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PREFACE

Our interest in scattering by nonspherical particles was originally motivated by a desire to understand
the impact of atmospheric aerosols on the Earth’s climate. Since such aerosols are routinely assumed
to be spheres, yet few except haze drops are spheres, we were naturally interested in what the dif-
ferences in scattering and absorption might be.

After a time, however, we realized that our study had a considerably wider applicability. Scattering by
nonspherical particles is important in practically every field of science and engineering. Biclogists
study nonspherical cellular structures by light scattering. Medical laboratories analyze blood cor-
puscles. Astronomers study interstellar grains. Engineers analyze coal slurries. And on and on. What
all these enterprises share, is a deep lack of knowledge of nonspherical scattering. Hence we began to
see our calculations as of much wider significance. Specialists in all these fields may find them of
value.
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I. INTRODUCTION

When we first embarked on a course of research into the scattering properties of nonspherical par-
ticles, our goal was simple: to search for the main differences between spherical and nonsperical parti-
cle scattering by examining a number of special cases. By taking such an inductive approach, we essen-
tially cast ourselves in the role of experimenters, with the important distinction that we solved Max-
well’s Equations on the computer rather than letting Nature do so in the laboratory. This allowed us
to obtain data which is very difficult to measure, and hence rarely measured — for example, the ab-
sorption cross-section and the backscattering near 180 degrees.

Our initial motivation was not to examine the scattering features of individual particles, but rather to
unearth scattering features common to @// nonspherical particles. In order to do so, we selected what
we considered to be a rather general class of particles which could be continuously deformed from a
Sphere. These ““Chebyshev particles’” are obtained by rotating the curve

I, = 1y [1 + e T(cos Bj)]
=1y [1 + € cos(n 6] ey

about the vertical axis 8, = 0 (T, is then the n-th Chebyshev polynomial and e is the deformation
parameter). Various examples of these particles are shown in Figure 1.

Following an extensive literature survey of scattering methods, summarized in Appendix A, we
selected the “Extended Boundary Condition Method” (EBCM) invented by Waterman (1965, 1971)
and further developed by Barber and Yeh (1975). Prof. Barber of the University of Utah was kind
enough to supply us with a copy of his EBCM computer code. After considerable modification to im-
prove its efficiency and speed, and to automate the convergence testing, we ran a large number of
cases: 23 different particles in all, with deformation parameters ¢ = —0.20 to 0.20 (in steps of 0.05)
and ‘equal-volume-sphere’ size parameters x = 1 to 25 (in steps of 1). '

Our initial paper (Mugnai and Wiscombe, 1980) examined only a tiny subset of all this data — just the
extinction and absorption cross-sections and the phase function at 180 degrees for size parameters x
< 10. We reserved the study of phase function and degree of polarization to a future paper. As we
planned this second paper, however, it became clear that we would still be able to show only the
smallest fraction of our data, namely that part which was most indicative of general trends. This, of
course, was in line with our original goal.

But the question naturally arose, should we throw out the remainder of our data? Here the analogy
between our study and an experimental investigation pressed itself upon us. A good experimenter will
publish some of his basic data as well as his interpretation of it. The reason is, that others may be able
to use the data, or draw conclusions from it, in ways not envisioned by the experimenter,
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The next question was, would our data really be useful to other investigators? Naturally, we could not
give a definitive answer, since it is the element of unpredictability in research which makes it essential
1o publish experimental data. But in several ways it did seem that we had generated a unique resource
— “unique’’, because:

o almost all other published scattering results are for spheroids and infinite cylinders; in par-
ticular, there are no published results for concave particles like ours

¢ the available laboratory data are almost exclusively for scattered intensity in the angular
range 10-170 degrees; cross sections and phase functions are rarely measured directly

®  most studies are restricted to size parameters below 10

e electrical engineers, though a prolific source of nonspherical scattering calculations
(Bowman, et. al., 1969), restrict themselves almost exclusively to metallic (perfectly conduct-
ing) particles

o pur ‘experiments’ consumed perhaps 15 hours of CRAY computer time, an investment that
few other investigators would be able to make.

We also envisioned at least three good uses to which our data might be put:

(i) testing the “Rayleigh hypothesis” (that outgoing wave expansions are satisfactory even for
concave particles; see Millar, 1969, '1973) by comparing our results against microwave—
analogue measurements (Zerull, 1976; Zerull, et. al., 1977; Schuerman, et. al., 1981);

(it) testing semi-empirical theories claiming to give a general account of nonspherical scattering
(e.g., Pollack and Cuzzi, 1980); and suggesting new theories of this sort;

(iii) testing the assumptions used in lidar research concerning the extinction-to-backscatter ratio
of asrosol particles (see Collis and Russell, 1976).

As a result of the above considerations, we decided to publish the present compendium. A con-
siderable reduction in the volume of data had still to be accomplished, but nothing of importance has
been omitied.

The remaining sections discuss the EBCM itself (emphasizing the improvements we made in it, and
our numerical experience with it); and the criteria we used in selecting which data to present. Natural-
ly, these selection criteria embodied some preliminary data interpretation, but no further analysis of
the resulis is undertaken here; that is reserved for a forthcoming journal article.

Appendix A, which is condensed from an intended review article, summarizes the entire field of
nonspherical scattering. The book edited by Schuerman (1980) and our first paper (Mugnai and
Wiscombe, 1980) can also be recommended as surveys of the state-of-the-art.



II. PARTICLE SHAPE

It seems to us that, along with ellipsoids and cylinders, Chebyshev particles constitute the most in-
teresting class of fundamental nonspherical shapes whose scattering properties deserve attention.
Among all simple analytical forms which we considered, they seemed the most attractive for several
reasons:

® they differ distinctly from other shapes for which extensive calculations have been made
(spheroid and cylinder)

e by increasing the magnitude of ¢, a continuous deformation away from a sphere can be
achieved — a property Chebyshev particles shared with spheroids, but not, for example, with
cylinders and cubes

o while starting as convex, they quickly develop concavity as the magnitude of ¢ increases

e they exhibit surface roughness in its simplest possible manifestation, namely “‘waves’ of
uniform amplitude running completely around the particle; the effect of surface roughness
can be studied in a systematic way, by varying ¢ and the waviness parameter ‘n’

e the surface of the particle is smooth in the mathematical sense — all its derivatives exist and
are bounded; hence highly-efficient Gauss guadrature rules can be employed at key points in

the EBCM calculation

® the particles are rotationally symmetric, the only practical case for the EBCM (see Barber,
1973, op. 43-50; also Mugnai and Wiscombe, 1980)

© The Chebyshev polynomials form a complete set, so that any rotationally-symmetric shape
can be represented as a sum of elementary shapes of the form of Eq. ().

Although we were unaware of their work when we selected Chebyshev particles, Pruppacher and Pit-
ter (1971) assumed the shape of deformed raindrops to be a sum of elementary Chebyshev particles.
This is a natural choice, being none other than a Fourier cosine series.

The 23 Chebyshev particles which were used in this investigation are:

fore = +0.08: T3, T4, T6’ Ts, TZO

fOT € = iO.lOI Tz, T3, T4, T6’ Tg

fore = £0.15: T,, T,
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fore = £0.20: T,

T, particles are the same whatever the sign of ¢, hence there are only 23 different particles in this seem-
ing list of 26. A 24th ‘particle’, which we call MIXTURE, is a blend of these 23 in equal proportions.
Figure 1 presents 3-D pictures of all these particles except the ones with e = + 0.05 (which do not look
much different from a sphere).

We shall refer to these particles with the following notations, the first of which was used in Mugnai
and Wiscombe (1980):

T,*, T, Chebyshev particle in fixed orientation with waviness parameter ‘n’ and
positive (+) or negative (-) value of deformation parameter ¢

T, (+¢), T, (-e): Chebyshev particle in fixed orientation with waviness parameter ‘n’ and
deformation parameter e = + € 0r —¢€

For Chebyshev particles in random orientation, we use a similar notation, but now between angle
brackets, e.g. <T, (+€)>.

T,(+0.10) particles are convex and quasi-spheroidal (prolate for +, oblate for —). T,(+0.20) par-
ticles, however, have almost perfectly flat sides (+) or perfectly flat tops and bases (—), more
resembling cylinders or disks (with rounded edges) than spheroids. For even larger deformations, the
T, particles become concave, with T,* tending toward dumbbells and T,~ toward toroids.

