Compensation of Reflector Surface Distortions Using Conjugate Field Matching

(NASA-TH-87198) COMPENSATION OF REFLECTOR N86-16461 SURFACE DISTORTIONS USING CONJUGATE FIELD HATCHING (NASA) 9 p HC A02/HF A01 CSCL 20N

Unclas G3/32 05289

Roberto J. Acosta Lewis Research Center Cleveland, Ohio

Prepared for the International IEEE A/P-S Symposium and National Radio Science Meeting Philadelphia, Pennsylvania, June 9-13, 1986

COMPENSATION OF REFLECTOR SURFACE DISTORTIONS USING

CONJUGATE FIELD MATCHING

Roberto J. Acosta National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

ABSTRACT

The feasibility of compensating for reflector surface distortions has been investigated. The performance characteristics (gain, sidelobe level, null location, beamwidth, etc.) of space communication reflector antenna systems degrade as the reflector surface distorts due to thermal effects from a varying solar flux. The technique reported here will maintain the design radiation performance independently of thermal effects on the reflector surface. With the advent of monolithic microwave integrated circuits (MMIC), a greater flexibility in array-fed reflector system design can be achieved. MMIC arrays provide independent control of amplitude and phase for each of many radiating elements of the feed array. The conjugate field matching technique provides a basis for obtaining the required element excitations under surface distortion for maintaining the design radiation performance. It is assumed that the surface characteristics (x, y, z, first derivatives, and second derivatives) under distortion are known.

INTRODUCTION

Array-fed reflector configurations are very desirable for space communication multibeam antenna systems. Much effort has been devoted to develop reflector materials and structural techniques for compensating thermal distortions. The compensating technique described here presents an alternate method for maintaining reflector antenna performance independently of thermal distortions. It requires independent amplitude and phase control of the feed array excitation. Such a requirement can be met with MMIC arrays. By using NASTRAN and SINDA (Ref. 1) computer programs to simulate thermal distortions, a basis for realistic antenna performance degradation can be established. For example, gain loss of 2 to 5 dB, sidelobe level increase of 10 dB, pointing loss of 1° to 2°, etc., has been predicted by a NASTRAN-SINDA simulation of thermal distortions on offset reflector antennas. Sinusoidal systematic distortions were used for demonstrating the compensation technique.

ANALYSIS AND RESULTS

Given the desired antenna performance and reflector surface characteristics (x, y, z, first derivatives, second derivatives), the probleminvolving surface distortions can be described as follows: To determinethe minimum number of array elements, their best location and theirexcitations that will give rise to the desired antenna performance. Thereflector surface can be distorted (compensation problem) or it can be undistorted (design problem). Figure 1 presents a graphical description of the compensation problem. It is assumed that a design has already been established (array feed characteristics are known). Figure 2 shows the general approach taken for solving the compensation problem. The antenna performance characteristics (gain, sidelobe level, beamwidth, null location, etc.) can be described by the far-zone electric field or by the aperature field distribution. Notice that the far-zone electric field and the aperature field distribution are a Fourier transform pair (Ref. 2).

.

The focal plane distribution contains the necessary information for obtaining the required number of elements, their location, and their proper complex excitations. Two methods can be used to obtain the focal plane distribution: (1) geometrical theory of diffraction (GTD) (Ref. 3), and (2) physical optics (PO) (Ref. 4). Conceptually the desired aperture field distribution (antenna performance) can be thought of as weighted (tapered) plane wave incident on the reflector surface from a prescribed observation direction. Using this concept, the fields in the focal plane can be calculated from the reflected and diffracted fields on the reflector surface. By taking the complex conjugate of the fields in the focal plane, the complex element excitation are obtained (conjugate field matching (Refs. 5 to 9)).

