
PUBLICATlN85:67 -

0es ig n and

Cojtv^uiliGatfoh 1}
r - * . • ' _ • ' . r - . ' \ (^ - f -~

'i': v^""--''-r^1^'^'j^--3\
x Y, 'VifiYor O.K:;Li,;Y.F. Lam, ahdT.G.;>

•i i^M'Avoit,,. «f c/s,,-thorn, (jaiifp/nia' ^ (• ' "

)r

'Js

l> (- , • ' • . ' -11 :-̂"' i * •

(jet
Onelas

G3/32 05158
' •-^T'-::"'• r

. -, - „ . ^ ..-.- - . . - - • ^ . '-.\v>^-->rr i
<

' .r; -rS.; ;%, ,: September 15, .1985, i^.]~. ̂ ^ ^ " .^ ' -^ -;;!- ;', ̂ f'.^t' "
" : .^ •^'\.^;\7-S^t':; v^^1;:/:/t^f^''-Vv--;--vv-,' . v^5r--^ y-,.r^;^> 'k,'^«-v-V. /VN V ^ / - ' ' ^ ^T^ jVr .v '

. .S> :-

- ' • " • 4
, -V

1 •*- -^-) '>

,". - National\A0rpnautics andKr- " -"", '^'--(v ' 'x-
-v - (>b Space^drainis;trati6n> ' - ; . ' '^ '^'.- ,,'--^ ^^A >/^V O-r- •''^'o^-^i^ '
^ ' . 'Z-. -A -)_ ^ -^\- f '> -^ v. ; •• • • { - - ' : • i- , — ': •'• • -/; '^-.A

/ ^;. X^Jet f fopulsion 'liaboratory^ ,'' %~°v { --T ^ -.,., •; '^ ̂ i.. - , _ - . .• ̂ ^v.. ̂ V''' ̂ i' '
*, ^ U- r?.alifnrnia InstitiJtR of Technbloav";'1 '•, v v ' 0 . ' -' -" VM^'" 1 "> " , "i. i/'^..- ''Galif'brnia; Institute ofJechnblQgy --

o.av California . ' '

/ ' ,- ^

N:V^4 '̂

TECHNICAL REPORT STANDARD TITLE PAG

1. Report No. JPL pub> 85_6? 2. Government Accession No.

•4. Title and Subtitle

Topology Design and Performance Analysis of an
Integrated Communication Network

7. Author (s)
Victor O.K. Li, Y.F. Lam, T.C. Hou, and Joseph H. Yuen

9. Performing Organization Name and Address
JET PROPULSION LABORATORY
California Institute of Technology
4800 Oak Grove Drive
Pasadena, California 91109

12. Sponsoring Agency Name and Address

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546

3. Recipient's Catalog No.

5. Report Date
September 15, 1985

6. Performing Organization Code

8. Performing Organization Report
JPL Publication 85-67

No

10. Work Unit No.

11. Contract or Grant No.
NAS7-918

13. Type of Report and Period Covered

JPL Publication

14. Sponsoring Agency Code
BG-310-30-71-84-06

15. Supplementary Notes

16. Abstract

This is a research study on the topology design and performance analysis for
the Space Station Information System (SSIS) network. We begin with a survey of
existing research efforts in network topology design. Then a new approach for
topology design is presented. It uses an efficient algorithm to generate candidate
network designs (consisting of subsets of the set of all network components) in
increasing order of their total costs, and checks each design to see if it forms an
acceptable network. This technique gives the true cost-optimal network, and is
particularly useful when the network has many constraints and not too many
components. The algorithm for generating subsets is described in detail, and
various aspects of the overall design procedure are discussed. Two more efficient
versions of this algorithm (applicable in specific situations) are also given.
Next, we discuss two important aspects of network performance analysis: network
reliability and message delays. A new model is introduced to study the reliability
of a network with dependent failures. For message delays, a collection of
formulas from existing research results is given to compute or estimate the delays
of messages in a communication network without making the Independence Assumption.
The design algorithm coded in Pascal is included as an appendix.

17. Key Words (Selected by Author(s))
Spacecraft communications, command,

and tracking
Communications
Mathematical and Computer Sciences
Operations Research

18. Distribution Statement

Unlimited

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No. of Pages

v + 47

22. Price

JPL 0184 R9/8

JPL PUBLICATION 85-67

Topology Design and Performance
Analysis of an Integrated
Communication Network

Victor O.K. Li, Y.F. Lam, and T.C. Hou
University of Southern California

Joseph H. Yuen
Jet Propulsion Laboratory

September 15, 1985

NASA
National Aeronautics and
Space Administration

Jet Propulsion Laboratory
California Institute of Technology

.Pasadena, California

The research described in this publication was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration.

Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government or the Jet Propulsion Laboratory,
California Institute of Technology.

Table of Contents

1. INTRODUCTION 1

2. SURVEY OF LARGE SCALE NETWORK TOPOLOGY DESIGN TECHNOLOGY 3

2.1 Problem Definition 3
2.1.1 Centralized Network Design Algorithm 4
2.1.2 Distributed Network Design 7

2.2 Topology Design of the SSIS Network 9

3. NETWORK TOPOLOGY DESIGN BY EFFICIENT ENUMERATION 11

3.1 A Novel Approach 11
3.2 The Algorithm 12
3.3 Network Design by Ordered Enumeration 14

3.3.1 Design Procedure 14
3.3.2 Some Technical Considerations 14
3.3.3 Modifying the Algorithm for Better Efficiency 16

4. RELIABILITY AND DELAY ANALYSIS. 18

4.1 Two Important Tests in the Algorithm 18
4.2 Reliability of Communication Networks

with Dependent Failures 19
4.2.1 Background 19
4.2.2 The Event Network Model 20

4.3 Message Delays in Communication Networks 24
4.3.1 Background 24
4.3.2 Estimation of Message Delays 25

5. CONCLUDING REMARKS AND EXAMPLE 32

REFERENCES 36

APPENDIX 39

Figures

4-1 An Example of the Event Network Model : 22
4-2 Tandem Queue 27
4-3 Three Flow Interference Configurations 27
4-4 Example for Approximate Average Delay Calculation in a Network 31
5-1 An Example of Network Design :....34

A B S T R A C T

This is a research study on the topology design and performance analysis for the

Space Station Information System (SSIS) network. We begin with a survey of existing

research efforts in network topology design. Then a new approach for topology design is

presented. It uses an efficient algorithm to generate candidate network designs

(consisting of subsets of the set of all network components) in increasing order of their

total costs, and checks each design to see if it forms an acceptable network. This

technique gives the true cost-optimal network, and is particularly useful when the

network has many constraints and not too many components. The algorithm for

generating subsets is described in detail, and various aspects of the overall design

procedure are discussed. Two more efficient versions of this algorithm (applicable in

specific situations) are also given. Next, we discuss two important aspects of network

performance analysis: network reliability and message delays. A new model is introduced

to study the reliability of a network with dependent failures. For message delays, a

collection of formulas from existing research results is given to compute or estimate the

delays of messages in a communication network without making the Independence

Assumption. The design algorithm coded in Pascal is included as an appendix.

1. INTRODUCTION

Topology design of large scale networks has been investigated intensively in the

last decade [3]. The basic problem is to find the optimal locations (and maybe capacities)

of communication channels within a network with respect to a specified measure of

performance and subject to a set of constraints on various parameters. The design

variables include network topology, channel capacities, and flow assignment. The major

design constraints are channel capacities, network reliability, transmission delay, and

network costs. One or more of these constraints may serve as the measure to be

optimized. Thus topology design is actually a class of distinct but related optimization

problems. Optimal algorithms have been found for some topology design problems [1],

but they are computationally inefficient due to the inherent complexity of the problems.

Near-optimal heuristics have also been developed for a few types of problems [8], [23].

The Space Station Information System (SSIS) communications network is a complex,

mixed media, and time-varying network [17]. It links both space-borne and ground-based

elements together by providing the necessary communications, data processing, data

storage, and data distribution requirements. Its topology design is further constrained by

various technical feasibilities, thus making many ordinary topology design techniques not

directly applicable. Section 2 surveys existing research results in network topology design,

and investigates the applicability of such results to the SSIS topology design problem.