T, particles are pear shaped, T;* and T;~ are actually the same particles; this is true for all T par-
ticles with odd ‘n’ (but not with even ‘n’). They are the only case we study that is not mirror-symmetric
in the plane perpendicular to the rotation axis (there are substantial computational savings in the
EBCM, and different branches in the code, for particles with such a plane of symmetry). To our
knowledge, ours are the first published EBCM results for particles lacking a plane of symmetry since
Waterman {1971) studied a cone-sphere combination.

T, particles have two shallow valleys girdling them at mid-latitudes; T, particles, one girdling valley
at the equator, plus two dimples at the top and base. Ty and Ty particles are similar, but with more
valleys; the only new features are pimples (instead of dimples) at the top and base for the ‘-’ cases.
All these particles have either bulges at the waist, or pinched waists.

In spite of their notational similarity, T, (+€) and T,(—e) particles look quite different to the eye.
They bear a subtle ‘conjugacy’ to each other, however; for if we imagine the sphere r, = r, as a mir-
ror, the two particles are mirror reflections of each other. It is therefore of some interest for the reader
to comnpare scattering quantities for these particle pairs. For that reason, their plots are made nearest
neighbors in the various plot groupings to follow.
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The particle refractive index was fixed at i = 1.5 — 0.02 i, a value typical of some maritime aerosols
in the visible region (Gerber, 1979). In Mugnai and Wiscombe (1980), we explored imaginary indices
of 0, 0.05 and 1.0, but for the present study, we felt it was more important to explore as large a range
of particle shapes and sizes as possible. We avoided a zero imaginary index because, in that case, the
Mie results are full of the worst spikes and “‘ripple”’ (see Sec. VIII). This jagged behavior of the Mie
quantities is reflected, in somewhat muted form, in the nonspherical quantities, making it more dif-
ficult to obtain convergence in the EBCM, with less accurate results. On the other hand, for very large
imaginary indices, the spherical-nonspherical differences become very small and therefore less in-
teresting, even though EBCM convergence is excellent.

All our EBCM results for Chebyshev particles are compared to results for an equal-volume sphere.
Let V_ () be the volume of a Chebyshev particle as given by Mugnai and Wiscombe (1980) (note that
their expression for particle surface area is incorrect; the correct formula is given by Chylek, et. al.,
1982). Then the radius of the equal-volume sphere, r.,, is defined by

V(e =4nr,/3 (2)

and the equal-volume-sphere size parameter, X, is given by

X = 27w I,/\ ©)

where A = wavelength. The units of r,, and ) are neither needed nor specified in this study; only the
non-dimensional parameter x is used to characterize the size of the scatterer.

In our calculations, we always chose a value of x a priori, then adjusted the ry of each Chebyshev par-
ticle in order to yield that value of x (actually, it is ry/A that is adjusted). Thus, for each fixed %, the
‘basal radii’ r, of the various Chebyshev particles differ slightly. In particular, r, will be different for
T,* and T, ~ particles having the same size parameter x. Thus, this pair of particles will not be exactly
‘conjugate’ in the sense discussed above.
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Figure 1. Three-dimensional drawings of 18 of the Chebyshev particles used in this
scattering study. ‘
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Il. EBCM — THEORETICAL CONSIDERATIONS

We do not wish to review the EBCM in detail. For that, the reader is referred to the original references
(Waterman, 1965, 1971; Barber, 1973; Barber and Yeh, 1975). But we do wish to clarify those con-
cepts and formulas which are either relevant to the numerical computations, or inadequately discussed
in the journal literature.

Reference frames

The problem is to find the scattered electromagnetic field produced by a plane wave incident upon 2
particle of arbitrary shape and size, in arbitrary orientation. The geometry of this scattering problem is
shown in Figure 2.

Let us assume that a plane wave is always incident along the z-axis, while the orientation of the scat-
terer can vary. Let us take the x—z plane to be the ‘scattering plane’, containing the incident and scat-
tering directions (z and s respectively) with an angle © between them. In this way we define the
“laboratory frame’’ (x-y-z), within the origin 0 inside the particle (Fig. 2a).

Let us further define an (arbitrary) reference axis z’ through the scatterer. (For axisymmetric particles
such as ours, the problem simplifies immensely if the reference axis and the rotation axis are coingi-
dent.) Then the orientation of the particle in the laboratory frame is given by the zenith angle
ep and the azimuth angle ¢, of 2’ (see Fig. 2a again).

The ““body frame” (xX’-y’-z’) is assumed rigidly fixed to the scatterer, with the same origin as the
laboratory frame. It can be obtained by two successive rotations of the laboratory frame: first, as
shown in Fig. 2b, a (v — ?,) rotation around the z-axis in the v to x sense, to obtain a new frame
(x’"—vy’ —2z); second, as shown in Fig. 2¢, a ep rotation around the v’-axis in the X’ to z sense.
Therefore, as can be seen in Fig. 2¢, ¥’ lies on the x-y plane, while x”’, x’, z and z’ are coplanar.

In the body frame, the direction of scattering s is characterized by zenith and azimuth angles 6, and ¢,
respectively (see Fig. 2d).

Expansion of the electromagnetic field

In the EBCM, both the incident and scattered electric fields Ei and Es are expanded in vector spherical
harmonics:

E (r) = ;}; Daniy M. (kr) + bi N! (kr)] (4a)

11
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Figure 2. Successive rotations transforming the body frame into the laboratory frame. The
various angles are defined in the text.
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L2

E@ =) D, [asy M3, (kr) + bs N3 (kr)] (4b)
v=1

where k = 2 x/\; r is the radius vector; v is a combined index incorporating the usual spherical har-
monics indices o,m,n (Morse and Feshbach, 1953, p. 1865), where ¢ is either ‘e’ (even) or ‘o’ (odd); D,
is a normalization constant

D = (2n+1) (n-m)!

P = MA@ D) (rm)! ©)

(e = 1, ¢, = 2 otherwise); a,! and b,! are the known expansion coefficients of the incident field; a
and b,* are the unknown coefficients of the scattered field (to be determined by the EBCM); and M, N
are the vector spherical harmonics

_ cos(me) m
M, () = Vx [r {Sm (m¢)} P,m (cos ) z, (kr)] (6a)
N, () =1V xM, (6b)

(Morse and Feshbach, 1953, p. 1865). Here r, ©, and ¢ are the usual spherical coordinates of the field
point r; cos(m ¢) is used when the index o is ‘¢’ (even), sin(m ¢) when it is ‘0’ (odd); P,™ (cos ©) is the
associated Legendre function; and z, (kr) is a spherical Bessel function.

M! and N! must be finite at the origin r = 0, and therefore
z, (kr) = j, (kr) (7a)

where j,, is the spherical Bessel function of the first kind. M? and N3 must represent outgoing waves at
infinity, and therefore

z, (kr) = h, @ (kr) = j, (kr) + iy, (kr) (7h)

where h (D is the spherical Hankel function of the first kind, and y, is the spherical Neumann
function.

We assume that M3 and N? may be used to represent the scattered field even for concave particles, for
which the scattered wave is not entirely an outgoing wave near the particle; by so doing, we apply the

““Rayleigh hypothesis”” (Millar, 1969, 1973), which had its origin in the theory of rough reflecting sur-
faces. '
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Since the incident field is assumed to be a plane wave, we have

E = Foelkz @®
EO is a unit vector along the direction of polarization (i.e., we normalize the incident field to unity).
Theoretical solution

A thorough formulation of the EBCM for dielectric scatterers can be found in Barber and Yeh (1975).
Basically, their method of solution makes use of Schelkunoff’s (1943} equivalence theorem, which
says that the field scattered by a particle can be exactly reproduced by ‘equivalent’ (albeit fictitious)
eleciric and magnetic currents on its surface. Then, applying the usual electromagnetic boundary con-
ditions (continuity of the tangential components of the fields), and truncating the expansions (4) after
N terms. one obtains a system of linear equations relating the scattered and incident field coefficients:

-0

This is a 2N x 2N system. The expansion coefficients of the scattered field are obtained by solving it.

