p} & B_{p} \\ C_{p} & 0 \end{bmatrix} \begin{bmatrix} S_{11} & S_{12} \\ S_{12} & S_{22} \end{bmatrix} = \begin{bmatrix} S_{11}A_{m} & S_{11}B_{m} \\ C_{m} & 0 \end{bmatrix}$$
(6.18)

and then define

$$\begin{bmatrix} \Omega_{11} & \Omega_{12} \\ \Omega_{21} & \Omega_{22} \end{bmatrix} = \begin{bmatrix} A_p & B_p \\ C_p & 0 \end{bmatrix}^{-1}$$
(6.19)

The resulting CGT equations become

$$S_{11} = \Omega_{11}S_{11}A_m + \Omega_{12}C_m$$
 (6.20a)

$$S_{12} = \Omega_{11} S_{11} B_m$$
 (6.20b)

$$s_{21} = \Omega_{21} s_{11} A_m + \Omega_{22} C_m$$
 (6.20c)
 $s_{22} = \Omega_{21} s_{11} B_m$ (6.20d)

The so-called perfect model following (PMF) conditions are a special case of the CGT when the state vector is available and it is assumed that $x_p^{*}(t) = x_m(t)$. Since $x_p^{*}(t) = S_{11}x_m(t) + S_{12}u_m$, the PMF conditions imply that $S_{11} = I$ and $S_{12} = 0$. Also, since

$$\dot{x}_{p}^{*}(t) = \dot{x}_{m}(t)$$
 (6.21)

i.e.,

$$A_{p}x_{p}^{*}(t) + B_{p}u_{p}^{*}(t)$$

$$= A_{p} x_{m}(t) + B_{p}(S_{21} x_{m}(t) + S_{22} u_{m})$$

$$= (A_{p} + B_{p} S_{21}) x_{m}(t) + B_{p} S_{22} u_{m}$$

$$= A_{m} x_{m}(t) + B_{m} u_{m}$$
(6.22)

From Eq. (6.22), it is found that

 $B_p S_{21} = A_m - A_p$ (6.23a)

$$B_{p} S_{22} = B_{m}$$
 (6.23b)

If the CGT gains S_{21} and S_{22} which satisfy the PMF conditions (Eq. (6.23)) exist, a valid PMF controller then becomes

$$u_{p}(t) = u_{p}^{*}(t) + K(x_{m}(t) - x_{p}(t))$$
 (6.24)

where K is a stabilizing feedback gain.

Back to the general CGT, we define the state error as $e_x(t) = x_p^*(t) - x_p(t)$ and seek a controller which guarantees that $e_x(t) + 0$ as $t + \infty$. Because when $x_p(t) = x_p^*(t)$, we have $C_p x_p(t) = C_p x_p^*(t)$, hence

$$y_{p}(t) \stackrel{\Delta}{=} C_{p} x_{p}(t) = C_{p} x_{p}^{*}(t) \stackrel{\Delta}{=} C_{m} x_{m}(t) \stackrel{\Delta}{=} y_{m}(t)$$
(6.25)

and that is exactly the desired result we require.

With the error defined as $e_x(t) = x_p^*(t) - x_p(t)$, the error dynamics becomes

$$\dot{e}_{x}(t) = A_{p}x_{p}^{*}(t) + B_{p}u_{p}^{*}(t) - A_{p}x_{p}(t) - B_{p}u_{p}(t)$$
$$= A_{p}e_{x}(t) + B_{p}[u_{p}^{*}(t) - u_{p}(t)]$$
(6.26)

Note that

$$e_y(t) = y_m(t) - y_p(t) = C_p(x_p^*(t) - x_p(t)) = C_p e_x(t)$$
 (6.27)

Equation (6.26) will be used in the subsequent stability analysis.

The CGT concept stated above is, however, non-adaptive. The purpose of adaptive control is to eliminate the need for a priori knowledge of the plant that is required in CGT.

6.2 Direct Model Reference Adaptive Control

Based on the CGT concept, Sobel et al. [42] developed the following adaptive control law:

$$u_p(t) = K_e(t) e_y(t) + K_x(t) x_m(t) + K_u(t) u_m(t)$$
 (6.28)

or, let r(t) be a 2M + N_m vector defined as

$$r^{T}(t) = [e_{v}^{T}(t) x_{m}^{T}(t) u_{m}^{T}(t)]$$
 (6.29)

and K(t) be the M x $(2M+N_m)$ adaptive gain matrix defined as

$$K(t) = [K_{\rho}(t) K_{\chi}(t) K_{\eta}(t)]$$
(6.30)

Then

$$u_{n}(t) = K(t) r(t)$$
 (6.31)

where K(t) is a combination of two types of gains, i.e.,

$$K(t) = K_{p}(t) + K_{I}(t)$$
 (6.32)

and $K_p(t)$ is the direct gain, $K_I(t)$ is the integral gain defined as follows:

$$K_{p}(t) = e_{v}(t) r^{T}(t)T$$
 (6.33)

$$K_{I}(t) = e_{v}(t) r^{T}(t)T$$
 (6.34)

with

$$K_{I}(0) = K_{I0}$$
 (6.35)

where T and T are the $(2M+N_m) \times (2M+N_m)$ gain weighting matrices. K_{IO} is the initial integral gain. Note that $u_p(t)$ is highly nonlinear and its values are, in part, proportional to the cube of the output error $e_y(t) e_y^T(t) e_y(t)$.

The stability conditions of the adaptive controller are established via the Lyapunov direct method by considering a positive definite function given by

$$V(e_x, K_I) = e_x^{T}(t) P e_x(t) + Tr[S(K_I - \tilde{K})T^{-1}(K_I - \tilde{K})^T S^T]$$
 (6.36)

where

P is a $N_{\rm p} \ x \ N_{\rm p}$ positive definite symmetric matrix

 \tilde{K} is a M x (2M+N_m) dummy gain matrix

S is a M x M nonsingular matrix

Note that dummy gain matrix \tilde{K} does not appear in the control algorithm. It can be partitioned as $\tilde{K} = [\tilde{K}_e, \tilde{K}_x, \tilde{K}_u]$ so that

$$\widetilde{K} r(t) = \widetilde{K}_{e} C_{p} e_{x}(t) + \widetilde{K}_{x} x_{m}(t) + \widetilde{K}_{u} u_{m}$$
(6.37)

where \tilde{K}_e , \tilde{K}_x and \tilde{K}_u are, like \tilde{K} , dummy gains.

Introducing the control algorithm into the error equation given by Eq. (6.26), using Eqs. (6.31) to (6.33) and recalling from Eq. (6.8) that $u_p^*(t) = S_{21} x_m(t) + S_{22} u_m$, gives:

$$\dot{e}_{x}(t) = A_{p} e_{x}(t) + B_{p}[S_{21} x_{m}(t) + S_{22} u_{m} - K_{I}(t)r(t) - C_{p} e_{x}(t) r^{T}(t) \overline{T} r(t)]$$
 (6.38)

The time dependence of the variables is omitted in the sequel for brevity. Thus the adaptive system is described by

$$\dot{e}_{x} = A_{p}e_{x} + B_{p}[S_{21}x_{m} + S_{22}u_{m} - K_{I}r - C_{p}e_{x}r^{T}r]$$
 (6.39)

and

$$K_{I} = C_{p} e_{x} r^{T} T$$
 (6.40)

For the positive definite function given in Eq. (6.36), its time derivative is given by

$$\dot{\mathbf{V}} = \mathbf{e}_{\mathbf{X}}^{T} \mathbf{P} \dot{\mathbf{e}}_{\mathbf{X}} + \dot{\mathbf{e}}_{\mathbf{X}}^{T} \mathbf{P} \mathbf{e}_{\mathbf{X}} + 2 \operatorname{Tr}[S(K_{I} - \tilde{K})T^{-1} \dot{K}_{I}^{T}S^{T}]$$
(6.41)

Substituting Eqs. (6.39) and (6.40) into Eq. (6.41), we have

$$\dot{v} = e_{x}^{T} P[A_{p}e_{x} + B_{p}S_{21}x_{m} + B_{p}S_{22}u_{m} - B_{p}K_{I}r - B_{p}C_{p}e_{x}r^{T}r^{T}r] + [A_{p}e_{x} + B_{p}S_{21}x_{m} + B_{p}S_{22}u_{m} - B_{p}K_{I}r - B_{p}C_{p}e_{x}r^{T}r^{T}r]^{T}Pe_{x} + 2 e_{x}^{T} C_{p}^{T} S^{T} S(K_{I} - \tilde{K})r = e_{x}^{T}(PA_{p} + A_{p}^{T}P)e_{x} - e_{x}^{T}(PB_{p}C_{p} + C_{p}^{T}B_{p}^{T}P)e_{x}r^{T}r - 2 e_{x}^{T}PB_{p} K_{I}r + 2e_{x}^{T}PB_{p}(S_{21}x_{m} + S_{22}u_{m}) + 2 e_{x}^{T} C_{p}^{T} S^{T} S(K_{I} - \tilde{K})r = e_{x}^{T}(PA_{p} + A_{p}^{T}P)e_{x} - e_{x}^{T}(PB_{p}C_{p} + C_{p}^{T}B_{p}^{T}P)e_{x}r^{T}r - 2 e_{x}^{T}[C_{p}^{T} S^{T} S(K_{I} - \tilde{K})r = e_{x}^{T}(PA_{p} + A_{p}^{T}P)e_{x} - e_{x}^{T}(PB_{p}C_{p} + C_{p}^{T}B_{p}^{T}P)e_{x}r^{T}r - 2 e_{x}^{T}[C_{p}^{T} S^{T} S - PB_{p}]K_{I}r - 2 e_{x}^{T} C_{p}^{T} S^{T} S \tilde{K} r + 2 e_{x}^{T} P B_{p}(S_{21}x_{m} + S_{22}u_{m})$$
(6.42)

Choosing C_p such that $C_p^T S^T S = P B_p$, Eq. (6.42) becomes

$$\vec{v} = e_x^T (PA_p + A_p^T P)e_x - 2 e_x^T PB_p (S^T S)^{-1} B_p^T P e_x r^T \bar{T} r$$

- 2 $e_x^T C_p^T S^T S \tilde{K} r + 2 e_x^T PB_p (S_{21}x_m + S_{22}u_m)$ (6.43)

Substituting Eq. (6.37) into Eq. (6.43), we obtain

$$\dot{\mathbf{V}} = \mathbf{e_x}^{T} [P(\mathbf{A_p} - \mathbf{B_p} \widetilde{\mathbf{K}_e} \mathbf{C_p}) + (\mathbf{A_p} - \mathbf{B_p} \widetilde{\mathbf{K}_e} \mathbf{C_p})^{T_p}] \mathbf{e_x}$$

- 2 $\mathbf{e_x}^{T_p} \mathbf{B_p} (\mathbf{S}^{T_s})^{-1} \mathbf{B_p}^{T_p} \mathbf{P} \mathbf{e_x} \mathbf{r}^{T_s} \mathbf{\bar{T}} \mathbf{r}$
+ 2 $\mathbf{e_x}^{T_s} \mathbf{P} \mathbf{B_p} [(\mathbf{S}_{21} - \widetilde{\mathbf{K}_x}) \mathbf{x_m} + (\mathbf{S}_{22} - \widetilde{\mathbf{K}_u}) \mathbf{u_m}]$ (6.44)

with the choice $\tilde{K}_x = S_{21}$ and $\tilde{K}_u = S_{22}$, Eq. (6.44) reduces to

$$\dot{V} = e_{x}^{T} [P(A_{p} - B_{p}\tilde{K}_{e}C_{p}) + (A_{p} - B_{p}\tilde{K}_{e}C_{p})^{T}P]e_{x}$$

- 2 $e_{x}^{T}PB_{p}(S^{T}S)^{-1}B_{p}^{T}Pe_{x}r^{T}\bar{T}r$ (6.45)

Let
$$Q = -P(A_p - B_p \tilde{K}_e C_p) - (A_p - B_p \tilde{K}_e C_p)^T P$$
 (6.46)

Eq. (6.45) becomes

$$\dot{V} = -e_x^T Q e_x - 2 e_x^T P B_p (S^T S)^{-1} B_p^T P e_x r^T \bar{T} r$$
 (6.47)

If \overline{T} is chosen to be positive semidefinite, the second term in Eq. (6.47) will be negative semidefinite in e_x . Then we choose P such that for some \widetilde{K}_e , Q is positive definite. Consequently, \check{V} is negative definite in e_x , and V is a Lyapunov function for establishing the asymptotic stability of the zero state of Eqs. (6.39) and (6.40).

To summarize, a sufficient condition for asymptotic stability is

- (1) T is positive definite
- (2) T is positive semidefinite
- (3) P $B_p = C_p^T(S^TS)$
- (4) P is chosen such that $P(A_p B_p \stackrel{\sim}{K_e} C_p) + (A_p B_p \stackrel{\sim}{K_e} C_p)^{T_p}$ is negative definite for some $\stackrel{\sim}{K_p}$.

Under the above conditions, the plant output will asymptotically track the model output. Furthermore, since the derivative of V is negative semidefinite in the augmented state $[e_x(t), K_I(t)]$, the adaptive gains will be bounded.

It should be noted that conditions (3) and (4) together are equivalent to requiring that the plant transfer matrix $Z(s) = C_p(sI-A_p + B_p \stackrel{\sim}{K_e} C_p)^{-1} B_p$ be strictly positive real for some feedback gain matrix $\stackrel{\sim}{K_e}$. For the definition of positive realness and strictly positive realness of matrices, see Appendix B.

6.3 Instability Problem Caused by Rigid Body Modes

It is well-known that the zero frequency rigid body modes are unstable modes. Simulation results show that this adaptive control algorithm fails to stabilize these modes and yield stable states or outputs. These problems may be verified analytically. They are treated as critical cases of stability problems for autonomous differential equations developed in Ref. 52. Let

$$x = Ax + g(x)$$

(6.48)

be the given differential equation, where Ax represents the linear part and g(x) the nonlinear part. The real parts of the eigenvalues of A are assumed to be nonpositive. The critical case refers to the situation where some of the eigenvalues have zero real parts. If the matrix A has a double zero eigenvalue and if the reduced equation can be written in the form

 $\dot{\omega}_1 = \omega_2 + g(\omega_1, \omega_2)$ (6.49)

$$\hat{\omega}_{2} = a \omega_{1}^{\gamma} + a' \omega_{1}^{\gamma+1} + \dots + \omega_{2} (b \omega_{1}^{\delta} + b' \omega_{1}^{\delta+1} + \dots) + \omega_{2}^{2} h(\omega_{1}, \omega_{2})$$
(6.50)

(where g is at least of second order, γ and δ are positive integers), then we have the following sufficient conditions for instability due to Lyapunov [53].

The equilibrium is unstable, if one of the following conditions is satisfied:

(1) γ even;
(2) γ odd, a>0;
(3) γ odd, a<0, δ even, γ ≥ δ + 1, b>0;
(4) γ odd, a<0, δ odd, γ ≥ 2δ + 2;
(5) γ odd, a<0, δ odd, γ = 2δ + 1, b²+4(δ+1)γ ≥ 0;
(6) the equation for w₂ contains only the term h(w₁, w₂).

To apply the above criteria to our case, the system equations are rewritten in the form of Eqs. (6.49) and (6.50) by defining

$$J = \begin{bmatrix} C_m & -C_p \end{bmatrix}$$
(6.51)
$$\hat{x} = \begin{bmatrix} x_m \\ x_p \end{bmatrix}$$
(6.52)

Then

$$e_y = C_m x_m - C_p x_p = J \hat{x}$$
 (6.53)

since

(6.55)

(6.54)

Hence

$$\mathbf{r}^{T} \ \mathbf{\bar{T}r} = \mathbf{e_{y}}^{T} \ \mathbf{\bar{T}}_{ey} \ \mathbf{e_{y}} + \mathbf{x_{m}}^{T} \ \mathbf{\bar{T}}_{xm} \ \mathbf{x_{m}} + \mathbf{u_{m}}^{T} \ \mathbf{\bar{T}}_{um} \ \mathbf{u_{m}}$$
$$= \mathbf{\hat{x}}^{T} \mathbf{J}^{T} \ \mathbf{\bar{T}}_{ey} \ \mathbf{J}\mathbf{\hat{x}} + \mathbf{x_{m}}^{T} \ \mathbf{\bar{T}}_{xm} \ \mathbf{x_{m}} + C \ (\text{constant}) \qquad (6.56)$$

Therefore the system equations (6.1) and (6.3) can be rewritten as,

$$\dot{\hat{\mathbf{x}}} = \begin{bmatrix} \dot{\mathbf{x}}_{m} \\ \dot{\mathbf{x}}_{p} \end{bmatrix} = \begin{bmatrix} A_{m} & 0 \\ 0 & A_{p} \end{bmatrix} \hat{\mathbf{x}} + \begin{bmatrix} B_{m} u_{m} \\ B_{p} J \hat{\mathbf{x}} & (\hat{\mathbf{x}}^{T} J^{T} \ \overline{T}_{ey} \ J \hat{\mathbf{x}} + \mathbf{x}_{m}^{T} \ \overline{T}_{xm} \mathbf{x}_{m} + \mathbf{C}) \end{bmatrix} + \begin{bmatrix} 0 \\ B_{p} K_{I} \mathbf{r} \end{bmatrix}$$
(6.57)

 $\dot{K}_{I} = e_{y} r^{T} T \qquad (6.58)$

As stated in Chapter VII, in the present study, we concentrate on the space station attitude hold only, i.e., $u_m = 0$. In this special case, the corresponding ω_1 's are x_{pi} (modal amplitudes) and ω_2 's are \dot{x}_{pi} (modal amplitude rates), respectively. For a certain mode, its corresponding block in matrix A is

0	1]
-2ζ _i ω _i	ω ² 1

Hence for rigid body modes, it becomes $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ which is exactly the form represented by Eqs. (6.49) and (6.50). Taking the 6-DOF model as an example, it is found through tedious expansion that $\gamma = 3$, and a < 0; hence, the possibilities of satisfying condition 1 or 2 are excluded. One of the remaining conditions may still be satisfied although the expansion will be extremely tedious and is not done here. Note that the above conditions are sufficient conditions;

therefore, the equilibrium state of the system may still be unstable even though none of them are satisfied.

If u_m is equal to some constant instead of zero, the analysis of stability will be different. Since the term $B_p J\hat{x}C$ in Eq. (6.57) is linear in x_p , it should be added to A_p . This changes the corresponding matrix A in Eq. (6.48) and its eigenvalues. The zero frequency modes would disappear, and the stability of the system will be entirely determined by the eigenvalues of matrix A. If any of them has a positive real part, instability of the system can be concluded immediately.

6.4 Plant Augmentation

To solve this unstable rigid body modes problem, a method referred to as plant augmentation is proposed. The plant augmentation is accomplished by introducing an inner control loop in the plant.

Consider the equation of motion (Eq. (3.18) or (3.66)) before the damping term is added,

 $MZ_{p} + KZ_{p} = Bu_{p}$ (6.59)

After the inner loop is introduced, the above equation becomes

 $MZ_{p}^{*} + KZ_{p} = Bu_{p} - K_{IL} Z_{p}$ (6.60)

where K_{IL} is the inner loop control gain matrix. By rewriting Eq. (6.60) as follows,

$$MZ_{p} + (K + K_{IL})Z_{p} = Bu_{p}$$
 (6.61)

one can see that the modal characteristics of the plant have been altered due to K_{IL} . By choosing the values and structure of K_{IL} , the rigid body modes will no longer have zero frequencies. As a result of this plant characteristic change, a stable adaptive control system can be realized. It is important to note that to design such an inner loop, one does not require accurate knowledge of the plant. This is because the inner loop controller can be made very robust by choosing the loop only at the location where the controllability is the highest for the rigid body modes. Furthermore, the exact values of the augmented rigid mode frequencies are not important and what is important is that they are different from zero. Looking from another point of view, the stability of the adaptive system has been improved by the highly robust inner control loop.

Taking the two-panel configuration as an example, the inner loop gain K_{II} is chosen to have the following form:

$$K_{TL} = diag(0, 0, K_{22}, K_{\theta 2}, 0, 0)$$
 (6.62)

This selection is based on the fact that the rigid body modes are largely determined by the core body of the space station. To determine $K_{2,2}$, we refer to the following block diagram:

Since the transfer function H can be written as

$$H = \frac{1}{M_2 S^2 + K_{Z2}}$$
(6.63)

the natural frequency $\omega_{\rm Z2}$ for the rigid body translational mode can then be estimated as,

$$\omega_{Z2} \simeq \sqrt{\frac{K_{Z2}}{M_2}} \tag{6.64}$$

Similarly, the natural frequency $\omega_{\theta 2}$ for the rigid body rotational mode is

$$\omega_{\theta 2} = \sqrt{\frac{K_{\theta 2}}{I_2}}$$
(6.65)

Hence, the selection of $\omega_{\rm Z2}$ and $\omega_{\theta2}$ determines the values of $K_{\rm Z2}$ and $K_{\theta2}.$

Extending the above approach to the four-panel configuration is straightforward. K_{IL} is now of the form:

$$K_{IL} = diag(0, 0, 0, 0, 0, 0, 0, K_{Z4}, K_{\theta 4}, K_{\phi 4}, 0, 0, 0, 0, 0, 0)$$
(6.66)

Including the effects of payloads, the natural frequencies of the rigid body modes are estimated as follows,

$$\omega_{Z4} \approx \sqrt{\frac{K_{Z4}}{M_4 + M_8 + M_9}}$$
 (6.67)

$$\omega_{04} \approx \sqrt{\frac{\kappa_{04}}{I_{4yy} + M_8 L_8^2 + M_9 L_9^2 + I_{8ys} + I_{9ys}}}$$
(6.68)

$$\omega_{\phi 4} \cong \sqrt{\frac{K_{\phi 4}}{I_{4xx} + I_{8xs} + I_{9xs}}}$$
(6.69)

Again the selection of ω_{Z4} , $\omega_{\theta4}$ and $\omega_{\phi4}$ determines the values of K_{Z4} , $K_{\theta4}$, and $K_{\phi4}$, respectively.

With the inner loop introduced, the space station adaptive control system block diagram is shown in Fig. 20.

6.5 Sufficient Conditions for Global Asymptotic Stability

After solving the problem of zero frequency rigid body modes via plant augmentation, we need to find sufficient conditions that will make the space station adaptive control system globally asymptotically stable. Referring to Section 6.2, we have to select a positive definite P satisfying $PB_p = C_p^T(S^TS)$, and for which $Q = -P(A_p-B_p \ \tilde{K}_e \ C_p)-(A_p-B_p \ \tilde{K}_e \ C_p)^TP$ is positive definite for some $\ \tilde{K}_e$.

Figure 20 Space Station Adaptive Control System Block Diagram

Before deriving the sufficient conditions for globally asymptotic stability, we consider first the characteristic equation of a symmetric matrix for determining its eigenvalues.

Let W be a symmetric matrix having the following partitioned form:

$$W = \begin{bmatrix} \Lambda_1 & \Lambda_3 \\ \Lambda_3 & \Lambda_2 \end{bmatrix}$$
(6.70)

Let λ be an eigenvalue of W. Then

$$\begin{bmatrix} \Lambda_1 & \Lambda_3 \\ \Lambda_3 & \Lambda_2 \end{bmatrix} \begin{bmatrix} \nu_1 \\ \nu_2 \end{bmatrix} = \lambda \begin{bmatrix} \nu_1 \\ \nu_2 \end{bmatrix}$$
(6.71)

where $\begin{bmatrix} v_1 & v_2 \end{bmatrix}^T$ is an eigenvector of W corresponding to λ , i.e.,

$$\Lambda_{1}\nu_{1} + \Lambda_{3}\nu_{2} = \lambda \nu_{1}$$

$$\Lambda_{3}\nu_{1} + \Lambda_{2}\nu_{2} = \lambda \nu_{2}$$
(6.72)
(6.73)

From Eq. (6.73)

$$\Lambda_3 v_1 = (\lambda I - \Lambda_2) v_2$$
 (6.74)

Hence

$$v_1 = \Lambda_3^{-1} (\lambda I - \Lambda_2) v_2$$

(6.75)

Substituting Eq. (6.75) into Eq. (6.72), we have

$$\Lambda_{3} v_{2} = (\lambda I - \Lambda_{1})v_{1}$$
$$= (\lambda I - \Lambda_{1})\Lambda_{3}^{-1} (\lambda I - \Lambda_{2})v_{2}$$
(6.76)

i.e.,

$$[\Lambda_{3} - (\lambda I - \Lambda_{1})\Lambda_{3}^{-1} (\lambda I - \Lambda_{2})]\nu_{2} = 0$$
 (6.77)

Define the matrix inside the brackets in Eq. (6.77) as $\tilde{\Lambda}_{,i.e.,}$

$$\tilde{\Lambda} = \Lambda_3 - (\lambda I - \Lambda_1) \Lambda_3^{-1} (\lambda I - \Lambda_2)$$
(6.78)

Since Λ is a diagonal matrix, in order to have a nontrivial solution v_2 , at least one element of $\tilde{\Lambda}$ must be zero.

Expanding Eq. (6.78), we have

$$\widetilde{\Lambda} = \lambda^2 \Lambda_3^{-1} - \lambda \Lambda_3^{-1} (\Lambda_1 + \Lambda_2) + (\Lambda_3^{-1} \Lambda_1 \Lambda_2 - \Lambda_3)$$
(6.79)

To find the first set of sufficient conditions, let

$$P = \begin{bmatrix} I & \alpha I \\ \alpha I & I \end{bmatrix}$$
(6.80)
$$S^{T}S = I$$
(6.81)

$$\widetilde{\mathbf{K}}_{\mathbf{e}} = \mathbf{K}_{1}^{\mathrm{T}} \mathbf{K}_{1}$$
(6.82)

•
then

$$PB_{p} = \begin{bmatrix} I & \alpha I \\ \alpha I & I \end{bmatrix} \begin{bmatrix} 0 \\ \phi_{p}^{T}B \end{bmatrix} = \begin{bmatrix} I & \alpha I \\ \alpha I & I \end{bmatrix} \begin{bmatrix} 0 \\ \phi_{p}^{T}C^{T} \end{bmatrix}$$
$$= \begin{bmatrix} \alpha \phi_{p}^{T}C^{T} \\ \phi_{p}^{T}C^{T} \end{bmatrix} = C_{p}^{T}$$
(6.83)

and the condition $PB_p = C_p^T(S^TS)$ is satisfied.