Section 3 presents a new design technique which can explicitly consider every important

performance measure of a communication network, and at the same time take into

account the constraints due to various technical feasibilities as in the case of the SSIS.

Section 4 discusses two of the most important aspects of network performance: network

reliability and message delays. It introduces a new model to study the reliability of a

communication network in which link failures are statistically dependent. Then it surveys

existing research results on network message delays, and discusses those which are

applicable (with modifications) to the SSIS communication network. Concluding remarks

and an example are given in Section 5, and the design algorithm coded in Pascal is

included as an appendix.

2. SURVEY OF LARGE SCALE NETWORK TOPOLOGY DESIGN TECHNOLOGY

The first step of our research is to survey existing results in network topology

design and investigate whether they may be applicable to the SSIS network.

2.1. PROBLEM DEFINITION

The topology design problem for a large scale network can be formulated as

follows:

Given: terminal and host locations
traffic matrix
cost matrix

Over the design variables:
topology
channel capacities to be assigned
flow assignment

Subject to: link capacity constraint
reliability constraint
delay constraint
cost constraint

One or more of the above constraints can be considered as the measure to be optimized,

and the goal of the design problem is to find the topology that optimizes the specified

measure subject to the given constraints. Network cost is usually the most important

measure to be optimized in general purpose communications networks.

There are two general classes of networks, namely, centralized networks and

distributed networks. The topology design algorithms for both classes of networks are

discussed below.

2.1.1. CENTRALIZED NETWORK DESIGN ALGORITHM

The centralized network is characterized by many geographically dispersed terminals

which are connected to one or more central computers. These central computers

perform the data processing function or serve as data switches. There may also be

concentrators which merge data flows so that lines can be used more efficiently.

Consider a three level hierarchical network consisting of terminals, concentrators,

and the central computer. Given the locations of the terminals and the central computer,

one may be asked to find the optimal locations of the concentrators and the layout of the

terminals. The concentrator location problem can be formulated as an integer linear

programming problem [3, 34]. Suppose there are n terminals (numbered 1 to n), m

potential concentrators (numbered 1 to m), and the central site (which we will designate

as concentrator location 0). The cost of connecting terminal i to concentrator j is C-. Let

Xj. be 1 if we assign terminal i to concentrator j, and 0 otherwise. Also let Y- be 1 if at

least one terminal is using concentrator j, and 0 if no one is using it. The cost of

concentrator j is F . Then the total cost of a particular assignment is

total cost = E Z C *X. . •*• I F.«Y.
1=1 j=i IJ IJ j=i ' J

Since each terminal must be connected to exactly one concentrator, and

concentrator j can handle a maximum number (Kp of terminals, we have the constraints

that

Z X.- = 1, i = 1 n.-IJ

and Y. = 1 - 11(1 - X..), j = 1 mi ,=i 'J

The problem is to assign O's and 1's to Xj/s to satisfy the constraints and minimize

the cost. This formulation is very similar to warehouse location problems which are

studied in operations research literature [1]. The resulting integer linear programming

problem can then be solved either by exhaustive search or by branch-and-bound

procedures [6, 7, 20]. Although the formulation of the problem is easy, the solution takes

time exponential in the size of the given network. Moreover, this technique cannot be

easily extended to layouts other than hierarchical.

There are also heuristic algorithms [19, 27, 35] for solving the concentrator location

problems, but they do not give optimal results. Most of them originate from the ADD

[23] and DROP [8] algorithms. The ADD algorithm starts with all the terminals connected

to the central site, and concentrators are added one at a time. Concentrator 1 is

introduced first. Terminals are then assigned to either the central site or to concentrator

1. If the resulting cost is cheaper than having all terminals connected to the central site,

concentrator 1 is a possible candidate. Next, all terminals are reassigned back to the

central site, concentrator 1 is deleted, and concentrator 2 is inserted. The cost of this

two-concentrator system is computed. This process is repeated for all m potential

concentrators, and the one that gives the minimum cost is found. This concentrator, say I,

has now been chosen and will appear in the final configuration. Now consider the three

concentrator problem consisting of concentrators i, I, and the central site. Do this for

each of the m-1 remaining concentrators. Select the best triple and use it to solve the

four concentrator problem. Keep adding one concentrator at a time to the best possible

location as long as the cost continues to decrease. The procedure is stopped when no

further improvement can be made by adding more concentrators.

The DROP algorithm is the exact reverse of the ADD algorithm. It starts with all

possible concentrators in use. Assign each terminal to one of the m+1 concentrators and

compute the cost. Then the concentrators are discarded one at a time to maximize

reductions in cost, and the procedure is stopped when no additional deletions can further

reduce the cost.

The terminal layout problem asks to find a tree that connects all terminals and has

the minimum cost. This is the minimum spanning tree (MST) problem for which many

efficient algorithms exist. The most well known ones are Prim's algorithm [29] and

Kruskal's algorithm [22]. Prim's algorithm starts with the central site . in the minimum

spanning tree. It then connects terminals to the existing tree one at a time in the order

of increasing costs. On the other hand, the Kruskal's algorithm examines each potential

link in the order of increasing costs and takes in the link provided it does not form a

circuit with the links that have already been included. Both algorithms give spanning trees

of the same optimal cost. However, these two algorithms will not work when the

terminal layout is constrained. For example, there may be a limit on the maximum degree

of the spanning tree, or on the traffic on each link. No practical algorithm for finding

large constrained minimum spanning tree is known. However there are many heuristic

algorithms for doing so and they result from modifications of Prim's and Kruskal's

algorithms. For example, Kruskal's can be modified as follows: Each time a new link is

about to be added, it is checked to see if the two components being merged satisfy the

constraint. If not, do not merge them. Whenever a component grows to size k, it must be

immediately connected directly to the central site. Kershenbaum and Chou [18] have

given a unified heuristic that can be specialized to yield Kruskal's, Prim's, and several

other heuristics as well.

2.1.2. DISTRIBUTED NETWORK DESIGN

The structure of a large distributed network is generally a multilevel hierarchical

structure with a backbone network at the highest level, and local access networks at

lower levels. Packet switching is a reliable and cost effective solution for distributed data

communication requirements consisting of a mixture of interactive voice and bulk data

traffic. In designing a distributed computer communications network, we are mostly

concerned with cost, throughput, response time, and reliability. All these are direct results

of the routing and topological structure of the network. In this section we will

concentrate on the topology design aspect.

One basic design technique is called branch exchange. It is a search procedure

which optimizes network topology by making a series of changes to small sections of a

large network. The procedure is to pick two links that are not too far apart and remove

them. Then two new links are added to connect the four affected nodes in a different

way, and the result is checked to see if cost is reduced. This process is repeated until a

local optimum is achieved. This technique was first discussed in [9], and its application to

large network optimization problems was discussed in [10] and [11].

The concave branch elimination method [13] is a computationally more efficient

design method. It approximates linear costs as continuous concave functions and assigns

traffic to links based on derivatives of delay functions. However, its application is limited

to cases where the discrete costs can be reasonably approximated by concave functions.

An evolution of the branch exchange method is called the "cut-saturation" algorithm

[14]. Instead of adding and deleting links arbitrarily, it adds links only across saturated

cuts and deletes links only from the sub-network that are separated by saturated cuts.

First, it sorts all the links by percent utilization (i.e., traffic carrried/capacity). Starting with

8

the most utilized links, it removes links until the network has been separated into two

parts. Those links which are thus removed form a cut. In order to minimize this cut,

each link is in turn tentatively put back into the network. If putting a link back does not

reconnect the network, it is not part of the minimum cut. The nodes adjacent to the

minimum cut are called primary nodes. The nodes adjacent to a primary node are called

secondary nodes. The remaining nodes, which are called tertiary nodes, can be divided

into the left tertiary and the right tertiary nodes, depending on which of the two

components they are in. The algorithm provides for both adding and deleting links. One

may start either with a sparse topology and add many links, or a rich one and delete

links, or any other acceptable topology and do both. When adding a link, one end should

be a left tertiary and the other a right tertiary node. The guidelines for making the choice

are choosing the cheapest link (getting the cost down) or the pair of nodes whose best

path is the most saturated (improving the performance). When removing a link, the one

which is the least utilized is chosen, without regard to its position in relation to the cut.