In Eq. (9), the so-called “‘transition matrix’’ is given by

K +mJ L+ ml K+mJ L+mlj-!
T = (10)
I+ mL J + @K’ I+mL J+mK

where i is the refractive index of the particle. I, J, K, Land I, J’, K’, L’ are two-dimensional in-
tegrals over the particle’s surface, which define the particle from an electromagnetic point of view. For
example, the surface integrals I are given by

2
1=K M (o) x M ikry o an

Here, r, is the radius vector from the origin to the surface element dS; and the combined index »’ in-
corporates ¢’ ,m’,n’,

The surface integrals J, K, and L have a form similar to (11), but with different vector cross-products:
M3 x NI, N3 x M!, and N3 x NI, respectively. The surface integrals I’, J’, K’, and L’ have the same
form as I, J, K, and L, respectively, except that all the vector spherical harmonics are of the first kind.

It is advantageous to calculate the surface integrals in the body frame because, in that frame, they are
independent of the direction of the incident field. Thus, when we solve the system (9) in the body
frame, we avoid recalculation of the transition matrix T when the orientation of the particle is chang-
ed. Moreover, in the next sub-section, we will see that for axisymmetric particles (like ours) the com-
putation of surface integrals in the body frame can be dramatically simplified.
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Surface integrals in the body frame

As an example of the formulas for the surface integrals in the body frame, let us consider:

27 1
Iemnom’n’ = ';1,-’5 ° dd)s s Illn(l) (kr s) J n’ (fﬁkr s) (krs)2 @m

X [0 A €05 89 sin(mg sin (m's,)

+ M’ Agppmy (C0s O cos(m ¢) cos (m’¢s)]

d(cos ©y)
where
_nm+1)s5. n-m+lasm )
A mp (COs ©) = a1 P® (cos ©) [———n ) P, (cos©) (13)
JDAM B oo e)]
n n—1
and
~ P,™ (cos ©)
P ™ (cos ) =s—————— (14)

sin ©

Here, P_™ is the associated Legendre polynomial. The other surface integrals have similar expressions,
which can be easily obtained from Eq. (11) and the comments following it.

For axisymmetric particles, it is possible to perform the integral over azimuth ¢, analytically, since r,,
the radius of the particle surface, is a function of cos O only (e.q., Eq. 1 for Chebyshev particles). Asa
consequence, many of the surface integrals vanish, depending on the relative parity of the indices ¢
and ¢’, and on the values of the azimuthal indices m and m’. For example, for the surface integrals I,
we have (Barber, 1973, pp. 43-45):

I

emnem’n® = L »=0 (15a)

omnom’n
for all m and m’; and

I I

omnem’n’

=0 (15b)

emnom’n’ —

for m’ # m.
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Therefore, only the surface integrals I, .- and I . are non-vanishing. And because of the fur-
ther simphification that

Lomnemn® = }iemmmﬂ’ (16a)
we nesd only calculate
Eemnomn’ = m § E‘q(nﬂﬁﬁ Jw “Lmkﬂs} U( ﬁ Uﬁb)

X ng\mm (cos ©,) + A, (co8 @S@ d(cos O

Finally, for axisymimetric particles with a plane of symmetry perpendicular to the axis of rotation (like
EE 1. 1 for even ‘n’), by virtue of the following property of associated Legendre functions:
PP (~cos @) = (-1)p-m P = (cos O) (an
we have
Esmn@mn’ =0 MB}

nd n’ are both even, or both odd; otherwise, Loy 1S still given by (16b), but the integral can be
> just over the half-range (0,1) and doubled, if desired.

metric particles, analogous simplifications exist for the other surface integrals as well
73, po. 45-46).

, 1973

luation of the scattered field in the body frame

evaluate the scattered field in the body frame, one must first express the expansion coeffi-
5 of ﬁ.m, incident field in tha 2t frame

‘he incident field coefficients are given by (Barber, 1973, pp. 137-139):

a’ifmrﬁ = i n {“ﬂ ﬂhﬂ EPe Ps@ﬂmm {@ gb§ (19a)
bl =-irrl/nm+DE B _ (9, ¢) (19b)

wi

Here, 9 is the unit vector in the direction of polarization of the incident electric field (8); 8, and ¢, are
the zenith and azimuth angles of the direction of propagation of the incident field (in an arbitrary
coordinate system); and the formulas for the vector functions € and B are given by Morse and
Feshbach (1953, p. 1898),
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Let us work in the body frame (8; = ©,, ¢; = 0), and define the auxiliary function

£ =0xP®®-0+m)Pm_ (x) (202)

Then the incident field coefficients become

&y = " (cOS © ) EO,, (20b)
bl = U1 E (cos©) B, (20c)
a, = PmPm(cos®)E,, (20d)

Dy = =1+ 1 m P (cos 6 ) EO (20e)

where the components of EC along the x’’ and y’ axes are:

E%,, = -E° cos ¢, — EO sin ¢, (21a)

X
EOy, = EO sin ¢, — EO cos ¢, 21b)
and EC, and E9 are the components of E? in the laboratory frame.

Since we know the surface integrals I, J, etc., and therefore the transition matrix, we can now merely
apply the linear transformation (9) to obtain the expansion coefficients as and bs of the scattered field
in the body frame.

The vector far-field (kr — o0) amplitude of the scattered field F is defined by
Es (kr) = F (e,e,) ek /kr (22)

where e,, e, are unit vectors in the directions of the incident and scattered waves, respectively. The vec-
tor spherical harmonic expansion of F in the body frame is given by Barber (1973, pp. 148-150). Ab-
sorbing a factor [n(n + )] into the spherical harmonics, the components of F parallel (g = £) and
perpendicular (q = r) to the plane defined by 2z’ and s are

N
Fyd = 2, i®*D D [a5 Cd(©,, ¢) +ibsBIO, ¢, (23)

pe=1

6, and ¢y, the zenith and azimuth angles of the direction of scattering e, in the body frame, are shown
in Fig. 2d and are given by:
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[(sin © cos B, cos ¢}, -cos © sin ©,)? + (sin O sin ¢,)?]"
6, (©) = tan! (242)

sin © sin O, cos ¢, + cos © cos 6,

(24b)

cos © sin ©, - sin © cos O, cos ¢,

(© is the scattering angle in the laboratory frame). The modified vector spherical harmonics are

ct . =B, = -msin(me,) P,m(cosO,) (25a)
c4.. =B, = mcos(me,) B m(cosD,) (25b)
Cr,.. = -BL__ = _cos(mey) f,,(cosO,) (25¢)
Comn = -B4,, = —sin(mey) £,,,(c0sO,) (25d)

The scattered field in the laboratory frame

The final step is to calculate the two components of ¥ in the laboratory frame — one (Fy) parallel to
the scattering plane, the other (F,) perpendicular to this plane:

F,(©) = F(Oy ¢y) cos 8 + Fy7 (O, ¢,) sin B (262)
F.(0) = -F,%(©,, ¢,)sin 8 + F,* (6, ;) cos 8 (26b)

where
B = tan-! { (cos© cosB, cosp,, sing,, + sin® sinO, sing,, @7

+ cosO sinqsp Ccospy)/(cosO,, sing,, singy, - COS$,, COSPy,) }

The two components of the intensity of the scattered field (using the same notation as in Mie theory)
are then simply

14(®) = |Fy(©)|? 28)

where g = 4 or r. The scattering and extinction cross-sections are given by (Waterman, 1965):

N
te =2 LD, {la,2 + Ib3]2) (292)
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_ A

Oext = 17 I [E0% F(O)] (29b)

where F(0) is the far—field amplitude of the scattered electric field in the forward direction (6 = ().







V. EBCM -— SPECIALIZATION TO AXISYMMETRIC SCATTERERS

For axisymimetric scatterers, all the surface integrals vanish for m = m’ (recall that m and m’ are com-
ponents of the tripartite indices » and »* of the scattered and incident field expansions). As g conse-
guence, by re-ordering v = (o,m,1n) to » = (o,n,m) {and sirnilarly for »*), and allowing ¢ and n to run
through their entire sequence before m is incremented, the transition matrix T in (9) becomes block
diagonal. Therefore, due to the linearity of the equations, (9) splits into (n,,, + 1) independent sub-
systems, each corresponding to a different azimuthal mode m (m = 0 ,. . .,n_,,, where n_, is the
highest n-value used):

- as o ,Waﬁ
T
bs I

(G0

Here, T, is the appropriate block of T for the given m-value, and the expansion coefficients a and b
are for all possible combinations of o and n (or ¢° and n”), holding m (or m’ = m) constant, In what
follows, these expansion coefficients will be indicated by the subscript p {or ¢”), a combination of the
two indices ¢ and n (or ¢ and n’).