Since P is required to be positive definite, all of its eigenvalues must be positive. Referring to Eqs. (6.70) and (6.80), the corresponding Λ_1 , Λ_2 and Λ_3 here are

$$\Lambda_1 = I$$
 (6.84)
 $\Lambda_2 = I$ (6.85)

$$\Lambda_3 = \alpha I \tag{6.86}$$

In view of Eq. (6.79), we have

$$\tilde{\Lambda} = \frac{\lambda^2}{\alpha} I - \frac{\lambda}{\alpha} (2I) + (\frac{1}{\alpha} I - \alpha I)$$
(6.87)

or

$$\widetilde{\Lambda} = \lambda^2 I - 2\lambda I + (I - \alpha^2 I)$$
(6.88)

Hence a typical pair of eigenvalues are found by

$$\lambda^{2} - 2\lambda + (1 - \alpha^{2}) = 0$$
 (6.89)

The roots of Eq. (6.89) are given by

 $\lambda_{1,2} = \frac{2 \pm \sqrt{4 - 4(1 - \alpha^2)}}{2} = 1 \pm \alpha$ (6.90)

Note that $\alpha > 0$, hence

$$\lambda_1 = 1 + \alpha > 0$$

For $\lambda_2 = 1 - \alpha > 0$, we require

α < 1

(6.92)

(6.91)

Referring to Eq. (5.6) or (5.16), we define

(6.93)

and assume the same damping for all modes,

 $\zeta = \zeta_1 = \zeta_2 = \cdots = \zeta_{Np}$

(6.94)

Then the matrix \boldsymbol{A}_p can be written as

$$A_{p} = \begin{bmatrix} 0 & I \\ -\Lambda & -2\zeta \Lambda^{1/2} \end{bmatrix}$$
(6.95)

Substituting P, A_p , B_p , C_p and $\overset{\sim}{K_e}$ into the equation for Q,

 $Q = -P(A_p - B_p \tilde{K}_e C_p) - (A_p - B_p \tilde{K}_e C_p)^T P$

$$= -\begin{bmatrix} \mathbf{I} & \alpha \mathbf{I} \\ \alpha \mathbf{I} & \mathbf{I} \end{bmatrix} \left(\begin{bmatrix} 0 & \mathbf{I} \\ -\Lambda & -2\zeta\Lambda^{1/2} \end{bmatrix} - \begin{bmatrix} 0 \\ \phi_{\mathbf{p}}^{\mathsf{T}}\mathbf{C}^{\mathsf{T}} \end{bmatrix} \mathbf{K}_{1}^{\mathsf{T}}\mathbf{K}_{1} \begin{bmatrix} \alpha C\phi_{\mathbf{p}} & C\phi_{\mathbf{p}} \end{bmatrix} \right)^{\mathsf{T}} \begin{bmatrix} \mathbf{I} & \alpha \mathbf{I} \\ \alpha \mathbf{I} & \mathbf{I} \end{bmatrix} \\ - \left(\begin{bmatrix} 0 & \mathbf{I} \\ -\Lambda & -2\zeta\Lambda^{1/2} \end{bmatrix} - \begin{bmatrix} 0 \\ \phi_{\mathbf{p}}^{\mathsf{T}}\mathbf{C}^{\mathsf{T}} \end{bmatrix} \mathbf{K}_{1}^{\mathsf{T}}\mathbf{K}_{1} \begin{bmatrix} \alpha C\phi_{\mathbf{p}} & C\phi_{\mathbf{p}} \end{bmatrix} \right)^{\mathsf{T}} \begin{bmatrix} \mathbf{I} & \alpha \mathbf{I} \\ \alpha \mathbf{I} & \mathbf{I} \end{bmatrix} \\ = -\begin{bmatrix} \mathbf{I} & \alpha \mathbf{I} \\ \alpha \mathbf{I} & \mathbf{I} \end{bmatrix} \left(\begin{bmatrix} 0 & \mathbf{I} \\ -\Lambda & -2\zeta\Lambda^{1/2} \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ \alpha\phi_{\mathbf{p}}^{\mathsf{T}}\mathbf{C}^{\mathsf{T}}\mathbf{K}_{1}^{\mathsf{T}}\mathbf{K}_{1}\mathbf{C}\phi_{\mathbf{p}} & \phi_{\mathbf{p}}^{\mathsf{T}}\mathbf{C}^{\mathsf{T}}\mathbf{K}_{1}^{\mathsf{T}}\mathbf{K}_{1}\mathbf{C}\phi_{\mathbf{p}} \end{bmatrix} \right) \\ - \left(\begin{bmatrix} 0 & \mathbf{I} \\ -\Lambda & -2\zeta\Lambda^{1/2} \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ \alpha\phi_{\mathbf{p}}^{\mathsf{T}}\mathbf{C}^{\mathsf{T}}\mathbf{K}_{1}^{\mathsf{T}}\mathbf{K}_{1}\mathbf{C}\phi_{\mathbf{p}} & \phi_{\mathbf{p}}^{\mathsf{T}}\mathbf{C}^{\mathsf{T}}\mathbf{K}_{1}^{\mathsf{T}}\mathbf{K}_{1}\mathbf{C}\phi_{\mathbf{p}} \end{bmatrix} \right)^{\mathsf{T}} \begin{bmatrix} \mathbf{I} & \alpha \mathbf{I} \\ \alpha \mathbf{I} & \mathbf{I} \end{bmatrix} \\ = -\begin{bmatrix} \mathbf{I} & \alpha \mathbf{I} \\ \alpha \mathbf{I} & \mathbf{I} \end{bmatrix} \begin{bmatrix} 0 & \mathbf{I} \\ -\Lambda - \alpha\phi_{\mathbf{p}}^{\mathsf{T}}\mathbf{C}^{\mathsf{T}}\mathbf{K}_{1}^{\mathsf{T}}\mathbf{K}_{1}\mathbf{C}\phi_{\mathbf{p}} & -2\zeta\Lambda^{1/2} - \phi_{\mathbf{p}}^{\mathsf{T}}\mathbf{C}^{\mathsf{T}}\mathbf{K}_{1}^{\mathsf{T}}\mathbf{K}_{1}\mathbf{C}\phi_{\mathbf{p}} \end{bmatrix} \\ - \begin{bmatrix} 0 & -\Lambda - \alpha\phi_{\mathbf{p}}^{\mathsf{T}}\mathbf{C}^{\mathsf{T}}\mathbf{K}_{1}^{\mathsf{T}}\mathbf{K}_{1}\mathbf{C}\phi_{\mathbf{p}} \\ \mathbf{I} & -2\zeta\Lambda^{1/2} - \phi_{\mathbf{p}}^{\mathsf{T}}\mathbf{C}^{\mathsf{T}}\mathbf{K}_{1}^{\mathsf{T}}\mathbf{K}_{1}\mathbf{C}\phi_{\mathbf{p}} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \alpha \mathbf{I} \\ \alpha \mathbf{I} & \mathbf{I} \end{bmatrix}$$

$$= -\begin{bmatrix} -\alpha \Lambda - \alpha^{2} \phi_{p}^{T} c^{T} \kappa_{1}^{T} \kappa_{1} c \phi_{p} & I - 2\alpha \zeta \Lambda^{1/2} - \alpha \phi_{p}^{T} c^{T} \kappa_{1}^{T} \kappa_{1} c \phi_{p} \\ -\Lambda - \alpha \phi_{p}^{T} c^{T} \kappa_{1}^{T} \kappa_{1} c \phi_{p} & \alpha I - 2\zeta \Lambda^{1/2} - \phi_{p}^{T} c^{T} \kappa_{1}^{T} \kappa_{1} c \phi_{p} \end{bmatrix}$$

$$= \begin{bmatrix} -\alpha \Lambda - \alpha^{2} \phi_{p}^{T} c^{T} \kappa_{1}^{T} \kappa_{1} c \phi_{p} & -\Lambda - \alpha \phi_{p}^{T} c^{T} \kappa_{1}^{T} \kappa_{1} c \phi_{p} \\ I - 2\alpha \zeta \Lambda^{1/2} - \alpha \phi_{p}^{T} c^{T} \kappa_{1}^{T} \kappa_{1} c \phi_{p} & \alpha I - 2\zeta \Lambda^{1/2} - \phi_{p}^{T} c^{T} \kappa_{1}^{T} \kappa_{1} c \phi_{p} \end{bmatrix}$$

$$= \begin{bmatrix} \alpha \Lambda + \alpha^{2} \phi_{p}^{T} c^{T} \kappa_{1}^{T} \kappa_{1} c \phi_{p} & -I + 2\alpha \zeta \Lambda^{1/2} + \alpha \phi_{p}^{T} c^{T} \kappa_{1}^{T} \kappa_{1} c \phi_{p} \\ \Lambda + \alpha \phi_{p}^{T} c^{T} \kappa_{1}^{T} \kappa_{1} c \phi_{p} & -\alpha I + 2\zeta \Lambda^{1/2} + \alpha \phi_{p}^{T} c^{T} \kappa_{1}^{T} \kappa_{1} c \phi_{p} \end{bmatrix}$$

$$+ \begin{bmatrix} \alpha \Lambda + \alpha^{2} \phi_{p}^{T} c^{T} \kappa_{1}^{T} \kappa_{1} c \phi_{p} & -\alpha I + 2\zeta \Lambda^{1/2} + \phi_{p}^{T} c^{T} \kappa_{1}^{T} \kappa_{1} c \phi_{p} \\ -I + 2\alpha \zeta \Lambda^{1/2} + \alpha \phi_{p}^{T} c^{T} \kappa_{1}^{T} \kappa_{1} c \phi_{p} & -\alpha I + 2\zeta \Lambda^{1/2} + \phi_{p}^{T} c^{T} \kappa_{1}^{T} \kappa_{1} c \phi_{p} \end{bmatrix}$$

$$= \begin{bmatrix} 2\alpha \Lambda & \Lambda - I + 2\alpha \zeta \Lambda^{1/2} \\ \Lambda - I + 2\alpha \zeta \Lambda^{1/2} & -2\alpha I + 4\zeta \Lambda^{1/2} \end{bmatrix} + 2 \begin{bmatrix} \alpha^{2} \phi_{p}^{T} c^{T} \kappa_{1}^{T} \kappa_{1} c \phi_{p} & \alpha \phi_{p}^{T} c^{T} \kappa_{1}^{T} \kappa_{1} c \phi_{p} \\ \alpha \phi_{p}^{T} c^{T} \kappa_{1}^{T} \kappa_{1} c \phi_{p} & \phi_{p}^{T} c^{T} \kappa_{1}^{T} \kappa_{1} c \phi_{p} \end{bmatrix}$$

$$= \begin{bmatrix} 2\alpha \Lambda & \Lambda - I + 2\alpha \zeta \Lambda^{1/2} \\ \Lambda - I + 2\alpha \zeta \Lambda^{1/2} & -2\alpha I + 4\zeta \Lambda^{1/2} \end{bmatrix} + 2 \begin{bmatrix} \phi_{p}^{T} c^{T} & 0 \\ 0 & \phi_{p}^{T} c^{T} \end{bmatrix} \begin{bmatrix} \alpha \kappa_{1}^{T} \\ \kappa_{1}^{T} \end{bmatrix} X$$

$$\begin{bmatrix} \alpha \kappa_{1} & \kappa_{1} \end{bmatrix} \begin{bmatrix} c \phi_{p} & 0 \\ 0 & c \phi_{p} \end{bmatrix}$$
(6.96)

The second term in Eq. (6.96) is apparently positive semidefinite. Hence in order to make Q positive definite, the first term must be positive definite. Let

$$Q_{1} = \begin{bmatrix} 2\alpha\Lambda & \Lambda - I + 2\alpha\zeta\Lambda^{1/2} \\ & & \\ \Lambda - I + 2\alpha\zeta\Lambda^{1/2} & -2\alphaI + 4\zeta\Lambda^{1/2} \end{bmatrix}$$
(6.97)

referring to Eq. (6.70), the corresponding Λ_1 , Λ_2 and Λ_3 here are

$$Λ_1 = 2αΛ$$
(6.98)

$$Λ_2 = -2αI+4ζΛ^{1/2}$$
(6.99)

$$Λ_3 = Λ-I+2αζΛ^{1/2}$$
(6.100)

Substituting them into Eq. (6.79), we have

$$\widetilde{\Lambda} = \lambda^{2} (\Lambda - I + 2\alpha \zeta \Lambda^{1/2})^{-1} - \lambda (\Lambda - I + 2\alpha \zeta \Lambda^{1/2})^{-1} (2\alpha \Lambda - 2\alpha I + 4\zeta \Lambda^{1/2}) + (\Lambda - I + 2\alpha \zeta \Lambda^{1/2})^{-1} (2\alpha \Lambda) (-2\alpha I + 4\zeta \Lambda^{1/2}) - (\Lambda - I + 2\alpha \zeta \Lambda^{1/2})$$
(6.101)

In order that $(\Lambda-I+2\alpha\zeta\Lambda^{1/2})^{-1}$ exists,

$$|\Lambda - I + 2\alpha \zeta \Lambda^{1/2}| \neq 0$$
 (6.102)

i.e.,
$$\omega_1^2 - 1 + 2\alpha \zeta \omega_1 \neq 0$$
, for $i = 1, ... N_p$ (6.103)

i.e.,
$$\alpha \neq \frac{1-\omega_{1}^{2}}{2\zeta\omega_{1}}$$
, for $i = 1, ..., N_{p}$ (6.104)

Expanding Eq. (6.101), we have

$$\widetilde{\lambda} = \lambda^{2} \begin{bmatrix} \frac{1}{\omega_{1}^{2} - 1 + 2\alpha\zeta\omega_{1}} & 0 \\ 0 & \frac{1}{\omega_{2}^{2} - 1 + 2\alpha\zeta\omega_{Np}} \end{bmatrix} - \lambda \begin{bmatrix} \frac{1}{\omega_{1}^{2} - 1 + 2\alpha\zeta\omega_{1}} & 0 \\ 0 & \frac{1}{\omega_{2}^{2} - 1 + 2\alpha\zeta\omega_{Np}} \end{bmatrix} \begin{bmatrix} 2\omega\omega_{1}^{2} - 2\alpha + 4\zeta\omega_{1} & 0 \\ 0 & 2\alpha\omega_{Np}^{2} - 2\alpha + 4\zeta\omega_{Np} \end{bmatrix} + \begin{bmatrix} \frac{2\omega\omega_{1}^{2} (-2\alpha + 4\zeta\omega_{1})}{\omega_{1}^{2} - 1 + 2\alpha\zeta\omega_{1}} & 0 \\ 0 & \frac{2\omega\omega_{Np}^{2} (-2\alpha + 4\zeta\omega_{Np})}{\omega_{Np}^{2} - 1 + 2\alpha\zeta\omega_{Np}} \end{bmatrix} - \begin{bmatrix} \omega_{1}^{2} - 1 + 2\alpha\zeta\omega_{1} \\ 0 & \frac{\omega_{1}^{2} - 1 + 2\alpha\zeta\omega_{Np}}{\omega_{Np}^{2} - 1 + 2\alpha\zeta\omega_{Np}} \end{bmatrix}$$
(6.105)

i.e., the characteristic equations are,

$$\frac{1}{\omega_{i}^{2}-1+2\alpha\zeta\omega_{i}}\lambda^{2}-\frac{2\alpha\omega_{i}^{2}-2\alpha+4\zeta\omega_{i}}{\omega_{i}^{2}-1+2\alpha\zeta\omega_{i}}\lambda+\frac{2\alpha\omega_{i}^{2}(-2\alpha+4\zeta\omega_{i})-(\omega_{i}^{2}-1+2\alpha\zeta\omega_{i})^{2}}{\omega_{i}^{2}-1+2\alpha\zeta\omega_{i}}=0$$
for $i = 1, ..., N_{p}$ (6.106)
or

$$\lambda^{2} - (2\alpha \omega_{1}^{2} - 2\alpha + 4\zeta \omega_{1})\lambda - (\omega_{1}^{4} + 1 + 4\alpha^{2}\zeta^{2}\omega_{1}^{2} - 2\omega_{1}^{2} - 4\alpha\zeta \omega_{1} + 4\alpha^{2}\omega_{1}^{2} - 4\alpha\zeta \omega_{1}^{3}) = 0$$

for $i = 1, ..., N_p$ (6.107)

Note that for the quadratic equation:

 $a\lambda^2 + b\lambda + C = 0 \tag{6.108}$

the roots are,

$$\lambda_{1} = \frac{-b + \sqrt{b^{2} - 4ac}}{2a}$$
(6.109)
$$\lambda_{2} = \frac{-b - \sqrt{b^{2} - 4ac}}{2a}$$
(6.110)

Hence, in order to have $\lambda_1 > 0$ and $\lambda_2 > 0$ we must have

$$ac > 0$$
 (6.112)

Referring to Eq. (6.107), the conditions for positive λ_i 's are then,

$$2\zeta \omega_i - \alpha(1-\omega_i^2) > 0$$
, for $i = 1, ..., N_p$ (6.113)

$$1-4\alpha\zeta\omega_{1}-(2-4\alpha^{2}-4\alpha^{2}\zeta^{2})\omega_{1}^{2}-4\alpha\zeta\omega_{1}^{3}+\omega_{1}^{4}<0$$
, for $i=1,\ldots,N_{p}$ (6.114)

To summarize, the first set of sufficient conditions for globally asymptotic stability is given by

- T is positive definite T is positive semidefinite $\alpha < 1$
- $\alpha \neq \frac{1-\omega_1^2}{2\zeta\omega_1} \tag{6.116}$

(6.115)

$$2\zeta \omega_{i} - \alpha(1-\omega_{i}^{2}) > 0$$
 (6.117)

$$1 - 4\alpha \zeta \omega_{1} - (2 - 4\alpha^{2} - 4\alpha^{2} \zeta^{2}) \omega_{1}^{2} - 4\alpha \zeta \omega_{1}^{3} + \omega_{1}^{4} < 0$$
 (6.118)

for $i = 1, ..., N_{p}$.

To find the second set of sufficient conditions, we select

$$P \approx \begin{bmatrix} \beta I & \alpha I \\ \alpha I & I \end{bmatrix}$$
(6.119)
$$S^{T}S = I$$
(6.120)
$$\widetilde{K}_{e} \approx K_{1}^{T}K_{1}$$
(6.121)

Then

and the condition $PB_p = C_p^T(S^TS)$ is satisfied.

Since P is required to be positive definite, we have, first of all,

β > 0 (6.123)

and the eigenvalues of P must be positive. Referring to Eq. (6.70), the corresponding Λ_1 , Λ_2 and Λ_3 here are

 $\Lambda_1 = \beta I$ (6.124) $\Lambda_2 = I$ (6.125) $\Lambda_3 = \alpha I$ (6.126) Substituting them into Eq. (6.79), it becomes

$$\widetilde{\Lambda} = \frac{\lambda^2}{\alpha} \mathbf{I} - \frac{\lambda}{\alpha} (\beta \mathbf{I} + \mathbf{I}) + (\frac{\beta}{\alpha} \mathbf{I} - \alpha \mathbf{I})$$
(6.127)

or

$$\widetilde{\Lambda} = \lambda^2 \mathbf{I} - (\beta + 1)\mathbf{I} + (\beta - \alpha^2)\mathbf{I}$$
(6.128)

Hence, a typical pair of eigenvalues are determined by

$$\lambda^{2} - (\beta + 1)\lambda + (\beta - \alpha^{2}) = 0$$
 (6.129)

Referring to Eqs. (6.111) and (6.112), the conditions for positive λ_i 's are

$$\beta > -1$$
 (automatically satisfied) (6.130)

and

$$\beta > \alpha^2$$
 (6.131)

Substituting P, A_p , B_p , C_p and \tilde{K}_e into the equation for Q, we have

$$0 = - P(A_p - B_p \tilde{K}_e C_p) - (A_p - B_p \tilde{K}_e C_p)^T P$$

$$= - \begin{bmatrix} \beta I & \alpha I \\ \alpha I & I \end{bmatrix} \begin{bmatrix} 0 & I \\ -\Lambda - \alpha \phi_p^T C^T \kappa_1^T \kappa_1 C \phi_p & -2\zeta \Lambda^{1/2} - \phi_p^T C^T \kappa_1^T \kappa_1 C \phi_p \end{bmatrix}$$

$$-\begin{bmatrix} 0 & -A - \alpha \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} \\ I & -2\zeta \Lambda^{1/2} - \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} \end{bmatrix} \begin{bmatrix} 8I & \alpha I \\ \alpha I & I \end{bmatrix}$$

$$= -\begin{bmatrix} -\alpha \Lambda - \alpha^{2} \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} & 8I - 2\alpha \zeta \Lambda^{1/2} - \alpha \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} \\ -\Lambda - \alpha \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} & \alpha I - 2\zeta \Lambda^{1/2} - \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} \end{bmatrix}$$

$$-\begin{bmatrix} -\alpha \Lambda - \alpha^{2} \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} & -\Lambda - \alpha \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} \\ \beta I - 2\alpha \zeta \Lambda^{1/2} - \alpha \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} & \alpha I - 2\zeta \Lambda^{1/2} - \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} \end{bmatrix}$$

$$-\begin{bmatrix} \alpha \Lambda + \alpha^{2} \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} & -\beta I + 2\alpha \zeta \Lambda^{1/2} + \alpha \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} \\ \Lambda + \alpha \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} & -\alpha I + 2\zeta \Lambda^{1/2} + \alpha \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} \end{bmatrix}$$

$$+\begin{bmatrix} \alpha \Lambda + \alpha^{2} \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} & -\alpha I + 2\zeta \Lambda^{1/2} + \alpha \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} \\ \Lambda + \alpha \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} & -\alpha I + 2\zeta \Lambda^{1/2} + \alpha \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} \end{bmatrix}$$

$$+\begin{bmatrix} 2\alpha \Lambda + \alpha^{2} \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} & -\alpha I + 2\zeta \Lambda^{1/2} + \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} \\ -\beta I + 2\alpha \zeta \Lambda^{1/2} + \alpha \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} & -\alpha I + 2\zeta \Lambda^{1/2} + \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} \end{bmatrix}$$

$$-\begin{bmatrix} 2\alpha \Lambda + 2\alpha^{2} \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} & -\alpha I + 2\zeta \Lambda^{1/2} + \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} \\ -\beta I + 2\alpha \zeta \Lambda^{1/2} + \alpha \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} & -\alpha I + 2\zeta \Lambda^{1/2} + 2\alpha \phi_{p}^{T} C^{T} K_{1}^{T} K_{1} C \phi_{p} \end{bmatrix}$$

$$= \begin{bmatrix} 2\alpha\Lambda & \Lambda - \beta \mathbf{I} + 2\alpha\zeta\Lambda^{1/2} \\ \Lambda - \beta \mathbf{I} + 2\alpha\zeta\Lambda^{1/2} & -2\alpha\mathbf{I} + 4\zeta\Lambda^{1/2} \end{bmatrix} + 2\begin{bmatrix} \phi_p^T \mathbf{C}^T & \mathbf{0} \\ \phi_p^T \mathbf{C}^T \end{bmatrix} \begin{bmatrix} \alpha \mathbf{K}_1^T \\ \mathbf{K}_1^T \end{bmatrix}$$

$$\begin{bmatrix} \alpha K_1 & K_1 \\ 0 & C\phi_p \end{bmatrix}$$
(6.132)

Again the second term in Eq. (6.132) is apparently positive semidefinite. Hence in order to make Q positive definite, the first term must be positive definite. Let

$$Q_{2} = \begin{bmatrix} 2\alpha\Lambda & \Lambda -\beta I + 2\alpha\zeta\Lambda^{1/2} \\ & & \\ \Lambda -\beta I + 2\alpha\zeta\Lambda^{1/2} & -2\alpha I + 4\zeta\Lambda^{1/2} \end{bmatrix}$$
(6.133)

referring to Eq. (6.70), the corresponding Λ_1 , Λ_2 and Λ_3 here are

$$\Lambda_1 = 2\alpha\Lambda \tag{6.134}$$

 $\Lambda_2 = -2\alpha I + 4\zeta \Lambda^{1/2}$ (6.135)

$$\Lambda_3 = \Lambda - \beta I + 2\alpha \zeta \Lambda^{1/2} \tag{6.136}$$

Substituting them into Eq. (6.79), we have

$$\widetilde{\Lambda} = \lambda^{2} (\Lambda - \beta I + 2\alpha \zeta \Lambda^{1/2})^{-1} - \lambda (\Lambda - \beta I + 2\alpha \zeta \Lambda^{1/2})^{-1} (2\alpha \Lambda - 2\alpha I + 4\zeta \Lambda^{1/2}) + (\Lambda - \beta I + 2\alpha \zeta \Lambda^{1/2})^{-1} (2\alpha \Lambda) (-2\alpha I + 4\zeta \Lambda^{1/2}) - (\Lambda - \beta I + 2\alpha \zeta \Lambda^{1/2})$$
(6.137)

In order that $(\Lambda - \beta I + 2\alpha \zeta \Lambda^{1/2})^{-1}$ exists, we must have

$$|\Lambda - \beta I + 2\alpha \zeta \Lambda^{1/2}| = 0$$

i.e., $\omega_i^2 - \beta + 2\alpha \zeta \omega_i = 0$ for $i = 1, ..., N_p$ (6.138)
i.e., $\alpha = \frac{\beta - \omega_i^2}{2\zeta \omega_i}$ for $i = 1, ..., N_p$ (6.139)

Expanding Eq. (6.137), we have

$$\begin{bmatrix} 2\omega u_{1}^{2}(-2\alpha+4\zeta u_{1}) & 0 \\ w_{1}^{2}-\theta+2\alpha\zeta u_{1}} & 0 \\ 0 & \frac{2\omega u_{Np}^{2}(-2\alpha+4\zeta u_{Np})}{\omega_{Np}^{2}-\theta+2\alpha\zeta u_{Np}} \end{bmatrix} - \begin{bmatrix} u_{1}^{2}-\theta+2\alpha\zeta u_{1} & 0 \\ 0 & u_{Np}^{2}-\theta+2\alpha\zeta u_{Np} \end{bmatrix}$$
(6.140)

Thus, the characteristic equations are,

$$\frac{1}{\omega_{1}^{2}-\beta+2\alpha\zeta\omega_{1}}\lambda^{2}-\frac{2\alpha\omega_{1}^{2}-2\alpha+4\zeta\omega_{1}}{\omega_{1}^{2}-\beta+2\alpha\zeta\omega_{1}}\lambda+\frac{2\alpha\omega_{1}^{2}(-2\alpha+4\zeta\omega_{1})-(\omega_{1}^{2}-\beta+2\alpha\zeta\omega_{1})^{2}}{\omega_{1}^{2}-\beta+2\alpha\zeta\omega_{1}}=0$$
for $1 = 1, \dots, N_{p}$ (6.141)

i.e.,

$$\lambda^{2} - (2\alpha\omega_{1}^{2} - 2\alpha + 4\zeta\omega_{1})\lambda - (\omega_{1}^{4} + \beta^{2} + 4\alpha^{2}\zeta^{2}\omega_{1}^{2} - 2\beta\omega_{1}^{2} - 4\alpha\beta\zeta\omega_{1} + 4\alpha^{2}\omega_{1}^{2} - 4\alpha\zeta\omega_{1}^{3}) = 0$$

for $i = 1, ..., N_p$ (6.142)

Referring to Eqs. (6.111) and (6.112), the conditions for positive
$$\lambda_1$$
's are then,

$$2\zeta \omega_i - \alpha(1-\omega_i^2) > 0$$
, for $i = 1, ..., N_p$ (6.143)

 $\beta^{2}-4\alpha\beta\zeta\omega_{i}-(2\beta-4\alpha^{2}-4\alpha^{2}\zeta^{2})\omega_{i}^{2}-4\alpha\zeta\omega_{i}^{3}+\omega_{i}^{4}<0,$

for
$$i = 1, ..., N_{p}$$
 (6.144)

In summary, the second set of sufficient conditions for globally asymptotic stability is given by

T is positive definite T is positive semidefinite $\beta > \alpha^{2} \qquad (6.145)$ $\alpha \neq \frac{\beta - \omega_{1}^{2}}{2\zeta \omega_{1}} \qquad (6.146)$ $2\zeta \omega_{1} - \alpha(1 - \omega_{1}^{2}) > 0 \qquad (6.147)$ $\beta^{2} - 4\alpha\beta\zeta \omega_{1} - (2\beta - 4\alpha^{2} - 4\alpha^{2}\zeta^{2})\omega_{1}^{2} - 4\alpha\zeta \omega_{1}^{3} + \omega_{1}^{4} < 0 \qquad (6.148)$ for $i = 1, ..., N_{p}$

As we compare the above two sets of sufficient conditions, it is apparent that the second set gives us more freedom for selecting the system parameters.

CHAPTER VII

PERFORMANCE ANALYSIS AND PRACTICAL CONSIDERATIONS

The purpose of this chapter is to investigate the dynamic responses of the space stations under the severe disturbances as the adaptive controller described above is applied without assuming the complete knowledge of the system parameters. In addition, from the point of view of practical implementation, means of reducing the control efforts and their effects on the performance of the system are studied.

Crew motion, reboost, and vehicle docking are the major disturbance sources. They will also cause changes of mass property. Crew motion will shift the center of mass, reboost will result in gradual mass reduction, and vehicle docking will spontaneously increase mass and inertia of the system. From the point of view of time-varying effect and the level of disturbances, space shuttle docking is by far the most significant source of disturbance. Since most of the cases studied here are related to shuttle docking, the docking characteristics and devices are described first in the following sections.

The simulation programs are written in Advanced Continuous Simulation Language (ACSL). The program and numerical results of the simulation of adaptive control during shuttle docking for the 19-DOF four-panel space station are listed in Appendices D and E, respectively.

7.1 Shuttle Reaction Control Subsystem Residual Rates

The shuttle Reaction Control Subsystem (RCS) consists of two major parts, the primary (PRCS) and the vernier (VRCS) subsystems. There are a total of 44 thrusters, 38 of them are associated with the PRCS, each has a nominal thrust level of 870 lbs; and the other 6 are associated with the VRCS with a thrust level of 24 lbs each. Phase plane control laws are employed to determine when actuations are needed and jet select logics are used to determine what thrusters are to turn on. The states of the system are estimated by a two-stage state estimator with a dual cycle time of 80 ms and 160 ms.

PRCS is normally employed for ΔV change, attitude maneuvers, and coarse attitude control; and the VRCS is for fine attitude control. Since shuttle docking requires maneuvers, PRCS must be used. Due to the high thrust level of the PRCS, and with more than one jet used at maintain attitude and approach rate while the same time to maneuvering, large residual rates result. The best achievable residual (minimum) rates, 1.e., obtained rates under ideal conditions, are $\Delta V = 0.05$ ft/sec and $\Delta \omega = 0.20$ deg/sec. However. these minimum rates are difficult to realize under nominal operational conditions and much higher rates are expected. These expected rates are on the order of $\Delta V = 0.50$ ft/sec and $\Delta \omega = 1.00$ deg/sec. Figure 21 shows the shuttle control system block diagram and residual rates.

For the purpose of performance analysis, the following assumptions are made regarding the shuttle and space station docking:

• PRIMARY REACTION CONTROL SUBSYSTEM: FOR ΔV CHANGES, ATTITUDE MANEUVERS, AND GROSS ATTITUDE CONTROL FUNCTIONS

MINIMUM THRUST FORCE FOR PRCS JETS: 870 LBS

> SHUTTLE CONTROL SYSTEM BLOCK DIAGRAM

RESIDUAL RATES

BEST ACHIEVABLE RATES

AV = 0.05 FT/SEC

Δω = 0.20 DEG / SEC

EXPECTED RATES

ΔV = 0.50 FT/SEC Δω = 1.00 DEG/SEC

Shuttle Reaction Control Subsystem (RCS) Residual Rates **Figure 21**

- (1) Throughout the docking period, the space station attitude control system will maintain operational on attitude hold mode.
- (2) Just prior to the contact, the shuttle RCS is set at passive mode, i.e., no thrusters are allowed to fire.
- (3) Once contact is made, latching is assumed, i.e., no separation is allowed.
- 7.2 Design of Shuttle Docking Devices

Shuttle hard docking is a rather idealized condition. Under this condition, the shuttle momentum is transferred to the space station for a short period of time, Δt . At the end of Δt , the station and the shuttle are latched together as one integrated body. The initial momentum of the shuttle is determined by the shuttle mass, $M_g = 7.81 \times 10^3$ slugs (2.52 $\times 10^5$ lbs) and inertia, $I_g = 7.54 \times 10^6$ slug-ft², and the shuttle residual rate ΔV and $\Delta \omega$ (see Fig. 21). The final velocities are, of course, determined by the combined system mass and inertia.