If a topology has a smaller delay time than is required, a link is deleted to reduce the

cost. If it has a higher delay than desired, a new link is added to reduce the delay.

Studies have shown that the cut-saturation method gives better solutions than the branch

exchange method and the algorithm is also computationally more efficient. It is a near-

optimal algorithm. This cut-saturation algorithm is somewhat biased to the ARPANET1

environment. Chou and Sapir [5] presented a generalized cut-saturation algorithm which

improves its flexibility and effectiveness.

The Department of Defense Advanced Research Projects Agency Network

2.2. TOPOLOGY DESIGN OF THE SSIS NETWORK

The SSIS communications network is built around two existing National Aeronautics

and Space Administration (NASA) communications networks: the NASA Communications

(NASCOM) and the Tracking and Data Relay Satellite System (TDRSS). Ground-to-ground

communications use NASCOM, which is centrally controlled by the Goddard Space Flight

Center (GSFC). Ground to low earth orbit communications and tracking services will be

provided by the TDRSS, which is centrally controlled at White Sands by GSFC. This is not

a traditional satellite network with the satellite serving as a big relay in the sky for

ground-to-ground data transfer. It is rather a network which is responsible for data

transfer between space and the Earth. The Space Station communicates with GSFC

primarily through TDRSS. A backup of the Space Station is provided by the Space Station

Operations Support Center (SSOSC), which is conceived of as a duplicate Space Station. It

will not use its full capacity in normal operations. Broadcast TV, facsimile, telephone, and

TWX are delivered between the Space Station and the Earth through the Geosynchronous

Communications Satellite (GCS). Thus, bulk data traffic and interactive voice (video)

traffic are sent through different channels. We also have objects like the Space

Transportation System (STS) orbiter, the Manned Maneuvering Unit (MMU), the

Teleoperator Maneuvering System (TMS), and the Orbital Transfer Vehicle (OTV) moving

around the Space Station and communicating directly with it.

Circa 1990, the Space Station will act like a concentrator with terminals: TMS's and

STS orbiters. It will be connected to GSFC via TDRSS and GCS (primary) or via SSOSC

(backup). The former is part of the existing NASA communications network. So, we are

confronted with a concentrator (SSOSC) location problem and a terminal (TMS, STS

orbiter) layout problem. The SSOSC location can be determined by trivial (one terminal:

Space Station) linear integer programming. Since TMS's and STS orbiters are mobile, the

terminal layout algorithms mentioned in Section 2.2 are not applicable. We have to come

10

up with a new method to tackle this problem. Circa 2010, in addition to TMSs and STS

orbiters, we will have OTVs and MMUs which form the local access network. The scenerio

is almost the same as that circa 1990, except that the number of terminals will increase.

The Space Station, however, cannot be thought of as just a concentrator any more. We

believe it is reasonable to treat the Space Station, the Space Platform, the SSOSC, the

Telecommunications and Data Acquisition System (TDAS), etc. as backbone nodes of a

distributed network. To meet the reliability and the autonomy requirements, it has to be

a distributed network. Besides, future expansions (e.g. more Space Stations, integration

with other networks) will certainly make SSIS a distributed network. In designing this

backbone network topology, we are also constrained by the existing NASCOM. And we

have to consider the mobile feature of some of its component nodes. So, we will be

facing the problem of determining the locations of SSOSCs and the problem of

interconnecting backbone nodes.

It is now obvious that no existing network topology design algorithm is directly

applicable to the SSIS topology design problem. Although the literature abounds in

topology design techniques, most of them are primarily tailored for traditional wireline

networks, i.e., networks where node locations are fixed and messages transmitted along

different channels do not interfere with each other. Furthermore, existing algorithms

invariably try to optimize the cost of the topology subject to simple connectivity

constraints. Other important performance measures of a network, like reliability and

delay, are seldom taken into consideration. The SSIS network topology is also

constrained by technical feasibilities. For example, a space-ground link cannot be simply

added at will. We therefore conclude that existing network topology design techniques

are not directly applicable to the SSIS network topology design problem.

11

3. NETWORK TOPOLOGY DESIGN BY EFFICIENT ENUMERATION

Since existing network topology design algorithms usually only optimize network

costs subject to simple connectivity constraints without considering other important

performance measures of a network such as reliability and delay, the algorithms are not

directly applicable to the SSIS topology design problem. In this section, we propose a

new design technique which considers all such important performance measures

explicitly, and at the same time takes into account the constraints due to various

technical feasibilities of the SSIS.

3.1. A NOVEL APPROACH

We use an efficient algorithm to generate candidate network designs (consisting of

subsets of the set of all network components) in increasing order of their total costs.

Technical constraints are taken care of at this stage by properly forming the starting set

of candidate components (for example, nonfeasible links are simply not included). For

each subset generated, we test to see'i f it forms an acceptable network by checking

whether all other requirements are satisfied. Thus the first feasible subset encountered

gives the cost-optimal topology satisfying all given constraints. This section discusses in

detail an efficient algorithm that can generate subsets of a given set of elements in

increasing order of their total costs. Two modified versions of this algorithm, which are

more efficient in some situations, are given. Various aspects of the overall design

procedure using this new approach are also discussed.

12

3.2. THE ALGORITHM

We describe an efficient algorithm- which can generate subsets of a given finite set

of elements in increasing order of their total costs. Subsets are generated in the correct

order independent of those not yet generated, so that the algorithm can be stopped at

any time to yield an ordered list of the lowest-cost subsets.

We are given a set S = {ev e2, ..., en} of n elements, sorted such that w(6j) >_ w(e)

for all i > j, where w(6j) is the (non-negative) weight of element e-t. We want to generate

subsets SSV SS2, such that SSjCS for all i, and w(SSj) >. w(SSj) for all i > j, where

w(SSj) is the total weight of all elements in subset SSj. The elements in each subset are

also listed in order of increasing weights.

A priority queue is used in our algorithm to store candidate subsets. One practical

implementation of a priority queue is a heap [15]. A heap is a complete binary tree with

the property that the value of each node is no larger than the value of its children nodes

(if they exist). Thus the root of a heap always has the minimum value. In a heap, a node

can be deleted or inserted in O(log k) operations without affecting the ordered structure

of the binary tree, where k is the number of nodes in the tree. In our algorithm, every

node of the heap is a candidate subset, and its value is just the weight of that subset.

We adopt the following notations:

eL(SSj) = last element (the one with largest weight) in subset SS;.

n(6j) = the next element after e; in set S, that is, ej+r

Tree = the heap for storing candidate subsets.

j = the subset at the root of the heap,

j - {e.J = the subset SSj with element ej deleted,

j + {e^} = the subset SSj with element e. added.

13

Algorithm ORDER-II is as follows:

Initialize: i := 1; SS, := {e}}', Tree := <fc;
Repeat

if eL(SSj) T* en then
begin

add SSj - (eJSS;)} + {n(eL(SS;))} to Tree;
add SSj + {nte^SSj))} to Tree;'

end;
SS i+1

delete SSRj from Tree;
i := i + 1;

Until enough subsets have been generated.

THEOREM 2.1: The above algorithm correctly generates subsets in increasing order

of their weights.

PROOF: From the algorithm, the two subsets obtained from SSj have more weight

than SS.. From Tree, only the currently best subsets are picked. Thus subsets are

generated in increasing order of their weights. Since the two subsets obtained from SS.

are distinct and are different from SS., no duplicates are generated. It is also obvious

that the algorithm will generate all possible subsets if allowed to run to completion.

Therefore subsets are generated correctly in increasing order of their weights (Q.E.D.)

To find the computational complexity, we note that obtaining a new subset takes

O(log k) steps for deletion from and insertion into Tree [15], and O(n) steps for listing its

elements, where k is the current number of subsets in Tree and n is the total number of

given elements. Therefore to generate m subsets (each with O(n) elements) takes 0(mn +

m log m) = O(mn) steps. This is a linear algorithm in m and n.

14

3.3. NETWORK DESIGN BY ORDERED ENUMERATION

We now describe how one may use the ORDER algorithm to solve the network

topology design problem.