Becanse of the linearity of the vector spherical harmonic expansions, the splitting over separate
m~values carries through the entire calculation; thus, the entire scatiering problem can be repiaced by
(Mo + 1) independent sub-problems, each corresponding io a different azimuthal mode m. This is
accompanied by a re-ordering of the sums over m and n in 2l spherical harmonic expansions, as
follows:

Dmax I Dinax Tymax
)IED I D VD ) Gl
n=0 m=0 m=0 n=1im

This means that the total scattered field can be calculated as the sum of partial fields
B

=l

W

1l

4 <
=

wr
w
St

where each partial field is obtained from an analogue of (4b), but with coefficients obtained from (30)
and a summation over g rather than ».

3

This result brings important simplifications and speed enhancements in the numerical solution. For, in
the general case, the linear equations to be solved form a potentially very large 2Nx2N system (Eq. 9),
where

21
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N = ng,, (O, +3) (33)

is the total number of terms to be summed in the spherical harmonic expansions (4) (note that then=0
terms vanish and therefore are not taken into account when computing N). However, for axisym-
metric scatterers, this system is replaced by the (n,,, + 1) sub-systems (30), each of dimension 2(n,,,
~'m + 1). Note that the sub-system dimensions decrease as m increases, because, in the matrices T, n
rangés from m to n,,. Also, the sub-system dimensions already account for parity relations among
the surface integrals (e.g., 16a), which reduce the size of the matrices T,, by a factor of 4.



V. EBCM — NUMERICAL CONSIDERATIONS

There are four major numerical steps involved in calculating the scattered electric field for a given
orientation of the particle; then, a fifth and sixth step are required for averaging over orientation. The
organization of these six steps into an EBCM algorithm is shown in Figure 3. We developed this
logical structure specifically to take advantage of the ‘array processing’ or ‘vectorization’ features of
modern computers. (Figure 3 refers to axisymmetric particles only; for non-axisymmetric particles,
important sections of this logical structure would have to be re-formulated.)

Step 1. Determination of Nmex iN NOSe-on orientation

The length N of the expansions of the incident and scattered fields in vector spherical harmonics (Eq.
4) is not known « priori; it depends on the shape, size, and refractive index of the particle. In general,
one should guess an initial N value, solve the scattering problem, and then increase N in steps until
‘satisfactory’ convergence of the scattered field is obtained. This may, however, result in a prohibitive-
ly lengthy procedure.

Fortunately, for axisymmetric particles (see Sec. IV), it is possible to estimate the length of the expan-
sions in a much faster way. For nose-on incidence (defined as ©, = 0), by virtue of the rotational sym-
metry of the particle about the direction of incidence, the only contribution to the scattered field
comes from the single azimuthal mode m = 1 (as for a sphere). Therefore, it is advantageous to utilize
nose-on orientation to determine the length of the n-expansion sufficient for convergence. Then we
merely use the same upper limit n_,, for all the orientations.

By so doing, we assume that n_,, is independent of the orientation of the particle — which is not true
in general. For different orientations of the particle, deep downward spikes in the angular scattering
pattern (representing a lot of cancellation among the terms in the spherical harmonic expansion) often
require higher n_, values in order to converge. However, we usually ignored this problem; our in-
terest was mainly in randomly-oriented particles, where the scattering pattern is rather smooth — the
spikes wash out in the orientation-averaging process. (For further discussion of this spike-washing-out
process, but for spheres, see Sec. VIII.)

We are not going to describe here the numerical procedures in the nose-on case, since they foliow
closely steps 2-4 in Fig. 3, which are described below. The only difference from the general case is that
now the loop over the m,,,, disappears (m,,,, must be 1), and only the orientation ©,=0,¢,=0)is
considered. '

By solving the scattering problem for successively larger values of n_,, in the nose-on case, and stop-

ping when the changes become ‘small enough’, n,,, is determined. Section VI (convergence pro-
cedures) will flesh out the details of this operation.
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(STEP 1) NOSE-ON (9, = 0)
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Figure 3. Logical structure of EBCM algorithm. (vec. X) means that the indicated step is vectorized

over the variable x. Other symbols are defined in the text.
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Because of the splitting into (n,,,, + 1) sub-problems (see Sec. IV), steps 2-6 in Fig. 3 appear inside a
loop over the azimuthal index ‘m’. It is advantageous to check convergence of the series (32) at each
step- of this m-loop, since convergence usually occurs well before the theoretical upper limit n_ .
Hence partial sums from m = 0 up to the current value of m (called m,,,, in Fig. 3) are calculated.
When the newest terms being added to these sums are small compared to the values of the sums, this is
called ‘convergence over my,,,’, and the algorithm is finished. Details of this procedure may be found
in Sec. VI.

Step 2: Calculation of the surface integrals

Rapid calculation of surface integrals (12-18) is important, since otherwise an inordinate amount of
computer time will be wasted in assessing convergence over n_,. (Step 1), as we shall see in Sec. VI.
Hence, we used a Gaussian quadrature over the variable cos ©,, which requires about a factor of 10
fewer integrand evaluations than, for example, Simpson’s or Bode’s Rule (the latter was used in the
EBCM code we received from Prof. Barber). Of course, Gauss rules assume a smooth particle shape,
with no corners or edges; cubes and such-like are excluded.

We have found that, for the Chebyshev particles, the number of Gaussian quadrature points N must
not be substantially smaller than n_,,; otherwise, the surface integrals are not calculated accurately
enough, and this may even cause the scattered field expansion to diverge. On the other hand, we have
noticed that very high N values (Ng > >n_,,,) may also sabotage convergence, presumably because
the error term R in the Gauss rule

+1 Ng
[ fWdx=F wife)+ RN (34)
-1 i=1

is proportional to a high-order derivative of the integrand (which is not true in Simpson’s or Bode’s
Rule):

22n+1 (pt)d
R(NG) = —— ) _fe0) (x,) (35)
2o+ 1) [2n)!]P
(x; and w; are the absicissae and the weights, respectively, of the Gauss rule, and x, is a point in the in-
terval of integration). Examples of inaccuracy in Gauss rules for overly-large numbers of quadrature
points can be found in Davis and Rabinowitz (1975).

For the above-mentioned reasons, we have chosen to take N; = n,, throughout the calculations,
even though this choice wastes computer time during the determination of n,,, (because of the need to
re-calculate surface integrals at each step of the iteration instead of just using the old values).




26 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES
Step 3: Evaluation of the transition matrix

Once the surface integrals have been calculated, one is in a position to evaluate the transition sub-
matrices T, (33) in the body frame. This requires the inversion of the block-diagonal (axisymmetric-
particle) form of the second matrix in (10), which is accomplished using the Gauss-Jordan method.
We used Barber’s routine for this, rather than a library subroutine from LINPACK, because it takes
advantage of the large number of known zeroes in the matrix.

Barber (1977) discusses the ill-conditioning in this matrix inversion when any of the variables which
define the scattering object (its size parameter, deviation from sphericity, and refractive index) is in-
creased too far. This problem is a symptom that the transition matrix T (and therefore the scattered
field coefficient véctor) has become very sensitive to the length of the spherical harmonic expansions,
50 that no convergence can be determined.

In the present study, we fixed the Chebyshev deformation parameter e at various values between
—0.20 and +0.20; then, for each ¢, we increased the size of the particle until ill-conditioning was en-
countered and convergence could no longer be achieved. Except for the very smallest size parameters,
it was impossible to achieve convergence for magnitudes of e significantly above 0.20.

Step 4. Evaluation of the scattered field for any orientation

We can now solve the scattering problem for any orientation (8, ¢,) of the particle. First of all, using
(24) one must calculate the two arrays of angular coordinates (©y, ¢,) which define the various scatter-
ing directions s in the body frame (see Fig. 2).