The concept and design of a shuttle docking device which can simulate both hard and soft docking is shown in Fig. 22. The space station and shuttle are considered as two separate bodies coupled by a set of angular and rectilinear springs and dampers. Let M_g and I_g be the shuttle mass and inertia, and M_2 and I_2 the mass and inertia of the station. The values of the spring constants and damping factors can be computed using the following equations:

Figure 22 Concept and Design of Shuttle Docking Device

$$D_{A} = 2 \zeta_{A} \omega_{A} \left(\frac{2}{1_{2}} + \frac{3}{1_{5}} \right) FT-LB/RAD/SEC$$

LINEAR STIFFNESS AND DAMP ING
 $K_{L} = \omega_{L}^{2} \left(\frac{M_{2}}{M_{2} + \frac{M_{5}}{M_{5}}} \right) LB/FT$
$$D_{L} = 2 \zeta_{L} \omega_{L} \left(\frac{M_{2}}{M_{2} + \frac{M_{5}}{M_{5}}} \right) LB/FT/SEC$$

$$D_{A} = 2\xi_{A}\omega_{A}\left(\frac{1_{2}}{1_{2}}+\frac{1_{5}}{1_{5}}\right)$$
 FT-LB/RA

$$K_{A} - \omega_{A}^{2} \left(\frac{1_{2} \cdot 1_{5}}{1_{2} + 1_{5}} \right)$$
 FT-LB/RAD
 $D_{A} = 2 \xi_{A} \omega_{A} \left(\frac{1_{2} \cdot 1_{5}}{1_{2} + 1_{5}} \right)$ FT-LB/RAD/S

(NOT IN PROPORTION)

M₂,

DOCKING SYSTEM PARAMETERS

$$K_{A} = \omega_{A}^{2} \left(\frac{I_{2} I_{s}}{I_{2} + I_{s}} \right)$$
(7.1)

$$D_{A} = 2\zeta_{A}\omega_{A}\left(\frac{I_{2} I_{s}}{I_{2} + I_{s}}\right)$$
(7.2)

$$K_{\rm L} = \omega_{\rm L}^2 \left(\frac{M_2 M_8}{M_2 + M_8} \right)$$
(7.3)

$$D_{L} = 2\zeta_{L}\omega_{L}\left(\frac{M_{2}M_{s}}{M_{2}+M_{s}}\right)$$
(7.4)

where K_A , D_A , ω_A , ζ_A are the spring constant, damping factor, natural frequency and damping ratio for the set of rotational spring and damper, respectively. Similarly, K_L , D_L , ω_L , ζ_L are for the set of rectilinear spring and damper. The detailed derivation of Eqs. (7.1) - (7.4) is given in Appendix C.

With this design, shuttle hard docking can be simulated by using extremely stiff springs and dampers while for soft docking, much weaker springs and dampers are employed.

7.3 Performance of Adaptive Control on the Two-Panel Space Station

As stated in Chapter III, the 6-DOF two-panel space station is extensively used to evaluate adaptive control problems and performance because of the associated reasonable simulation turnaround time and cost. These results provide valuable guidance to the understanding of the performance of space station adaptive control systems.

7.3.1 Augmented Plant Modal Properties

Following the approach described in Section 6.4, the following innerloop control gains are chosen:

 $K_{\theta 2} = 45662 \text{ ft-lb/rad}$ $K_{72} = 4464 \text{ lb/ft}$

This plant augmentation has caused changes of modal properties from those shown in Eq. (3.27) of the unaugmented plant. The modal frequencies and mode shape matrix for this augmented plant are,

^ω pl	2	0.01163	3 Hz	
^ω p2	=	0.039	Hz	
^ω p3	=	0.0656	Hz	(7 5)
^ω p4	=	0.1684	Hz	(7.3)
^ω p5	=	0.3892	Hz	
^ω p6	-	0.3947	Hz	

and

	921E-1	.128	922E-1	.144E-1	.178	•178	
-	•382E-3	704E-3	•705E-3	264E-3	544E-2	549E-2	
	•382E-9	•177E-3	•641E-8	158E-1	•185E-2	•226E-5	
	•332E-3	745E-8	465E-3	959E-9	•135E-6	117E-3	
	.921E-1	.128	•922E-1	•144E-1	.178	177	
	•382E-3	•704E-3	.705E-3	•264E-3	•546E-2	548E-2	
	_					(7.6)	

The corresponding mode shapes are plotted in Fig. 23. As can be seen, the four lower frequency modes have changed substantially, and most importantly, the two evolved rigid body modes no longer have zero frequencies.

ANTISYMMETRIC BENDING SYMMETRIC BENDING ω₅ = 0.3892 Hz $\omega_6 = 0.3947 \text{ Hz}$ EVOLVED 2nd **EVOLVED 2nd** MODE 5 MODE 6 ANTISYMMETRIC BENDING SYMMETRIC BENDING ω₃ = 0.0656 Hz ω₄ = 0. 1684 Hz **EVOLVED 1st** EVOLVED 1st MODE 3 MODE 4 **BODY TRANSLATION** ω₁ - 0.01163 Hz ω₂ = 0.039 Hz **BODY ROTATION** EVOLVED RIGID EVOLVED RIGID MODE 2 MODE 1

Figure 23 Augmented Plant Modal Properties for the 6-DOF Two-Panel Configuration Model

With the modal dampings assumed to be $\zeta_{pk} = 0.5\%$ for all modes, the A_p, B_p, and C_p matrices in Eqs. (5.6), (5.7) and (5.8) can be readily determined.

7.3.2 The Selection of the Reference Model

To evaluate the performance of the adaptive controller, the reference model is selected to have lower order, significantly different model parameters, and high damping. It consists of 4 modes (corresponding to the 4 low frequency modes of the plant) or 8 states x_m , 4 inputs u_m , and 4 outputs y_m which are defined as follows,

$$\mathbf{x}_{m} = \begin{bmatrix} -\frac{n}{m} \\ -\frac{n}{m} \\ n_{m} \end{bmatrix}$$
(7.7)
$$\mathbf{u}_{m} = \begin{bmatrix} \mathbf{u}_{m1} \\ \mathbf{u}_{m2} \\ \mathbf{u}_{m3} \\ \mathbf{u}_{m4} \end{bmatrix}$$
(7.8)
$$\begin{bmatrix} \mathbf{y}_{m1} \\ \mathbf{y}_{m2} \end{bmatrix} \begin{bmatrix} \alpha \theta_{m1} + \dot{\theta}_{m1} \\ \alpha Z_{m2} + \dot{Z}_{m2} \end{bmatrix}$$

$$\mathbf{y}_{m} = \begin{bmatrix} \mathbf{y}_{m1} \\ \mathbf{y}_{m2} \\ \mathbf{y}_{m3} \\ \mathbf{y}_{m4} \end{bmatrix} = \begin{bmatrix} \alpha \theta_{m1} + \theta_{m1} \\ \alpha Z_{m2} + Z_{m2} \\ \alpha \theta_{m2} + \theta_{m2} \\ \alpha \theta_{m3} + \theta_{m3} \end{bmatrix}$$
(7.9)

the corresponding system matrices ${\bf A}_{\rm m}$, ${\bf B}_{\rm m}$ and ${\bf C}_{\rm m}$ are

$$\mathbf{A}_{m} = \begin{bmatrix} 0_{4x4} & \mathbf{I}_{4x4} \\ ------ & ----- \\ -\omega_{m1}^{2} & -2\zeta_{m1}\omega_{m1} \\ -\omega_{m4}^{2} & -2\zeta_{m4}\omega_{m4} \end{bmatrix}$$
(7.10)

$$B_{m} = \begin{bmatrix} 0 \\ -\frac{1}{\phi_{m}} \\ -\frac{1}{\phi_{m}} \end{bmatrix}$$
(7.11)
$$C_{m} = \begin{bmatrix} \alpha C \phi_{m} & C \phi_{m} \end{bmatrix}$$
(7.12)

where B and C are shown in Eqs. (5.9) and (5.10), respectively. The modal frequencies for the reference model are,

$$\omega_{m1} = 0.02 \text{ Hz}$$

 $\omega_{m2} = 0.03 \text{ Hz}$ (7.13)
 $\omega_{m3} = 0.04 \text{ Hz}$
 $\omega_{m4} = 0.06 \text{ Hz}$

7.3.3 Adaptive Regulator Control

7.3.3.1 Controller Performance with High Initial Transient

The purpose here is to evaluate the convergence property of the adaptive controller for the attitude hold and vibration suppression under very large initial transient conditions. The initial conditions for the plant are:

These conditions were taken 10 seconds after the shuttle docked to the space station with the shuttle initial approaching rates of 0.2 deg/sec and 0.05 ft/sec. The corresponding values in the modal coordinates are obtained through the following transformation,

 $n_{p} = \phi_{p}^{-1} z_{p}$ (7.15) $\dot{n}_{p} = \phi_{p}^{-1} \dot{z}_{p}$

The initial conditions for the reference model are

 $n_{mi} = 0.9 n_{pi}$ (7.16) $\dot{n}_{mi} = 0.9 \dot{n}_{pi}$

for i = 1, ..., 4.

The simulation results for this case are shown in Figs. 24-29.^{*} Figure 24 shows the outputs of the plant and the model. The model outputs damp out quickly because of its high damping, and the plant

* The remaining figures are at the end of this report.

outputs track them asymptotically and converge within 100 seconds from the transient starts. The same behavior is observed in Figs. 25 and 26 for the plant and model physical states. In Fig. 25, Z_{2n} follows Z_{2m} better than Z_{1p} to Z_{1m} or Z_{3p} to Z_{3m} because a force actuator is employed at the central bus; thus, at this position, linear displacement can be controlled more effectively. Figure 27 indicates that the four lower frequency modes of the plant also closely follow the corresponding modes of the model although mode 2 damps out at a slower pace. Mode 1, the rigid body rotational mode, is apparently the dominant mode of the system. The two high frequency modes shown in Fig. 28 also converge to zero within 100 seconds. The required adaptive control inputs, uni, are plotted in Fig. 29. The demand on bus control torque is quite high, almost 3,000 ft-1b under these high initial transient conditions.

7.3.3.2 Controller Performance with High Initial Transient and Measurement Noise

The measurement noises of the sensors are assumed to be zeromean gaussian white processes. The level of the noises are taken to be two orders of magnitude lower than those of the peak outputs. Under assumptions, the measurement uncertainties for the these accelerometers are 0.012 inch and for the gyros are 20.63 sec. The qualities for the sensors in existence today are much better than For instance, the accuracy of the gyro used on High Energy these. Astronomy Observatory - 1 (HEAO-1) is 0.5 sec.

The plant and model outputs are shown in Fig. 30. Apparently, the measurement noises have no significant effects on the high rate

of convergence and stability of the system although y_{p3} has some noticeable fluctuations throughout the time history. Figure 31 shows the adaptive control inputs. The bus control force u_{p2} fluctuates highly during the first 25 seconds which is quite different from that of the case without measurement noises. After the initial transient, all the control inputs are associated with sustaining or even increasing fluctuations. Control energy is wasted by reacting to noises after the steady state is reached. One way to solve this problem is to employ a threshold at the actuator input. Control is applied to the system only when the input exceeds the threshold levels. Nevertheless, controller robustness is observed even with a high degree of measurement noises applied to the system. 7.3.4 Adaptive Control During Shuttle Docking

The following simulations are designed to test the controller performance and stability using shuttle docking dynamics. To simulate these cases, a docking disturbance term $B_d u_d$ is added to the right-hand side of Eq. (3.18), where

$$B_{d} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} , \quad u_{d} = \begin{bmatrix} F_{d} \\ T_{d} \end{bmatrix}$$
(7.17)

and F_d is the docking force, T_d is the docking torque applied to the space station. F_d and T_d are determined by the following equations:

$$F_{d} = D_{L} (\dot{z}_{shuttle} - \dot{z}_{p2}) + K_{L} (z_{shuttle} - z_{p2})$$
 (7.18)

$$T_{d} = D_{A} \left(\dot{\theta}_{shuttle} - \dot{\theta}_{p2} \right) + K_{A} \left(\theta_{shuttle} - \theta_{p2} \right)$$
(7.19)

and the equations of motion of the shuttle are characterized by

$$Z_{\text{shuttle}} = -F_{\text{d}}/M_{\text{s}}$$
(7.20)

$$\tilde{\theta}_{shuttle} = -T_d/I_s$$
 (7.21)

where M_8 is the mass and I_8 is the moment of inertia of the shuttle. The shuttle residual rates (rates prior to docking) are:

7.3.4.1 Shuttle Hard Docking

The control objective here is to stabilize the space station so that it returns to its prior docking condition after docking occurs. Thus all of the initial conditions for the plant and the model are set to zero. For regulator control, the input command u_m to the model is zero. Since there are no model disturbances employed under the "unscheduled event," the reference model stays at its quiescent state throughout the simulation period. Thus the plant, while under the influence of the docking disturbances, is commanded to follow the zero output. The following docking parameters are used in this case:

$$D_{L} = 2.313 \times 10^{3} \text{ lb/ft/sec}$$

$$K_{L} = 1.028 \times 10^{3} \text{ lb/ft}$$

$$D_{A} = 1.86 \times 10^{7} \text{ ft-lb/rad/sec}$$

$$K_{A} = 8.25 \times 10^{7} \text{ ft-lb/rad}$$
(7.24)

the corresponding damping ratios and natural frequencies are

linear:
$$\zeta_{\rm L} = 0.707$$
 (7.25)
 $\omega_{\rm L} = 0.1 \, {\rm Hz}$

angular:
$$\zeta_{A} = 0.707$$
 (7.26)
 $\omega_{A} = 1.0 \text{ Hz}$

This case is termed "simulated hard docking" because the springs and dampers used are extremely stiff. The simulation results are plotted in Figs. 32-39. Figure 32 shows that all of the plant outputs converge to zero within 100 seconds after docking begins. The results here are surprisingly good since, in addition to the high docking disturbances and the parameter and truncation errors, we also deal with a sudden increase of plant mass and inertia by more than 100%. The same performance is observed for the plant and model physical states in Figs. 33 and 34. In Fig. 35, all but mode 2 are well damped. Mode 2 shows a very lightly damped oscillation, however, since the amplitude of this mode is very small and it

presents no noticeable effects on any of the physical outputs. At higher amplitude, the damping is also higher, the oscillation will be decayed at a faster rate and it will pose no real problem to the system. The two high frequency modes in Fig. 36 also show good convergence rates. Figure 37 illustrates the time history of shuttle angular position and rate. It is not surprising to note that they appear almost exactly the same as the central bus angular position and rate (Figs. 34(b) and (d)) because after the hard docking, the shuttle and the station are supposed to combine and become one body. Figure 38 indicates that the peak of the docking torque is 63,158 ft-lb.

To achieve the above performance, a peak torque as high as 7500 ft-lb has to be generated by the bus torque actuator (u_{p3}) as shown in Fig. 39. This is extremely high and presents an implementation problem. Of course, hard docking will not be a realistic docking option due to its high transient loads to the space station. Under soft docking conditions, the torque should be much less.

7.3.4.2 Shuttle Soft Docking

The conditions for the shuttle soft docking simulation are the same as those of shuttle hard docking except that much weaker springs and dampers are employed here. Specifically, the following docking interface parameters are used:

 $D_L = 693.8 \ 1b/ft/sec$ $K_L = 92.49 \ 1b/ft$ (7.27) $D_A = 5.57 \ x \ 10^4 \ ft-1b/rad/sec$ $K_A = 742 \ ft-1b/rad$

the corresponding damping ratios and natural frequencies are

linear:
$$\zeta_{\rm L} = 0.707$$
 (7.28)
 $\omega_{\rm L} = 0.03 \ {\rm Hz}$

angular:
$$\zeta_{\rm A} = 0.707$$
 (7.29)
 $\omega_{\rm A} = 0.003 \ {\rm Hz}$

Because of the very low system natural frequencies yielded under soft docking, it will take a much longer time for the space station to reach its quiescent state. Hence, the simulation time of 400 seconds is used in this case. The simulation results are shown in Figs. 40-49. Referring to Fig. 40, all plant outputs except y_{p2} converge slower than those of the hard docking case, especially y_{p3} . In Figs. 41 and 42, Z_{p1} , Z_{p3} and θ_{p2} also show a significantly slower convergence rate. The same behavior is observed for modes 1, 2, 3 and 6 in Figs. 43 and 44. In contrast to the hard docking case as expected, the shuttle angular position and rate as shown in Fig. 45 have experienced high excursions. However, with the adaptive control system on the space station, the angular position and rate of the central bus have deviated very little from their nominal values (Figs. 42 (b) and (d)). Figure 46 indicates that the peak of the docking torque is 190 ft-lb,

substantially lower than the 63,158 ft-lb of the hard docking -- a factor of 332.

What makes the soft docking a desirable docking option is, in addition to the reduced shock load, that the demand of control efforts drops drastically. For instance, the peak of u_{p3} drops to 300 ft-lb from 7,500 ft-lb of hard docking (Fig. 47). The comparison of relative panel tip displacement and acceleration by employing adaptive control vs. low gain bus control are shown in Figs. 48 and 49, respectively. The dynamic load and panel deflection are markedly reduced by using adaptive control. For example, with the adaptive control, the peak panel deflection drops to 0.41 ft. from 6.6 ft. 7.3.4.3 Shuttle Hard Docking with Actuator Saturation

One way to relieve the high actuation demand on the control hardware is to employ actuator saturation through gain limiting. To study the effect of actuator saturation, shuttle hard docking is again employed here (for soft docking will take too long to simulate). The following limits for the control inputs are used:

max
$$| u_{p1} | = 50 \text{ ft-1b}$$

max $| u_{p2} | = 12 \text{ lbs}$
max $| u_{p3} | = 1000 \text{ ft-1b}$
max $| u_{p4} | = 50 \text{ ft-1b}$

(7.30)

Figures 50-54 indicate that the system performance has degraded compared with those without saturation (Figs. 32-36), as expected. The peaks of the responses are higher and it takes longer time periods for them to converge. It is also seen that the responses are more jittering due to the bang-bang effect. Larger angular excursion of the shuttle is also observed in Fig. 55. The docking force and torque remain unchanged (Fig. 56). Figure 57 shows that the control inputs u_{p1} and u_{p4} have not yet totally stayed within their linear operation region at the end of 150 sec.

As the gain limit becomes more severe (one half the values shown in Eq. (7.30)), the system performance degrades further as indicated in Fig. 58. Though it is believed that the outputs will still converge, it will take a much longer time than the above cases. Moreover, only u_{p2} stayed within the linear operation during the simulation period (Fig. 59).

Regardless of the severe actuation saturations applied, the results show no sign of threatening the system stability.

7.3.4.4 Shuttle Hard Docking with Model Switching and Disturbance Modeling

Intuitively it is true that the control effort can be reduced if after the shuttle docking contact is made with the space station, one uses a new reference model in which the shuttle mass and inertia are incorporated and a simulated disturbance similar to the docking disturbance is injected. The plant outputs will now follow the new model transient instead of the zero model outputs. The reason for the control inputs to be smaller is because of the expected smaller output

errors. This has motivated us to study the effect of model switching and disturbance modeling.

Since the plant is assumed to be poorly known, after incorporating the shuttle mass properties, the mode shapes and modal frequencies of the 4 modes of the model are deliberately selected with an error up to 20%. The disturbance force and torque inputs to the reference model are taken to be 2.25 sec-pulse of 173.78 lbs and 0.225 sec-pulse of 116953 ft-lb amplitude, respectively.

The simulation results are shown in Figs. 60-65. The plant outputs follow the reference model outputs reasonably well. By comparing Figs. 60-64 with Figs. 32-36, it is found that the convergence rates are about the same for the two cases. As far as the peak control inputs are concerned, u_{p3} drops significantly from 7500 ft-1b to 2880 ft-1b, and u_{p2} drops from 120 lbs to 75 lbs as shown in Fig. 65. However, u_{p1} and u_{p4} rise from 230 ft-1b to about 800 ft-1b. These results indicate that the concept of model switching is more involved than one may think. More study in the area of peak control effort reduction will be required. In general, one should not expect to reduce all the control efforts, but only the critical ones.

7.4 Performance of Adaptive Control on the Four-Panel Space Station

The purpose of this section is to demonstrate the performance of adaptive control on the much more complex 19-DOF four-panel space station model.

7.4.1 Augmented Plant Modal Properties

Plant augmentation has altered the modal properties from those of the original plant. The new modal frequencies and mode shapes are shown in Fig. 66. The three evolved rigid body modes no longer have zero frequencies, and the evolved modes 1 and 2 become pure rotation about the X and Y axes, respectively. Note that the frequencies of the modes in the first bending group are also pushed higher while those of the modes in the second bending group remain unchanged due to the fact that the inner-loop controller is a low-bandwidth system.

With the modal dampings assumed to be $\zeta_{pk} = 0.5\%$ for all modes, the A_p, B_p and C_p matrices in Eqs. (5.16), (5.17) and (5.18) can be readily determined.

7.4.2 The Selection of the Reference Model

Again, to evaluate the performance of the adaptive controller on the four-panel space station, the reference model is selected to be a lower order system with high damping and significantly different parameters from those of the plant. It consists of 9 modes (corresponding to the rigid body modes and the modes in the first bending group of the plant) or 18 states x_m , 11 inputs u_m and 11 outputs y_m which are defined as follows

$$\mathbf{x}_{m} = \begin{bmatrix} \mathbf{n}_{m} \\ -\frac{\mathbf{n}_{m}}{\mathbf{n}_{m}} \end{bmatrix}$$
(7.31)

(7.32)

y_m =

y_{m5}

y_{m6}

y_{m7}

y_{m8}

y_m9

ym10

y_{m11}

- =

. . . . (7.33)

z_{m4}

θ_{m4}

• •m4

∳_{m6}

θ_{m5}

θ_{m7}

+

 $\alpha z_{m6} + \dot{z}_{m6}$

αZ_{m4} +

αθ_{m4}

 $\alpha \phi_{m4} +$

aq_{m6} +

 $\alpha \theta_{m5} +$

αθ_{m7} +
The corresponding system matrices A_m , B_m and C_m are,

where B and C are shown in Eqs. (5.19) and (5.20), respectively. To show the breadth of the controller performance, the modal frequencies are selected to have a 40% error and mode shapes a 30% error. The high modal damping ratios $\zeta_{mk} = 0.707$ for all modes and position to rate measurement weighting factor $\alpha = 0.2$ are employed.

7.4.3 Adaptive Regulator Control with High Initial Transient

The purpose here is to evaluate the convergence property of the adaptive controller for the attitude hold and vibration suppression under very large initial transient conditions.

z _{pl}	-	1.649	ft	ż _{pl} =	0.283	ft/sec	
θ _{pl}	8	0.845	deg	$\dot{\theta}_{p1} = -$	0 .179	deg/sec	
z _{p3}	7	1.617	ft	$\dot{z}_{p3} = -$	0.284	ft/sec	
^θ p3	2	0.830	deg	$\dot{\theta}_{p3} = -$	0.180	deg/sec	
z _{p2}	= -	0.004	ft	$\dot{z}_{p2} =$	0.002	ft/sec	
¢ _{p2}		0.004	deg	∲ _{p2} =	0.017	deg/sec	
z _{p4}	z -	0.001	ft	$\dot{z}_{p4} =$	0.0002	2 ft/sec	(7 37)
θ _{p4}	5	0.722	deg	$\dot{\theta}_{p4} = -$	0.029	deg/sec	(7.37)
^ф р4	8	0.012	deg	$\dot{\phi}_{p4} = -$	0.035	deg/sec	
z _{p6}	8	0.004	ft	$\dot{z}_{p6} = -$	0.001	ft/sec	
^ф рб	8 -	0.003	deg	• • _{p6} =	0.017	deg/sec	
z _{p5}	= -	1.618	ft	ż _{p5} =	0.283	ft/sec	2
θ _{p5}	đ	0.830	deg	$\dot{\theta}_{p5} = -$	0.180	deg/sec	•
Z _{p7}		1.649	ft	ż _{p7} = -	0.284	ft/sec	
θ _p 7	8 [′]	0.846	deg	$\dot{\theta}_{p7} = -$	0.179	deg/sec	

These dynamical conditions were taken 10 seconds after the shuttle docked to the space station with the following initial approaching rates:

 $\dot{z}_{shuttle} = 0.05 \text{ ft/sec}$ $\dot{\theta}_{shuttle} = 0.2 \text{ deg/sec}$ $\dot{\phi}_{shuttle} = 0.2 \text{ deg/sec}$

(7.38)

The corresponding initial values in the modal coordinates are obtained through the following transformation,

$$n_{p} = \phi_{p}^{-1} Z_{p}$$

$$\dot{n}_{p} = \phi_{p}^{-1} \dot{Z}_{p}$$

$$(7.39)$$

The initial conditions for the reference model are,

$$n_{mi} = 0.8 n_{pi}$$
 (7.40)
 $\dot{n}_{mi} = 0.8 \dot{n}_{pi}$

for i = 1, ..., 9.

The adaptive system simulation for the four-panel configuration is implemented in a fashion similar to that for the two-panel configuration except that the dimension and complexity are much greater and the execution time and cost are high. Because of this, relatively fewer cases have been studied here. However, the results are very encouraging as shown in Figs. 67-73. The simulation period is 75 seconds. Figure 67 indicates that the plant outputs closely track the model outputs; and with the exception of y_{p4} , y_{p7} and y_{p9} ,

all outputs convergé within 75 seconds. Figures 68 and 69 also show excellent physical state responses. The three bending angles ϕ_2 , ϕ_4 , ϕ_6 and their rates $\dot{\phi}_2$, $\dot{\phi}_4$, $\dot{\phi}_6$ converge slower than other states and The modal responses are shown in Figs. 70-72. All except rates. mode 5 show relatively high damping rates. Mode 2, the rigid Yrotational mode, strongly dominates the system dynamics and has a very high rate of damping. This mode is excited due to the fact that the simulation assumes a huge shuttle angular momentum about the The demand for control efforts shown in Fig. 73 pitch axis. is substantially lower than that required for the two-panel configuration. The peak of control torque is 400 ft-lb at the central bus and 350 ft-1b at the panel tips as compared with 3,000 ft-lb and 1,000 ft-lb, respectively, for the two-panel configuration. This is because the four-panel configuration is much more stiff and massive.

7.4.4 Adaptive Control During Shuttle Hard Docking

Unlike the hard docking case for the two-panel configuration, it is assumed here that the residual angular momenta of the shuttle are about its roll and pitch axes. The docking disturbance term $B_{d}u_{d}$ is then defined as

(7.41)

where F_d is the docking force, T_d is the docking torque about the pitch axis (Y-axis), and P_d is the docking torque about the roll axis (X-axis). Again the shuttle is assumed to dock with the space station at the central bus (the core). F_d , T_d and P_d are determined by the following equations:

$$F_d = D_F (\ddot{z}_{shuttle} - \ddot{z}_{p4}) + K_F (z_{shuttle} - z_{p4})$$
 (7.42)

$$T_{d} = D_{T} \left(\hat{\theta}_{shuttle} - \hat{\theta}_{p4} \right) + K_{T} \left(\theta_{shuttle} - \theta_{p4} \right)$$
(7.43)

$$P_{d} = D_{p} \left(\phi_{shuttle} - \phi_{p4}\right) + K_{p} \left(\phi_{shuttle} - \phi_{p4}\right)$$
(7.44)

and the equations of motion of the shuttle are characterized by

$$\vec{z}_{shuttle} = -F_d/M_s \tag{7.45}$$

$$\theta_{\text{shuttle}} = -T_{d}/I_{\theta}$$
(7.46)

$$\dot{\Phi}_{\text{shuttle}} = - P_{\text{d}} / I_{\phi}$$
 (7.47)

where $M_s = 7820$ slugs is the mass; $I_{\theta} = 7.54 \times 10^6$ slug-ft² is the moment of inertia about the pitch axis; and $I_{\phi} = 1.0 \times 10^6$ slug-ft² is the moment of inertia about the roll axis of the shuttle.

The shuttle residual rates (rates prior to docking) are:

$$\dot{z}_{shuttle}$$
 (0) = 0.05 ft/sec (7.48)
 $\dot{\theta}_{shuttle}$ (0) = 0.2 deg/sec (7.49)
 $\dot{\phi}_{shuttle}$ (0) = 0.2 deg/sec (7.50)

Again all of the initial conditions for the plant and the model are set to zero, and since there are no reference model disturbances, the reference model stays at its quiescent state throughout the simulation period. Thus the plant is commanded to follow the zero output at the presence of docking disturbances.

The docking parameters used and the corresponding damping ratios and natural frequencies are listed as follows:

linear:
$$D_F = 3.06 \times 10^3 \text{ lb/ft/sec}$$

 $K_F = 1.36 \times 10^3 \text{ lb/ft}$ (7.51)
 $\zeta_F = 0.707$
 $\omega_F = 0.1 \text{ Hz}$

angular: $D_T = 1.46 \times 10^7 \text{ ft-lb/rad/sec}$ (pitch) $K_T = 6.48 \times 10^7 \text{ ft-lb/rad}$ $\zeta_T = 0.707$ $\omega_T = 1.0 \text{ Hz}$ (7.52)

angular:
$$D_p = 7.08 \times 10^6 \text{ ft-lb/rad/sec}$$

(roll) $K_p = 3.15 \times 10^7 \text{ ft-lb/rad}$
 $\zeta_p = 0.707$
 $\omega_p = 1.0 \text{ Hz}$ (7.53)

The gain weighting matrices are $T = \overline{T} = \text{diag} (2.5 \times 10^6, 2.5 \times 10^8, 2.5 \times 10^8, 2.5 \times 10^6, 2.5 \times 10^6, 2.5 \times 10^6, 2.5 \times 10^6, 1000,$

The simulation results are shown in Figs. 74-82. Figure 74 shows that all of the plant outputs converge to equilibrium state within 300 seconds after docking begins. The same performance is observed for the plant states and their rates in Figs. 75 and 76. In Figs. 77-79, all but mode 5 are well damped. However, the amplitude of mode 5 is very small and it is believed

that it will converge after some longer period of time. Mode 2 strongly dominates the system dynamics due to the huge shuttle angular momentum applied about the pitch axis. Due to the higher structural stiffness, the required control efforts (Fig. 80) drop drastically compared with those in the hard docking case for the twopanel configuration while the docking force and torque maintain unchanged (see Figs. 38 and 82). The linear and angular positions of the shuttle shown in Fig. 81 are practically the same as those of the station central hus (Figs. 75(d), (j) and (n)), as expected.