3.3.1. DESIGN PROCEDURE

There are two main steps in using the above algorithm to design the topology of

the SSIS communication network:

STEP 1. Obtain data (costs, reliabilities, capacities, and others) of all "feasible" links

of the SSIS network. A link between two network nodes is feasible if it already exists or

can be implemented technically. For example, it may be highly impractical to provide a

direct link between the Manned Maneuvering Unit (MMU) and a ground unit. For existing

links, data are readily available; for other links, we have to compute or estimate data.

STEP 2. Use the above algorithm to generate subsets of these feasible links in

increasing order of their total costs. Test each subset generated to see if it forms a

network that satisfies all given constraints (for example, connectivity, reliability, delay, and

others). The first satisfactory subset gives the cost-optimal network topology.

3.3.2. SOME TECHNICAL CONSIDERATIONS

• The SSIS network has only a moderate number of components but quite a handful

of technical feasibility constraints. The result is that the total number of "feasible" links

will not be too big, so that the ordered enumeration technique just described is not

impractical. Actually a large part of the SSIS network (especially the ground network)

already exists, thus further reducing the search space of the topology design problem. It

might also be possible to decompose the network into parts and design each separately.

This design technique gives us the true cost-optimal topology satisfying all constraints,

while many other algorithms are just heuristics.

15

In the overall design procedure, the most important part is the screening of each

subset of feasible links generated by the algorithm. The screening actually consists of

several different tests, like the connectivity test, the reliability test, the delay test, and so

on. The order of these tests is significant because a wise choice may greatly reduce the

amount of work spent in unnecessary testing. In general the easier tests should pre.cede

the harder ones. However we should also consider the screening power of each test,

since we would to like to reject unsatisfactory designs in as few tests as possible.

The connectivity test, which checks whether the whole network is properly

connected, seems to be the best candidate to head the list of all tests. It is a very easy

test and takes linear time in the number of links present [15]. Its screening power is also

good since a subset of feasible links can pass this test only if the subset forms a

connected component. This test can easily be included in the computer program of the

algorithm. On the other hand, the reliability test is a computationally difficult one. The

problem of computing network reliability has recently been shown to be NP-hard, so that

all reliability evaluation algorithms run in exponential time in the worst case [2].

Therefore this test should be placed at the bottom of the list. The delay test is a

relatively simple one (depending on how many delay parameters are of interest), and so

may be placed right after the connectivity test. Other additional tests should be

evaluated in a similar manner and then positioned appropriately in the list of all tests.

We can also skip some of the tests in the first round .of the design, and let the

computer generate several good candidate topologies. Then we can choose the .most

preferable one from these candidates based on any other technical factors we might be

confronted with.

16

3.3.3. MODIFYING THE ALGORITHM FOR BETTER EFFICIENCY

The algorithm given in the last section generates all possible subsets, including

those that contain just one or two elements. It is obvious that subsets that contain too

few links cannot form a connected network. So it would be desirable to modify the

algorithm such that it skips these obviously useless subsets.

We now describe a modified version of Algorithm ORDER-II which generates

subsets that contain a fixed number (k) of elements, still in increasing order of their total

costs. The same notations are used, and a priority queue is still used to store candidate

subsets. Every subset SS, will have its elements listed also in increasing order of

weights, and we let SSjtj] denote the jth element in subset SSj. For a given set S = {ev

e2, ... en} of n elements, we introduce an additional element en+1 in the algorithm just for

convenience, and this fictitious element will not appear in any generated subsets.

Algorithm ORDER-II-FIX is as follows:

Initialize: i := 1; SS1 := {ev e2/ ek}; jumper1 := k; stopper1 := en+1;
Repeat

if n(SSj[jumper]) ^ stopper, then
add SSj - (SSjIjumper.]} + {nfSSjjumper.])} to Tree;
(* This new subset has the same jumper and stopper values as SSj. *)

if (jumper t 1) and nfSSjfjumper.-l]) ^ SSjjumper] then
add SSj - {SSjIjumper-1]} + {n(SSj[jumperj-1])} to Tree;
(* This new subset has jumper := jumper- 1 and stopper := SS^jumper.]. *)

delete SSRj from Tree;
i := i + 1;

Until enough subsets have been generated.

The proof of correctness for the above algorithm is similar to the previous proof,

although the above algorithm looks more complicated. Moreover, the above algorithm

17

has the same computational complexity. That is, it takes 0(mk) steps to generate m

subsets each of which contains k elements.

Algorithm ORDER-II-FIX only generates subsets of a fixed size. However, it is not

difficult to observe that it can be easily merged with the previous algorithm to generate

subsets which contain at least k elements. The idea is that now each k-element subset

will not only give rise to new k-element subsets, but will also grow, in a manner

governed by Algorithm ORDER-II, until it contains n elements. In other words, for every

k-element subset SSj generated, we use Algorithm ORDER-II to generate subsets from

elements n(SS|[k]) through en and append them to SS|. Every candidate subset in Tree

will be in either one of two statuses: fixed or growing. If a candidate subset is in the

fixed status, that means it has k elements, and once it is picked from Tree, it can give

rise to as many as three new candidate subsets. Two of them will still be of size k, while

the third one will be of size k+1. (Of course, if the last element in a candidate subset is

already en, then it will not give rise to any new subsets.) If a candidate subset is in the

growing status, that means it has more than k elements, and once it is picked from Tree,

it can only give rise to two new candidate subsets according to Algorithm ORDER-II. This

combined algorithm still enjoys the same complexity as before.

18

4. RELIABILITY AND DELAY ANALYSIS

An important step of the design technique given in.the last section is the testing of

candidate topologies generated by the enumeration algorithm. It is actually a series of

different tests for the various aspects of network performance. In this section we will

concentrate on two of the most important aspects: network reliability and message delay.

4.1. TWO IMPORTANT TESTS IN THE ALGORITHM

We have pointed out that the connectivity test, which checks whether a network is

properly connected, shall be first applied to each candidate topology. This is because

connectivity is a very basic requirement of every communication network, and the test is

simple and has good screening power. Numerous efficient connectivity-testing

algorithms have been published, and therefore will not be repeated in this section. For a

good reference see [15].

The first part of this section deals with network reliability. In particular we present

a new model to study the reliability of a communication network in which link failures are

statistically dependent. In the second part, we survey existing research results on

network message delays, and discuss those which are applicable (with modifications) to

the SSIS communication network

19

4.2. RELIABILITY OF COMMUNICATION NETWORKS WITH DEPENDENT FAILURES

One important performance measure of a communication network is reliability.

Reliability analysis of networks or other complex systems has been studied for many

years, and numerous algorithms and evaluation techniques have been proposed (see

[16] for a general review). However, almost all of them make the assumption that

component failures are statistically independent. For most real world situations this

assumption of independence does not hold. In this subsection we shall study the

reliability of networks with dependent failures.

4.2.1. BACKGROUND

There have been very few known attempts to study the reliability of communication

networks with interdependent components. One approach is to specify statistical

dependencies between network components by conditional probabilities of failure, so that

the joint probability of failures of two (or more) dependent components can be evaluated

using chain rule expansion. A major problem with this approach is that the number of

parameters to be dealt with is exponential in the number of failure-prone components.

Furthermore, the set of conditional probabilities has to satisfy a consistency requirement

(see [24] for a discussion of these problems).

A q-i|j model was developed in [33] to simplify certain types of failure dependencies

between the communication links of a network. Unfortunately, this model is not

consistent [24].. More recently, a new e-model was developed in [28] to incorporate more

general types of failure dependencies. It still employs conditional probabilities to specify

dependencies, but the authors made use of standard rules of probability and the

consistency constraint to reduce the total number of parameters that have to be initially

specified for the model. However, the minimum number of parameters required is still

exponential in the number of failure-prone communication links.

20

Since using conditional probabilities to specify failure dependencies presents such

inherent problems, a totally different approach was taken in [24] to avoid them. A simple

Colored Network Model (CNM) was used to model a specific kind of failure dependencies

between communication links. The CNM can be easily transformed to a network whose

links are perfectly reliable and whose nodes fail independently, so that its reliability can

be evaluated using numerous existing techniques. The restriction of the model is that

links incident to a communication center have to fail in mutually exclusive groups.

A more recent research result is the development of a new model called the Event

Network Model (ENM) in [25]. It incorporates more general cases of interdependent

component failures of communication networks without using conditional probabilities.

The model is simple and flexible, and network reliability can be computed using a known

and very efficient algorithm with a minor modification.