Then, the expansion coefficients of the incident field, (aui and bui) are evaluated in the body frame us-
ing (20). They are multiplied by the transition sub-matrix T,, (30) to obtain the expansion coefficients
of the scattered field for the considered azimuthal mode m (a,f and b/°) in the body frame.

Next, the scattered field coefficients are used in (23) to obtain the components of the far-field
amplitude in the body frame; and then, these components are transformed back to the laboratory
frame (Eqs. 26). This is done for a whole array of scattering angles © at once, in vector loops, as in-
dicated on the right-hand side of Fig. 3.

The computations carried out so far (Steps 2-4) all refer to a specific azimuthal mode m in the m,,
loop in Fig. 3. One must also update the running sums of the components F (™ of the far-field
amplitude vector corresponding to the partial fields E_: ’

F, ©,m,,,) = Zmax F ™ (©) (36)

m=0
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Finally, the intensities i; and extinction cross-sections o, are evalulated from these running sums us-

_ing (28) and (29b). For the computation of the scattering cross-section o, (29a), all the a,* and b,*

calculated so far must be considered; thus, in (29a), v takes into account all possible combinations of
o,nandmforn < n_, and m=< m_,.

When studying scattering just in fixed particle orientation, convergence over m_,, should be checked
at the conclusion of Step 4. On the other hand, when our interest lies in randomly-oriented particles,
this test must be postponed until after the average over orientation is made (Steps 5 and 6).

Step 5. Avering over orientation: intensities

Orientation-averaging is accomplished using a two-dimensional Gaussian quadrature over orientation
angles (0, ¢,) of the following generic form:

2w +1

1
<Y> =—4—;S0 do S_l Y(©, ¢) d(cosO) 37

Ng

n

N
Ly w; W; Y(O, ¢)

4m (T =1

(This is actually just the product of two one-dimensional Gauss rules, not a general two-dimension
rule, for which no exact solution for the weights and abscissae is known.) Y is any real scattering
quantity, such as intensity or cross-section (averaging the complex scattering amplitude would
preserve phase relations, which we assume does not occur). cos(8,) and w; are the Ng abscissae and
weights of the Gauss rule over (—1,1); and ¢; and v'\\rj are the N, abscissae and weights of the Gauss
rule over (0,2 =).

In our computations, we have used a number of zenith orientations which depends on the particle size
and on its deformation from a sphere:

Ng = (0.5% + 3) (20 |¢| + 1)/3 (38)

For each zenith orientation O ;, the number of azimuth orientations is taken proportional to Ng and
to the area of the spherical zone at that zenith angle:

N, =2 Ngsin 6p; (39)

Both (38) and (39) are purely empirical rules which we developed. There is no ¢ priori reason to expect
that they will be satisfactory for shapes very different from Chebyshev particles.

With only 750,000 words of memory on the CRAY-1, we were forced to set an upper bound of 10 on
Ng (we also never let it fall below 3). This is due to the necessity of storing two complex matrices, of
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dimension (no. scattering angles) x (no. orientations), containing the components of the vector far-
field amplitude. This limits the total number of orientations to about 150, which may not be enough
for large sizes and/or deformations. However, for axisymmetric particles, some simplifications enable
us to double or quadruple the number of orientations.

This is because the axisymmetry of the particles leads to symmetry properties of the intensities. For
any given zenith orientation Gp, the intensities corresponding to the ¢, and (¢, + «) azimuth orienta-
tions are related as follows:

ig, 442 (©) = lo, 4 27-6) (40)

Therefore, we only need to perfors computations for Gauss quadrature azimuths $,,; in the interval
(0, 7). Hence, in applying (37) to intensities, the ¢-integration can be reduced to (0, «) and the in-
tegrand taken as

Y(©, ¢, = g4, (0) + g4 27-6) @1

This is a very important simplification, because it halves the number of azimuth orientations N, for
any zenith angle ©, ;. In turn, this allows us to double the number of zenith orientations Ng with no
penalty in computer time or storage.

A further simplification is possible for particles with a plane of symmetry perpendicular to the rota-
tional axis. In this case, one can integrate over cos (8,) from O to 1 rather than —1to 1 in (37), then
just multiply by two. This again doubles the allowable number of zenith orientations, for a net
guadrupling.

Step 6. Averaging over orientation — cross-sections

The orientation-averaged cross—sections can be obtained by making use in (37) of the fixed-orienta-
tion cross—-sections calculated in Step 4. However, if random-orientation intensities are not desired for
some reason, there is a much faster procedure.

Since the cross-sections of randomly-oriented nonspherical particles do not depend on the polariza-
tion of the incident field, let us assume that the incident electric field is linearly polarized in the x-

direction. For each zenith orientation ©,, symmetry considerations allow us to compute the
azimuthally-averaged cross-section just by averaging the two cross-sections for azimuths

1)¢p = 9O°(E0xn = O, Eoy’ = 1)
2, = 180° (B%,, = 1, B0, = 0)

This simplification was found by Barber (personal communication).
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Once the azimuthally-averaged cross-sections have been obtained by this trick, the orientation-
averaged cross-sections follow directly from a Gauss quadrature over zenith orientation, as usual. If
the particle has a plane of symmetry perpendicular to its rotation axis, this quadrature can be
simplified as described in Step 5.

Calculation of associated Legendre and Bessel functions
In steps 2-4, it is necessary to calculate the associated Legendre function P, ™ (cos ©) with argument

either cos © (for obtaining the far-field amplitude) or cos O, (for obtaining the surface integrals).
This is done by using forward recursion for fixed m, starting fromn = m+1:

Pm ., (cosO) =

— 1_[(2n +1)cos © P, ™ (cosO) + (n+m)P™__, (cosO)] (42}

The recursion is initialized by:

P_m(cosO) = sin"® II  (2k-1) (43a)
k=1
PR, (cosO) = (2m+1) cosO P_™ (cosO) (43b)

In step 2, it is necessary to calculate the spherical Bessel functions of the first kind, j,, both for real (k
1)) and complex (i k r,) arguments. It is also necessary to calculate the spherical Bessel function of the
second kind y, for real argument k r, only, since it enters into the expression of the spherical Hankel
function.

For y,, we use a forward recursion, which is stable for real arguments (Lentz, 1975). However, the use
of forward recursion for j, is unstable. For complex arguments, we calculated j, using the continued
fraction method of Lentz (1975), while for real arguments we have used a variation on the Miller
backward recursion scheme proposed by Ross (1972).

In the original code provided to us by Prof. Barber, Bessel functions were generated, both for real and
complex arguments, using the Miller backward recursion. We replaced such procedures because they
can occasionally overflow for large arguments,

Vectorization
“Vectorization’ means re-arranging an algorithm in order to make the longest loops the innermost
ones. These innermost loops must also be free of recursions and other structures that would prevent

their being executed all at once.

We have deeply modified the original code we received from Prof. Barber in order to take advantage
of the vector features of a CRAY-1 computer. We have vectorized any section of the code which
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timing tests revealed to be using more than 10% of the computer time. Super-speed vector routines
{furnished by CRAY) were also used for performing some matrix operations. The code is now about
ten tirnes faster than the original one that we received. Even so, this research has required on the order
of 10 hours of CRAY time.

Fig. 3 shows what loops were vectorized in the various steps of the numerical computation. The nota-
tion ‘vec. ¥’ means that loops over the variable ‘x’ were made innermost, and vectorized. (If only ran-
dom-orientation cross-sections are desired, Step 4 is replaced by a simplified version in which only
loops over n are vectorized.)

In the Bessel function routines, recursions prevent most of the loops over n from vectorizing. In the
computation of the associated Legendre polynomials, either loops over 6, or over © were vectorized,
depending on the context (surface integrals or spherical harmonics expansion, respectively).

MNumerical checks

Since considerable modifications of the code were made, we repeatedly checked the modified code
against some results obtained with the original one supplied to us by Barber. We also checked the
original code against some exact calculations of Asano and Yamamoto (1975) for spheroids in fixed
orientation, for which agreement within 0.01% had been found (Mugnai and Wiscombe, 1980).