CHAPTER VIII

CONCLUSIONS

The feature of a large space deployable structure is its complex flexible dynamics. Flexible dynamics are characterized by extremely high system dimensions and parameter uncertainties. Model truncation plays an important role in spacecraft control due to the limited computer capability and related hardware available today or in the near future. Control systems that can adequately deal with truncated dynamics and model parameter errors are necessary for large space structural systems. Space stations, among all large space structural systems, have stringent operational requirements and present a unique challenge for control engineers and researchers. For space stations, in addition to the parameter uncertainties and truncation errors, the control system has also to deal with the growth, time-varying dynamics, and high-intensity environmental disturbances. Adaptive control provides a potential solution to these problems. A direct model reference adaptive control algorithm for the control of space stations is investigated. This algorithm along with the proposed inner-loop plant augmentation technique (for the unstable rigid body dynamics) form a potentially robust control system for space stations. Two sufficient conditions have been derived to assure the globally asymptotic stability. Extensive control simulations and analyses have been conducted for two space station configurations with emphasis on generic properties and practical implementation issues.

The adaptive system developed here has exhibited high performance and robustness. However, in common with all other adaptive control algorithms, this one is also nonlinear, complex, and high gain. The demand on control effort, especially during stringent high disturbance operations, is so high that it has exceeded the capability of the realistic hardware. To cope with this problem, a number of solutions have been proposed and investigated. These solutions are gain limiting, reference model switching, disturbance modeling, and disturbance load reduction (e.g., soft space shuttle docking). With these methods integrated into the controller, the required hardware capability has been drastically reduced yet stability and robust performance of the system are still observed. Further research in this area is required and fruitful results are expected.

Specific conclusions are summarized as follows:

- The study results show promising potential application of adaptive control techniques to space stations.
- (2) The proposed inner-loop plant augmentation method as part of the adaptive system has improved the system convergence significantly and stabilized the rigid body modes.
- (3) High rates of convergence and robustness have been observed throughout the simulated cases.

Specifically,

- (1) The system is robust a) in the presence of unmodeled dynamics -- model truncation, b) with poorly known plant dynamics, and c) in the event of instant change of system mass property by more than 100%.
- (ii) It shows a good convergence property even under severe dynamic conditions including a) high initial elastic deformation and initial attitude errors, b) strong shuttle docking disturbances and dynamic interactions.
- (4) Shuttle hard docking is an example of the harsh space station operational environment. The high gain requirement associated with the adaptive controller will far exceed hardware limitations. Two methods of reducing the control demand have been investigated. Gain limitation can be applied to set a practical limit to the control effort and maintain stability of the system at the expense of higher transient and longer settling time. Model switching together with disturbance modeling provides a means for output error reduction and hence, the reduced control However, since our knowledge about the plant is demand. incomplete, tuning through simulation is required to achieve good results.
- (5) It is believed that a combination of load reduction (e.g., shuttle soft docking), gain limiting, model switching, and disturbance modeling will result in satisfactory system performance with realistic hardware implementation.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 25 Adaptive Regulator Control for Two-Panel Configuration

-- Plant and Model Translational State Responses

ORIGINAL PAGE IS OF POOR QUALITY

Figure 26 Adaptive Regulator Control for Two-Panel Configuration

-- Plant and Model Rotational State Responses

Figure 27 Adaptive Regulator Control for Two-Panel Configuration

-- Plant and Model Modal Responses

-- Adaptive Control Inputs

-- Plant and Model Outputs

PRECEDING PAGE BLANK NOT FILMED

ORIGINAL PAGE IS OF POOR QUALITY

Figure 33 Adaptive Control During Shuttle Hard Docking for Two-Panel Configuration

-- Plant and Model Translational State Responses

-- Plant and Model Modal Responses

-- High Frequency Plant Modal Responses

Figure 36 Adaptive Control During Shuttle Hard Docking for Two-Panel Configuration

--- Shuttle Angular Position and Rate

Figure 38 Adaptive Control During Shuttle Hard Docking for Two-Panel Configuration

Figure 39 Adaptive Control During Shuttle Hard Docking for Two-Panel Configuration

-- Adaptive Control Inputs

ORIGINAL PAGE IS OF POOR QUALITY

-- Plant and Model Outputs

-- Plant and Model Translational State Responses

ORIGINAL PAGE IS OF POOR QUALITY

Adaptive Control During Shuttle Soft Docking for Two-Panel Configuration

-- Plant and Model Rotational State Responses

ORIGINAL PAGE IS OF POOR QUALITY

-- Plant and Model Modal Responses

L .

--- Shuttle Angular Position and Rate

Figure 45 Adaptive Control During Shuttle Soft Docking for Two-Panel Configuration

-- Docking Force and Torque

-- Adaptive Control Inputs

Figure 49 Comparative Shuttle Soft Docking Responses

-- Relative Panel Tip Acceleration

Configuration — Plant and Model Outputs

Configuration --- High Frequency Plant Modal Responses

Figure 54 Adaptive Control During Shuttle Hard Docking with Actuator Saturation for Two-Panel

Configuration -- Shuttle Angular Position and Rate

ORIGINAL PAGE IS

for Two-Panel Configuration -- Plant and Model Outputs

for Two-Panel Configuration --- Adaptive Control Inputs

Adaptive Control During Shuttle Hard docking with Model Switching and Disturbance Modeling Figure 60

for Two-Panel Configuration -- Plant and Model Outputs

for Two-Panel Configuration -- Plant and Model Rotational State Responses

for Two-Panel Configuration - Plant and Model Modal Responses

for Two-Panel Configuration -- Adaptive Control Inputs

Figure 66 Continued

(c) Evolved Rigid Rody Modes

Figure 66 Continued

the way water we have a conclusion to conclusion and the

-- Plant and Model Outputs

Figure 67 Continued

187

Figure 67 Continued

ORIGINAL PAGE 13 OF POOR QUALITY

Figure 68 Adaptive Regulator Control for Four-Panel Configuration

-- Plant and Model Physical State Responses

ORIGINAL PAGE IS DE POOR QUALITY

Figure 68 Continued

Figure 68 Continued

-- Plant and Model Physical State Rate Responses

Figure 69. Continued

ORIGINAL PAGE IS OF POOR QUALITY

Figure 69 Continued

Figure 69 Continued

-- Plant and Model Rigid Body Modal Responses

Figure 71 Adaptive Regulator Control for Four-Panel Configuration -- Plant and Model First Rending Group Modal Responses

ORIGINAL PAGE IS OF POOR QUALITY

-- Plant Second Bending Group Modal Responses

Figure 72 Continued

Figure 73 Adaptive Regulator Control for Four-Panel Configuration

-- Adaptive Control Inputs
ORIGINAL PAGE IS OF POOR QUALITY

Figure 73 Continued

Figure 73 Continued

ORIGINAL PAGE IS OF POOR QUALITY

-- Plant and Model Outputs

Figure 74 Continued

ORIGINAL PAGE IS OF POOR QUALITY

Figure 74 Continued

Figure 75 Adaptive Control During Shuttle Hard Docking for Four-Panel Configuration -- Plant and Model Physical State Responses

Figure 75 Continued

ORIGINAL PAGE IS OF POOR QUALITY

Figure 75 Continued

Figure 75 Continued

211

-- Plant and Model Physical State Rate Responses

Figure 76 Continued

Figure 76 Continued

--- Plant and Model Rigid Body Modal Responses

216

x_{p3}

00 ⁻1

00 'r

×p2

ORIGINAL PAGE 13 OF POOR QUALITY

-- Plant and Model First Bending Group Modal Responses

Figure 79 Continued

ORIGINAL PAGE IS OF POOR QUALITY

Figure 80 Continued

ORIGINAL PAGE IS OF POOR QUALITY

ar 6

Figure 81 Adaptive Control During Shuttle Hard Docking for Four-Panel Configuration

-- Docking Force and Torque

APPENDIX A

DEVELOPMENT OF HINGED PAYLOAD DYNAMICS USING LAGRANGIAN APPROACH FOR FOUR-PANEL CONFIGURATION

Lagrange's equation:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial q_i} \right) - \frac{\partial L}{\partial q_i} = Q_i$$
 (A.1)

Starting from taking position vectors for points A, B and C

$$\frac{P_A}{P_B} = Z_4 \underline{e}_A$$

$$\frac{P_B}{P_B} = Z_4 \underline{e}_A + L_{8a} \underline{e}_B$$

$$\frac{P_C}{P_C} = Z_4 \underline{e}_A + L_{8a} \underline{e}_B + L_{8b} \underline{e}_C$$

$$\frac{V_A}{P_B} = Z_4 \underline{e}_A$$

$$\frac{V_B}{P_B} = Z_4 \underline{e}_A + L_{8a} \underline{e}_B$$

then

$$\begin{aligned} = \dot{z}_{4} \stackrel{e}{=}_{A} + L_{Ba} \stackrel{(\dot{e}_{4} \stackrel{k}{=} \times \stackrel{e}{=}_{B}) \\ = \dot{z}_{4} \stackrel{e}{=}_{A} + L_{Ba} \stackrel{\dot{e}_{4}}{=}_{A} \stackrel{e}{=}_{B} \\ \underbrace{\underline{v}_{C}} = \dot{z}_{4} \stackrel{e}{=}_{A} + L_{Ba} \stackrel{\dot{e}_{4}}{=}_{A} \stackrel{e}{=}_{B} + L_{Bb} \stackrel{(\dot{v}_{8Y} \stackrel{k}{=} \times \stackrel{e}{=}_{C}) \\ = \dot{z}_{4} \stackrel{e}{=}_{A} + L_{Ba} \stackrel{\dot{e}_{4}}{=}_{B} \stackrel{e}{=}_{B} + L_{Bb} \stackrel{\dot{v}_{8Y}}{=}_{C} \\ \text{Similarly,} \\ \underbrace{\underline{v}_{D}} = \dot{z}_{4} \stackrel{e}{=}_{A} + L_{9a} \stackrel{\dot{e}_{4}}{=}_{D} \stackrel{e}{=}_{D} \\ \underbrace{\underline{v}_{E}} = \dot{z}_{4} \stackrel{e}{=}_{A} + L_{9a} \stackrel{\dot{e}_{4}}{=}_{D} \stackrel{e}{=}_{D} \\ \underbrace{\underline{v}_{E}} = \dot{z}_{4} \stackrel{e}{=}_{A} + L_{9a} \stackrel{\dot{e}_{4}}{=}_{D} \stackrel{e}{=}_{D} \\ \stackrel{\dot{v}_{C}}{=} \stackrel{\underline{v}_{C}} \stackrel{\cdot}{\underline{v}_{C}} \\ = \dot{z}_{4}^{2} + L_{8a}^{2} \stackrel{\dot{e}_{4}}{=}_{A}^{2} + L_{8b}^{2} \stackrel{\dot{v}_{8Y}}{=}_{A}^{2} + 2 \stackrel{\dot{z}_{4}}{=}_{A} \stackrel{e}{=}_{A} \stackrel{e}{=}_{B}^{i}) \\ \stackrel{\dot{v}_{2}}{=} \dot{z}_{4}^{2} + L_{8a}^{2} \stackrel{\dot{e}_{4}}{=}_{A}^{2} + L_{8b}^{2} \stackrel{\dot{v}_{8Y}}{=}_{A}^{2} + 2 \stackrel{\dot{z}_{4}}{=}_{B} \stackrel{e}{=}_{A} \stackrel{e}{=}_{B}^{i}) \\ \stackrel{\dot{v}_{2}}{=} \dot{z}_{4}^{2} + L_{8a}^{2} \stackrel{\dot{e}_{4}}{=}_{A}^{2} + L_{8b}^{2} \stackrel{\dot{v}_{8Y}}{=}_{A}^{2} + 2 \stackrel{\dot{z}_{4}}{=}_{B} \stackrel{e}{=}_{A} \stackrel{e}{=}_{B}^{i}) \\ \stackrel{\dot{v}_{2}}{=} \dot{z}_{4}^{2} + L_{8a}^{2} \stackrel{\dot{e}_{4}}{=}_{A}^{2} + L_{8b}^{2} \stackrel{\dot{v}_{8Y}}{=}_{A}^{2} + 2 \stackrel{\dot{z}_{4}}{=}_{B} \stackrel{e}{=}_{A} \stackrel{\dot{v}_{8Y}}{=} \stackrel{e}{=}_{C} \stackrel{e}{=}_{C} \stackrel{\dot{v}_{2}}{=} \\ \stackrel{\dot{v}_{2}}{=} \stackrel{\dot{v}$$

$$= z_{4}^{2} + L_{9a}^{2} \theta_{4}^{2} + L_{9b}^{2} \gamma_{9Y}^{2} + 2 z_{4} L_{9a} \theta_{4} \cos \theta_{4}$$

+ 2 $z_{4} L_{9b} \gamma_{9Y} \cos \gamma_{9Y} + 2 L_{9a} L_{9b} \theta_{4} \gamma_{9Y} \cos \gamma_{9Y}^{2}$

Hence,

$$T = \frac{1}{2} m_{4} \dot{z}_{4}^{2} + \frac{1}{2} m_{8} v_{C}^{2} + \frac{1}{2} m_{9} v_{E}^{2} + \frac{1}{2} I_{4YY} \dot{e}_{4}^{2} + \frac{1}{2} I_{8YS} \dot{v}_{8Y}^{2}$$

$$+ \frac{1}{2} I_{9YS} \dot{v}_{9Y}^{2} + \frac{1}{2} I_{4XX} \dot{e}_{4}^{2} + \frac{1}{2} I_{8XS} \dot{v}_{8X}^{2} + \frac{1}{2} I_{9XS} \dot{v}_{9X}^{2}$$

$$= \frac{1}{2} m_{4} \dot{z}_{4}^{2} + \frac{1}{2} m_{8} \left[\dot{z}_{4}^{2} + L_{8a}^{2} \dot{e}_{4}^{2} + L_{8b}^{2} (\dot{e}_{4} + \dot{v}_{8Y}^{1})^{2} \right]$$

$$- 2 \dot{z}_{4} L_{8a} \dot{e}_{4} \cos \theta_{4} - 2 \dot{z}_{4} L_{8b} (\dot{v}_{8Y}^{1} + \dot{\theta}_{4}) \cos (\theta_{4} + v_{8Y}^{1})$$

$$+ 2 L_{8a} L_{8b} \dot{\theta}_{4} (\dot{v}_{8Y}^{1} + \dot{\theta}_{4}) \cos v_{8Y}^{1} + \frac{1}{2} m_{9} \left[\dot{z}_{4}^{2} + L_{9a}^{2} \dot{\theta}_{4}^{2} \right]$$

$$+ L_{9b}^{2} (\dot{\theta}_{4} + \dot{v}_{9Y}^{1})^{2} + 2 \dot{z}_{4} L_{9a} \dot{\theta}_{4} \cos \theta_{4}$$

$$+ 2 \dot{z}_{4} L_{9b} (\dot{v}_{9Y}^{1} + \dot{\theta}_{4}) \cos (\theta_{4} + v_{9Y}^{1})$$

$$+ 2 L_{9a} L_{9b} \dot{\theta}_{4} (\dot{v}_{9Y}^{1} + \dot{\theta}_{4}) \cos (\psi_{4}^{1} + v_{9Y}^{1})$$

$$+ 2 L_{9a} L_{9b} \dot{\theta}_{4} (\dot{v}_{9Y}^{1} + \dot{\theta}_{4}) \cos (\psi_{4}^{1} + v_{9Y}^{1})$$

$$+ 2 L_{9a} L_{9b} \dot{\theta}_{4} (\dot{v}_{9Y}^{1} + \dot{\theta}_{4}) \cos (\psi_{4}^{1} + v_{9Y}^{1})$$

$$+ 2 L_{9a} L_{9b} \dot{\theta}_{4} (\dot{v}_{9Y}^{1} + \dot{\theta}_{4}) \cos (\psi_{4}^{1} + v_{9Y}^{1})$$

$$+ 2 L_{9a} L_{9b} \dot{\theta}_{4} (\dot{v}_{9Y}^{1} + \dot{\theta}_{4}) \cos (\psi_{4}^{1} + v_{9Y}^{1})^{2}$$

$$+ \frac{1}{2} I_{8YS} (\dot{\theta}_{4} + \dot{v}_{8Y}^{1})^{2} + \frac{1}{2} I_{9YS} (\dot{\theta}_{4} + \dot{v}_{9Y}^{1})^{2} + \frac{1}{2} I_{4XX} \dot{\theta}_{4}^{2}$$

$$+ \frac{1}{2} I_{8XS} (\dot{\psi}_{4} + \dot{v}_{8X}^{1})^{2} + \frac{1}{2} I_{9XS} (\dot{\psi}_{4}^{1} + v_{9X}^{1})^{2}$$

 $\therefore V = 0$ $\therefore L = T - V = T$

There are 7 independent variables: Z_4 , θ_4 , γ_{8Y} , γ_{9Y} , ϕ_4 , γ_{8X} , γ_{9X} , one equation for each of them. The generalized forces are:

similarly .

 $Q_{\phi_4} = T_{4\phi}$ $Q_{\gamma_{8X}} = T_{8X}$ $Q_{\gamma_{9X}} = T_{9X}$

Equation for 2₄:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial Z_4} \right) - \left(\frac{\partial L}{\partial Z_4} \right) = F_4$$

i.e.,

$$\frac{d}{dt} \left[m_4^{Z_4} + m_8^{Z_4} - m_8^{L_{8a}\theta_4} \cos \theta_4 - m_8^{L_{8b}} (\gamma_{8Y}^{\dagger} + \theta_4) \cos (\theta_4 + \gamma_{8Y}^{\dagger}) + m_9^{Z_4} + m_9^{L_{9a}\theta_4} \cos \theta_4 + m_9^{L_{9b}} (\gamma_{9Y}^{\dagger} + \theta_4) \cos (\theta_4 + \gamma_{9Y}^{\dagger}) \right] - 0 = F_4$$

Expand it, we have,

$$m_{4}\ddot{z}_{4} + m_{8}\ddot{z}_{4} - m_{8}L_{8a}\ddot{\theta}_{4}\cos\theta_{4} + m_{8}L_{8a}\dot{\theta}_{4}^{2}\sin\theta_{4}$$

$$- m_{8}L_{8b}(\ddot{\gamma}_{8Y}^{i} + \ddot{\theta}_{4})\cos(\theta_{4} + \gamma_{8Y}^{i}) + m_{8}L_{8b}(\dot{\gamma}_{8Y}^{i} + \dot{\theta}_{4})^{2}\sin(\gamma_{8Y}^{i} + \theta_{4})$$

$$+ m_{9}\ddot{z}_{4} + m_{9}L_{9a}\ddot{\theta}_{4}\cos\theta_{4} - m_{9}L_{9a}\dot{\theta}_{4}^{2}\sin\theta_{4}$$

$$+ m_{9}L_{9b}(\ddot{\gamma}_{9Y}^{i} + \ddot{\theta}_{4})\cos(\gamma_{9Y}^{i} + \theta_{4})$$

$$- m_{9}L_{9b}(\dot{\gamma}_{9Y}^{i} + \dot{\theta}_{4})^{2}\sin(\gamma_{9Y}^{i} + \theta_{4}) = F_{4}$$
(A.2)

Equation for θ_4 :

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \theta_{4}}\right) - \frac{\partial L}{\partial \theta_{4}} = T_{4\theta}$$

i.e.,

ļ

$$\frac{d}{dt} \left[\begin{array}{c} m_{g} L_{ga}^{2} \dot{e}_{4}^{2} + m_{g} L_{gb}^{2} \left(\dot{e}_{4}^{2} + \dot{\gamma}_{gY}^{2} \right) - m_{g}^{2} L_{ga}^{2} \cos \theta_{4} \\ \\ - m_{g}^{2} \dot{z}_{4} L_{gb}^{2} \cos \left(\theta_{4}^{2} + \gamma_{gY}^{2} \right) + m_{g} L_{ga}^{2} L_{gb}^{2} \cos \gamma_{gY}^{2} \\ + 2 m_{g} L_{ga}^{2} L_{gb}^{2} \cos \gamma_{gY}^{2} + m_{g}^{2} L_{ga}^{2} \dot{\theta}_{4}^{2} + m_{g} L_{gb}^{2} \left(\dot{\theta}_{4}^{2} + \dot{\gamma}_{gY}^{2} \right) \\ + m_{g}^{2} \dot{z}_{4} L_{ga}^{2} \cos \theta_{4}^{2} + m_{g}^{2} \dot{z}_{4} L_{gb}^{2} \cos \left(\theta_{4}^{2} + \gamma_{gY}^{2} \right) \\ + m_{g}^{2} L_{ga}^{2} L_{gb}^{2} \dot{\gamma}_{gY}^{2} \cos \gamma_{gY}^{2} + 2 m_{g}^{2} L_{ga}^{2} L_{gb}^{2} \dot{\theta}_{4}^{2} \cos \gamma_{gY}^{2} + I_{4YY}^{2} \dot{\theta}_{4} \\ + I_{gYS}^{2} \left(\dot{\theta}_{4}^{2} + \dot{\gamma}_{gY}^{2} \right) + I_{gYS}^{2} \left(\dot{\theta}_{4}^{2} + \dot{\gamma}_{gY}^{2} \right) \right] \\ - \left[m_{g}^{2} \dot{z}_{4} L_{ga}^{2} \dot{\theta}_{4}^{2} \sin \theta_{4}^{2} + m_{g}^{2} \dot{z}_{4} L_{gb}^{2} \left(\dot{\gamma}_{gY}^{2} + \dot{\theta}_{4}^{2} \right) \sin \left(\theta_{4}^{2} + \gamma_{gY}^{2} \right) \right] \\ - m_{g}^{2} \dot{z}_{4} L_{ga}^{2} \dot{\theta}_{4}^{2} \sin \theta_{4}^{2} - m_{g}^{2} \dot{z}_{4} L_{gb}^{2} \left(\dot{\gamma}_{gY}^{2} + \dot{\theta}_{4}^{2} \right) \sin \left(\theta_{4}^{2} + \gamma_{gY}^{2} \right) \right] = T_{4} e^{2}$$

Expand it, we have,

$$m_{g}L_{ga}^{2}\ddot{\theta}_{4}^{2} + m_{g}L_{gb}^{2}\ddot{\theta}_{4}^{2} + m_{g}L_{gb}^{2}\ddot{\eta}_{gY}^{2} - m_{g}Z_{4}L_{ga}\cos\theta_{4}$$

$$= m_{g}Z_{4}L_{gb}\cos(\theta_{4} + \gamma_{gY}^{1}) + m_{g}L_{ga}L_{gb}\gamma_{gY}^{1}\cos\gamma_{gY}^{1}$$

$$= m_{g}L_{ga}L_{gb}\gamma_{gY}^{2}\sin\gamma_{gY}^{1} + 2 m_{g}L_{ga}L_{gb}\theta_{4}^{1}\cos\gamma_{gY}^{1}$$

$$= m_{g}L_{ga}L_{gb}\gamma_{gY}^{1}\sin\gamma_{gY}^{1} + 2 m_{g}L_{ga}^{2}\ddot{\theta}_{4}^{1} + m_{g}L_{gb}^{2}\ddot{\theta}_{4}^{1} + m_{g}L_{gb}^{2}\ddot{\theta}_{4}^{1} + m_{g}L_{gb}^{2}\ddot{\theta}_{9}^{1}$$

$$= m_{g}Z_{4}L_{ga}\cos\theta_{4} + m_{g}Z_{4}L_{gb}\cos(\theta_{4} + \gamma_{gY}^{1})$$

$$= m_{g}L_{ga}L_{gb}\gamma_{gY}^{1}\cos\gamma_{gY}^{1} - m_{g}L_{ga}L_{gb}\gamma_{gY}^{1}\sin\gamma_{gY}^{1}$$

$$= m_{g}L_{ga}L_{gb}\ddot{\theta}_{4}\cos\gamma_{gY}^{1} - 2 m_{g}L_{ga}L_{gb}\dot{\theta}_{4}\gamma_{gY}^{1}\sin\gamma_{gY}^{1}$$

$$= m_{g}L_{ga}L_{gb}\ddot{\theta}_{4}\cos\gamma_{gY}^{1} - 2 m_{g}L_{ga}L_{gb}\dot{\theta}_{4}\gamma_{gY}^{1}\sin\gamma_{gY}^{1}$$

$$= 1 m_{4}\gamma\gamma_{4}\theta_{4}^{2} + 1 m_{8}\gamma_{5}\theta_{4}^{2} + 1 m_{8}\gamma_{5}\gamma_{8}\gamma_{8}^{2} + 1 m_{9}\gamma_{5}\theta_{4}^{2} + 1 m_{9}\gamma_{5}\gamma_{gY}^{1} = T_{40} \quad (A.3)$$

Equation for γ'_{8Y} :

$$\frac{d}{dt} \left(\frac{\partial L}{\cdot} \right) - \frac{\partial L}{\partial \gamma'_{gY}} = T_{gY}$$

i.e.,

$$\frac{d}{dt} \left[m_{8}L_{8b}^{2} \left(\dot{\theta}_{4} + \dot{\gamma}_{8Y}^{*} \right) - m_{8}Z_{4}L_{8b} \cos \left(\theta_{4} + \gamma_{8Y}^{*} \right) + m_{8}L_{8a}L_{8b}\theta_{4} \cos \gamma_{8Y}^{*} \right] \\ + I_{8YS} \left(\dot{\theta}_{4} + \dot{\gamma}_{8Y}^{*} \right) \right] - \left[m_{8}Z_{4}L_{8b} \left(\dot{\gamma}_{8Y}^{*} + \dot{\theta}_{4} \right) \sin \left(\theta_{4} + \gamma_{8Y}^{*} \right) \right] \\ - m_{8}L_{8a}L_{8b}\theta_{4} \left(\dot{\gamma}_{8Y}^{*} + \dot{\theta}_{4} \right) \sin \gamma_{8Y}^{*} \right] = T_{8Y}$$

Expand it, we have,

$$m_{8}L_{8b}^{2}\theta_{4}^{2} + m_{8}L_{8b}^{2}\eta_{8Y}^{2} - m_{8}Z_{4}L_{8b}\cos(\theta_{4} + \gamma_{8Y}^{*}) + m_{8}L_{8a}L_{8b}\theta_{4}\cos\gamma_{8Y}^{*}$$

+ $I_{8YS}\theta_{4}^{2} + I_{8YS}\gamma_{8Y}^{*} + m_{8}L_{8a}L_{8b}\theta_{4}^{2}\sin\gamma_{8Y}^{*} = T_{8Y}$ (A.4)

Equation for
$$\gamma_{9Y}^{+}$$
:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \gamma_{9Y}} \right) - \frac{\partial L}{\partial \gamma_{9Y}} = T_{9Y}$$

i.e.,

$$\frac{d}{dt} \left[m_{9}L_{9b}^{2} \left(\dot{\theta}_{4} + \dot{\gamma}_{9Y}^{i} \right) + m_{9}Z_{4}L_{9b} \cos \left(\theta_{4} + \dot{\gamma}_{9Y}^{i} \right) \right] \\ + m_{9}L_{9a}L_{9b}\dot{\theta}_{4} \cos \gamma_{9Y}^{i} + I_{9YS} \left(\dot{\theta}_{4} + \dot{\gamma}_{9Y}^{i} \right) \right] \\ - \left[- m_{9}Z_{4}L_{9b} \left(\dot{\gamma}_{9Y}^{i} + \dot{\theta}_{4} \right) \sin \left(\theta_{4} + \dot{\gamma}_{9Y}^{i} \right) \right] \\ - m_{9}L_{9a}L_{9b}\dot{\theta}_{4} \left(\dot{\gamma}_{9Y}^{i} + \dot{\theta}_{4} \right) \sin \gamma_{9Y}^{i} = T_{9Y}$$

Expand it, we have,

$$m_{9}L_{9b}^{2}\theta_{4}^{2} + m_{9}L_{9b}^{2}\gamma_{9Y}^{2} + m_{9}Z_{4}L_{9b}\cos(\theta_{4} + \gamma_{9Y}^{2}) + m_{9}L_{9a}L_{9b}\theta_{4}\cos\gamma_{9Y}^{2}$$

+ $I_{9YS}\theta_{4}^{2} + I_{9YS}\gamma_{9Y}^{2} + m_{9}L_{9a}L_{9b}\theta_{4}^{2}\sin\gamma_{9Y}^{2} = T_{9Y}$ (A.5)

After linearization, Eqs. (A.2), (A.3), (A.4), and (A.5) become:

Equation for Z_4 :

$$(m_4 + m_8 + m_9) Z_4 + (m_9 L_9 - m_8 L_8) \theta_4 - m_8 L_{8b} Y_{8Y} + m_9 L_{9b} Y_{9Y} = F_4$$

Equation for θ_4 :

$$(m_{9}L_{9} - m_{8}L_{8})\ddot{z}_{4} + (m_{8}L_{8}^{2} + m_{9}L_{9}^{2} + I_{4YY} + I_{8YS} + I_{9YS})\ddot{\theta}_{4}$$

+ $(m_{8}L_{8b}^{2} + m_{8}L_{8a}L_{8b} + I_{8YS})\ddot{\gamma}_{8Y}^{'}$
+ $(m_{9}L_{9b}^{2} + m_{9}L_{9a}L_{9b} + I_{9YS})\ddot{\gamma}_{9Y}^{'} = T_{4\theta}$

Equation for γ'_{8Y} :

$$- m_{8}L_{8b}Z_{4} + (m_{8}L_{8b}^{2} + m_{8}L_{8a}L_{8b} + I_{8YS}) \tilde{\theta}_{4} + (m_{8}L_{8b}^{2} + I_{8YS}) \tilde{\gamma}_{8Y} = T_{8Y}$$

Equation for γ'_{9Y} :

$$m_{g}L_{gb}Z_{4} + (m_{g}L_{gb}^{2} + m_{g}L_{ga}L_{gb} + I_{gYS})\ddot{\theta}_{4} + (m_{g}L_{gb}^{2} + I_{gYS})\ddot{y}_{gY} = T_{gY}$$

The equations for ϕ_4 , γ_{8X} , γ_{9X} are:

Equation for ϕ_4 :

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \phi_4} \right) - \frac{\partial L}{\partial \phi_4} = T_{4\phi}$$

i.e.,

$$\frac{d}{dt}\left[I_{4XX}\phi_{4} + I_{8XS}\left(\phi_{4} + \gamma_{8X}^{\dagger}\right) + I_{9XS}\left(\phi_{4} + \gamma_{9X}^{\dagger}\right)\right] = T_{4\phi}$$

i.e.,

$$(I_{4XX} + I_{8XS} + I_{9XS}) \phi_4 + I_{8XS} \phi_8 + I_{9YS} \phi_5 = T_{44}$$

Equation for γ'_{8X} :

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \gamma_{8X}'}\right) - \frac{\partial L}{\partial \gamma_{8X}'} = T_{8X}$$

i.e.,

$$\frac{d}{dt} \left[I_{8XS} \left(\dot{\phi}_4 + \dot{\gamma}_{8X}^{\dagger} \right) \right] = T_{8X}$$

i.e.,

$$I_{8XS} + I_{8XS} + T_{8X}$$

Equation for γ_{9X}^{*} :

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \gamma'_{9X}} \right) - \frac{\partial L}{\partial \gamma'_{9X}} = T_{9X}$$

$$\frac{d}{dt} \left[I_{9XS} \left(\dot{\phi}_4 + \dot{\gamma}'_{9X} \right) \right] = T_{9X}$$

$$I_{9XS}^{\phi} + I_{9XS}^{\gamma} + T_{9X}^{\gamma}$$

APPENDIX B

DEFINITION OF POSITIVE REALNESS AND STRICTLY POSITIVE

REALNESS OF MATRICES [55]

Definition B.1

An m x m matrix H(s) of real rational functions is positive real if

- (1) All elements of H(s) are analytic in the open right half plane Re[s] > 0 (i.e., they do not have poles with positive real parts).
- (2) The eventual poles of any element of H(s) on the axis Re[s]
 are distinct, and the associated residual matrix of H(s) is positive semidefinite Hermitian.
- (3) The matrix $H(j\omega)+H^{T}(-j\omega)$ is a positive semidefinite Hermitian for all real values of ω which are not a pole of any element of H(s).