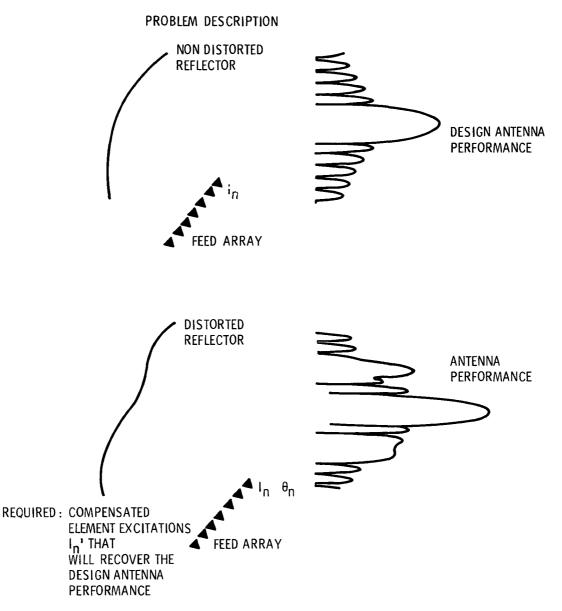
The configuration used for demonstrating the compensation technique is presented in Fig. 3. A sinusoidal type distortion was used to simulate the distorted surface. Table I presented the design and distortion parameters used as inputs by the computer program. Figure 4(a) shows the desired design (undistorted) antenna performance. With the distorted parameters in Table I, the resultant antenna performance degrades to that shown in Fig. 4(b). If this were a real case, the performance shown (Fig. 4(b)) would not be acceptable when compared to the undistorted case (Fig. 4(a)). Using GTD and the compensation approach summarized in Fig. 2, the obtained compensated antenna performance is shown in Fig. 4(c). The compensated antenna performance is not exactly like the undistorted (Fig. 4(a)) but all performance characteristics were within an acceptable range. More radiating elements are needed in order to improve further the compensated antenna performance.

REFERENCES

- R.E. Steinbach and S.R. Winegar, "Interdisciplinary Design Analysis of a Precision Spacecraft Antenna," in <u>Structures, Structural</u> <u>Dynamics and Materials Conference, 26th</u>, Part 1, AIAA, 1985, pp. 704-712.
- 2. R.E. Collin and F.J. Zucker, <u>Antenna Theory</u>. New York: McGraw-Hill, 1969, Chap. 3, pp. 66-68.
- 3. P.T.C. Lam, S.W. Lee, and R. Acosta, "Secondary Pattern Computation of an Arbitrarily Shaped Main Reflector," NASA TM-87162, 1985.

- 4. Y. Rahmat-Samii and V. Galindo-Israel, "Shaped Reflector Antenna Analysis Using the Jacobi-Bessel Series," <u>IEEE Trans. Antennas and</u> <u>Propag.</u>, Vol. AP-28, pp. 425-435, 1980.
- H.C. Minnett and B. Mac A. Thomas, "Fields in the Image Space of Symmetrical Focusing Reflectors," <u>Proc. IEE</u>, Vol. 115, pp. 1419-1430, 1968.
- 6. C.C. Hung and R. Mittra, "Secondary Pattern and Focal Region Distribution of Reflector Antennas Under Wide-Angle Scanning," <u>IEEE</u> <u>Trans. Antennas and Propag.</u>, Vol. AP-31, pp. 756-763, 1983.
- W.H. Watson, "The Field Distribution in the Focal Plane of a Paraboloidal Reflector," <u>IEEE Trans. Antennas and Propag.</u>, Vol. AP-12, pp. 561-569, 1964.
- 8. A.V. Mrstik and P.G. Smith, "Scanning Capabilities of Large Parabolic Cylinder Reflector Antennas with Phased-Array Feeds," <u>IEEE Trans. and</u> <u>Antennas Propag.</u>, Vol. AP-29, pp. 455-462, 1981.
- 9. P.T. Lam, S.W. Lee, D.C.D. Chang, and K.C. Lang, "Directivity Optimization of a Reflector Antenna with Cluster Feeds: A Closed-Form Solution," <u>IEEE Trans. on Antennas and Propagation</u>, Vol. AP-33, Nov. 1985.

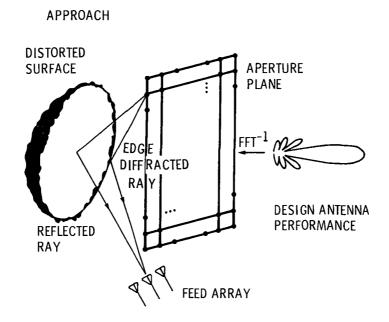
3


TABLE I. - DESIGN AND DIS-TORTION PARAMETERS

ŕ .

,

۰, . . .