After the modification of the code had been completed, we also checked it against exact calculations
of Asano (1980) for randomly oriented spheroids. Very good agreement was still obtained (0.1%).
However, we were not able to get convergence for elongations greater than 3:1 when the size
parameter exceeded about 10. This is in line with a comment made by Waterman (1965) in his original
paper on the EBCM:

“One present drawback of the method is the poor numerical convergence of the truncation pro-
cedure in dealing with more elongated shapes. This is of course not surprising, since one is de-
parting from the nearly spherical shapes most ideally suited to the vector wave functions
employed. As a rough rule-of-thumb, it appears that obstacles having a length-to-width ratio
<2 can be treated quite well by truncation to at most 20-25 terms. . . .”"

Holt (private communication) has informed us that other investigators who use the EBCM have been
able to obtain convergence for more elongated spheroids. The explanation may lie in our stringent
convergence procedures (see next section), compared to the relatively lax definitions of convergence
used by others. However, we did not concern ourselves with this difficulty, because the many sensitivi-
ty studies we carried out for Chebyshev particles convinced us that our numerical procedures are quite
suitable for these particles.



VI. EBCM — CONVERGENCE PROCEDURES

In the EBCM, infinite series are truncated after a finite number of terms; integrals are numerically
evaluated; and finite series may be truncated before their theoretical upper limit. The resulting solu-
tion may be more or less ‘converged’, depending on our skill (there is more than a little art involved as
well) in selecting the following three parameters controlling convergence:

e the highest n-value, n_,,, used in the spherical harmonic expansions;
® the number of Gauss quadrature points, N, for performing the surface integrals; and

e the number of different orientations of the particle, N, used for calculating an orientation
average.

In addition, it is advantageous to check convergence on a fourth parameter: the highest m-value,
m,,.,, used in the spherical harmonic expansions (this is not strictly necessary, since we know that,
theoretically, m_,, = n_,J.

Our procedures for determining convergence over N and n_,, have evolved from those used by
Barber (private communication). We therefore begin by summarizing his method.

Barber looks only at nose-on orientation of the particle. He guesses initial values for n,, and Ng. Ng
must be about 3-5 times n,,,,, depending on the deformation of the particle from a sphere (N must be
large because Barber uses Bode’s Rule for calculating surface integrals). Then, n_,, is increased in unit
steps, holding N fixed, until ‘convergence’ of the scattered intensities is reached.

‘Convergence’ is defined in the Cauchy sense: it occurs when two successive iterates are ‘close’. For
Barber, ‘close’ meant that the percentage difference between the scattered intensities for n_,, and for
(0. — 1) was less than 1% at every scattering angle. (Clearly, the exact convergence he reached
depended on the set of scattering angles he chose.)

If convergence is slow, the Cauchy criterion can of course be misleading. Two successive iteraies can
be close, yet both can be far from the final solution. In practice, such pathological situations manifest
themselves as a painfully siow downward trend in the inter-iterate difference.

If convergence didn’t occur, Barber fixed n_,, at the highest value it had attained, and iterated over

Ng instead (by trial and error). If convergence over N was attained, iteration over n,, was re-started
from its original (low) value, holding N constant at its converged value.

31
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We have modified Barber’s procedure for the following reason. Barber did EBCM calculations on a
case~by~case basis, checking and tuning the convergence by hand until the results were satisfactory.
Our goal was to study a great many cases, precluding the possibility of examining each one individual-
ly: therefore, we had to invent an automatic procedure. Of course, we could simply have enforced a
very stringent Cauchy criterion (0.01%, say); but this would have allowed convergence in only the
easiest cases (those with the smallest deviation from sphericity). Furthermore, since our interest was in
random orientation, we did not care to enforce a stringent convergence at every particular orientation
and for every scattering angle.

Convergence over Ng

In order to study convergence over Ng, we carried out many tests for Chebyshev particles in nose-on
orientation. In these tests, N5 was either held fixed, or increased in direct proportion to n,,:

Ng = ko Do 4
k, was varied between 1 and about 3.

We found that, independent of n,,, convergence over Ng was reached for 1 = k, < 1.5 (larger k,
values were necessary when n_,, was below its convergence value). In general, we found that Ng must
be neither smaller, nor much bigger, than n_,; both extremes could sabotage convergence.

Based on our tests, we decided to take k, = 1 throughout our calculations, for the following reasons:

¢ increasing k;, from 1 to 1.5 changes the intensities less than 1/10 as much as increasing the
convergence value of n,, by one;

® this choice prevents the scattered field expansion from diverging; and

e taking k, > 1 sometimes lowers the n_, value for convergence, giving results of less ac-
curacy than those obtained with k;, = 1.

Eq. (44) is unfortunate in one sense: if N; were held constant, then each of the 8 matrices of surface
integrals (e.g. Eq. 12) could be preserved for the next step of the iteration over n_,,; only two new
rows, and two new columns, would need to be added. Instead, each matrix has to be recalculated in
tofo. But at least (44) eliminates Barber’s trial-and-error double iteration (over N and n_, ) in favor
of a single automatic iteration (over np,, ).

Convergence over Ny,

The selection of n,,, is critical in obtaining correct results, especially for fixed orientation of the parti-
cle. Extreme caution Is called for, first because bad results obtained with incorrect n,,,. values are
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difficult to detect; and second, because there are usually no independent methods to check the results
{unless the particles are cylinders or spheroids).

We adopted Barber’s suggestion to increase n,, in unit steps during convergence iteration. However,
we found that his convergence criterion (1% at all the angles) failed when the angular scattering pat-
tern developed deep down-spikes, signalling cancellation among the terms of the spherical harmonics
expansion at the spike angles. Convergence at those angles could not usually be achieved at all.

However, our main interest was in random orientation, in which case the deep down-spikes one sees
in fixed orientation are washed out. Therefore, we developed a convergence criterion with the follow-
ing requirements in mind:

® convergence should not be tested in the spikes

& convergence should be summarized in a single number, representing some sort of average
over all angles.

We met the first requirement by considering, not all the N, scattering angles, but only 90% of them,
i.e. only

t

Nyea = 0.9 Ny, 45)

scattering angles. We throw out that 10% of the angles where the percentage differences from one
iteration to the next are largest. This is always sufficient to get rid of the spike situations.

The second requirement is met by defining two numbers, 64 (@ = £ or 1), which are the root mean
square relative differences between the intensities when n,,, is increased by one (but only at the 90%
of the angles defined above):

5 = 1 ia [iq (©;, Npyppy) - iq (S nmax"l)] 2y " (46)
¢ ﬁsca i=1 iq (el’ nmax"l)
‘Good’ convergence is then defined as
8y <Opinandd, <d, 47

where d_;, = 0.001 for our research. This corresponds to percentage differences in the intensities not
exceeding about 0.1%, on the average. Thus we have relaxed Barber’s criterion in one sense — by
disregarding 10% of the angles — and made it stricter in another sense — by demanding 0.1% rather
than 1% convergence at the remaining angles.

We have made many plots of the behavior of 6, as a function of n,,. Figure 4.1 shows z small but

representative sample of this information; §; (dotted line) and 4, (dashed line) are plotted vs. n,,, for
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four different Chebyshev particles. Fig. 4.1(a) provides an example of how convergence becomes more
difficult when the size of the particle increases; Fig. 4.1(b), of how it becomes much more difficult
when the deformation from sphericity increases.

Figure 4.1 shows clearly that 6, does not decrease monotically when n,, is increased, but rather has
oscillations superimposed on its average downward trend. These oscillations have a period egual to the
order n of the Chebyshev polynomial T, defining the particle! This surprising (and so far unexplained)
result explains why convergence over n_,, is very slow for high Chevyshev orders.

Figure 4.1 also shows that §, eventually stops decreasing, and may actually start increasing again, as
n,,,, continues to increase. This behavior may be due to

¢ accumulation of round-off errors; or

e the possibility that the spherical harmonics expansion, at least for concave particles, is an
asymptotic rather than an exact series (this may be a consequence of the Rayleigh hypothesis
which we have made); it is well known that there is an optimal number of terms to keep in an
asymptotic series, beyond which it becomes less and less accurate.

These plots show explicitly how our definition of ‘convergence’ may fail: 6, may ‘bottom out’ before
(47) is satisfied. However, our convergence studies also revealed that satisfactory convergence of the
scattered intensities can often be achieved even for n_, values violating (47).