Definition B.2

An m x m matrix H(s) of real rational functions is strictly positive real if

- All elements of H(s) are analytic in the closed right half
 plane Re[s] ≥ 0 (i.e., they do not have poles with non negative real parts).
- (2) The matrix $H(j\omega)+H^{T}(-j\omega)$ is a positive definite Hermitian for all real ω .

APPENDIX C

DERIVATION OF FORMULAS FOR CALCULATING THE

SPRING CONSTANTS AND DAMPING FACTORS OF DOCKING DEVICE

Consider the angular springs and dampers first. Referring to the following figure, the moment of inertia I_2 of the core body of the space station is used to represent the space station and I_s represents the shuttle

the equations of motion can be written as

$$I_2 \theta_2 + D_A (\theta_2 - \theta_8) + K_A (\theta_2 - \theta_8) = T_2$$
 (C.1)

$$I_2 \ddot{\theta}_{s} + D_A (\dot{\theta}_{s} - \dot{\theta}_{2}) + K_A (\theta_{s} - \theta_{2}) = T_s$$
 (C.2)

Assume that docking occurs at time t = 0, and $\theta_2(0) = \theta_s(0) = 0$ (this will not affect the values of K_A and D_A). Take Laplace Transforms, Eqs. (C.1) and (C.2) become

$$(I_2s^2 + D_As + K_A)\theta_2(s) - (D_As + K_A)\theta_8(s) = T_2(s)$$
 (C.3)

$$(I_{s}s^{2} + D_{A}s + K_{A})\theta_{s}(s) - (D_{A}s + K_{A})\theta_{2}(s) = T_{s}(s)$$
 (C.4)
From Eq. (C.4)

$$\theta_{s}(s) = \frac{(D_{A}s + K_{A})\theta_{2}(s)}{I_{s}s^{2} + D_{A}s + K_{A}} + \frac{T_{s}(s)}{I_{s}s^{2} + D_{A}s + K_{A}}$$
(C.5)

Substituting Eq. (C.5) into Eq. (C.3), we have,

$$(I_{2}s^{2}+D_{A}s+K_{A})\theta_{2}(s) - \frac{(D_{A}s+K_{A})^{2}}{(I_{s}s^{2}+D_{A}s+K_{A})}\theta_{2}(s) = T_{2}(s) + \frac{(D_{A}s+K_{A})}{(I_{s}s^{2}+D_{A}s+K_{A})}T_{s}(s)$$
(C.6)

1.e.,

$$(I_{2}s^{2}+D_{A}s+K_{A}) (I_{s}s^{2}+D_{A}s+K_{A})\theta_{2}(s) - (D_{A}s+K_{A})^{2}\theta_{2}(s)$$
$$= (I_{s}s^{2}+D_{A}s+K_{A}) T_{2}(s) + (D_{A}s+K_{A}) T_{s}(s)$$
(C.7)

For the purpose of obtaining the characteristics of the system, the right-hand side of Eq. (C.7) is set to zero. Then we have

$$[I_2I_8s^2 + (I_2+I_8)D_As + (I_2+I_8)K_A]s^2 = 0$$
 (C.8)

for $s \neq 0$ ($\cdot s^2 = 0$ implies two rigid modes at the origin)

$$I_2 I_8 s^2 + (I_2 + I_8) D_A s + (I_2 + I_8) K_A = 0$$
 (C.9)

$$s^{2} + \left(\underbrace{\frac{I_{2}+I_{s}}{I_{2}I_{s}}}_{2\zeta_{A}\omega_{A}}\right) D_{A}s + \left(\underbrace{\frac{I_{2}+I_{s}}{I_{2}I_{s}}}_{\omega_{A}}\right) K_{A} = 0$$
(C.10)

Hence,

$$\omega_{A} = \sqrt{\left(\frac{I_{2}+I_{s}}{I_{2}I_{s}}\right)\kappa_{A}}$$
(C.11)

$$\zeta_{A} = \frac{1}{2\omega_{A}} \left(\frac{I_{2}^{+}I_{8}}{I_{2}I_{8}} \right) D_{A} = \frac{D_{A}}{2} \sqrt{\left(\frac{I_{2}^{+}I_{8}}{I_{2}I_{8}} \right) \frac{1}{K_{A}}}$$
(C.12)

and

$$K_{A} = \omega_{A}^{2} \left(\frac{I_{2}I_{s}}{I_{2}+I_{s}} \right)$$
(C.13)

$$D_{A} = 2\zeta_{A}\omega_{A}\left(\frac{I_{2}I_{s}}{I_{2}+I_{s}}\right)$$
(C.14)

For the linear springs and dampers, $K_{\rm L}$ and $D_{\rm L}$ are obtained as follows by using the same approach

$$K_{\rm L} = \omega_{\rm L}^2 \left(\frac{M_2 M_s}{M_2 + M_s} \right) \tag{C.15}$$

$$D_{L} = 2\zeta_{L}\omega_{L} \left(\frac{M_{2}M_{s}}{M_{2}+M_{s}}\right)$$
(C.16)

where M_2 is the mass of the core body of the space station and M_8 is the mass of the shuttle.

or

APPENDIX D

PROGRAM LISTING FOR THE SIMULATION OF ADAPTIVE CONTROL DURING SHUTTLE HARD DOCKING TO FOUR-PANEL SPACE STATION

1 PROGRAM APPLICATION OF ADAPTIVE CONTROL ON SPACE STATION (15 DOF) 2 : 3.1 CREATED OCT 1984 -- BY C.H.C.IH 4 : 5 : 7:INITIAL 8: 9: 10:1 *********** 11:1 TYPE AND DIMENSION OF VARIABLES * * * 12:1 13: 14: INTEGER N, N2, M, L, L2, Q, II, J, K, NSTP1, NSTP2 ARRAY ZP(15),ZPD(15),ZM(15),ZMD(15),ZPO(15),ZPD0(15),ZPDD(15) ARRAY AP(30,30),BP(30,11),CP(11,30) 15: 16: 17: ARRAY AM(18,18), BM(18,11), CM(11,18) ARRAY XP(30),XPD(30),XPO(30),XM(18),XMD(18),XMD(18) ARRAY B(15,11),C(11,15),BPF(15,11),CPF(11,15),BMF(7,11),CMF(11,7) 18: 19: 20 : ARRAY YP(11), YM(11), UP(11), UM(11) ARRAY ETA(15), ETA0(15), ETAD(15), ETAD0(15), ETADD(15) 21 : ARRAY ETAS(9), ETASD(9), ETASD(9), ETASD0(9) 22: 23: ARRAY EVAL(15), EVEC(15, 15), EVECT(15, 15), EVECI(15, 15) ARRAY EVECS(15,9),EVECST(9,15),EVECSB(15,9) ARRAY TA(40,40),TB(40,40),TAS(40),TBS(40),R(40),RT(1,40) 24: 25 : ARRAY DAMPFC(15), DAMP(15,15), ZETA(9), DAM(9,9), W2(15,15), W2M(9,9) 26 : 27: ARRAY KI(11,40), KP(11,40), KID(11,40), KIO(11,40), MASS(15,15) 28: ARRAY DUMY4(1,40),DUMÝ5(1,40),DUMY6(11),MT(15,15),MTT(15,15) 29 : ARRAY DUMY7(11), DUMY8(30), DUMY9(30), DUMY10(18), DUMY11(18) 30: ARRAY EYS(11), EY(11,1), STIFF(15,15), K1(15,15) ARRAY FDDOCK(3), 81(15,3), 8DF(15,3), 8D(30,3) 31 : 32 : ARRAY DUMY12(30), DUMY13(30), SCR1(15), SCR2(15), FREQ(15) 33 : 34 CONSTANT N=15 \$'NUMBER OF PHYSICAL COORDINATES' 35: (ALSO NUMBER OF MODAL COORDINATES) 36 CONSTANT N2=30 \$'NUMBER OF PLANT STATES' S'NUMBER OF PLANT INPUTS AND MODEL INPUTS' 37 CONSTANT M=11 '(ALSO NUMBER OF PLANT DUTPUTS AND MODEL' 38: , OUTPUTS> 39 : 40 CONSTANT L=9 \$'NUMBER OF THE MODES RETAINED(TO FORM 'THE MODEL) 41: 42 CONSTANT L2=18 43 CONSTANT UM=11 \$'NUMBER OF MODEL STATES' \$'HODEL INPUT' UM=11¥0. S'TIME TO STOP' 44 CONSTANT TFINAL=100.0 \$'COMMUNICATION INTERVAL' 45 CINTERVAL CINT=0.2 46 : 47: 1 48 : 1 * DEFINE THE PHYSICAL PARAMETERS OF THE SPACE STATION ** 49: * 50: 51 CONSTANT G=32.174 52 CONSTANT ZETA=9*0.707 **\$'GRAVITATIONAL ACCELERATION'** \$'DAMPING RATIOS OF THE REFERENCE MODEL' 53 CONSTANT EIS=9475776. 54 CONSTANT LS=115. 55 CONSTANT LE=140. RHOS= . 541 56 : CONSTANT 57 CONSTANT RHOE=1.048 58 CONSTANT M4=4165.35 59 CONSTANT H8=994.72

	CONCTANT	NG-604 80
60	CUNSIANI	ny=yy4./2
6 1 -	CUNSIANI	14XX=3.869E+6
62.	CONSTANT	14YY=1.343E+6
63 :	CONSTANT	IBXS=2.437E+4
64	CONSTANT	19X5=2.437E+4
24	CONSTANT	19Y6=5 637F+4
4.1	CONCTANT	
47	CONCTANT	1713-3.03/574
0/3	LUNSTANT	
68	CUNSTANT	
69	CONSTANT	L9A=7.
70:	CONSTANT	L9B=11.
71	CONSTANT	FAC=10.
72	CONSTANT	PI=3.14159265
73		
74		
75	•	
23		EIE-FRUMEIO Tro-Fra Fra Fra EE10 And EE14 (04(000) (4+400)
/6:	CUNSTANT	145 = 522, $52 + 6$, 232 , $52 + 6$, 74 , $32 + 6$, $16 + 1000$, $114 + 000$.
77 :	CONSTANT	TBS=5#2.5E+6,2#2.5E+8,4#2.5E+6,18#1000.,11#400.
70	CONSTANT	DAMPFC=15#0.005\$'MODAL DAMPING RATIOS OF THE PLANT'
79	CONSTANT	ALPHA=0.2
80	CONSTANT	N57P1=200
81 :	CONSTANT	NSTP 2=50
82	CONSTANT	TSW=5 0
97.		
0.0		
04.	•	
62:	,	DU 40 11=1,N
86	•	DO 30 J=1,N
87	:	K1(II,J)=0.
88 :	30.	.CONTINUE
89	: 40 .	CONTINUE
90:		K1(7,7)=28184,
91		K1 (8, 8)=339324
0.0		K4 (0 0) x 244 3 8 8
07		
73		
-77 -02	•	
- 7 3	-	
70	· 50.	LONTINDE
97 :	6 0.	. CONT INUE
78 :	•	
99		DO 62 II=1,N
100	:	DO 61 J=1,3
101:		Bi(II,J)=0.
102 -	61.	CONTINUE
103	. 62.	CONTINUE
104		R(7 () = 1
405		
IUD:		
100:		B1(7,3/=1.
107	:	DO 65 11=1,N
108	:	DO 63 J=1,M
109	; .	B(II,J)=0.
110:	: 63 .	
111	• 65 .	. CONTINUE
112		B(2,1)≠1.
113	:	B(4,2)=1
114	•	R(5,3)=1
114	-	R(A, A)#1
4 4 L -	•	9/7 Chai
410:		D(7)3/-4. D(0)/)a/
117:		
118	:	ダレダップノデス

119:	:	B(10	,8).	=1 .												
120	:	B(11	.9)=	=1.												
121 :		B(13	10)=1 .												
122	-	R(15	. 1 1)=1												
123	-	DO 6	9 T	r = 1	м											
124		DO 6	6 .1:	=1 . N	••											
420		C/11	T 1 -	- . , = 0												
126.		CONT	7 NH H	- • •												
427	·	CONT	TNU													
400		CONT		<u> </u>												
120:	· ·	τα,	2)=:	1.												
127:	;	C(2,	4)=:	1.				•							-	
130	,	C(3,	5)=:	1.												
131	:	C(4,	6)=:	1.												
132	:	С(5,	7)=1	ι.												
133	:	C(6,	B)=:	1.												
134	:	C(7,	9)=:	L.												
135		C(8,	10):	=1.												
136:		C(9.	11)-	-1 .												
137 :		C(10	.13)=1.												
133	:	C (11	.15)=1.				•								
139			,													
140	. •	****	***1	****	***	***		i de sie sie	a de sete sete se			***	****	****	******	****
141		****		DF	FIN		4E D	nrk	TNC	דח	STUR	RONI	-5- P	C P AM	FTEDC	***
142		****	14° 14° 14° 1		****		****	****	i Liveo. Neterativa	n ste ste	****	***		****	******	
447		* * * *	~~ ~	* * * *	·Tr -Tr -Tr -	r - -	~~~~							** * *	****	****
143	CONSTANT	7844			7		COLT		~~ T >				-	7.40	00555/	
144:	CONSTANT	ZUAN	= J . I	16Ľ.Ť	3		50F 1	. DC			LINE	AN L			LULFF'	
145:	CUNSTANT	2211	=]	324/	E70		50F 1			16	LINE	AK :	5P K 11			
146	CUNSTANT	RDAN	T=1	. 459	3E+7	7\$ '	SOFT	DC	ICKIN	IG	ANGU	LAR	DAR	PING	COEFFY	
147 :	CONSTANT	RDAM	P=7	. 078	E+6					_						
148 :	CONSTANT	RSTI	T=6	. 484	5E+7	7\$ 1	SOFT	DC	CKIN	1C	ANGU	LAR	SPR	INC	CONST	
149:	CONSTANT	RSTI	P=3	.145	E+7											
150	CONSTANT	MSHU	T=29	5160	0.	\$1	MASS	C OF	- THE	: 5	HUTT	LE'				•
151	CONSTANT	ISHU	TT=	7.54	E+6	\$1	MONE	TM	OF 1	INE	RTTA	OF	THE	SHU	TTLEY	
152:	CONSTANT	ISHU	TP =:	1. OE	+6											
153					-											
154	. •	****	***	***	***	***	****	***	****	**	****	***	****	***	******	***
155	. •	*	CAL	CULA	TES	M	AND	KH	ATR	I ĈE	S. TH	E E	IGEN	VALU	ES AND	**
156		*	FTG	NUE	CTO	25	OF T	HE	DPEN	1 1	NNP	SYS	TEN.	FURM	THE	* /
157		*	DAM	PTNG	MA'	TPT	Y TN	ійг	וממו	ົດດັ	I I P T	NATI	FS . A	SSEM	RIE AP	÷.
458		T.	100 4		CD 1	487	0105	е п	TL		PI AN	T	-0) 11	00211		
420		****	191° 7		د ⊷تانيا د وسونوس	i per a La serie	K 1 6 6		HE LE	ال التي الت التي ال	Г. <u></u> рың масты	i I An An An An A	. بله حله جله ما	ىلە بلە بلە بل	ute use ade als als als also	an. A de arte arte
440		****	***	* * * *	***'	* * *	****	***	****		****	***'	****	* * * *	*****	****
44.4				****	-					• n e		20		D D_		•
101:	FROLEDUKAL	- (ПАЗ	3,3	- <u>-</u>	,E.VI	Η ∟ ,	EVEL	, DA	, nnr	KE	ių, Ar	, 87	ار ۲۰ ما و ام ۲۰۰۰ ما	BD=.	AND TON	/ n
162	:	E15	المنار	<u>e, k</u> h	105,1	KHO	L کر خال	<u>ا ا ر</u>	., 114,	, nu	ι, ΠΥ,	14X	X,14	11,1	885,198	
163	:	184	5,19	715,	LBA	,L9	A,LE	1 H ,L	.98,L	.в,	LY,D	AMPI	-C,B	1)		,
164:		CALL	REI	admk	(MA:	55,	STIF	F,E	15,F	IE	,RHO	S,R	HOE,	LS,L	E,M4,M8	3 • • •
1.92					- 119 ;	, 14	XX,I	4Y1	', 18>	s,	19XS	,18	YS,I'	FYS,	LBA,LPA	· • • • •
166	t e				L81	В,Ц	.9B,L	.8,L	.9)			•				
167		CALL	MAI	DD(S	TIFF	₽`, X	1,57	IFF	.N.N	D						
168	1	CALL	OP		(MAS	SŚ.	STIF	F.E	EVAL.	EV	EC)					
169		DO 6	9 1	[=1.	N	-,										
170		SCR 1	(TT))=AR	S(E)	JAL	(11)	>								
171	, I	SCR2	(11))=50	RT	SCR	1(11	5>								
172	:	ERED	(11)=50	R2(11)	/(2	*P1	•							
173	. 49	CONT	INUI	E		•										
174.	· · · · ·	CALL	MDI	TNT	(MA	55	N.N	12	128	MA	SS M		(x)			
170		CALL	MP	RINT	(ST)		. N . A	1.17	. 174	1 9	TIFF	NES	S MA	TRTY	5	
174		CALL	- MD	DINT	CEU	51° 1° 61	1.N	40	100	FT	GENU		- 114 FB (1		3)	
	•															

177:		CALL MPRINT(EVEC,N,N,20,20H MODAL MATRIX (EVEC))
179 :		CALL MPRINT(FREQ,1,N,23,23H MODAL FREQUENCIES (HZ))
179:		DO 80 II=1,N
100:		DO 70 J=1,N
181 :		W2(II,J)=0.0
182	70.	CONTINUE
183:		W2(II,II)=ABS(EVAL(II))
184:	80.	CONTINUE
185		CALL MPRINT (W2.N.N.43
186 :		43H GENERALIZED STIFFNESS MATRIX OF PLANT (W2))
137		CALL MTRANS(EVEC.EVECT.N.N)
188:		CALL MHULT (EVECT.MASS.MT.N.N.N)
189 :		CALL MMULT(MT.EVEC.MTT.N.N.N)
120:		CALL MPRINT(MTT.N.N.4.4H MTT)
191 :		DO 90 II=1.N
192 :		DO 90 J=1.N
193:		DAMP(II,J)=0
194:	90.	CONTINUE
195:		DD 95 II=1.N
196:		DAMP(II,II)=2.0*DAMPFC(II)*SORT(W2(II,II))
197:	95.	CONTINUE
198		CALL MCOPY (EVEC.EVECI.N.N)
199:		CALL INVERS(EVECI.N)
200:		CALL MPRINT(DAMP.N.N.S.SH DAMP)
201:		DO 110 II=1.N
202 :		DO 110 J=1.N
203 :		AP(II, J)=0
204	110.	CONTINUE
205		DO 120 II=1,N
206:		D0 120 J=1.N
207:		AP(II,N+J)=0
208		IF(II, EQ, J) AP(II, N+J)=1.
209:	120.	CONTINUE
210:		DD 130 II≕1,N
211:		DO 130 J=1,Ň
212:	· · · ·	AP(N+II,J)=-1.#W2(II,J)
213:	130.	CONTINUE
214:		DO 140 II=1,N
215:		DD 140 J=1,N
216:		AP(N+II,N+J)=-1. *DAMP(II,J)
217:	140.	. CONTINUE
218		CALL MMULT(EVECT, B1, BDF, N, N, 3)
219:		CALL MMULT(EVECT, B, BPF, N, N, M)
22 0 :		CALL MMULT(C,EVEC,CPF,N,N,N)
221 :		DO 143 II=1,N
222:		DO 142 J=1,3
223 :		BD(II,J)=0.
224 :		BD(N+II,J)=BDF(II,J)
225:	142.	. CONTINUE
226 :	143.	. CONTINUE
227 :		DO 145 II=1,N
228 :		DO 144 J=1,M
229 :		BP(II,J)=0.0
230:		BP(N+II,J)=BPF(II,J)
231 :	144.	CONTINUE
232:	145.	CONTINUE
233 :		DO 148 II=1,M

234 DO 147 J≕1,N 235 -CP(II,J)=ALPHA*CPF(II,J) 236: CP(II,N+J)=CPF(II,J) 237 : 147. CONTINUE 148. CONTINUE 238: 237: 240 : END \$'END OF PROCEDURAL' 241 : 242:1 243:1 * ASSEMBLE AM, BM, CM MATRICES OF THE REFERENCE MODEL ** 244: 1 245 : 245 PROCEDURAL (AM, RM, CM, EVECS, EVECST, DAM, W2M=ZETA, EVEC, W2, B, C, ALPHA) 247: DO 150 II=1,L 248. DO 150 J=1,L 249: W2M(II,J)=0. 250: 150. CONTINUE 251 : DO 152 II=1,6 252: W2H(II,II)=W2(6+II,6+II)#0.6 253. 152. CONTINUE 254: DO 153 II=1,3 W2M(6+II,6+II)=W2(12+II,12+II)*1.4 255 -256 : 153. CONTINUE DO 160 II=1,L 257: 258: DO 155 J=1,L 259: DAM(II, J) = 0.0260: 155. CONTINUE 261: DAM(II,II)=2.0*ZETA(II)*SQRT(W2M(II,II)) 262: 160. CONTINUE 263: DO 170 II≕1,L 264: DO 170 J=1,L 265: AM(II,J)=0. 266 : 170. CONTINUE 267 : DO 180 II=1,L 238: DO 180 J=1,L 269: AH(II,L+J)=0. 270: 271: JF(II.EQ.J) AM(II,L+J)=1. 180. CONTINUE 272: DO 190 II=1,L 273: DO 190 J=1,L 274: AM(L+II,J)=-1.#W2M(II,J) 275: 190. CONTINUE 276: DO 200 II=1,L 277 : DO 200 J=1,L 278: AM(L+II,L+J)=-1.*DAM(II,J) 279: 200. CONTINUE 280 -DO 205 II=1,N 281 : DO 205 J=1,9 282 : EVECSB(II, J)=EVEC(II,6+J) 203: 205. CONTINUE 284 : DO 212 J=1,L 285: EVECS(1,J)=EVECSD(1,J)#0.7 286: EVECS(2,J) = EVECSB(2,J) * 0.7287: EVECS(3,J)=EVECSB(3,J)*1.3 288 : EVECS(4, J)=EVECSB(4, J)*1.3 289: EVECS(5, J)=EVECSB(5, J)*1.0 EVECS(6,J)=EVECSB(6,J)*0.7 290: EVECS(7,J)=EVECSB(7,J)*1.0 291: 292: EVECS(8, J)=EVECSB(8, J)*1.0

207		EVERCE $(0, T) \neq EVERCED(0, T) \neq 1$
204	•	
274	:	
275	:	EVEUS(11, J) = EVEUSB(11, J) = 1.3
296	•	EVECS(12,J)=EVECSB(12,J)*0.7
297	: -	EVECS(13,J)=EVECSB(13,J)#017
298	:	EVECS(14,J)=EVECSB(14,J)*1.3
299	:	$EVECS(15, J) = EVECSB(15, J) \times 1, 3$
300	. 212	
304	· • • • • • • • • • • • • • • • • • • •	CALL MTRANS/FUERS FUERST N ()
702	•	CALL MAN T/EVECT D DALL N MY
302	•	CALL MULICEVECCI, DIDAF, LINIA
303	•	$\begin{array}{c} LALL & Ind(L) \in Vec(S) \in Dr(S) \\ D(S) \in T(S) \\ T(S) T(S$
304	•	
305	•	
306	:	BU(II,J)=0.
30/	:	BM(L+11,J)=BMF(11,J)
308	: 215.	CONTINUE
309	:	DO 220 II=1,M
310	:	DO 220 J=1,L
311	:	CM(II,J)=ALPHA*CMF(II,J)
312	:	CH(II,L+J)=CMF(II,J)
313	: 220.	. CONT INUE
314	:	
315	END	S'END OF PROCEDURAL'
316	:	
317	: *	***************************************
318	: *	* SET THE INITIAL CONDITIONS IN PHYSICAL COORDINATES #
319	: *	***************************************
320	:	
321	CONSTANT	Z10=0.
322	CONSTANT	T10=0.
323	CONSTANT	730=0
324	CONSTANT	T30=0
325	CONSTANT	720=0
326	CONSTANT	
327	CONSTANT	
328	CONSTANT	
130	CONCTANT	
370	CONSTANT	
330	CONSTANT	
331	CONSTANT	
332	CONCTANT	
774	CONCTANT	
334	CONSTANT	
333	CUNSIANI	
330	CONSTANT	
33/:	CUNSIANI	
338:	CUNSIANI	
337	LUNSTANT	13DU=U.
340:	LUNSIANI	Z2D0=0.
341	CUNSTANT	P2DU=0.
342	CONSTANT	2400=0.
343	UNSTANT	1400=0.
344:	CONSTANT	P4D0=0.
345	CONSTANT	Z6D0=0.
346 :	CONSTANT	P6D0=0.
347	CONSTANT	Z5D0=0.
348	CONSTANT	T5D0=0.
349	CONSTANT	7760=0

350 : CONSTANT	T7D0=0.
351:	ZP0(1)=Z10
352 :	ZPO(2)=T10*DTRCC
353:	ZP0(3)=Z30
354 :	ZPO(4)=T30#DTRCC
355:	ZP0(5)=220
356 :	ZP0(6)=P20*DTRCC
357:	ZP 0(7)=Z40
358:	ZP0(8)=T40#DTRCC
337:	ZP0(4)=P40#D1RLL
300:	
361:	ZPU(1)=POUTDIRLL
362:	ZPU(12)=Z50
303:	270(13)=150=01KGG 780/44\#770
304:	
303: 7(()	2FU(13/-1/0401RGG 7BD0/4\-74D0
367	7PDA(2)=11D0
768	7FDA(3)#73DD
360	
370:	ZPD0(5)=7200
371:	
372:	7PD0(7)=74D0
373	ZPD0(B)=T4D0*DTRCC
374:	
375	ZPD0(10)=Z6D0
376 :	ZPD0(11)=P6D0*DTRCC
377 :	ZPD0(12)=Z5D0
378:	ZPD0(13)=T5D0*DTRCC
379:	ZPD0(14)=Z7D0
380:	ZPD0(15)=T7D0+DTRCC
381 : CONSTANT	DSHU1=0.2
382 CONSTANT	SHU1=0.
383 CONSTANT	DSHU2=0.2
384 CONSTANT	SHU2=0.
385 CONSTANT	ZDSHU0=0.05
386 CONSTANT	ZSHU0=0.
307:	DSHUT0=DSHU1*DTRCC
308:	SHUTU=SHUT#DTRCC
387:	DSHUP0=DSHU2#DTRCC
370:	SHUPU#SHU2#DTRCC
371:	
707./	**************************************
3731	A LING THE INITIAL CONDITIONS IN HOREE CONDINGES A.
10C.	**********************
396: PROCEDURAL	(XP0.XM0#FUECT.7P0.7P00)
397:	CALL NUMULT(EVECI.ZPD.FTAD.N.N)
398:	CALL MUMULT(EVECI.ZPD0.FTAD0.N.N)
399 :	D0 250 II=1.N
400 :	XPO(II)=ETAO(II)
401:	XPO(N+II)=ETADO(II)
402: 250	CONTINUE
403:	DO 258 II=1,L
404:	ETAS0(11)=0.9#ETA0(6+11)
405:	ETASD0(11)=0.9#ETAD0(6+11)
406: 258	CONTINUE
407:	DO 280 JI=1,L

408: XMO(II)=ETASO(II) XMO(L+II)=ETASDO(II) 409: 410: 280. CONTINUE CALL MPRINT(XP0,1,N2,4,4H XP0) 411. 412: CALL MPRINT(XMD,1,L2,4,4H XMD) 413: 414:END \$'END OF PROCEDURAL' 415 416:1 41.7: 1 DEFINE THE SCALING MATRICES TA AND TB ** × 418:1 419: 420:PROCEDURAL (TA, TB=TAS, TBS) 421: D0 290 II=1,Q DO 290 J=1,Q 422 : 423 : TA(II, J)=0.0 424 : 290. CONTINUE DO 300 II=1,Q TA(II,II)=TAS(II) 425 426 : 427 : 300. CONTINUE DO 310 II=1,Q DO 310 J=1,Q 428: 429: 430 : TB(II, J)=0.0 310. CONTINUE 431 : DO 320 II=1,Q 432: 433: TB(II.II)=TBS(II) 434: 320 . . CONTINUE 435 : 436 : END \$'END OF PROCEDURAL' 437 : 438: 439 : END 440: 442: 443: 444: 445 : 446 : 448: 449 : DYNAMIC 450: TERMT(T.GT.TFINAL) TERMT(XP(1).GT.1.0E+10) 451 -TERMT (XP (2).GT.1.0E+10) 452: 453 PROCEDURAL (NSTP=T, TSW, NSTP1, NSTP2) 454 IF(T.GT.TSW) GD TD 325 455 : NSTP=NSTP1 GO TO 327 456 : 457 : 325 ... NSTP =NSTP 2 458 : 327. CONTINUE S'END OF PROCEDURAL' 459 : END 460: 462 : 463 DERIVATIVE 464 :

465:1 465 : 1 * CALCULATE THE SOFT DOCKING DISTURBANCE FORCE & TORQUE ** 467:1 468

 469: PROCEDURAL (FDOCK, TQDCKT, TQDCKP, FDDOCK, DDSHUT, DDSHUP, ZDDSHU=...