4.2.2. THE EVENT NETWORK MODEL

One major reason why the links of a communication network do not fail

independently is that there exist events which can cause the simultaneous failures of

several links. For example, in a communication center, several out-going links may share

a significant amount of common equipment, in which case the assumption of independent

failures obviously does not hold. Also, links within the same geographic vicinity are likely

to be affected simultaneously by the same environmental impacts. Furthermore, there

may be some atmospheric and cosmic effects which can disrupt radio communication in

certain frequency bands. The ENM models such situations in the following manner:

Communication centers and links are represented as usual by vertices and edges of a

graph respectively, while failure-causing events are modeled by "event elements" which

are added to the affected edges (links). An event element is said to be in the "down"

mode when the corresponding failure-causing event occurs, and is said to be in the "up"

21

mode otherwise. All failure-causing events are assumed to be independent and occur

with known probabilities.

A simple example is shown in Figure 4-1. The network consists of 4 centers (A, B,

C, and D) connected in a bridge configuration, and there are 9 event elements scattered

on the links. The relationship between event element failures and link failures is not

difficult to visualize. Consider link A-B. It is governed by 3 event elements (1, 3, and 9),

and so the link operates if and only if all these 3 event elements are in the "up" mode. If

an event element is in the "down" mode, then all links affected by that event element will

fail.

The use of ENM in reliability modeling and analysis of networks with dependent

failures has the following advantages:

1. Since event elements of the ENM are statistically independent, the model is
always consistent. The number of parameters to be handled is also greatly
reduced.

2. Event elements and their probabilities of occurrence are physically more
meaningful than conditional probabilities of failure. The ENM gives a better
understanding of component correlations and causes of component failures,
which are of crucial importance to the maintenance and improvement of
network performance.

3. The ENM is a very flexible model. A special case of the model is when every
event element falls on only one link, and this corresponds to the traditional
assumption of independence. As new information is gained or observed, the
model can be updated by simply adding new event elements, with no or
minimum changes to existing parameters. This makes the ENM adaptive to
changes in network operating conditions.

4. Although the ENM is a more general model, its reliability computation is not
more difficult than that of the traditional model which assumes independent
failures. There is a known and very efficient algorithm for computing network
reliability which can be applied to the ENM with a minor modification and no
significant increase in computational complexity (for more details see [25]).

22

Figure 4-1: An Example of the Event Network Model

23

Parameter identification and estimation for this new model are interesting and

practical problems which have to be solved before this model can be put to actual use.

Sources of information and data shall include past history of network failures, and detail

knowledge of the communication equipment used and the environmental conditions under

which the system operates. The latter is perhaps the principal source of information for

the SSIS communication network. The ENM itself is a very simple model, but applying it

to real world situations like the SSIS requires detail and complete knowledge of all

practical factors involved which are beyond the scope of this study. In the SSIS

communication network, the ENM can explicitly model such failures as those caused by

jamming, atmospheric and cosmic conditions on certain frequency bands, and other

similar natural or man-made factors. These usually affect more than one communication

link simultaneously, and are often the major causes of dependent failures.

24

4.3. MESSAGE DELAYS IN COMMUNICATION NETWORKS

Message delay is an important performance measure in a communications network.

Most existing delay analysis makes the 'Independence Assumption" [21]. We do not

believe this assumption is valid in the SSIS network, and we will discuss an approach to

find message delays without using it.

4.3.1. BACKGROUND

Analysis for a single queue has been studied extensively, with the usual assumption

that service times and customer interarrival times are independent. For a network of

queues, since messages preserve their lengths as they traverse the network, the

interarrival and service times at each internal queue are dependent. The distribution of

the delay is thus mathematically intractable. One way of tackling this difficulty is to make

the "Independence Assumption" [21]. Simulation studies have shown that the

independence assumption gives acceptable results only when the number of incident

edges at a vertex is large. In the SSIS network, stations have only small numbers of

incoming channels, and the packet length is fixed and not random. These are the two

reasons why we cannot make the independence assumption in the delay analysis of SSIS

network.

25

4.3.2. ESTIMATION OF MESSAGE DELAYS

In SSIS, the packet (referred to as a frame in SSIS terminology) is of fixed length.

We will assume that the input messages to the network are governed by Poisson

statistics [12]. A number of results concerning message delays are presented by Calo in

14]. These include: ordering relations for the successive waiting time in the channel,

waiting time properties under extreme conditions, and simple bounds for systems with

uniformly bounded service processes. However, these results are not useful to us. Rubin

[30, 31, 32] has derived many useful formulas for this kind of network. They will be our

basic tools in the delay analysis of the SSIS network topology design.

4.3.2.1. Tandem Queues With Single Message Stream

We first consider a path v1-vn+1 as shown in Figure 4-2. The capacity and

transmission time on edge v j-v j+1 are C and T; = a/C. respectively, where a is the packet

length. Suppose packets arrive at v, with rate A and depart at vn+1, and there are no

other packets being transmitted over any segment of the path. The average (steady

state) packet waiting time at v;, WfVj), when p. = \TJ <1, is

1 Pj(max) 1 p. ^max)
= o 1 - J - » Tj(max) - ; - - - - - tj.^max) (1).

2 l-Qjfmax) ' 2 1-pM(max) ' '

where T^max) = max(T1,T2,...,T i) and Pj(max) = Xx^max).

By summing W(v;) over all i's, we can obtain the overall average waiting time for the n-

channel path,

max
. n max

where Tmax = max(TvT2 Tn) and pmax = Ximax.

The overall average delay is equal to
n

T = w + y T.L i

26

The above formulas are useful when the message traffic is sporadiac so that there is only

one message stream passing through the network. Therefore, given any source-

destination pair, we can always obtain the end-to-end delay [26] if we assume there are

no simultaneous message flows.

4.3.2.2. Joint Queues With Simultaneous Message Streams

Next, we consider three basic flow interference configurations (Figure 4-3).

(i) One Internal Stream and One External Stream

Consider a vertex into which single internal and external streams arrive (Figure

4-3a). The external stream is Poisson with intensity X3, while the internal stream is the

departure process from a channel with transmission time xr TI = a/Cr whose input is a

Poisson process with intensity \1 (either an external stream or a Poisson approximation

for an internal stream). These two streams arriving at v are to be transmitted by a

common channel with transmission time T3, T3 = cx/C3. The approximate average waiting

time at v is given by

W(v)=

1 p, 1
2 3 - <i-p33> ;

1_?J3_

(2)

2 1-P3
 3 '~

where p, = X^, P33 = X3T3, and p3 = (X, + X3)T3 < 1.

(ii) Two Internal Streams

We now consider a vertex v with two input streams departing from channel 1 and

channel 2, with transmission times T1 and T2, respectively, and then being transmitted

through a common channel 3 with transmission time T3 (Figure 4-3b). The input streams

27

arrivals
n-l

o ----- -o - » o — *• o — *— departures
V2 V3 Vn-1 Vn

Figure 4-2: Tandem Queue

X1—•—o-

(a)

(b)

(c)

Figure 4-3: Three Flow Interference Configurations

28

to channels 1 and 2 are Poisson processes with intensity X1 and X2, respectively. The

approximate average waiting time at v is

W(v) = W,(v) + W2(v)

where

W1(v)= <

1-?J
2 1-t

W,(v)= 4

1 P23 1 P

2 riS- * ^

(3)

'13

and PT = X^,, p13 = \^3, p2 = X2T2, p23 = X2T3, p3 = (X1-»-X2)T3, p3 < 1.

(iii) Two Internal Streams and One External Stream

The third flow configuration is shown in Figure 4-3c. The approximate average

waiting time at v is given by

W(v) = W,(v) + W2(v) + W3(v)

where

(4)

W,(v) =

1

T, >

29

W,(v) s •<

T 2^

1 °33

W3"" ' I ̂ 3

and p, = X,!,, p13 = X ,T 3 , p2 = X2T2 , p23 = X2T3 , p33 = X3T3, p3 = (X1 + X2+X3)T3 .

Note that if we make the Poisson assumption that the superimposed input stream at

v is Poisson with rate equal to the sum of the rates of the individual input streams, then

we have a M/D/1 queue at v for all three flow interference configurations. The average

waiting time at v is, accordingly,

W(v, - \ ̂ (5)

where T = T3 and p = p3.