For this reason, we have introduced a second, less stringent convergence criterion based on the
quantity
Ve

8, = [1/2 &+ 53)] (48)

We stop the n,,,, iteration before ‘good’ convergence is reached, if 8y, reaches a minimum lower than
10 times 8, (=0.01 in our study), then starts increasing again. We call this convergence ‘fair’. It
produces accurate enough results for a randomly oriented particle. However, it may give unacceptable
errors for fixed orientation.

By introducing ‘fair’ convergence, it was possible to obtain results for many more cases than ‘good’
convergence would have allowed. It also shortens the iteration over n_,, (which may otherwise be in-
ordinately lengthy due to the oscillations in the §; vs. n,,, curves). This in turn reduces computer time
spent in orientation-averaging, which goes roughly as n,,, to the 2.5 power.

We have singled out the two particles in Fig. 4.1(c-d) for particular consideration, since they are
representative of cases of slow or difficult convergence, respectively. The first is a T particle with x =
10; the second, a Ty particle with x = 8. Both particles have deformation e = 0.10.
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Parallel and perpendicular intensities for these two particles are shown in Figs. 4.2 and 4.3, respective-
ly, for various n,,, values and for nose-on orientation. (Studies we made for oblique orientation did
not differ qualitatively.) There are separate plots for 0-60 and 60-180 degrees in order to gain resolu-
tion,

For the Ty(+) particle, Fig. 4.1(c) shows that a deep local minimum, both for §;and 4,, is reached
already for n_,,, = 18; ‘fair’ convergence is reached for n,,, = 30; and ‘good’ convergence, for n,,
= 42. For n_,,, = 66, 8y and 8, are even lower yet. The solid curve in each plot in Fig. 4.2 represents
the ‘converged’ result, corresponding to ng,, = 66. The various dashed curves correspond to lower
values of n_,,. This enables us to watch the convergence process ‘in action’, so to speak.

The trend towards convergence in Fig. 4.2 is quite evident. Moreover, we find that:

o the main characteristics of the scattering pattern are already produced by n,,, = 18

o perpendicular intensities converge much more rapidly than parallel ones

e ‘fair’ convergence does not produce accurate enough results for fixed orientation

* ‘good’ convergence produces almost perfectly converged intensities
The Ty particle is truly a marginal case; even a small increase in its size or deformation causes con-
vergence to fail entirely. As it is, Fig. 4.1(d) shows that ‘fair’ convergence is reached for n_,, = 28,
while ‘good’ convergence is not achieved at all. But there is a global minimum at n_,,, = 44. Beyond
that, §yand §, increase, but are still less than 0.01 in two local minima at n_,, = 60 and 76. Therefore,
in Fig. 4.3 we have plotted parallel and perpendicular intensities for n_,, = 28, 44, and 76. We find
that:

o intensities for n,, = 28 (dotted line) and 44 (solid line) are quite similar

o intensities for n,,, = 76 (dashed line) are rather different from the first two.
This Ty example clearly shows that taking too many terms in the spherical harmonics expansion is just
as deadly as taking too few. Therefore, it is unwise just to arbitrarily choose a high value of n,,
without checking convergence. For the same reason, even the first guess for n,,,, in the convergence

iteration shouldn’t be too high. But we have found that, even for ‘fair’ convergence, n,,, is always
bigger than the number of terms,

N = X + 4x7% + 2 (49)

required for convergence of the scattered field from an equal-volume sphere (Wiscombe, 1980).
Therefore, we suggest utilizing n,, = ng, as a first guess.
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Table 1 shows the n,, and 8y, values corresponding to a selection of our Chebyshev particles, as well
as what kind of convergence (‘fair’ or ‘good’) was obtained.

Figures 4.4 and 4.5 are analogous to Figs. 4.2 and 4.3, respectively, but for random orientation. Only
parallel intensities are shown, because the curves for various n,,, values are virtually indistinguishable
for perpendicular intensity. Hence, for checking random-orientation convergence, it may be sufficient
to look only at parallel intensity, although we have not done so in our calculations.

Table 1. Convergence parameters for a selection of Chebyshev particles. F and G refer to ‘fair’ and
‘good’ convergence, respectively. The other parameters are defined in the text.

X particle type Nppax NmaxTsph 84 My Ner
5 T5(0.05) G 14 1 S5e—4 9 48
T5(0.10) G 24 11 Te-4 9 132
T5(0.15) F 37 24 3e-3 9 132
T,(+0.20) G 17 4 Se-4 8 400
T4(£0.05) G 13 6 2¢-4 8 56
T,(£0.15) F 21 8 Te-3 9 284
T(£0.05) G 13 0 3e-4 8 56
Tg(£0.05) G 16 3 %¢-4 8 56
Tg(+0.10) F 20 7 8e-3 8 144

10 T4(0.05) F 20 0 2e-3 15 132
T5(0.10) G 35 15 4e-4 15 132

T5(0.15) F 43 23 9e-3 15 132
T,(-0.20) G 28 8 4e-4 15 584
T,(+0.20) F 24 4 S5e-3 12 584
T,(£0.05) G 20 0 3e-4 14 144
T,(-0.15) F 54 34 le-2 13 584
Te(£0.05) F 21 1 4e-3 14 144
Tg(£0.05) F 22 2 3e-3 14 144
Tg(£0.10) F 46 26 9¢-3 14 372

15 T,(0.05) F 27 0 3e-3 21 132
T5(0.10) F 39 12 4e-3 21 132
T,(£0.20) G 41 14 9¢-4 20 584
TA(£0.05) G 27 0 6e-4 20 284
T¢(£0.05) F 28 1 6e-3 20 284

20 T5(0.05) F 34 1 3e-3 27 132
T5(0.10) F 49 16 3e-3 27 132
T,(£0.20) F 47 14 9e-3 24 584
T,(£0.05) G 34 1 8e—4 26 372
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There are several important observations to make about Figs. 4.4 and 4.5:

® the spread between the curves for various n_,, values is an order of magnitude less than for
nose-on orientation

¢ ‘fair’ convergence is good enough for random orientation; the worst errors are below 2% or
SO

e eventhen_ ,, = 18 intensities in Fig. 4.4 are within 10% of the converged values

° then,, = 28and 44 curves in Fig. 4.5 are virtually indistinguishable, whereas the n,,, = 76
curve departs significantly from them.

This last observation (which was also noted in nose-on orientation) again shows the danger of taking
too many terms in the spherical harmonic expansion.

Convergence over My,

We have found that, for a given n_,,, convergence over m is usually reached for m,, < ng,,. Itis
therefore advantageous to introduce a convergence criterion over m, ., in order to shorten the com-
putation.

We adopted an m_,, convergence criterion similar to ‘good’ convergence for n,,, (46-47), except that
all the scattering angles are now taken into account, because down-spikes do not seem to occur in the
m-sum (apparently there is never the kind of massive cancellation of terms that occurs in the n-sum).
For a particle in fixed orientation, the analogue to (46) is therefore:

. ] ”
I = [ig 05 M) = i (O My *1)]2 (50)
q Nia 21 iy (B, my,, -1)
where
Mmax )
iy 0, ) =| 1 Fy® (©) (51)
m=0

and F ™) is the g~component of the far-field amplitude of the partial field E_5.

For a randomly-oriented particle, convergence over m,,, is checked by making use of an exactly
analogous criterion, except that iy is replaced by <i,> (see 37).

8y (dotted line) and 6, (dashed line) are plotted vs. m,,, in Figure 4.6, for two different Chebyshev par-
ticles in random orientation. There is a striking trend towards convergence as soon as these quantities
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become imaller than about 0.001; hence, convergence over m,,,, was assumed to have taken place as
A . .
soon as dy and ¢, fell below this limit.

When only random-orientation cross-sections are desired, and the short-cut described in ‘Step 6 of
Sec. V is employed, m_,, convergence is based on the following quantity:

A

64):

1
Ne i=1 0¢ (ep’ is mmax "1)

NG [O'¢ (ep’ is mmax) - 0'¢ (ep’ i mmax _1)]2 1,

where ¢ means one of the two azimuthal orientations (¢>p = 90, 180 degrees) used for computing the

random-orientation cross-section (Sec. V), and Ng is the number of zenith orientations. In general,
3 . [~ - -

this leads to the same m,,, values as applying the ¢, criterion.

Table 1 shows m,,, values for various particles. They range between about ¥ and % of n,,, showing
that checking convergence over a m_,, reduces computer time by roughly a factor of two.