· 2-D
60
λ/2
16
1.5
λ/20

,

.

Figure 1. - The distorted antenna problem.

0

١

Figure 2. - General approach for solving the compensation problem.

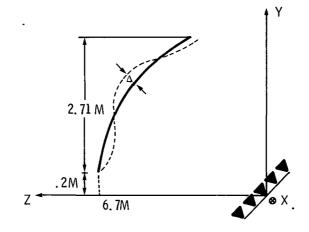
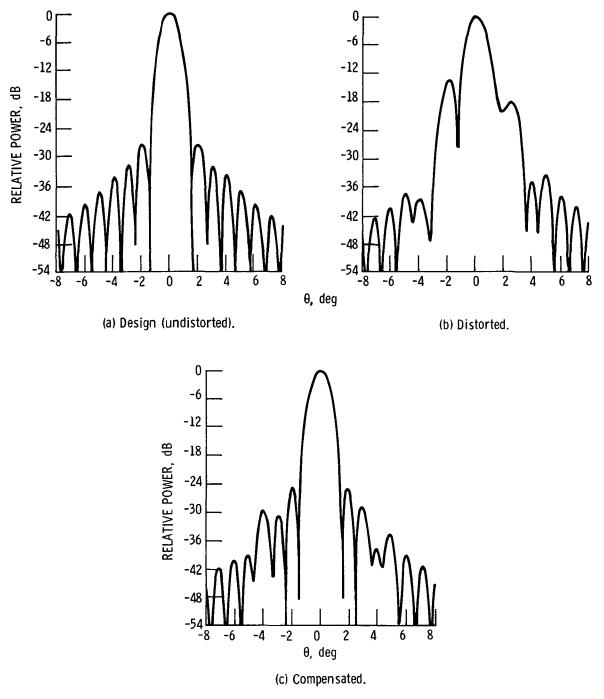



Figure 3. - Reflector configuration.

1

٩

Figure 4. - Antenna performance.

•

1. Report No.	2. Government Accessic	on No. 3	. Recipient's Catalog No	
NASA TM-87198				
4 Title and Subtitle			. Report Date	
Compensation of Reflector Surface Distortions Using Conjugate Field Matching			. Performing Organizatio	n Code
7. Author(s)	- ,		Performing Organizatio	n Beport No
Roberto J. Acosta			E-2852	
		10). Work Unit No.	,
9 Performing Organization Name and Address National Aeronautics and Space Administration			. Contract or Grant No.	
Lewis Research Center Cleveland, Ohio 44135			Ture of Deport and Par	ind Covered
-			Type of Report and Per	
12. Sponsoring Agency Name and Address			Technical Mem	orangum
National Aeronautics and Space Administration Washington, D.C. 20546			. Sponsoring Agency Co	de
15. Supplementary Notes				
Prepared for the International IEEE A/P-S Symposium and National Radio Science Meeting, Philadelphia, Pennsylvania, June 9-13, 1986.				
16. Abstract The feasibility of compens tigated. The performance				
beamwidth, etc.) of space communication reflector antenna systems degrade as the reflector surface distorts due to thermal effects from a varying solar flux. The technique reported here will maintain the design radiation performance inde- pendently of thermal effects on the reflector surface. With the advent of mono- lithic microwave integrated circuits (MMIC), a greater flexibility in array-fed reflector system design can be achieved. MMIC arrays provides independent con- trol of amplitude and phase for each of many radiating elements of the feed array. The conjugate field matching technique provide a basis for obtaining the required element excitations under surface distortion for maintaining the design radiation performance. It is assumed that the surface characteristics (x, y, z, first derivatives, and second derivatives) under distortion are known.				
17. Koy Marda (Suggasted by Authorici)		110 Distribution Statement		
17.Key Words (Suggested by Author(s)) Antenna radiation pattern; analysis; Numerical analys Fourier transform		18. Distribution Statement Unclassified STAR Category	- unlimited	
19. Security Classif. (of this report) Unclassified	20 Security Classif. (of this Unclass		21. No of pages	22. Price*

x

~

È

,

x

•

National Aeronautics and Space Administration

Lewis Research Center Cieveland Ohio 44135

Official Business Penalty for Private Use \$300 SECOND CLASS MAIL

ADDRESS CORRECTION REQUESTED

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

.

.

٠