It is easy to verify that W'(v) is larger than W(v).

Now, we can apply the above formulas to calculate message delays in a network.

First, consider an arbitrary edge (v,,v2) in a network. We want to find the approximate

packet waiting time at v1 while waiting to be transmitted over (vrv2). The procedure is

as follows:

STEP 1 : Construct a subnetwork SN(vvv2) consisting of edge• (vrv2) and all edges

incident at v, which contribute packet flows on (vrv2).

STEP 2 : For each vertex v in SN(vvv2), excluding v1 and v2, assign an external

Poisson stream whose rate is equal to the rate of flow along (v.v.,) and continuing to v2.

The external flow into v1 is included as well.

30

STEP 3 : Calculate the approximate average delay along (vvv2) by the formulas

given above.

As an illustrative example, consider the network and flows as shown in Figure

4-4a. The reduced subnetworks for all edges which have packet flows are shown in

Figures 4-4b to 4-4e. The approximate waiting time is then readily found by using the

M/D/1 delay formula (Equation 5) in Figures 4-4b and 4-4c, approximate formula (Equation

3) in Figure 4-4d, and the tandem queueing formula (Equation 1) in Figure 4-4e.

After we have found the packet waiting time along edge b;, W(bj), the average delay

(waiting time + service time) caused by edge b; is just

T(b;) = W(bi) f T;

Finally, the end-to-end delay along a path can be found by summing over all delays on

its component edges

T(b.)

31

(a)

»—o X2—>—o-

(b) (c)

V-, V,'3 W4

»——O

V V3
o — »• o — » o

(d) (e)

Figure 4-4: Example for Approximate Average Delay Calculation in a Network

32

5. CONCLUDING REMARKS AND EXAMPLE

In our survey, we found that existing network topology design algorithms are not

directly applicable to the SSIS topology design problem. Most of them do not

accommodate multiple design constraints, and thus some important performance

measures of a communication network, such as reliability and delay, are seldom taken

into consideration. In Section 3, we presented a new approach for network topology

design by an efficient ordered enumeration. The technique gives the true cost-optimal

topology which satisfies all given design constraints and requirements. In Section 4, we

discussed some tools for studying two important aspects of network performance. In

particular, we presented a new Event Network Model for studying the reliability of a

communication network with dependent failures, and discussed some formulas which can

be used to compute or estimate delays in a communication network. These tools can be

incorporated in our design algorithm to obtain the topology that meets our needs.

The design algorithm presented in Section 3 has been implemented in Pascal, and a

complete listing of the computer program can be found in the Appendix. In the program,

the number of stations is fixed by a statement in the constant declaration section.

Changes can be easily made by editing only one line of the program. The number of link

elements is a variable in the program to make it more flexible for the user. A link

element is allowed to connect more than two stations together. (For example, a radio

transmitter may connect multiple nodes.) So this program can be used in more general

design situations than those consisting only of point to point communication links. The

program is written only to generate topologies that are simply connected. Tests on

reliability, delay, and others are omitted in order to limit the size of the program.

To use the program, the user has to first sort his set of "feasible" link elements in

increasing order of their costs. The program will ask for the total number of link

33

elements. Then, in increasing order of element costs, the program will ask for the

following information for each link:

1. cost,

2. connectivity (the number of stations connected by the link element), and

3. the identities of the stations connected by the link element (stations are to be
identified by integers 1, 2, 3, etc.)

We will now give a simple example. In Figure 5-1, the network consists of 5

stations and a total of 8 feasible link elements. All the link elements are shown in the

figure together with their costs. For simplicity, each link element connects only two

stations. After sorting, the link elements should appear in the following order:

LINK * COST CONNECTIVITY STATIONS CONNECTED
1 10 2 1, 2
2 20 2 2, 3
3 30 2 3, ^
4 50 2 1, 3
5 60 2 2, 5
6 80 2 1, 4
7 90 2 3, 5
8 200 2 4, 5

After complete information has been entered, the program will give the first

connected network which consists of link elements 1, 2, 3, and 5 with a total cost of 120.

The next topology will be link elements 1, 2, 3, and 7 with a total cost of 150, and so on.

Unless asked to stop, the program will generate all possible connected networks in

increasing order of their total costs.

So we have presented a new approach for network topology design which can

account for any given amount of design constraints and requirements. The technique

gives the true cost-optimal topology, and is superior to other existing design algorithms

which are usually only heuristics and take very few design factors into consideration.

34

#6 , cost = 80

cost = 10 #8 , cost = 200

Figure 5-1: An Example of Network Design

35

The design algorithm might be time-consuming for a network with a large number of

feasible link elements, but for the SSIS communication network which has only a

moderate number of components due to the many technical feasibility constraints, this

approach is applicable.

ACKNOWLEDGEMENT

The authors would like to thank Drs. Charles Wang and Tsun-Yee Van of the Jet

Propulsion Laboratory, California Institute of Technology, for helpful comments on an

earlier draft of this report.

36

References

1. Bahl, L. R. and Tang, D. T. Optimization of Concentrator Locations in Teleprocessing
Networks. Proc. Symp. on Computer-Communications Networks and Teletraffic, Brooklyn,
New york: Polytechnic Press, April, 1972, pp. 355-362.

2. Ball, M. O. "Complexity of Network Reliability Computations." Networks 10. 2
(Summer 1980), 153-165.

3. Boorstyn, R.R., and Frank, H. "Large-Scale Network Topological Optimization." IEEE
Trans, on Com/nun. COW-25, 1 (January 1977), 29-47.

4. Calo, S.B. "Message Delays in Repeated-Service Tandem Connections." IEEE
Trans, on Commun. COM-29, 5 (May 1981), 670-678.

5. Chou, W. and Sapir, D. L. A Generalized Cut-Saturation Algorithm for Distributed
Computer Communications Network Optimization. Proc. IEEE ICC, New York: IEEE, June,
1982, pp. 4C.2.1-4C.2.6.

6. Cooper, L. "Location-Allocation Problems." Operations Research (1962),
331-343.

7. Efroymson, M. A. and Ray, T. L. "A Branch-Bound Algorithm for Plant Location."
Operations Research (May-June 1968), 361-368.

8. Feldman, E., Lehner, F. A., and Ray, T. L. "Warehouse Location Under Continuous
Economies of Scale." Management Science 12, (May 1966), 670-684.

9. Frank, H., Frisch, I. T., and Chou, W. Topological Considerations in the Design of ARPA
Network. Proc. 1970 Spring Joint Comput. Conf., Montvale, New Jersey: AFIPS Press, May,
1970, pp. 581-587.

10. Frank', H. and Chou, W. Topological Optimization of Computer Networks. Proc. IEEE,
November, 1972, pp. 363-373.

11. Frank, H., Gerla, M., and Chou, W. Issues in the Design of Large Distributed Computer
Communication Networks. Proc. IEEE NTC, New York: IEEE, November, 1973, pp.
37A1-37A8.

12. Fuchs, E. and Jackson, P. "Estimates of Distributions of Random Variables for Certain
Computer Communications Traffic Models." CACM 13, 12 (December 1970), 752-757.

13. Gerla, M. The Design of Store-and-Forward (S/F) Networks for Computer
Communications. Tech. Rept. UCLA-ENG-7319, School of Engineering and Applied
Science, University of California, Los Angeles, California, 1973.

14. Gerla, M., Frank, H., Chou, W., and Eckl, J. A Cut-Saturation Algorithm for Topological
Design of Packet Switched Communications Networks. Proc. IEEE NTC, New York: IEEE,
December, 1974, pp. 1074-1085.

15. Horowitz, E. and Sahni, S.. Fundamentals of Computer Algorithms.
Rockville: Computer Science Press, 1978.

37

16. Hwang, C.L., Tillman, FA., and Lee, M.H. "System-Reliability Evaluation Techniques for
Complex/Large Systems - A Review.' IEEE Trans, on Reliability R-30. 5
(December 1981), 416-423.

17. Space Station Information Systems (SSIS) FY'83 Study Report.
1983. Tech. Rept. JPL D-1045, Jet Propulsion Laboratory, Pasadena, Calif, (internal
document).