 470:
 R DAMT, RDAMP, ZDAM, DSHUT, DSHUP, ZDSHU, ZPD, RSTIT, ...

 471:
 R STIP, ZSTI, SHUT, SHUP, ZSHU, ZP, ISHUTT, ISHUTP, MSHUT, G)

472 : TQDCKT=RDAHT*(DSHUT-ZPD(8))+RSTIT*(SHUT-ZP(8)) 473: TODCKP=RDAMP*(DSHUP-ZPD(9))+RSTIP*(SHUP-ZP(9)) 474: FDUCK=ZDAM*(ZDSHU-ZPD(7))+ZSTI*(ZSHU-ZP(7)) 475 : DDSHUT=-(TQDCKT/ISHUTT) 476: DDSHUP =- (TQDCKP/ISHUTP) 477: ZDDGHU=-(FDOCK/(MSHUT/G)) 478 : FDDOCK (1) = FDOCK 479 : FDDOCK(2)=TQDCKT 430: FDDOCK(3)=TODCKP 481: 482 END \$'END OF PROCEDURAL' 483 : 484 : 1 485 : 1 *DEFINE THE INTEGRAL GAIN KI AND PROPORTIONAL GAIN KP*' 486:1 487 : 488: PROCEDURAL (KI, KP=YM, YP, XM, UM, TA, TB, KIO) 489 -DO 330 II=1,M 490: EYS(II)=YM(II)-YP(II) 491: 330. CONTINUE 492: DO 340 II=1,M 493: R(II)=EYS(II) 494 : 340. CONTINUE 495: DO 350 II=1,L2 R(H+II)=XM(II) 496 : 497 : 350. CONTINUE 498: DO 360 II=1,M 499: R(H+L2+II)=UH(II)500: 360. CONTINUE 501: DO 365 II=1,M 502: EY(II,1)=EYS(II) 503: 365. CONTINUE CALL UTRANS(R,RT,Q) CALL MHULT(RT,TA,DUMY4,1,Q,Q) 504: 505: 506: CALL MMULT(RT, TB, DUMYS, 1, Q, Q) 507: CALL MMULT(EY, DUMY4, KID, M, 1,Q) 508: CALL MHULT(EY, DUMYS, KP, M, 1, Q) 509: KI=INTVC(KID,KI0) 510 : 511 : END \$'END OF PROCEDURAL' S12: 513:1 514:1 FIND THE CONTROL UP FOR THE PLANT * ** 515: ' 516 : 517 PROCEDURAL (UP=KI, KP, R) 518: CALL MVHULT(KI,R,DUHY6,H,Q) 519: CALL MVMULT(KP,R,DUMY7,H,Q) S20 : CALL VADD (DUNY 6, DUNY7, UP, N) S21 : 522 END \$'END OF PROCEDURAL'

523	:	
524	: *	***************************************
S25 :	. *	* INTEGRATE THE EQUATIONS OF THE PLANT AND THE MODEL *'
526	. •	***************************************
527	:	
528	:	CALL MVMULT(AP,XP,DUMY8,N2,N2)
529	:	CALL MVMULT(BP, UP, DUMY9, N2, H)
530	•	CALL MVMULT(BD.FDDOCK.DUNY12.N2.3)
531		CALL VADD (DUMYR, DUMYR, DUMY13, N2)
532	:	CALL VADD (DUMY13, DUMY12, XPD, N2)
533	:	YPETNTUC(YPD, YPD)
500		CALL MUMILITICE YE YE M NO
575	•	CALL MUMHET (AM. XM. DHMY10.12 1.2)
574		CALL MUMULT/DM IM RIMY44 13 MA
230	i	
53/	:	LALL VADD/DUNT10,DUNT11,AND,L27
230	•	
539	:	CALL MVHULT(CH,XH,YH,H,L2)
540	:	DSHUT=INTEG(DDSHUT, DSHUTO)
541	1	DSHUP=INTEG(DDSHUP,DSHUP0)
542	:	SHUT=INTEG(DSHUT,SHUT0)
543	:	SHUP=INTEG(DSHUP, SHUP0)
544	1	ZDSHU=INTEG(ZDDSHU,ZDSHU0)
545	:	ZSHU=INTEG(ZDSHU,ZSHU0)
546 :	1	1
547	. •	***************************************
548	. *	# OBTAIN RESULTS IN PHYSICAL COORDINATES #'
549	. •	***************************************
550	:	
551	PROCEDURAL	.(ZP, ZPD, ZPDD, ZM, ZMD=XP, XPD, XM, EVEC)
552	:	DO 370 II=1,N
553	. .	ETA(II)=XP(II)
554	:	ETAD(II)=XP(N+II)
555	:	ETADD(II)=XPD(N+II)
556	. 370.	CONTINUE
557		CALL MVMULT (EVEC.ETA.ZP.N.N)
558	:	CALL MUNULT(EVEC.ETAD.ZPD.N.N)
559:		CALL MUMULT (EVEC. ETADD. ZPDD.N.N)
560		DO 380 II=1.L
561	ı	ETAS(II)=XM(II)
562	1	ETASD(II)=XH(L+II)
543	380	CONTINUE
544.		
ELC.		CALL INTIGET COSET TO SET OF STATES S
203		CHEL NAMULI(EVELS;EINGV;ZNV;K;L)
567	FND	S'END DE PROCEDURAL (
548		
CLO.		
570	END	
574.		
572		
572		Reservances CNN OF REPTURTIUE EDeperators
574		
575		
575		* CHANCE BADIANS TO BECREES *'
577		
579	-	
570	•	710=79(1)
500	•	441 - 41 \ 447 T4P=7P(2)/NTPCC
504	•	141 ~61 \6//#INW6 710 #70/71
301:		

582 :	T3P=ZP(4)/DTRCC
583:	Z2P=ZP(5)
584 :	P2P=ZP(6)/DTRCC
585:	Z4P=ZP(7)
200:	141°=21(8)/D1RLL
507:	747=27(40) 740-79(40)
589:	P6P=7P(11)/DTRCC
590:	ZSP = ZP(12)
591:	TSP=ZP(13)/DTRCC
592 :	Z7P=ZP(14)
593	T7P=ZP(15)/DTRCC
594:	Z1DP=ZPD(1)
5 95 :	T1DP=ZPD(2)/DTRCC
596:	Z3DP=ZPD(J)
597:	T 3DP = ZPD (4)/DTRCC
578:	2207=270(5) 9909-700(4)/MTRCC
377; 400.	74DD-7PD(7)
600:	T4DP=7PD(8)/DTRCC
602:	PADP=ZPD(9)/DTRCC
603:	Z6DP=ZPD(10)
604:	P6DP=ZPD(11)/DTRCC
605:	ZSDP=ZPD(12)
606+	TSDP=ZPD(13)/DTRCC
607:	Z7DP=ZPD(14)
608:	T7DP=ZPD(15)/DTRCC
609:	Z1M=ZM(1) T4H=ZM(2)/DTRCC
610:	73M=7M(3)
611: 611:	230-20(3) T3M=7M(4)/DTPCC
613:	72M=7M(5)
614:	P2M=ZM(6)/DTRCC
615:	Z4H=ZH(7)
616:	T4M=ZM(8)/DTRCC
617:	P4M=ZM(9)/DTRCC
61B:	Z6M=ZM(10)
619 :	P6M=ZM(11)/DTRCC
620 :	Z5M=ZM(12)
621: 422.	75M=2M(13)/DIRUU
623 :	T7H=7H(15)/DTRCC
624 :	Z1DM=ZMD(1)
625 :	T1DM=ZMD(2)/DTRCC
626:	Z3DM=ZMD(3)
627 :	T3DM=ZMD(4)/DTRCC
628 :	Z2DH=ZMD(5)
629 :	P2DM=ZMD(6)/DTRCC
630 :	Z4DH=ZMD(7)
631:	I 4DM=ZMD(8)/DTRCC
632:	radn=znd(y)/DTRCC 740m=740/441
6331	エロジロデエロジミ まり) アムカメモフドカ (4 4 \ ノカイロ CC
635	75DM=7MD(12)
636 :	TSDM=ZND(13)/DTRCC
637 :	Z7DM=ZMD(14)
638:	T7DM=ZHD(15)/DTRCC
A39 :	

640 :	
641:	DSHANT=DSHUT/DTRCC
642 :	SHANT=SHUT/DTRCC
643:	DSHANP=DSHUP/DTRCC
644.	SHANP=SHUP/DTRCC
645:	XP15=XP(1)
645 :	XP14=XP(2)
647:	XP13=XP(3)
648.	XP12=XP(4)
649:	XP11=XP(5)
650 -	XP10=XP(6)
651 :	XP9=XP(7)
652 :	XP8=XP(8)
653:	XP7=XP(9)
654	XP6=XP(10)
655:	XP5=XP(11)
656 :	X24=XP(12)
657 :	XP3=XP(13)
658 :	XP2=XP(14)
659:	XP1=XP(15)
660:	XM9=XM(1)
661:	
662:	XM7=XM(3)
663:	XMA=XM(A)
664:	XMS=XM(S)
445:	XMA=XM(A)
666:	XM3=XM(7)
667:	XM2=XM(R)
667 ·	YM1=YM(0)
469.	YP1=YP(1)
607	YP2=YP(2)
474 -	
672.	VPA=VP(A)
472.	YPC=VP(C)
474	
475.	VP7_VD/7
6/3:	1F/-1F(/) VP0-VD/0\
497.	
677:	YP40-YP740
0/0: 470.	VP44=VP/44)
6/7:	
60V:	
661: 402.	TH2=TH(2) VM7-VM/7)
407	
683:	T [] 4 = T [] (4) VMC_VM (C)
684: 405:	105=10(5) VM(-VM(/)
000;	
680:	
687:	
688 :	
687:	TH10=TH(10)
67U:	TR11=TR(11)
071: 402	
07 <u>C</u> ;	UF 2=U1'(2)
673: 404	
074:	
675 -	UPS=UP(5)
676 :	UP6=UP(6)

697: UP7=UP(7) 698 : UP8=UP(8) 699: UP9=UP(9) 700: UP10=UP(10) 701: UP11=UP(11) 702: 703 : END 704: 705:1 706: 707: 708: 710: 711 TERMINAL 712 : ********** 713:1 714:1 PRINT SYSTEM PARAMETERS 41 715:1 ********* 716 717: CALL MPRINT(EVECT, N, N, 34, . 34H TRANSPOSE OF MODAL MATRIX (EVECT)) 718: 719: CALL MPRINT(EVECI, N, N, 32, ... 32H INVERSE OF MODAL MATRIX (EVECI)) 720: CALL MPRINT(EVECS, N, L, 31, ... 31H TRUNCATED MODAL MATRIX (EVECS)) 721: 722 : CALL MPRINT(DAMP,N,N,35, 723: 35H DAMPING MATRIX OF THE PLANT (DAMP)) 724: CALL MPRINT(DAM,L,L,34,... 34H DAMPING MATRIX OF THE MODEL (DAM)) 725: 726 : CALL MPRINT(W2,N,N,43,. 727: 728: 43H GENERALIZED STIFFNESS MATRIX OF PLANT (W2)) 729: CALL MPRINT(W2H,L,L,44,... 730: 44H GENERALIZED STIFFNESS MATRIX OF MODEL (N2M)) 731: CALL MPRINT(AP,N2,N2,10,10H MATRIX AP) CALL MPRINT(BP,N2,M,10,10H MATRIX BP) CALL MPRINT(CP,M,N2,10,10H MATRIX CP) CALL MPRINT(AM,L2,L2,10,10H MATRIX AM) 732: 733: 734: 735: CALL MPRINT(BM, L2, M, 10, 10H MATRIX BM) 736: CALL MPRINT(CM, M, L2, 10, 10H MATRIX CM) 737: CALL MPRINT(TA,Q,Q,10,10H MATRIX TA) 738: CALL MPRINT(TB,Q,Q,10,10H MATRIX TB) 739: 740: 741: 742: 743: 744 : END 745: 747: 748: ٠. 749: 750 : END S'END OF PROGRAM'

. 1 :	SUBROUTINE READMK(MASS,STIFF,EIS,EIE,RHOS,RHOE,LS,LE,M4,
2 :	\$M8.M7.I4XX.I4YY.I8XS.I9XS.I8YS.I9YS.L8A.L9A.L8B.L9B.
7.	e(D) (D)
J.	
4:	REAL MASS(15,15),STIFF(15,15),MC(15,15),MD(15,15)
5:	REAL I4XX,I4YY,IGXS,I9XS,I8YS,I9YS,L8A,L8B,L9A,L9B,L8,L9
6:	REAL ALPHA RETA A REFS.ETE RHOS RHOF ISIE MA MR.M9
7.	
8:	BETA=2.#EIL/(LE##3)
9:	A=RHDS*LS/420
4.0	
44	
11:	DO 10 1=1,15
12 :	DO 10 J=1,15
13:	STIFF(I,J)=0.
44:	10 CONTINUE
45	
12:	5/1FF(1,1)=0.#ALFMA
16:	STIFF(1,2)=3.#LS#ALPHA
17:	STIFF(1,5)=-6.#ALPHA
48.	STIFF(1 8)=3 #1 SKALPHA
40.	
17:	311FF(C,C)
20	STIFF(2,5)=-3.#LS#ALPHA
21 :	STIFF(2,8)=(LS**2)*ALPHA
22:	STIFF(3,3)=6.#ALPKA
23.	STIFF(3 A)=-3 #1 Stal PHA
24:	511FF(3,57=6, #ALPHA
25 :	STIFF(3,8)=-3.#LS#ALPHA
26:	STIFF(4,4)=2.*(LS**2)*ALPHA
27:	STIFF(4,5)=3. # SHALPHA
20.	
20.	
27:	511FF(5,5)=12. #ALPHA+6.#BEIA
30:	STIFF(5,6)=3.*LE*BETA
31:	STIFF(5,7)=-6,#BETA
32.	STIFF(5 9)=3 #I F#RETA
: 35	STIFF(6,6)=2.#(LE##2)#BETA
34 :	STIFF(6,7)=-3.*LE*BETA
35:	STIFF(6,9)=(LE##2)#BETA
36:	STIFF(7,7)=12 *8FTA
37	
30.	
30:	STIFF(7,11/-3.#LE#DETH
39:	STIFF(8,8)=0.*(LS**2)*ALPHA
4D :	STIFF(8,12)=3,#LS#ALPHA
41:	STIFF(8,13)=(LS##2)#ALPHA
47.	STIFF (B (A)=-7 #1 SWAL BHA
43:	SIIFF(8,15)=(LS##2/#ALFMM
44:	STIFF(9,9)=4.*(LE**2)*BETA
45 :	STIFF(9,10)=-3,*LE*BETA
46.	STIFF(9 11)=(1 F##?)#BFTA
47.	
48 -	STIFF(10,11)=-3.\$LE\$BETA
49:	STIFF(10,12)=-6.#ALPHA
50 :	STIFF(10,13)=-3, #LS#ALPHA
51:	STIFF(10,14)=-6 \$40 PHA
E 2 .	
36:	015FF149,10750,405445FMM
53:	811FF (11,11)#2. #(LE##2)#BETA
54 :	STIFF(12,12)=6.#ALPHA
55:	STIFF(12,13)=3,#LS#ALPHA
56	STIFF (13 13)=2 #(1 5#2)#ALPHA
27	CTTEE/A (A)_A (A) CTTEATA
3/1	31177114,14/45,54/50,54/67
58 :	STIFF(14,15)=-3.8LS#ALPHA
59 :	STIFF(15,15)=2.#(LS##2)#ALPHA

ORIGINAL PAGE IS OF POOR QUALITY

60:	DO 20 I=1,14
61:	K=I+i
62 :	DO 20 J=K,15
63:	STIFF(J,I)=STIFF(I,J)
64 :	20 CONTINUE
65:	· · · · · · · · · · · · · · · · · · ·
66.	DO 30 Te1 15
47.	DD 30 I=1,15
40.	MC(T T)=0
40	
. 67:	SU CUNIINUE
70:	. MU(1,1)=156.#A
71:	MU(1,2)=22.#LS#A
72 :	MC(1,5)=54.#A
73:	MC(1,8)=-13.#LS#A
74 :	MC(2,2)=4.*(LS**2)*A
75 :	MC(2,5)=13. *LS*A
76 :	MC(2,8)=-3.\$(LS\$\$2)\$A
77 :	MC(3,3)=156.#A
78:	MC(3,4)=-22.8LS*A
79:	MC(3,5)=54 #A
80 :	MC(3,8)=13.#LS#A
81	NC(4,4)=4 #(15##?)#A
02.	
02:	MC(4,0)=-7.4(10++7)*A
03:	
64:	MC(5,5)=312.4A+156#B
85:	MU(5,6)=22. =LEXB
B6 :	MC(5,7)=54.#8
87 :	MC(5,9)=-13.*LE*B
88 :	MC(6,6)=4.*(LE**2)*B
89 :	MC(6,7)=13.*LE*B
90 :	MC(6,9)=-3.*(LE**2)*B
91 :	HC(7,7)=312.#B
92 :	MC(7,10)=54.#B
93:	MC(7,11)=-13,*LE*B
94:	MC(8,8)=16.*(LS**2)*A
95:	HC(8,12)=-13, #LS#A
04 .	MC(8 13)=-3 #(1 S##2)#A
07.	
6 0.	MC/G 45\7 #/1 8##7\#A
60 .	NC/0 0)-0 4/1 5440/40
77:	NC(7,7)=9.4\LE446/40
100:	MO(0,10)=13.4LE48
101:	HL(9,11)=-3.4(LE4#2)#8
102:	MC(10,10)=156.#8+312.#A
103:	MC(10,11)=-22.¥LE¥B
104:	MC(10,12)=54.#A
105:	HC(10,13)=13.xLS*A
106:	MC(10,14)=54.#A
107:	HC(10,15)=-13.#LS#A
108:	MC(11,11)=4.*(LE**2)*B
109:	HC(12,12)=156.4A
110:	NC(12,13)=22.#LS#A
111.	MC(13,13)=4. ±(L8112) #A
112	MC(14,14)=156 #A
113:	MC(14,15)=-22. #LS#A
444:	MC(15,15)=4 ±(18±±2)±4
442.	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
444.	80 70 1-1,57 Katii
447.	50 AO 1-4 45
11/1	DU 90 JEK,10
118:	ガじしょうよう キガロし(エッゴ)

119:	40	CONTINUE
120 :		DO 50 I=1,15
121 :		DO 50 J=1,15
122:		MD(I,J)=0
123-	50	CONTINUE
124 :		MD(7,7)=M4+H8+M9
125:		MD(7,8)=M9*L9-M8*L8
126:		MD(8,8)=14YY+M8*(L8**2)+M9*(L9**2)+I8Y5+I9Y5
127 :		MD(9,7)=I4XX+I8XS+19XS
128:		DO 60 I=1,14
129:		K=I+1
130:		DO 60 J=K,15
131 :		HD(J,I)=HD(I,J)
132:	60	CONTINUE
133:		DO 70 I=1,15
134:		DO 70 J=1,15
135:		MASS(I,J)=HC(I,J)+ND(I,J)
136:	70	CONTINUE
137 :		RETURN
138:		END

SUBROUTINE OPLOOP (MASS, STIFF, EVAL, EVEC) 1 : 2 : 4:C # 5:0 * MASS AND STIFF ARE THE INPUT M AND K MATRICES. 6:C ¥ SUBROUTINE FIRST FINDS SIMILARITY TRANSFORMATION PHI1 SUCH * 7:C * THAT THE COLUMNS OF PHI1 ARE EIGENVECTORS OF MASS NORMALIZED 堂 SUCH THAT 8:C * * 9:0 * × 10:C ¥ (PHI1) (MASS) (PHI1)=(IDENTITY) (DENOTES TRANSPOSE) Ż 11:C * THEN FINDS ANOTHER SIMILARITY TRANSFORMATION PHI2 NORMALIZED 12:0 * 13:0 * SUCH THAT 14 C * × 15:0 * (PHI2) (PHI1) (STIFF) (PHI1) (PHI2)=DIAG(EVAL) 16:C # * 17:0 * WHERE EVAL ARE THE EIGENVALUES OF THE OPEN-LOOP SYSTEM, 18:C # I.E., THE SQUARES OF THE EIGENFREQUENCIES. * 19:C ¥ 20:C ¥ FINALLY, THE PRODUCT × 21 :C * 22 · C * EVEC=(PHI1)(PHI2) 23:C * 24:C * IS RETURNED - THE J COLUMN IS EIGENVECTOR OF OPEN-LOOP 25:0 * SYSTEM CORRESPONDING TO J EIGENVALUE. ŧ 26 . C * 27 : C * CUNTIL THE SECOND CALL TO SYMORR, PHI2 IS USED FOR * 28:C * INTERMEDIARY CALCULATIONS) 29:0 * Ż 31 : 32 : PARAMETER N=15 33: 34 : REAL MASS(N,N) 35 : DIMENSION STIFF(N,N) 36 : DIMENSION EVEC(N,N), EVAL(N) 37 : DIMENSION PHI1(N,N), PHI2(N,N), PHI1T(N,N), WORK (500) 38 : 39: 40: CALL MCOPY(HASS, PHI1, N, N) **41** : CALL SYMQRR(\$601, PHI1, N, N, EVAL, WORK) 42:C 43 : C RENORMALIZE FIRST SIMILARITY TRANSFORMATION 44 : C DO 100 I=1,N 45 : 46 : DO 100 J=1,N 47 : PHI1(I,J)=PHI1(I,J)/SQRT(EVAL(J)) 48 : 100 CONTINUE 49 : C 50 : CALL MTRANS(PHI1,PHI1T,N,N) 51 : CALL MMULT(STIFF, PHI1, PHI2, N, N, N) CALL MMULT (PHI1T, PHI2, EVEC, N, N, N) 52 : 53. CALL MCOPY (EVEC, PHI2, N, N) 54 : CALL SYMARR(\$701,PHI2,N,N,EVAL,WORK) 55 : 56 : C EVAL NOW CONTAINS THE SQUARES OF THE EIGENFREQUENCIES 57 : 58 : CALL MMULT(PHI1, PHI2, EVEC, N, N, N) 57 : 60 · C EVEC NOW CONTAINS THE CORRESPONDING EIGENVECTORS AS 61 : C COLUMNS 62 : 63: GO TO 900

64:		
65:		r
66 :	601	CONTINUE
67 :		WRITE(6,602)
68:	602	FORMAT(IX, 'CLUTCHED ON FIRST CALL TO SYMQRR')
69:		GO TO 900
70:	701	CONTINUE
71:		WRITE(6,702)
72:	702	FORMAT(1X, 'CLUTCHED ON SECOND CALL TO SYMORR')
73	900	CONTINUE
74		RETURN
75:		END

1 : 2 : SUBROUTINE INVERS(A,N) 3: 4. DIMENSION A(N,N), WORK(1000) THIS SUBROUTINE WILL CALL AINV FOR AN ACSL PROGRAM AND IT WILL HANDLE THE ERROR TRAPPING 5 : C 6 : C 7: 8: CALL AINVR(A,N,N,\$100,WORK) 9: RETURN 10: 11: 12 : HANDLE ERROR BOMB OUTS 13 C 14: 15: WRITE(6,1000) 17: 18: 19: RETURN 0 END

SUBROUTINE MADD(A,B,C,L,N) THIS SUBROUTINE CALCULATES THE SUM A+B AND STORES THE RESULT IN C 1 -2 : C L = ROWS OF A AND B , N = COLS DF A AND B 3:0 DIMENSION A(L,N), B(L,N), C(L,N) 4 : 5: DO 100 I=1,L DO 100 J=1,N 6: 7: C(I,J) = A(I,J) + B(I,J) $\pmb{8} : \pmb{1} \ \pmb{0} \ \pmb{0}$ CONTINUE **5** : RETURN 10: END

SUBROUTINE MMULT(A, B, C, L, M, N) 1 : 2 · C THIS SUBROUTINE CALCULATES THE PRODUCT AB AND STORES THE RESULT IN C L = ROWS OF A , M = COLS OF A AND ROWS OF B, N = COLS OF B 3 : C DIMENSION A(L,M), B(M,N), C(L,N) 4. DO 100 I=1,L 5: 6: DO 100 J=1,N C(I,J) = 0.07: 8: DO 100 K=1,M CC = A(I,K) * B(K,J)9: 10: C(I,J) = C(I,J) + CC11:100 CONTINUE 12: RETURN 13: END

SUBROLITINE MYMULT(A,B,C,M,N) THIS SUBROLITINE CALCULATES THE PRODUCT OF MATRIX A AND 1: 2 : C 3 : C VECTOR B AND STORES THE RESULT IN VECTOR C 4: DIMENSION A(M,N),B(N),C(M) 5: DO 100 I=1,M 6: C(I)=0.0 7: DO 100 J=1,N 8: CC=A(I,J)*B(J) 9: C(I)=C(I)+CC10: 100 CONTINUE 11: RETURN 12: END

SUBROUTINE MTRANS(A,AT,M,N) 1: THIS SUBROUTINE CALCULATES A TRANSPOSE AND STORES RESULT IN AT 2 : C M = ROWS OF A , N = COLUMNS OF A Dimension A(M,N),AT(N,K) 3 : C 4: 5: DO 100 J=1,M 6: DO 100 I=1,N 7: $AT(I,J) = \dot{A}(J,I)$ B:100 CONTINUE 9; RETURN 10: END

SUBROUTINE VADD(A,B,C,H) 1: THIS SUBROUTINE CALCULATES THE SUM OF VECTORS A AND & AND 2 : C STORES THE RESULT IN VECTOR C 3 : C DIMENSION A(M), B(M), C(M) 41 DO 100 I=1,M 5: C(I)=A(I)+B(I) 6: 100 CONTINUE 7: **9**. RETURN 9: END

SUBROUTINE VTRANS(A, AT, M) 1: THIS SUBROUTINE CALCULATES THE TRANSPOSE OF VECTOR A AND STORES THE RESULT IN MATRIX AT 2 : C 3 : C 4: DIMENSION A(M), AT(1,M) 5: DO 100 I=1,M AT(1,I)=A(Ì) 6: 7: **100 CONTINUE** RETURN 8: 9: END

SUBROUTINE MCOPY(A1, B1, H, N) 1 : THIS SUBROUTINE COPIES A INTO B (BOTH ARE H ROWS BY N COLUMNS) DIMENSION A1(M,N), B1(M,N) 2.0 3 : C 4: 5: DO 500 I=1,M DO 200 J=1,N 6: 7: Bi(I,J) = Ai(I,J)8. 200 CONTINUE 9: 500 CONTINUE 10: RETURN 11 🗤 END

SUBROUTINE MPRINT(A,H,N,NCHAR,TEXT) THIS SUBROUTINE PRINTS A MATRIX WITH TEXT AS A HEADING M = ROWS OF A , N = COLUMNS OF A DIMENSION A(M,N),TEXT(S0) 1 : 2:0 3 : C 4. IREM=MOD(NCHAR, 6) 5: 6: IF(IREM.EQ.0) NWORDS=NCHAR/6 IF(IREM.NE.0) NWORDS=NCHAR/6 + 1 7: 8: WRITE(6,10)(TEXT(I),I=1,NWORDS) 9:10 FORMAT (//1X,50A6//) 10: DO 100 I=1,H 11: WRITE(6,20)(A(I,J),J=1,N) 12:100 CONTINUE 13:20 FORMAT(5X,11G11.5) 14: WRITE (6,38) 15:30 FORMAT (//) 16: RETURN 17: END

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX E

NUMERICAL OUTPUTS FOR THE SIMULATION OF ADAPTIVE CONTROL DURING SHUTTLE HARD DOCKING TO FOUR-PANEL SPACE STATION

261

NGTPPLe15, NPXPPLe50, NGXPPLe10

L BUN PARANETERS SSSSSS

221.46 -5877.1
00000 00000
00000° 00000°
23.106 -374.77 .00000 .00000 .374.77 7536.1
00000 . 00000
.00000 .00000
.00000 .00000 4249.0 .3245440
00000° 00000°
00000" 00000"
00000 00000
00000 . 00000
00000 00000.
74.766 4899.0
.00000 .00000
00000 00000
00000 00000
00000 00000
74,766 .4249.0
4564.0 .32959

-

NODAL MATRIX (EVEC)									
		· 18162	.17400	11874	20 111.	10-94991.		.10566	10001.	.12785
••••1•71•01 •••0500=01		120021-01		-1-595-02		45267-03	10-242-1		14714-02	**15317=02
10+5+01 ·	20-14444		.10150-04							
••13726	14216	.18260	17504	11728	.1101.	.18498-01	.90719-01	.10402		• 12816
10-62501		10-10121.		75576-02	.70870-02	.43285+03	19597-02	\$0-06013.	14704-02	**15347=0 2
	10-02964°=	20-01818-0		10-11201	10-41-01		10-22124-2	10-01244		40-1-474
0°41719°0						*****				
47154-02	20-28448		1 93A 1 - 04	56561-02	.34759-02	. 30041-03	.72441-03	.58464-03	40-48455*	10-1105.
11120-02			-23431-03	*******	49187-03	10-06221.	E0-28161.		35467-04	••18137-04
.12829-06	37397-03	-11753-0B								
50478-07		- 75290=04	• 16672-05	.16705-06	•• [45]0+00		**5*343=07			
.34010=04	\$0-9E19E.	13308-06		5475j-04	13750-05	.22240-07	21626-03		10023-06	10-25015
	0-55445**	14920-07	20-0462.		10-10011			10-00644	P0-51660	
20-10-0-	20-9869¥**	.05397-06		34458-02	34747-02	** 3007 9-03	.72715-05		37016-07	.30777-06
• 21717•03			• 31 337 • 03		00111	10-100-1	10-1020	20201 -	10871	
			.4411-01							
10-66001 -	1050501	11560-01	10-1001	71940-02	15404-02	e.49114-03	•1 9565-02	21065-02	14702-02	• [5320 ~0 2
••10445•05			•.14212-04	41111	.1174	10-0001.	10601-01	.10583	-10947	.12820
191352-01			.4573a01							
104949401 ·		10-54511.	.12086-01	.71 942- 02	.7344Je02	.45318+03		20+6+0{Z.	••! 4442=02	*15357=0 \$
		:								
HODAL FREUENC	(IK) (IX)				•					
8 • 1 / 1 • 8	2.3365	1.7638	1.7335	1.4719	1.665	. 34042	* 30 * 3		• • • • • • •	
•										
CENERAL IZED AT	TFP-VEAS WAT	RIN OF PLANT	(42)		•.					
215.97	0000	00000	.0000	.0000	.0000	.0000	.0000	-0000	.0000	.0000
00000	.0000	60000	00000				1	1		
00000	215.51	00000	00000	-00000	.0000	.0000	•0000	.00000	00000	• 0000
	00000*	122.68	00000	.0000	00000*	"000u	.0000	• • • • • •	•0000	•0000•
00000"	00000		00000		00000	00000		00000		00000
0000e*		00000	00000.	00000	****		00000			
•		,								

ORIGINAL PAGE IS OF POOR QUALITY

1.2500

3.0340 1.9268

4.8445 3.4131

109.44

121.55 [10.20 .222n3+01

10306

19267.