18. Kershenbaum, A. and Chou, W. *A Unified Algorithm for Designing Multidrop
Teleprocessing Networks." IEEE Trans, on Commun. COM-22, 11 (November 1974),
1762-1772.

19. Kershenbaum, A. and Boorstyn, R. R. Centralized Teleprocessing Network Design.
Proc. IEEE NTC, New York: IEEE, December, 1975, pp. 27.11-27.14.

20. Khumawala, B. M. "Warehouse Location Problems, Efficient Branch and Bound
Algorithm." Management Science 18. (August 1972), B718-B731.

21. Kleinrock,L. Communication Nets: Stochastic Message Flow and
Delay. New York: McGraw-Hill, 1964.

22. Kruskal, J. B. "On the Shortest Spanning Subtree of a Graph and the Traveling
Salesman Problem." Proc. Amer. Math. Soc. 7, 1 (February 1956), 48-50.

23. Kuehn, A. A. and Hamburger, M. J. "A Heuristic Program for Locating Warehouses."
Management Science 9, (July 1963), 643-666.

24. Lam, Y. F. and Li, V.O.K. On Reliability Calculations of Network with Dependent
Failures. Proc. IEEE GLOBECOM, New York: IEEE, December, 1983, pp. 1499-1503.

25. Lam, Y. F. and Li, V. O. K. Reliability Modeling and Analysis of Communication
Networks with Dependent Failures. Proc. IEEE INFOCOM, New York: IEEE, 1985, pp.
196-199.

26. Li, V.O.K. End-to-End Delay in a Communication Network. Tech. Rept. Report
CSI-83-02-02, University of Southern California, Communication Sciences Institute,
February, 1983.

27. McGregor, P. and Shen, D. "Network Design: An Algorithm for the Access Facility
Location Problem." IEEE Trans, on Com/nun. COM-25, 1 (January 1977), 61-73.

h

28. Pan, S.N. and Spragins, J. Dependent Failure Reliability Models for Tactical
Communications Networks. Proc. IEEE ICC, New York: IEEE, 1983, pp. 765-771.

29. Prim, R. C. "Shortest Connection Networks and Some Generalizations." Bell
Syst. Tech. J. 36, 6 (November 1957), 1389-1401.

30. Rubin, I. "Communication Networks: Message Path Delays." IEEE Trans, on
Information Theory IT-20, 6 (Nov 1974), 738-745.

31. Rubin, I. "Message Path Delays in Packet-Switching Communication Networks."
IEEE Trans, on Comnun. COM-23, 2 (Feb 1975), 186-192.

38

32. Rubin, I. "An Approximate Time-Delay Analysis for Packet-Switching Communication
Networks." IEEE Trans, on Commun. COM-24. 2 (Feb 1976), 210-222.

33. Spragins, J. and Assiri, J. Communication Network Reliability Calculations with
Dependent Failures. Proc. IEEE NTC, New York: IEEE, 1980, pp. 25.2.1-25.2.5.

34. Tanenbaum, A. S.. Computer Networks. New York: Prentice-Hall, 1981.

35. Woo, L S. and Tang, D. T. Optimization of Teleprocessing Networks with
Concentrators. Proc. IEEE NTC, New York: IEEE, November, 1973. pp. 37C1-37C5.

39

6. APPENDIX

(» OPTIMAL NETWORK TOPOLOGY DESIGN (BASIC VERSION) »)
(* December 1984 »)
(* *)
(* This program accepts a set of comaunication link elements (together with *)
(* the stations they connect), and outputs candidate topologies (those that *)
(* connect all the stations) in increasing order of their total costs. *)
(* . »)
(*»***»#»#»»*»*»**»»»*»*»»»«»»*«**«*»»****»*•«*»*»*»**#«»»«»#*»»**«»#»*»*»*»#)

program JPL84 (input, output, fin, fout);

label 99;

const

N = 5; (* This is the total number of stations in the network. *)

type

stations = array[1..N] of integer;

vector = array[O..N] of integer;

station_link = ^station;

station =
record
index : integer;
next : station_link

end;

element_link = ̂ element;

element =
record

index : integer;
weight : real;
connectivity : integer;
stations : station_link;
next : element_link

end;

list_link = ~list_data;

list_data =
record

content_source : list_link;

40

size
weight
connection
neit
end_eleaent

end;

integer;
real;
stations;
llst_link;
element link

next_list_link = ~next_list_data;

ne*t_list_data =
record
size
weight
connection
new_ele>ent
source
content_source

end;

integer;
real;
stations;
element link;
list link;
list~link

node_llnk = ~tree_node;

tree_node =
record
parent
left_child
right_child
left_neighbor
right_neighbor
content

end;

node_link;
node_link;
node'link;
node~link;
node'link;
next list link

var
fin, fout
answer, answer2, answers, connected
size, index, count, count1
v
se, see
element_base, e, ce
list_base, print_base, list_end, list_buffer, pp, pq, op
ne*t_list_buffer, np
node_base, tree_end, parent, node_buffer, p

text;
char;
integer;
vector;
station_link;
element link;
list_link;
next~list_link;
node_link7

procedure IMSTRUCTIOMS;
begin
writelnC ');
writeln('The nuaber of stations has been fixed to be1, N:3, '.');
writelnCThis number is determined by the value N in the const');
writeln('statement at the beginning of this program, and can be');
writelnCchanged by editing that part of the program alone.');
writelnC ');
writeln('User has to enter the total number of link elements,');
writeln('then enter their weights in INCREASING order, together1);
writeln('with the stations that they connect. A link element is1);
writeln('allowed to connect more than two stations.');
writelnC ')

end;

41

(* This procedure accepts Input data fro* the terminal. *)

procedure INPUT_DATA_TERMIMAL;
begin
writelnC ');
writeCHow many link elements do you have ? (mist be greater than 1) ');
readln(size);
writelnC ');
new(element_base) ;
element_base~ . index := 0;
eleaent_base~ . weight := 0;
ce := ele«ent_base;
for index := T to size do
begin
new(e);
e". index := index;
writelnC ');
writeC Enter weight of element I1, index :3, ' ');
readln(e~. weight);
writeCHow many stations are connected together by this element ? ');
r eadln(e~. connectivity);
new(e~. stations);
writeC Enter identity of station * 1 : ');
readln(e~ .stations" . index) ;
e~. stationŝ . next := nil;
see := e~. stations;
for count := 2 to e~. connectivity do
begin
new(se);
writeCEnter identity of station *', count:3, ' : ');
readln(se~. index);
se~.next := nil;
sce~.next := se;
see := se

end;
e~.next := nil;
ce^.next := e;
ce := e

end
end;

procedure INITIALIZE;
begin

new(list_base);
list_base~.content_source
list_base~.size
list_base~.weight
list base".next
list~base~.end_elenent
for count := 1 to N do
listjsasê .connectiontcount]

new(nex t_list_buffer);
next_list_buffer~.size
next_list~buffer~.weight
next_list_buffer^.new_element
next list buffer^.source

= nil;
= 0;
= 0;
= nil;
= element_base;

= 0;

:= 1;
:= elemen^base^.next^. weight;
:= element_base~.next;
:= list_base;

42

next_list_buffer~.content_source := nil;
for count := 1 to I do
next_list_buffer*.connection[count] := 0;

se := next_Iist_buffer~.new_eleBent'v.stations;
for count 7= 1 to next_list buffer~.new_eleaent~.connectivity do
. begin

next_list_buffer~.connectlon[se'Mndex] := 1;
se := se~7next

end;

new(node_base);
node_base~ .parent
node~base~ . lef t_child
node~base~ .r ight_child
node_base ~ . lef t_neighbor
node_base * . r ight_neighbor
node_base~ .content

list_end := list_base;
parent := node~base;
tree_end := node_base

end;

= nil;
= nil;
= nil;
= nil;
= nil;
= next_list_buffer;

(* This procedure adds the least-Height subset in the *)
(* tree to the end of the list of ordered subsets. *)
(* The least-weight subset in the tree is always at *)
(* the root of the tree. *)

procedure ADD_TO_LIST;
begin
new(list_buf f er) ;
list_buffer~.content_source := node base". content". content_source;
list_buffer".size := node~base". content". size;
list_buffer". weight := node_base~. content^. weight;
for count := 1 to M do
list_buf f er * . connectiont count] : = node_base's . content" . connection! count] ;

list_buffer~vnext := nil;
list_buffer~.end_eleBent := node_basc". content". new_elenent;
list_end".next := list_buffer;
list_end := list_buffer

end;

(* This procedure updates the connectivity information *)
(* of a newly formed subset of link elements. *)

procedure CONNECTI¥ITY_UPDATE (cv:vector; Var ccon: stations);
var ci, cj, ch, cs, flag : integer;
begin
flag := 0;
ch := 1;
for ci := 1 to N do
if cconfci] > ch then ch := ccontci];

ch := ch + 1;
for ci := 1 to cv[0] do
begin
if ccon[cv[ci]] = 0 then ccon[cv[ci]] := ch;

43

If ccontcvCci]] > 1 then
begin
cs := ccon[cv[ci]];
for cj := 1 to M do
if ccontcj] = cs then ccon[cj] := ch

end;
If ccon[cv[ci]] = 1 then flag := 1

end;
if flag = 1 then
for ci := 1 to M do
if ccon[ci] = ch then ccon[ci] := 1

end;

(* When the subset which has Just been added to the ordered *)
(* list is not the last child of its parent, this procedure *)
(* makes its parent's next best child the new root of the tree. *)
(«»««»«»««»«»»»• » • • • » • »»<HHHHHHHHHHHMiM »»«<HHHHHHHHHHM<HHHHHHK»«)

procedure ADD_TO_TREE_FROM_OLD_SOURCE;
begin
new (nex t_list_buf f er) ;
nex t_list_buffer". size := node_base~. content". source". size;
nex t_list_buf f er" . weight := node_base~. content". weight -

node_base~ . content" . new_element " . weight +
node_base~ . content" . new~element ". nex t" . we ight ;

next_list_buffer".new_element := node_base". con tent" .new_element".next;
next_list buffer". source := node_base~. content". source;
for count" := 1 to N do
next_list_buffer".connection[count] :=

next_list_buffer". source". connection[count] ;
se := next_list_buffer".new_element". stations;
v[0] := next_list_buffer~.new_ele«ent~. connectivity;
for count := 1 to next_list_buffer".new_elenent". connectivity do
begin

v[count] := se". index;
se := se".next

end;
CONJiECTIVITY_UPDATE(v, next_list_buffer". connection) ;
next_list_buf fer" . content_source : = nodê base" . content" .content_source ;
node_base". con tent := next_list_buffer

end;

(* When the subset which has just been added to the ordered *)
(* list is the last child of its parent, this procedure *)
(* removes that subset from the tree and moves the subset at •}
(* the end of the tree up to become the new root of the tree. *)

procedure RESTORE_ROOT;
begin
if node_base <> tree_end then
begin"
node_base". con tent := tree_end". content;
if tree_end". parent". right_child = nil
then
tree_end". parent". left_child := nil

else
begin

44

tree_en<T.parent".right_child := nil;
parent := tree_end".parent

end; ~
tree_end := tree_end".left_neighbor;
tree_end".right_neighbor := nil

end
end;

(* Since a new root has Just been Bade, this *)
(* procedure reorders the tree from Its root *)
(* to preserve Its ordered structure. *)

procedure REORDER TREE PROM ROOT;
label 99;
begin
if node_base <> tree_end then

begin
p := node_base;
Hhile p".right_child <> nil do
begin
if ((p". content". weight > p".left_child". content". weight) or

(p". content". weight > p".right_child". content". weight))
then
begin

if p".left child". content". weight >
p".right~child". content". weight
then
begin
np := p". content;
p". content := p".right_child". content;
p".right_child". content := np;
p := p".right_child

end
else
begin
np := p". content;
p". content := p".left_child". content;
p".left child". content := np;
p := p"7left_child

end
end

else goto 99
end;

if p".left_chlld = nil
then goto 99
else
begin
if p". content". weight > p".left_child". content". weight
then
begin
np := p". content;
p". content := p".left_child". con tent;
p".left_child". content := np

end
else goto 99

end;
99 : np := nil

end

45

end;

(* The subset which has Just been added to the ordered *)
(* list now becomes a parent. This procedure adds its *)
(• best child to the end of the tree, and reorders the *)
(* tree from its end to preserve its ordered structure.*)

procedure ADO NEW TOJTREE AND_REOROER;~label 999;
begin
new(next_list_buffer);
next_list_buffer".size
nex t_l1s t~buffer".weIght

next_list_buffer",new_element
next list~buffer̂ .source

:= list_end~.size + 1;
:= list~end~.weight +

list~end~.end_elenent".next".weight;
:= list~end~.end~element".next;
:= list end;

next_list_buffer".content_source := list_end;

for count := 1 to N do
next^is^buffer^.connectiontcount] : =

next_list_buffer*.source*.connectiontcount];
se := next_list_buffer*.new_eleaent/N.stations;
v[0] := next_list_buffer".new_element^.connectivity;
for count :=~1 to next_list_buffer^.new_ele«ent^.connectivity do

begin
v[count] := se".index;
se := se'.next

end;
(XMniECTIVITY_UPDATE(v, next_list_buffer".connection);

new(node_buffer);
node_buffer".parent
node_buffer~.left_child
node_buffer".right_child
node_buf f er". lef t_neighbor
node_buf f er". right_neighbor
node buffer".content

= parent;
= nil;
= nil;
= tree_end;
= nil;
= next_list_buffer;

if parent".left_child = nil
then parent".left_chlld := node_buffer
else
begin
parent".right_child := node_buffer;
parent := parent".right_neighbor

end;
tree_end".right_neighbor := node_buffer;
tree_end := node_buffer;

p := tree_end;
while p".parent <> nil do
begin
if p".content".weight < p".parent".content".weight
then
begin
np := p".content;
p".content := p~.parent".content;
p".parent".content := np;
p := p".parent

46

end
else goto 999

end;
999 : np := nil

end;

(* This procedure outputs a feasible *)
(* topology to the terminal. *)

procedure OUTPUT_SIHGLE;
begin
writelnC ');
writelnC SUBSET * ', count1:5);
writelnC WEIGHT = ', list_end~. weight);
writeC ELEMENTS :');
print_base := nil;
pq := list_end;
while pq <> nil do

begin
new(op);
opA.end_element := pq~.end_element;
op^.next := print_base;
print_base := op;
pq := pq^.conten^source

end;
op := print_base;
while op <> nil do

begin
write(op~ .end_ele«ent~ . index :4) ;
op := op". next

end;
writelnC ')

end;

begin (* MAIN PROGRAM »)
writelnC ');
writelnC ');

repeat
writeCDo you need instructions (Y/N) ? ');
readln(answer)

until ((answer = 'Y') or (answer = 'y')) or
((answer = 'N') or (answer = 'n'));

if (answer = 'Y') or (answer = 'y') then
begin
INSTRUCTIONS;
repeat
writeCAre you ready (Y/N) ? ');
readln(answer)

until (answer = 'Y') or (answer = 'y')
end;

writelnC ');
INPUT_DATA_TERMINAL;

INITIALIZE;

47

count 1 := 1;
while (countl < (2»*size)) do
begin
ADD TO LIST;
(»«!••¥ •••••••••••••••••••••••••••«•••••••»••••••••«••)
(* A new subset has just been generated and added to *)
(* the ordered list. The following few lines test *)
(•to see if this subset foras a connected network. *)
(* Additional tests can be inserted at this point. *)

connected := '!•;
for index := 1 to H do
if list_end*. connection! index] <> 1
then connected := 'M';

if connected = 'I' then
begin
OuTPUT_SINGLE;
repeat
write('Do you want to continue (Y/N) ? ');
readln(answer3)

until ((answers = '*') or (answers = 'y')) or
((answers = 'M') or (answers = 'n1));

if (answers = 'N') or (answers = '«') then goto 99
end;

countl := countl + 1;
if node_base~. content *. new element"". next <> nil
then ADD TO TREE FROM_OLD_SOURCE
else RESTORE ROOT;

REORDER_TREE_FBOM_ROOT;
if list_end"7end element7". next <> nil
then ADD_NE¥_TO_TREE_AND_REORDER

end; ~

99:
writelnC ');
writeln('END OF EXECUTION. ') ;
writelnC ')

end.

NASA—JPL—Coml., LA., Calif.