215.97 1.1632

ELGENVALUES (NOOD)

.

.

.19483-05	• £0035=08		.14555.05	17491-03	••!\$570=03		13424-03	15406-03	.14391-03	1.0001	.12099-05	.10241-05	.97285-04	*0-*****
.15623-03	•17065=01		.17700-03	14451-03	14334-03		11194-03	13853-05	1.0001	.14592-03	.99632-04	.84574=04	.71150-04	
40573-03	•• 4079 2 =03				40-11E11.	20479-04		54464.		15404-03				17782-05
		. 20498-03	E0=45461.=	20=0eb01-=	.11274-03		1	******		13427-03			** 13531=04	!+*****
-, 407 34-04	••	.48776-04	****		.20199-04	14444.		+*\$0479=04				.47573-04		
** * 2304 * -03	***********	1150-03	21130-03	**17128-03	1.0001	.20200-04	.11274-03	.11511-03			13539-03	12034-03	93287_04	74518-04
£0-022E8.			.22159-03	1+0002			10479-03	13488-03	.14451-03	£0-26+11*	.12504-03	.13076-03	40=\$ l \$56"	+u+1:8:1.
			1.0002	22129-01	- 21130-03	•• • 555 •••			17700-01	10015591		11046-01	11046-03	
20=21222- 20=14201-		1.0042			21749-03			73555-04		50-5511/***		5u=12411	E0-1114-	
		23332-03			-22184-03				50-990/1*				11 345-03	10-24525**
.99994	32098-04	23514=03	10-1011010 0-101101		•• 83047=05		•• \$7074-04	** [0[#3=0]			12404-03	••19390-0	10340-03	

00000		.0000.		.00000		.00000		00000.		•0000		1.2500		00000.		.0000		00000.		00000	
.0000		.00000		.0000		.00000		.0000		1.9262		.00000		00000		00007"		.00000		.00000	
00000.		.0000		0000		00000"		3.0340		.0000		.00000		00000"		00000.		00000"		00000	
00007°		.00000		.00000		3.6131		00000*		.00000		.0000		.0000		.00000		.00000		00000"	
.00000		00000.		2,98,5		.00000		.00000		.0000		.0000		.00000		.00000		00000		.00000	
,0000		109.44		.0000		.0000.		00000.		.00000		0000		.0000		.0000.		.0000		.0000	
110.20		00000		. 00000	-	.00000		.00040		.0000		.0000	,	.0000		.00000		00000		.0000	
.00000	.00000	.00000	.00000	.00000	.0000	.0000	00000	.0000	00000	.0000	.00000	.00000	00000	.0000	00000	00000	.00000	.00000	00000	.00000	.22203-01
.00000	00000"	00000	00000	.0000	00000	00000	00000	00000	00000	.00000	00000	.00000	.00000	00000	.00000	00000	00000"	.0000	10104	00000	00000
.0000	00000.	00000"	00007"	00000.	0000°	00000"	00000	60000.	.0000	00000	00000.	00000	00000	00000	00000"	00000	49247	0000	.0000	00000.	00000
00000	.0000	00000	.00000	00000	00000	00000	00000	00000	00000	.00000	00000	•0000	.00000	00000	1.1432	00000	.00000	.00000	.00000	.00000	.00000

.

•

.

II

ORIGINAL PAGE IS OF POOR QUALITY

		00000	00000	.0000	00000	.00000	00000	00000	00000	00000	00000.
	00000	0000	00000	00000						00000	
	00000	08951"	00000"	00000.	•0000	.0000	• • • • • •	00000*			
	00000	00000	.11062	00000	.0000	.0000	00000	.00000	.0000	•00000	.0000
	00000	00000.	00000	00000		00000			00000	00000	00000
	90000°	00000	, boñoo	00000	• • • • •						
	00000	0000*	00000	00000	.1090£	00000	.0000	•00000	.00000	•0000	00000"
	.0000	00000	.00000	.0000		1					
	00000	00000	00000	00000	.0000	.10471	.0000	00000	• 00000	00000*	00000
				00000		00000	10-14914.	.0000	.0000	-0000	•0000•
	00000	00000		00000							
	00000	0000	00000	.00000	00000"	.0000	•00000	.19008-01	•0000	•00000	•00000
	.00000	00000	.00000	00000							
	00000	0000*	00000	00000	00000	00000	• 00000	•00000	10=01=/1*	00000	00000
		00000			00000	00000	. 60000	00000	00000	.13879-01	•0000
		00000		00000							
	.0000	00000	.0000	00000	.0000	.0000	•0000	• 00000	• 00000	•0000	.11180-0
	00000	00000"	00000	00000							
	00000	00000	00000	00000	•00000	•00000	00000 °	00000		00000	00000
	69/01*	00000° 10-	60000°	00000"		00000			00000	00000	00000
		. 70101-02									
	00000	00000	0000	00000	.0000	.0000	.0000	.00000	• 00000	.00000	•00000
	.00000	00000	. 32103-	00000 20							
	00000	00000	00000		.00000	.0000	.00000	00000	.0000	•00000	00000
	60000°	00000*	00000.	20-106-1.							
2						00000			00000	00000	
			00000.	00000	00000						
	00000	00000	00000	00000	00000	00000	00000.	00000			
Ê	00000	00000	. 00000	00000	00000-	00000	00000	00000	00000	.0000	•0000
	00000	00007	00000	00000	00000	00000	00000			,	ı
				-							
	-	0,00000	1 d A	0000000	5 H Å	00000					
	247	00000	2117	000000	E a A	0.0000					
				0.00000							
	1	0,0000	A P P	00000	7 H T	00000 0					
	044	00000	AIIA	0.0000		0.0000					

DANP

			-		
	0,0000				
	00000		0,0000		000000
T I X	00000	24X	00000000	51X	000000
XP.	0,000,0	4un	0.0000	K P X	0,0000
4 M R	0,000.0	2 P B	0,0000	en X	00000°0
	0,0000	W19	0,0000	XP10	0,0000
Ĩ	0.0000	xP12	00000 • 7	E L d X	0,0000
FIA	00000.0	E14X	00000 0	1	00000 0
ŝ	00000		00000*0		00000000
5	0.0000		000000	-	0,0000
	000000		00000000	0140	00000
5			0,0000		
	0.0000		0.0000		
					00000
Na d	00000	247	00000	2 a h	00000 0
	0.0000	TAT	00000		0,0000
	0,0000	265	00000 0	192	0,0000
Ż	0.0000		0000000	452	0,0000
HE2	0,000.0	15P	00000 0	151	0000000
12	00000.0	27H	0,000,0	11P	0,000,0
174	00000.0	2109	0000000	E10H	000000
110	00000	1104	00000	230P	0,0000
NOL 2	00000 0	A OF L	00000	1 SOH	0,0000
102	0.0000	NO22	00000*0	-024	0,0000
1024	00000	1042	000000	2404	
1001	0,0000		0.0000		0000000
	0,000.0	1092	00000 0	1091	
					00000
170M		ZAHU	00000	ZDAHU	00000
DHANP	00000	DBMANP	2.0000-01	BHANT	0,0000
DAMANT	2.00000-01	PDCK	1.21000402	TADCKT	1.0934240
10004	8.47069-04				•
•	8.80048+01	i d A	1.97513-04	1 .	00000
			00000		LOSTON
			2.41104-05		
	9.44503-03	SNA	0.0000		1.95337-01
E L	0.0000	141	-1.07286-05	747	00000
	1.72205-01	ANY	00000	• d Å	2,30106-0
N.	00000.0	OTAL	-5.47427.05	91NY	000000
114A	1.05295=04	ITHA	0.0000	KP1	5,96514-01
	0.0000		•6.96223=01		0,00000
			1.00170-01		
			0,00000		
	2-41140-03		0.00000		14889-01
T L	6.201 a2-00	KP12	7.47187_06		33205-01
# L J	4°57250	274X	-2.40589.03	140	0.919610
202	8.524+3+01	54D	3.48259+00	4 d)	2,53712-0

ORIGINAL PAGE IS OF POOR QUALITY

1,81,930 6,0200 5,324,930 1,91,93	4,41341-02 20-145142 1-		
	844HT T00CKT	- M = 4- 0 - N = E & I & I & I & I & I & I F & I & F & F & F & F & F & F & F & F &	
	-1. 6 071.01 5.90500.02		
	0 0 1 4 M	- 4 - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7	
	el , 6597 8-03 3, 6407 2-02 8, 93656+01		
	8444 084447 7905×7	- CEEFFE	

4040 4404 4404 4404 4404 4404 4404 440	

			ı	
40P -1,0337.4-02	1004	0,00000	1011	4.24711
40H 0.00000	2607	-2 • 11 Jad_00		0.0000
		0,00000 11.55662_02		0.00000
704 69,74431-06 754 6 60000		5.97550-04	20.941	10112.5
ANP -1.64937-05	DAHANP	4.40362-04	THANS	
ANT -1.00966-02	FDACK	-1,22413-01	740CK7	-1 . 508 40 y
CKP 2. 30594-01				
1 B.00000002	197	3.12860-06	784	0,0000
THJ 0.00000				
		-6.20679-07		000000
YP8 =3.26147=06	ANA	0.0000		2.39623-
TH9 0.0000	VPIO	3.13628-04	VIIO	00000
P11 3,15360-04	1 LHY	00000 0	XPI	1,12547-
MI 0.00060	XP2	-7.50658-01	S N X	0.0000
XP3 -1.17370-04	E WR	0,0000	₩ d.X	-1.52944
X+4 0.0000	S d x	9.103E0.04		00000
XP6 1.15981-01	8116 1001	0,0000		7.96028
жт7 0,00000 		•4.01875=U4		000000
		1041101-1-		
10-10-10-10-10-10-10-10-10-10-10-10-10-1				-107311
P11 -1.07280+01	212	101010.5-	N12	00000
TIP 1.59765-02	111	0.0000	462	3,02052
23H 0.00000	130	10000000	13N	00000
22P =1.41A68=05	H28	0.00000	959	-15369"]-
P2H 0.00000		6.70782-07	197 197	0,0000
147 2.00143-02		0.00000		
Z3M 0.00000	129	1.4220.02	154	00000
27P 3.84370-02	442	0.0000	11P	1.417980
T7H 0.0000	2100	-2.30079-0 2	2104	0,0000
10P 1.51303-02	10H	0.0000	1057	2.2072.5
30N 0.00000	1061	20+1100+1		00000
20K 3.07175-09			1024	
20 7 2 0280-01	TADK	a.00000		A 419750
4DM 0.00000	2400	40-21220	TLON	00000
60P 1.82195-05	PADH	0.0000	250P	-8.30118-
30H 0.00000	1501	1.51239.08	150H	000000
10P 2.31971-02	R042	000000	1700	1.52615-
70H 0.0000	NH82	-3°45217-06	UHBGZ	1.27707*
ANP 9.47273-05	DOHANP	-4.71730-03	THANG	2.43083-
ANT 1.92860-03	FDDCK	-1.31126-02	TBDCKT	2.164317

	0.000	1.2235	0.00.0	1500.00	0.000	6.2641	0.000	-6. 316A	0,0000	5.7.37	0.000	e115.4-	0000.0	-2.3611	1,2162	3.3401	-1,2,12	1,1556	3.3584	0,000	-1,3877	00000		0000 0	-1°09/2	000000	1.02.1			0000	-1.1097	0.000.0	. 5,6972	0000000	1,3565	000000	1,0021	1.531	1112.1.	•••	
	lui	297	A N N	44.	4HA	644	01NA	I d'i	S'H'X	ХРĄ	S N N	KP7	₩×	XPIO	X L d X	i do		5	014N	Z1H	452	424	424	472			462			1304	PZDP	2401	PADP	N092	4052	1051	1100	DHSOX	SHANT	TUDCKY	
	-5.45680-03	0.0000	-1-27669-08	00000	-4°44044-08	0,0000	-3.12776-09	0,0000	3.2730-01	0.00000	8.29274.05	0.0000	-5,20423-05	0,0000	2.10977_05	-6.12676-07	2.49340-04	3.71169+00	-1,97446-03	1.37810-02	0000000	-4.23771-03	0,0000	1.16039-06	0,00000	-3,22779-07	0.0000	-4.23219-03		-1.14550-01	0.0000	=2,2945 6 =06	0.0000	1.60790-06	0,0000	+0=1505t=04	0.0000	1.41415-06	-4.21585-07	1.0574.03	
	Ida	2HA	* d 4	SHA	LdA	B MA	1210	ITHY	2 d H	5 NX	643	8M8	84X	0 H X	×P12	STAX .	[dn	440		412	TIN	130	121	482	27.					1369	2204	241.0	TADH	092	FOAT	150P	270H	0H82	D BKANP	1000%	
	2.50000402	. 47 051 = 05	0.0000	-8.06248-01	0.0000	1.54335-04	0,00000	-3.19728-05	00000	-6.76422-05	0.0000	.1. 84022-02	00000	6.60630-05	3.32839-06		3,35792+00	1.88559-02	e4.45778=04	3.36021+00	-4.1 6010-05	0,0000	7.30169=06	0,0000	s0-21003.1=	0°00000		0.0000		07000 0	-2.36950-07	0,0000	-1"25634-04	00000	8.66482.06	0,0000	e1.43198-03	0.00000	-1.1142-05	-1.474-04 	-1°-1377-01
1	•	242	217	51	1 T	C d h	6 H Å	IIdy	lii	1	Y HX	X	KH7		114X	¥ L L X	207	5	5	II.	-	162	220	T Z Z						1304	1022	P20M	140P	HON.	1011	NOSI	2705	170N	BHANP	PHANG	DOCKP

.

TRANSPASE OF MODAL HATRIE (EVECT)

				.82597-0		0-61616.4				36767-0		30070		.72715-0				37014-0		. 30777-0		.21717-0				.18476-0		-12212-0		
10-06/5/.		10-19451.		.23213-05		.80384-06		- 98613-02		10-11011-01		10-51951-		.63215-01				- 92432-05		.12706-06	,	.41510-02	,	- 10-1211-		.24226-05		.43154-01		
.34010+0		.54736-06		.13308-04		13475-06				.15750-05		. 72248-07 .				· 10=5155.4		.10023-06					,	. 90-33-08 .		.14924-07		.29728-03		-
30478-07		29572-07		.75290-08		*16672=05 ·		.16708-06		- 1ª210-06 -				. 10-24242		. 10623-06 .		.41659-03		16960-04 .		- 10132-06 -				54261-03		.97482-08		
. 11120-04		. 69359-03				.23421-05		.28959=04		. 44187-03		.12399-01		.19132-05		22580+02						- 12829-06 -		• 37357-03		. 31755-06	•	19150-08		
40-85i4s.		. 48448-02		.18911-04		19341-04		34561-02		. 347 59-02		.30061-03		.72661-03		.58464=03		. 33986-06		.58844-06		. 21738-03	,	- 43444 - 03		. 42326-08		. 31337-03		
.,73357-01		.15707-01				. 11011-03 .		. 10-11001.		10496-01		15798-n1				.62310-01	•	30475-04		27623-04		41719-02						10-28188		
.10555-01	10-95901*		••10540•01	10-10121.	10-64611.	11593-01	.12066-01	13576-02	.71842-02	. 70870-02	.75663+02	E0-2454		·19557=02	19544-02	\$0-06012°	210A9=08	14704-02	14692-02	15347+02	40-16251.	10440-02	.10446-02			61670-03		14112-04	.14137-04	
.13726	.1411.	14216	.13738	.10260	.17408		.16232	11720	.11130	.11016	.11749	10-06601.	.10499-01	10=01100°	10-10000	.10402	.10505	10480	10847	.12014	.12820	10-12610	10-52614.	10-20120	83820-n1		10-01000-		.44575+01	
.10500-01	10939-01	.10569-01	10-0+501-	.12084-01	10-0v511*		.12084-01	.74595-02	71880-02	50-96117	75604-02	**************************************		19545-02	.19565-U2	21073-02	21065-02	14714-02	14702-02	20-11251	.15320-02	10-10-101-	10492-02	.49641=03		61874-03		.14138-04		
•13679	.14120	14168	13737	•,10162		.17400	•.18829		20111.		•6411.	.18978-01		.90609-01		.10566	.10562	.10801.	.1001.	.12705	••12790	10-14610**	.0.249.01	83796-01	••03800=01	.6619-01	10-01001.		10-146+*	

14.761	.10739	-14.790	12297	49,443	10-99041.	10401	40.408	12725	51.086
-15.239	-19300	15.237							
15.307	19429	*15.337	11963	50.742	-1.0010	**10780+01	12027.	12911.	-44.830
14.548	.1800	-14.644							
24.103		20.237		.39210	50-14144.02	109.02	.19840	**************************************	.15404-0
25.104	- 30210	25.047							
-25.165	. 30273	-25.280	55691-02		47328-02	20203.		.15574-03	8234-0
24.364	-31566	26.340							
12.051	20105	-17.6.3	•1.3534	-87.657	10-01209.	.94486-01	-64.412	1.2793	-82.657
-16.733	-1978A	16.744							
-16.791	19361	10.57	1.2766	93.252	-2.0730		-2.4410	1.3931	
17.69J	20104	17.700							
64657-U1	.1427.	73001-01	•. •3126		77.455	14577-01	.00791-01	93205	
10-11040.	.14269	66543401							
4.4545		4694	÷e.8594	-43.40 °	.12754-01	••1111••	-808.60	4,6424	-43.641
-4.4610	36920 ···	0.050.A							
9.3625	1981.1	1101.11	+50P	-52.465	-15,751	•26334	.16336	.4°,9273	52,452
9.3570	1.1560								
20.792	-1.6701	20.013	30098-02	21410-01	27444-02	826.27		72508-03	.11360-0
24.779	-1.8689	24.749							
15.903	4565 · 6 -	34.013	38149-02		14179-02	34490	-2.3458	.94933=03	• 20235=0
.35.926	0445.5	- 30.012							
-21.170	-1.7563	27.040		A.4104	10 ⁹ 34-02	••20699	-1346.9	.97348	1140.4
27.156	1111	040-144							

272

:. .

-2.0825	• 3 •. 7 1 4	-2.0415	10.108	1111.1.	110.72-	*858°K*	9ubil**	-, 21A14-01	-4, h428	\$10.12
42.0324 1 . 4785	• 30. 713 24. 126	15.0	34.719 P4.141	19229-05	17417-02	-14148-04	-1203.1	10-17154.	\$0-00b2.	50-9945
1.4766	261.45	-1-4700	541.20							
1.3+59		-1.3447 1.3653	940-92 -	• • • • • 0 3 •		****				
TRUNCATEN MODAL	L NATRIK (C	VEGA) -								
. 13284-01	10-92429"		.10164-01.	10-14101	10-64374-01 20-62367.	• 58657=01	.4513-03	- 31062-01 0-29016		
10-1448-		15782			•• 11 49V	10892				
10-96451-=	10-5112	10-010-01	•• 30•75•04		111 -02	19-2612				
.21045-05	50863=03		40-04152-		• 15217-03	. 30448-05	-64626-08			
					-10134-06			97482-08		
••••••••••••••••••••••••••••••••••••••				40-25065**			10=42541.	10-12/22.		•
** 5910 S=03	60-62546		48121-07	-0100.	20234-03		-24019-07	40738-03		
.13298-01	10-16469**	.74072-01	.76112-01	10=12568		•• 58660-01	. 46174-01	.31060-01		
		-13760	14128	.10725-76	.11902			57665-01		
26914-03	25433-02	\$7390-02		19964-02	.13580-02	64564-03		.18378-04		
DAMPING MATRIE	OF THE PLAI	NT (DAMP)								
.14496	.00000	00000	00000"	.0000	.0000	.0000	.0000	• • • • • •	• • • • • •	•0000
00000	00000.	.00000	00000					0000	00000	
0000u*	.14690	00000	00000	00000	•0000	• • • • •	• • • • •			
00000	00000	.1108		.0000	.00000	.00000	00000-	00000.	00000	•0000
00000	00000.	00000	.00000 .11016	.0000	.0000	.0000	•0000	.0000	00000	.0000
00000	.00000	00000	.00000							
00000	00000	00000	00000	.10202	.00000	00000°	•00000		00000	00000.
00000	00000	00000	00000	•0000	.10471	• 0000	• • • • • •	• • • • • •	•0000	•0000•
	00000		00000	00000-	.0000	10-16916-	.00000	00000	• 00000	.0000
00000	00000	00000	00000							
00000	.00000	00000	00000	.0000	.0000	.0000	10-00061.	• • • • •	•00000	•0000
00000	00000	00000°	00000	0000	.0000	.0000	00000	17410-01	•0000	.0000
00000	C0000*	00000	.00000							
00000	00000	00000	00000	• • • • • •	.0000	.0000	•0000	•00000	10-61951.	00000
00000	00000	00000	00000	.0000	.00000	•0000•	• 00000	00000	• 00000	-11180-01
00000	00000	00000	.00000		00000					
• 00000		00000		4 0 000						
00000	.0000	00000	.00000	00000"	.00000	• 0000	•0000	••••••	• 00000	•0000
00000°	-10141-UZ	01010	00000°	00000	- 00100	- 0000	-00000	00000-	-01000	-0000
		*****	*****	>>>>>		*****	A			

\$10.12

ORIGINAL PAGE IS OF POOR QUALITY

00000		00000		• • • • •	.0000		•0000	• 00000			00000		00000*	•0000		.00000		0063.1			00000		00000		00000
00000		00000		•00000	00000		•00000	•00000	00000		•0000		00000*	.00000		1.9242		00000*		00000	-0000		•0000		00000
00000*	0000000 0000000 0000000 0000000 0000000	00000-		00000	00000		•00000	00000.	00000		.00000		07000.	3.0340		.00000		00000.		00000	.00000		•00000		00000*
00000		0000-		•00000	00000		.0000	10000.			• 00000		1619.8	00000		.00000		00000.		00000	00000		.0000		00000*
0000.	000000 000000 000000 000000 00000 00000 0000	0000		.0000	00000		.0000	• • • • •	00000	•	1.5885		00000.	00000.		.0000		00000*		00000	.00000		00000*		00000.
0000	000000 000000 000000 000000 00000 00000 0000	00000		.0000	00000		,0000°	.0000			.00000		A0000*	,0000.		0000			00000	A000A*	.0000		.0000		
00000		00000		00000	00000		•0000	110.29		00000	.00000		•0000	00000	•	.00000		.0000		00000-	00000		00000		00000.
. U0000 . 00000 . 1991-02		(42)	00000	.00000	00000	00000	121.55	00000	00000.		.00000	.00000	00000.	00000	.00000	00000	00000	00000	- 0-000 ·	00000	00000	.0000	.00000	00000	.22203-01
. 32103=02 . 00000 . 00000	1	ITH UF PLANT	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000*	00000	00000	00000	00000	00000"	00000	00000		00000	00000	00000	.10306	00000
00000 00000 00007	С 7 ТИС 2 00000 2 00000 2 00000 2 000000 2 0000000 2 0000000 2 000000 2 000000 2 000000 2 0000000 2 0000000 2 000000 2 0000000 2 0000000 2 0000000 2 0000000 2 0000000 2 0000000 2 0000000 2 0000000 2 0000000000	IFFNEAD MATH	00000	215.91	00000	00000	00000	00000	00000.		00000	00000	00000	00000	.0000	C0000-	90000.	00000.	00000.	00000 	00000	19262	00007	00000.	00000°
03000° 03000°	A 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	GENERALIZED 81	00000	00000	00000	00000	00000	00000	00000		00000	00000	00000	00000	00000	.0000	.0000	00000*	00000	00000°	00000	00000	00000	00000	00000
GENERALIZED S	TTFFMESS MAI	THIN OF MUDEL	(424)		-																				
---------------	--------------	---------------	--------	-----------	--------	----------------	---------------------	-----------------	---------------	-----------															
2.7331	0000°	.0000	.0000	.00000	060000	0000 0"	00100*	00000.																	
00000	2.1679	00000	.0000	00000	00000	-00000	00000	07404.																	
00000	10000	1.6244	00000	00000	.00000	00000	.0000	00000																	
00000	00000	00000	1.1557	00000	.00000	.0000	.0000	. 10000																	
00000	00000	00000	00000	15001	.0000	-0000	00000"	• 00000																	
00000	0000	00000	00000	00000		00000	.00000	. n0000																	
00000	00000	0000	.0000	00000	00000	. 1897.	00000*	.00000																	
00000	0000	00000	00000	00000	.00000	10000	114424	, ne 000																	
00000	.0000	00000	.0000	.0000	•0000•	.0000	•0000	10-19115*																	
							-																		
MATRIE AP																									
.0000	.0000	00000"	.0000°	0000	.00000	.0000	.0000	00000	.00000	-0000-															
00000"	00000-	00000	.000.	1.0000	00000	• 00000	00000	.0000	•00000	• • • • •															
00000	00000"	00000"	00000-	00000	00000	00000	00000	00000	00000																
	00000			00000					00000	00000															
					00000	00000	00000																		
00000	0000	0000	00000	00000	00000	00000	.0000	00000	•00000	0000u*															
00000	.0000	0000	.0000	00000	.0000	1-000	00000	0000u.	•00000	•000u•															
00000	.0000	.0000	.0000	00000	.0000	.0000	•0000																		
00000	.0000	00000	.0000	.0000	.0000	.0000	.0000	.0000	00000.	•0000															
0000"	00000	00000	•0000	.0000	•0000	•0000	1.0000	.0000	00000	00000															
00000"	00000	00000	.00000	00000	.0000	.0000	00000*																		
00000	00000"	00404	00000	.0000	.0000	•0000.	•0000	.0000	00000	00000*															
000000	C0003-	•00000	.0000	• • • • •		00000	• 00000	1.0000	•00000	00000															
00000	00000"	00000	00000	00000	00000	00000	00000*																		
00000°	00000.	00000	00000*	00000	00000	00000.	00000		• • • • • • •																
00000							00000																		
					0000	00000	00000	.00000	•00000	.0000															
00000	00000		00000	00000	.0000	00000	00000	00000	.00000	1.0000															
00000	00000	0000	00000	00000	00000	0000	•0000	•																	
00000	.0000	.0000	.0000	.0000	.0000	.00000	000u ⁰ *	.0000	.00000	.0000															
00000	00000	.0000	.0000	00000	.0000	•00000	00000	•00000	00000	•0000															
1.0000	00000-	0000°	.0000	.0000	00000	00000	00000																		
00000	00000"	00000	00000.	00000	00000		00000																		
					0000	00000	00000	.00000	.00000	.00000															
00000	00000	00000	00000	00000	.0000	.0000	00000	.00000	•00000	00000															
00000	.0000	1.0000	.0000	00000	.0000	00000	.00000																		
00000	00000*	00000	00000.	00000	.0000	00000	00000"	.0000	00000*	00000															
00000	00000	.00000	00000	00000	.0000	00000"	00000	• • • • •	00000	•00000															
00000	00000	00000"	1.0000	00000	00000		00000	00000	00000																
	00000	2000U.						00000	00000	00000															
					00000		00000																		
00000	00000	00000	00000	00000	.00000	00000	.0000	40000*	• 00000	00000*															
.0000	000u3*	00000	.00000	.00000	00000	.0000	•00000	• 00000	•00000	.0000															
00000	.60000	.00000	00000	.00000	1.000	0000u°	• • • • •		,																
00000*	00000"	00unu*	00000"	.0000	.00000	.000u.	00000	00000.	•00000	00000															
00000	•0000	00000	.00000	00000	00000°	00000	00000	•0000	• 00000	0000.0															
00000	00000	00000	00000	0000.	20000°	00000	00000	00000	- 00000	00000															
00000°	00000	07070		00000	00000		00000		00000	00000															
					0000	00000	1.0000			•															

	00100		00000		00000	00000	00000	00000	00000	
								00000		
							00000			
					0000		0000	00000	00000	.00000
							00000			
								00000	00000	-00000
								00000		00000
					0000		00000			
00000	00000		21.121-	00000	00000	00000	00000	.0000	00000	•0000
00000	0000		00000	00000-	00000	00000	-11016	00000	.0000	• 0000
00000	00000	00000	00000	00000	.0000	00000	00000			
00000	00003	00000	00000	-110.29	00000	00000	00000	.00000	.00000	• • • • •
00000	0000	00000	.0000	00000	00000	.0000	00000	.10502	00000	.00000
00000	00000	00000	00000	00000	00000	00000	.00000			
00000	.00000	-0000	00000	00000	-100.64	00000	.00000	.00000	00000	.0000
00000	.0000	00000	00000	00000	.00000	.0000	.00000	00000	.10471	•0000
00000	.00000	.0000	.00200	.00000	.0000	00000	.00000			
00000*	00000	00000	00000	00000	.00000	-4.5869	•00000	. 10100	00000	00000
00000.	00000.	00000	.00000	00000°	00000	00000	00700.	00000	•0000•	21421-01
00000	00000.	.00000	.00000	.00000	00000	.00000	00000			
00000	00000	00000	00000	00000	.00000	00000	1614*6=	00000	00000	00000
00000	00000	03000	00000	00000	00000°	00000*	00000*	• • • • •	• 00000	00000.
••1400g=01	00000	00000°	00000	00000	00000	00000	00000			
00000	00000*	00000	00000	00000	A0000.	00000	00000		00000	00000
00000	00000	00000*	00000	1000D.		00000.*		00004*	• 00000	00000
00000*		00000	0.000	00000			00000	0000		
00000		00000*	- A0000-	00000						
	00000		00000							
								00000	00000	-1.2500
			AU0009							
					00000					
00000	00000	00000	00000	00000	00000	00000	00000	.00000	.00000	.0000
-1.450			00000	00000	00000	00000	00000	00000	00000	.0000
		00000			00000	0000	.00000			
00000	00000	00000	00000	00000	00000	00000	00000	.00000	.00000	•0000
00000	1929-				00000	0000	00000	00000	00000	.0000
00000	00000	00000	00000	00000		00000	.00000			
00000	0000	00000	00000	00000	.0000	.00000	•00000	00000	.00000	0000u*
00000	.0000	-10306	.0000	00000	00000	.0000	.00000	.00000	.00000	.00000
0000.	00000	00000	.00000	00000	.0000	32103-02	•00000			
.0000	.0000	.0000	.00000	00000	.0000	40000*	•00000	.0000	•0000	•0000
• 00000	•0000	•00000	•.222nJ=01	00000	.00000	•00000	00000	.00000	00000	• • • • •
00000	•0000	•00000	.0000	•0000	.0000	• 00000	14401-05			
				-						
							·			
ACTIN TO THE PARTY OF THE PARTY	00000	00000	00000	00000-	00000	00000	-00000	00000	00000	.0000.
00000	00000	00000	00000	00000	.0000	00000	00000	00000	00000	.0000
00000	0000	00000	00000	00000	.00000	00000	.00000	00000	.00000	•0000
00000	00000	00000	00000	00000	00000	.00000	.00000	00000	.00000	• 00000
00000	00001	0000	00000	00000	00000	00000	00000°	.00000	00000	•0000
00000	.00000	.0000	00000	00000	~00u00°	.00000.	.00000	.00000	• 0000	•000u•
0,000.	.00000	•0000°	.00000	.0000	00000	00000	0:000	00000	.00000	.0000
60000ª	00000	07000	00000	00000	00000	.0000	00000	• • • • • • • • • • • • • • • • • • •	00000.	
u:unu.	· · · · · · · ·	- 100 U	00040.	unuou.	~~~····	u0u0u*	90064	46444	duaci).	· · · · · ·

ORIGINAL PAGE IS OF POOR QUALITY

**3063#+0 **#5267+0			.11764-0	36275-0 -12399-0	5391 0	0-40211		•61950-0 •• 30079-0	• 30941-0 • • 45314-0	. 10714-0 . 85316-0
• .29428+03 • .71756+02	24401-03 -10870-02		.71973-07	•.11334-07 •.99187-03	+0-012+1+-	27046-07 15750-03	•• 19486-05 •• 1041-01	••74033e08 ••36767e02	• • 29403•03 • • 75604-02	-,29344-03 ,75661-02
•.42145+03 .76595-02	.42181-03	••12462-01 •10531-01	11493-05 30-19595				•.12458-01 •.98613-02	•.11684-05 •.34458-02	••••••••••••••••••••••••••••••••••••••	
••39091-09 ••11535-01	39114-03		14592+09			13475-00	•12643•01 •8058•00	. 14543-09 	10000010101	10-12101
	-10-10-10-00 -151-00	••••••••••••••••••••••••••••••••••••••		20-02/24-02 20-02/02/24-02					10.53.04	40637-06 11585-01
.19451-02		20492-02		1913/-03	20-02-04 200		22082-02 13447-01	13535-03 46486-02	10121-02	15131-02
10-00501.	15115-02	2000 2005 2000 2005 73337 -01	12121	57919-05 11120-05			10-92554 10-9256-02	20-11684.	10839-02	1034992
209 405 299 405 293 09	20-112-1	2001 2001 2001 2001	\$0.57787			26950=07 59857=08	10000000000000000000000000000000000000		20-141-02	20-111-2
20-51182* 20-51281*	20-21-1-1- 20-22-23- 20-22-23-		5455-00 5455-00 5455-00	• • • • • • • • • • • • • • • • • • •	•15054•04 •15054•04	29448-07		16914-06 19914-08	23177-02	20-61991-
20-2224 ******		10-14161		• 24444403				- 19992-09	2100000	
IX CP . 20999-02 . 20981-03	20-05012 -	10-14671-02		- 72401403 - 22240405 - 40405	10-121-1- 10-121-1- 10-121-1-1-	• 72020•05 • 72020•05	15152-03			20-24461

0000u*	•0000	•00000	•000u•	•0000•	·0000	.10839-01	10540-01	10-54511.	.12086-01	.71042-02	.15663-02	.45314-03		20-09012*	1 8692-02	.15357-02	.10446-02		^1875-D3	.14137-04	
00000	• 0000	00000	00000	• 00000	.0000.	10639-01	.10540-01	.11548-01	.12084+01	71680-02	75604+02	45314+03	.1*545-02	21065-02	1.102-02	•15320-02	10492-02	.49645.03	61876+03	14118-04	
000000	00000	u0000"	00000"	00000	.0000 ·	48487 n2	46986-02	82597 ~06	-,31913-06	34458-02	•.36767-02	30079-03	.12715-05	58440-0J	37016-07	.30777-06	1111-01		.18476-07	.51537-03	
•000	.00000	00000	00000	.01000	00000	15156-01	73447-01	.23213-03	.80384-06	98613-02	11041-01	15815-01	.6 9215-01	-+62290+01	92432-05	.12906+06	50-01518.	41535-01	.24226=05	.43154-01	
.0000	.0000	10000.	.0000	00000	00000	36010-04	-54734-06	.13304-06	**13475-06		15750-05	.22244-07	21626-03	45173-07	10021-06	390 38-06	33814-03	56933-08	.14424-07	.24728-03	
00000	.00000	00000	00000	00000	00000	30478-07	29572-07	.75290-09	.16672-03	.16706-06	1421U-06	\$0647-08	59345.07	-,10423-06	E0~\$510"		10132-06	91629-07		. 17482-05	
.0000	.0000.	0000	0000	00000	00000	11120-04	E0-9359-03	C0-0122	Cn-15425.	28959-04	97107-03	.12399-01	20-28101.	52380-n2	*.35667-06	*.18137 - nb	-12829-nb	51397-03	.J1755-08	19150-08	
.00000	.00000	00000	00000	00000	00000	47154-02	40442-02	10011-04		36541-02	30-97.96°.	.300A1-03	.72641-05	.58464=03	.35446-06	.56846-06	.21730-03	.43448=03	.92326-08	.31337+03	
10400°	-0000-	0000	00000	00000	00000	11357-01	-75707-01		11011-03	10-15201-		.1579A.01	63155-01	62310-01	30675-04		41719-02	41932-01	15633-03		
.0000	00000	0000-	00000	00000	00003		10995-01	10-10141.		75574-02	.7n870-02	. 45685-05	20-15561-	20-06012"	14704-02	-15347-02	10440-02			1-11-04	
00000	00000	00000	00000	00000	00000	10.500-01	1000-001	12066-01	11335-01	.76595-02		.45267-03	19545-02	·	**14714=02		.10494.02	60-1-03-03		.14138-04	

MATRIX

00000	.0000	.0000	.00000	00000	.0000	00000	.00000	• • • • • •	1.0000	•0000
00000	00000.	.00000	.0000	00000	00000.	00000		,	;	
00000	00000.	.00000	00000	•0000	.0000	•00000	00000	.00000	00000*	1.0000
00000	.00000	000000	.0000	00000	00000	00000				
00000	00000	.00000	00000	00000	00000	00000	00000*	• • • • •	00000	• 00000
1.0000	00000	00000	.00000	00000	00000	00000				
00030*	00000	00000	00000	00000	00000 ·	00000	00000	• • • • •	00000	00000
00000"	1.0000	00000	00000	00000	00000°	00000		00000	00000-	
								~~~~~	*****	
							00000	00000	00000	00000
		00000.				00000		00000	00000	
00000	00000*	00000				00000	00000	00000°	00000	00000
•0000	00000	00000	00000	0000.1	20000°	00000				
00070*	00000	07000"	00000	00000	00000	00000	00000*		00000	00000
•0000	-00000	00000	00000	00000	1.0000	00000				
00000	.00000	00000	00000	00000	-0000 ·	00000	00000	• • • • • •	00000	00000
• • • • •	.00000	00000	00000	.00000	00000	1.0000				
-2.7531	.0000	.00000	.00000	•00000	00000	00000	00000	00000	-2.5462	00000
01010.	.0000	.00000	.00000	00000	.0000	00000"				
00000	-8.1479 -8.1479	00000"	.00000	00000	.00000	,0000 a	00000.	.00000	00000	-100.5-
00000	.00000	.00000	.00000	.00000	.00000	00000"				
00000	.0000	-1.82U4	.00000	00000	.0000	• 00000	.00000	00000	.00000	00000
-1.9076	0000	00000	.00000	00000	.0000	.00000				
00000	0000	00000	-1.1557	00000	.0000	00000	00000	00000"	.00000	.00000
00000	1.5201	00000	00000	00000	.00000	.00000				
00000	00000	00000	00000	10051.0	.0000	.00000	.00000	.00000	.0000	00000
00000	0000	-1-2246	00000	00000	00000	00000				
00000	00000	00000	00000	00000		00000	.00000	.0000	.00000	.00000
00000	00000	00000	-1.1013	00000	.0000	00000				
00000	0000	00000	00000	00000	00000	68974	00000	00000	00000*	00000
00000	0000	00000	00000	-1.145	00000	00000		I		
00000	0000	00000	00000	00000	00000	00000	14428	00000	.00000	•00000
00000	0000	00000	00000	00000	53710	.00000				
00000	0000	00000	00000	00000	.0000	00000	.00000	31084-01	00000	.00000
00000	00000	00000	00000	00000	.0000					
			•							
			•							
NATRIK BM										•
00000	-00000	00000	00000	.0000	.00000	.0000	00000	.0000	. 00000	.00000
00000	0000	00000-	00000	00000	00000	00000	00000	00000	,00000	• 00000
00000	0000	00000	.00000	00000	00000	.00000	.00000	.00000	00000*	.0000
00000	.0000	00000	10000	01010	00000	.0000	.00000	00000	00000	+0000
00000	.0000	00000	.0000	00000	00000	00000	.00000	00000.	00,00.	•0000
.00000	.00000	00000	.0000	00000	.0000.	• 00000	00000	.00000	00000	• 00000
.00000	00000.	.0000°	.00000	00000	00000	00000	00000	00000	00000	00000
00000	00000-	.00000	00000	0,000	00000	00000	•00000	00000	00000*	00000
00000 0		00000	.00000		•00000	00000	• 00000	. 101000	, (0000)	-00000
		10407101°•		100746310		IVERPIC -				
			20-24004 -	20408246		**************************************		20-21651	10/0500	101065 LC -

MATHIE AN

• • 1 3662+08		3AA835234		10000160.0				50-261AI*		10-50545**		**21624=03		10-51269-				20-96-95		*****		
•.51687=03				10-04151-0		.21043+03		.12399=01		40887-08	•	.22248-07		10-01251		\$0-£016£*•		31720-03		·58714=03		
80-86461.		••30041e03		86310-04		.43672-04				.1444-08		\$9457=04		50-40E44.	•	-91475-04				.36757-03		
				31305-0A		.12926-08		,63510=09		10852-03		.29648+08		.48451=06	•	.48037-08		86627-09		14088-03		
*0-8444*	• • • • • • • • • • • • • • • • • • •			8 3064=02		.60897=04	20-42915.	74713-04	19150-04	10326-07	. 97462-06	11747-08	.24728-03		.43154-01		.40738-03	. 40-20204.		. 12913-03	.18378-04	
14691-03		- 50-C+143-02	. 80432-03 .	. 83438-03 .	.15654-05 .	.30434-04	64625-08	.25658-07	80-c5/16.	.20265-07		. 67624-04 ·	.14924.07	E0-150E6.	29-45242	. 564644462.	. 24019-07		43513-03	27160-03		
E0-E4412	. 54749-05	. 39901-03	. 64506-03	• 55245•n5	. 10-25510.	.02305-07	. 30448-03	. 36275-07 .	20-13516.4	. 131919=07 .	. 51629-07	11006-06	.58933-04	25011-07	10-15310.4	. 80020-07	50548-03	21449-03	. 34752-03	. 39929-03	. [0-99544	
. 2000005	.73455=03	38230-05	13571-02 .	. 20-12110	- 41719-02	-503A1-07	15217-03	10-1111-	-12829-0b	.03319-U4	-10132-00	20046-07	. 33814-03 .	.10404-05	.41510-02	96242-08	.28232+03	.20562-03	.73447-03		13580-02	
- 29502-03	.10722-02	. 54835-03	. 19950-02	.12462-01	-27623-04	#0=05018.	41192-06	. 45159-03	-10137-06	21245-07	14960-06	0.346-00	59032-06	12450-01	12906-06	15194-05	40010-00	29491-03	10744-02	54741-03	19964-02	
. 27363-03	.10300-02	.50848-03	.19115-02	.12631-01	30675-04	10173-03	25190-06	38265-06	- 15667-06	-11669-07		13251-04	-10023-04	12643-01	-92432-05	.18904-03	-48121-07	27391-03	10291-02	20000000	10100-02	
 	· 20-15101.0	.1174-03	27417-02			42006-04	10-22604	24199-02	2580-02	-10169-00	10423-04			11631-02	- 42290-01				-10746-02 -	-11785-01	27390-02	

------.0.738-01

19100-94

-102

10-12164.-

## NA T R

-,103u0-02 -,10722-02 į

## ORIGINAL PAGE IS OF POOR QUALITY

#### **BIBLIOGRAPHY**

- Wang, S.J. and J.M. Cameron, "Dynamics and control of a large space antenna," Journal of Guidance, Control and Dynamics, Vol.7, No. 1, Jan.-Feb. 1984, pp. 69-76.
- Cameron, J.M., M. Hamidi, Y.H. Lin, and S.J. Wang, "Distributed control of large space antennas," paper presented at the Workshop on Applications of Distributed System Theory to the Control of Large Space Structures, July 14-16, 1982, Pasadena, Ca., pp. 225-247.
- Landau, I.D., Adaptive Control: The Model Reference Approach, Marcel Dekker, Inc., New York, 1979.
- Kalman, R.E., "Design of self-optimizing control," Trans. ASME,
   Vol. 80, No. 2, 1958, pp. 468-478.
- Feldbaum, A.A., "Dual control theory," collected in Optimal and Self-Optimizing, R. Oldenburger, Ed., MIT Press, Cambridge, Mass., 1966, pp. 458-496.
- 6. Iserman, R., U. Baur, W. Bamberger, P. Kneppo, and H. Sibert, "Comparison of six on-line identification and parameter estimation methods," Automatica, Vol. 10, 1974, pp. 81-103.
- 7. Ljung, L., "Analysis of recursive stochastic algorithms," IEEE Trans. on Automatic Control, Vol. AC-22, 1977, pp. 551-575.
- Ljung, L., "On positive real transfer functions and the convergence of some recursive schemes," IEEE Trans. on Automatic Control, Vol. AC-22, 1977, pp. 539-551.

- 9. Landau, I.D., "Elimination of the real positivity condition in the design of parallel MRAS," IEEE Trans. on Automatic Control, Vol. AC-23, No. 6, Dec. 1978, pp. 1015-1020.
- Martin-Sanchez, J.M., "A new solution to adaptive control,"
   Proc. IEEE, Vol. 64, 1976, pp. 1209-1218.
- 11. Johnstone, R.M., D.G. Fisher, and S.L. Shah, "Hyperstable adaptive control -- an indirect, input-output approach with explicit model identification," Joint Automatic Control Conference, 1979, pp. 487-494.
- 12. Narendra, K.S., and L.S. Valavani, "Direct and indirect adaptive control," Automatica, Vol. 15, No. 6, Nov. 1979, pp. 653-654.
- 13. Goodwin, G.C., P.J. Ramadge and P.E. Caines, "Discrete time multivariable adaptive control," IEEE Trans. on Automatic Control, Vol. AC-25, No. 3, June 1980, pp. 449-456.
- 14. Goodwin, G.C., P.J. Ramadge, and P.E. Caines, "Discrete time stochastic adaptive control," SIAM Journal of Control and Optimization, Vol. 19, 1981, pp. 282-285.
- 15. Whitaker, H.P., P.V. Osburn, and A. Keezer, "New developments in the design of adaptive control systems," Institute of Aeronautical Sciences, Paper 61-39, 1961.
- 16. Donalson, D.D., and C.T. Leondes, "A model referenced parameter tracking technique for adaptive control systems," IEEE Trans. Appl. Ind., Sept. 1963, pp. 241-262.
- Winsor, C.A., "Model reference adaptive design," NASA-CR-98453, Nov. 1968.

- Butchart, R.L. and B. Shackcloth, "Synthesis of model reference adaptive control systems by Lyapunov's second method," Proc. 1965 IFAC Symp. Adaptive Control (Teddington, England), ISA, 1966, pp. 145-152.
- 19. Parks, P.C. "Lyapunov redesign of model reference adaptive control systems," IEEE Trans. on Automatic Control., Vol. AC-11, July 1966, pp. 362-367.
- Phillipson, P.H., "Design methods for model reference adaptive systems," Proc. Inst. Mechanical Engineers, Vol. 183, Part I, 1968-1969, pp. 695-706.
- 21. Gilbart, J.W., R.V. Monopoli and C.F. Price, "Improved convergence and increased flexibility in the design of model reference adaptive control systems," Proc. 9th IEEE Symp. Adaptive Processes Design and Control, Dec. 1970, pp. IV.3.1-3.10.
- 22. Landau, I.D. and B. Courtiol, "Adaptive model following systems for flight control and simulation," AIAA 10th Aerospace Sciences Meeting, No. 72-95, January 1972.
- 23. Popov, V.M., "The solution of a new stability problem for controlled systems," Automation and Remote Control, 24, 1963, pp. 1-23.
- 24. Landau, I.D., "Synthesis of discrete model reference adaptive control," IEEE Trans. on Automatic Control, Vol. AC-16, 1971, pp. 507-508.

- 25. Landau, I.D. and H.M. Silveira, "A stability theorem with applications to adaptive control system," Proc. 3rd IFAC Symp. on Sensitivity, Adaptivity, and Optimality, Ischia, Italy, June 1973, pp. 282-286.
- 26. Bethoux, B. and B. Courtiol, "A hyperstable discrete model reference adaptive control system," Proc. 3rd IFAC Symp. on Sensitivity, Adaptivity, and Optimality, Ischia, Italy, June 1973, pp. 287-289.
- 27. Anderson, B.D.O., "A simplified view of hyperstability," IEEE Trans. on Automatic Control, Vol. AC-13, 1968, pp. 292-294.
- 28. Monopoli, R.V., "Model reference adaptive control with an augmented error signal," IEEE Trans. on Automatic Control, Vol. AC-19, Oct. 1974, pp. 474-485.
- 29. Morse, A.S., A. Feuer, and B.R. Barmish, "An unstable dynamical system associated with model reference adaptive control," IEEE Trans. on Automatic Control, Vol. AC-23, June 1978, pp. 499-500.
- 30. Narendra, K.S. and L.S. Valavani, "Stable adaptive controller design - direct control," IEEE Trans. on Automatic Control, Vol. AC-23, Aug. 1978, pp. 570-583.
- 31. Narendra, K.S., Y.H. Lin and L.S. Valavani, "Stable adaptive controller design - part II: proof of stability," IEEE Trans. on Automatic Control, Vol. AC-25, No. 3, June 1980, pp. 440-448.
- 32. Morse, S. and A. Feuer, "Adaptive control of single-input single-output linear systems," IEEE Trans. on Automatic Control, Vol. AC-23, August 1978, pp. 557-570.

- 33. Morse, A.S., "Global stability of parameter-adaptive control systems," IEEE Trans. on Automatic Control, Vol. AC-25, No. 3, June 1980, pp. 433-439.
- 34. Ionescu, T. and R.V. Monopoli, "Discrete model reference adaptive control with an augmented error signal," Automatica, Vol. 13, 1977, pp. 507-517.
- 35. Narendra, K.S. and Y.H. Lin, "Stable discrete adaptive control," IEEE Trans. on Automatic Control, Vol. AC-25, No. 3, June 1980, pp. 456-461.
- 36. Suzuki, T. and S. Takashima, "A hyperstable scheme for discrete model reference adaptive control system," International Journal of Control, Vol. 28, 1978, pp. 245-252.
- 37. Johnstone, R.M., S.L. Shah, and D.G. Fisher, "An extension of hyperstable adaptive control to nonminimum phase systems," International Journal of Control, Vol. 31, 1980, pp. 539-545.
- 38. Narendra, K.S. and L.S. Valavani, "Direct and indirect model reference adaptive control," Automatica, Vol. 15, 1979, pp. 653-664.
- 39. Narendra, K.S. and L.S. Valavani, "A comparison of Lyapunov and hyperstability approaches to adaptive control of continuous systems," IEEE Trans. on Automatic Control, Vol. AC-25, No. 2, April 1980, pp. 243-247.
- Monopoli, R.V. and C.C. Hsing, "Parameter adaptive control of multivariable systems," International Journal of Control, 22, No. 3, 1975, pp. 313-327.

- Sobel, K., H. Kaufman, and L. Mabius, "Model reference output adaptive control systems without parameter identification," 18th IEEE Conference on Decision and Control, Ft. Lauderdale, FL, Dec. 1979, pp. 347-351.
- 42. Sobel, K., H. Kaufman, and L. Mabius, "Implicit adaptive control systems for a class of multi-input multi-output systems," IEEE Trans. on Aerospace and Electronics Systems, Sept. 1982, pp. 576-590.
- 43. Broussard, J.R. and M.J. O'Brien, "Feedforward control to track the output of a forced model," Proc. 17th IEEE Conference on Decision and Control, Jan. 1979, pp. 1149-1154.
- 44. Balas, M.J. and C.R. Johnson, "Toward adaptive control of large structures in space," Applications of Adaptive Control, Academic Press, 1980, pp. 313-344.
- 45. Johnson, C.R., "Adaptive modal control of large flexible spacecraft," AIAA Journal of Guidance and Control, Vol. 3, No.
  4, July-August 1980, pp. 369-375.
- 46. Rohrs, C.E., L. Valavani, M. Athans, and G. Stein, "Robustness of adaptive control algorithms in the presence of unmodeled dynamics," Proc. 21st IEEE Conference on Decision and Control, Dec. 1982, pp. 3-11.
- 47. Bar-Kana, I., H. Kaufman, and M. Balas, "Model reference adaptive control of large structural systems," AIAA Journal of Guidance and Control, Vol. 6, No. 2, March-April 1983, pp. 112-118.

- 48. Workshop Briefing Charts, Study Task No. 9 Berthing, NASA Space Station Task Force Concept Development Group, Dec. 5-9, 1983.
- 49. Craig, M., Study Task No. 11 Configuration and Controllability Studies, NASA Space Station Task Force Concept Development Group, Dec. 16, 1983.
- 50. Clough, R.W. and J. Penzien, Dynamics of Structures, McGraw-Hill, N.Y., N.Y., 1975.
- 51. Juang, J.N. and S.J. Wang, "An investigation of quasi-inertial attitude control for a solar power satellite," Space Solar Power Review, Vol. 3, 1982, pp. 337-352.
- 52. Hahn, W., Theory and Application of Lyapunov's Direct Method, Prentice-Hall, Inc., New Jersey, 1963.
- 53. Lyapunov, M.A., "Investigation of a singular case of the problem of stability of motion," Mat. Sbornik 17, 1893, pp. 252-333
- 54. Bar-Kana, I., "Direct multivariable model reference adaptive control with application to large structural systems," Ph.D. Dissertation, Rensselaer Polytechnic Institute, Troy, New York, May, 1983.
- 55. Landau, I.D., "Design of discrete model reference adaptive systems using the positivity concepts," in Proc. 3rd Symp. on Sensitivity, Adaptivity and Optimality, Ischia, Italy, 1973, pp. 307-314.

#### TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. JPL 85-57	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle Dynamic Modeling and Adapti Space Stations	ve Control for	<ul> <li>5. Report Date</li> <li>July 15, 1985</li> <li>6. Performing Organization Code</li> </ul>
7. Author(s) Che-Hang Charles Ih	and Shyh John Wang	8. Performing Organization Report No.
9. Performing Organization Name an	nd Address	10. Work Unit No.
JET PROPULSION LABO California Institut 4800 Oak Grove Driv	DRATORY te of Technology ve	11. Contract or Grant No. NAS7-918
Pasadena, Californi	ia 91109	13. Type of Report and Period Covered
12. Sponsoring Agency Name and Ad	dress	JPL Publication
NATIONAL AERONAUTICS AND Washington, D.C. 20546	SPACE ADMINISTRATION	14. Sponsoring Agency Code
15. Supplementary Notes		
16. Abstract Of all large space challenge and requirement to a control system stability over level of disturbances. During more than 100% and during state These coupled with the inheren	e structural systems, space dvanced control technology an extremely broad range of shuttle docking the systection ion assembly the mass may at dynamic model uncertaint	e stations present a unique Their operations require of parameter changes and high m mass may suddenly increase by vary even more drastically. ties associated with large space

These coupled with the inherent dynamic model uncertainties associated with large space structural systems require highly sophisticated control systems that can grow as the stations evolve and cope with the uncertainties and time-varying elements to maintain the stability and pointing of the space stations.

This report first deals with the aspects of space station operational properties including configurations, dynamic models, shuttle docking contact dynamics, solar panel interaction and load reduction to yield a set of system models and conditions. A model reference adaptive control algorithm along with the inner-loop plant augmentation design for controlling the space stations under severe operational conditions of shuttle docking, excessive model parameter errors, and model truncation are then investigated. The instability problem caused by the zero-frequency rigid body modes and a proposed solution using plant augmentation are addressed. Two sets of sufficient conditions which guarantee the globablly asymptotic stability for the space station systems are obtained.

The performance of this adaptive control system on space stations is analyzed through extensive simulations. Asymptotic stability, high rate of convergence, and robustness of the system are observed under the above-mentioned severe conditions and constraints induced by control hardware saturation.

17. Key Words (Selected by Author(s))	)	18. Distribution Stat	ement	
Astronautics (General) Engineering (General) Computer Programming and So Systems Analysis	ftware	Unlimited/U	Inclassified	
19. Security Classif. (of this report) Unclassified	20. Security C Unclass	lassif. (of this page) ified	21. No. of Pages	22. Price

JPL 0184 R 9/83