Convergence over N

When we compute the scattered field from a randomly-oriented particle, the number of azimuth
orientations N, for any given zenith orientation is automatically assigned (39). Therefore, convergence
is checked only over Ng.

Computer time and storage constraints have prevented us from testing convergence over orientation
for many of the cases in this compendium. Ideally, computations should be done for successively
larger Ng values until the final results converge to a specified accuracy. But in that case, in order to
keep computer time within reasonable bounds, one would need to store all the T, transition matrices;
and this was beyond the capacity of the NCAR CRAY-1 (750,000 words).

We therefore resorted to testing the random-orientation results in selected cases in which Ng did not
seem large enough. We temporarily modified the EBCM code to allow twice the usual maximum
number of orientations (584 for T, with even n, 132 for odd n). For a T,(—0.20) particle with x = 20,
and a T, (0.15) particle with x = 10, the largest changes due to doubling the number of orientations
were about 1-2%.

Suggested improvements in the convergence procedures

We wish now to suggest how the convergence criteria could be improved. However, in spite of our ex-
tensive experience, we are still unable to give general and completely automatic convergence pro-
cedures. Our suggestions are probably most appropriate to the Chebyshev particles; they may however
serve as guidelines for other shapes.
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We have not introduced the following changes in our computer code yet. However, we believe that

they could speed up the convergence procedures and at the same time produce even more accurate
results.

First, even though ‘fair’ convergence seems to produce accurate enough results for randomly-oriented
Chebyshev particles, it might not be restrictive enough for other shapes. Besides, ‘fair’ convergence
should always be avoided for fixed orientations. We suggest removal of the ‘fair’ convergence option
and the raising of the value of §_;, instead. 8_,, = 0.003 should produce accurate enough results for
random orientation; and 8, = 0.001 for fixed orientation.

Second, we propose an improvement in the iteration over n_,, whenever the code discerns a periodici-
ty in the variation of 6 and 8, with n,,. The iteration over n,,,, should then proceed in steps equal to
the periodicity, rather than in steps of one. This method could bring a considerable speed enhance-
ment for those particles with long periodicities (See Fig. 4.1¢). If ‘good’ convergence does not occur in
this case, one should use the results from the overall minimum of 8y, comparing them with results for
the previous and following minima to determine if the convergence is reliable (see Figs. 4.1(d), 4.3 and
4.5).

Third, the convergence over number of orientations could be handled in a more economic fashion, by
using ‘adaptive’ Gaussian quadrature (Patterson, 1973). Here, one uses values of Ng in the sequence
1,3,7,15, 31, 63, and so on. Each successive Gauss rule employs all the points used by its predecessor.
Hence, one can select a high value (say 15) of N, and obtain orientation averages for the lower values
(say 3, 7) for free. Comparing the various values will show how the convergence is going.

Finally, we propose yet another way to test convergence over number of orientations. We have noticed
that backscattering at 180 degrees is very sensitive to number of orientations. Therefore, one could run
the EBCM just for a scattering angle of 180 degrees, testing convergence for successively increasing
values of Ng (perhaps as described in the previous paragraph). This would be relatively cheap, com-
putationally, since computer time for calculating random-orientation intensities is roughly propor-
tional to the number of scattering angles. Once convergence was achieved, the EBCM could be re-run
with the full complement of scattering angles, holding Ng fixed at its converged value. In this pro-
cedure, it would be desirable to save all the T, transition matrices to avoid recalculation.



VII. DEFINITIONS OF QUANTITIES TO BE PLOTTED

In order to deal with numbers of order unity, it is customary to define the efficiency factors

Qsca = USCa/T r€V2 {53&}

Qext = oext/ @ rev2 {53%’))

in which the cross-sections are normalized by the projected area of the equal-volume sphere. The
single-scattering albedo is then defined as

w = Qsca/ Qext 4 (54)

The unpolarized phase function (which is proportional to the ‘differential scattering cross-section’
used by the inventors of the EBCM) is defined as

P(cos ©) = 2(ig + i)/(x2 Q) (55)

where ig and i, are the parallel and perpendicular scattered intensities defined in (28). P, being essen-
tially a probability of scattering at angle © from the direction of the incident unpolarized radiation, is
normalized to unity:

+1

) | P(cos ©) d(cos ©) = 1 (56)
1

In practice, we only calculate intensities at discrete angles; therefore, this normalization relation can
test whether or not we have picked enough angles. With our usual 111 angles, and a Simpson Rule for
the left-hand side of (56), we always obtained numbers in the range 0.997 to 1.003, indicating that our
Simpson-Rule calculation of the asymmetry factor

+1

g = ()| 05 © P(cos ©) d(cos ©) (57)

is probably accurate to 2 decimal places, with an angular-quadrature error of perhaps =1 in the 3rd
place.

We use a trick to calculate unpolarized phase functions in the EBCM. The straightforward way would
be to calculate iy and i, first for incident parallel-polarized light, then for incident perpendicular-
polarized light, and add them up. (For non-spheres, even in the random orientation, there is always
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cross-polarization, meaning that incident parallel or perpendicular light produces non-zero values of
both iy and i) Instead, we assume incident light with linear polarization at 45 degrees to the scattering
plane. This gives the same answer for iy and i; (but not for the remaining two Stokes parameters), with
only half the computation. This trick works because, in our cases, the 4x4 Mueller matrix has
vanishing 2x2 sub-matrices in the upper right and lower left corners: nose-on orientation falls into case
2 of van de Hulst (1981), sec. 5.22; random orientation falls into case 6 of that same section.

Clearly, for a general non-spherical particle in fixed orientation, the phase function would depend on
the azimuth angle between the scattering plane (variable) and the plane containing both the incident
direction and the reference axis (fixed), as well as upon the scattering angle 6. However, for the par-
ticular situations we consider — either nose-on (incident radiation along the particle’s axis of rotation)
or random orientation — this azimuthal dependence disappears. To show the phase function for ar-
bitrary particle orientation would really require a 3-D plot.

The final quantity of interest is the degree of polarization:
d®) = (i, -ig)/G, + ip (58)
Like the efficiency factors, this is of order unity, and in fact is bounded between ~1 and +1.

Experimenters prefer looking at phase function and degree of polarization because both are indepen-
dent of the absolute calibration of the instruments (provided the calibration is the same for iy and i).
d{8) is particularly nice because, unlike the phase function, it can be determined accurately without
knowing the scattering cross-section. By reading both phase function and degree of polarization from
our plots, and looking up Q, in Table 3, the reader can recover iy and i,. This is burdensome, we
know, but this compendium would have been too long if phase function, degree of polarization, and
intensities were all plotted.

Scattering cross-section requires an integration over all scattered intensities. Unfortunately, in the
laboratory, it is nearly impossible to position the detector at scattering angles 0 to 5 degrees, because
then it receives incident as well as scattered radiation. Angles 175-180 degrees are generally
unreachable as well, since here the detector either blocks the incident beam, or is blocked by the device
emitting it. The loss of 0-5 degree information is particularly harmful, because this is in the diffraction
region, where intensities are largest.



VIII. SIZE-AVERAGING OF SPHERICAL RESULTS

After examining many hundreds of plots comparing spherical to non-spherical scattering results, we
came to feel that comparing to a sphere for a specific value of size parameter ‘x’, far from being the
most honest comparison, was in fact the most misleading. Often the pattern of spherical-nonspherical
differences would alter radically with only a slight change in x; and invariably that alteration was caus-
ed by the sphere. The random-orientation nonspherical results were rock-steady by comparison.

The problem lies, of course, in the multiple periodicities and spikes in the Mie results as a function of
x. This is collectively known as the “‘ripple structure”’. It is very special to a sphere, and is caused by
the interference between surface waves and the internally transmitted and reflected radiation. Ripple
tends to be damped out by nonsphericity, and especially by nonsphericity plus averaging over orienta-
tion. (However, a high imaginary index will damp the ‘short-cutting’ surface waves, and hence the
ripple, even for a sphere (van de Hulst, 1981).)

The fastest oscillation in Mie quantities has a period of about 0.8 in x for refractive indices typical of
aerosols in the shortwave spectrum (Dave, 1969). This has recently been explained as a ‘forward glory
oscillation’ by Nussenzveig and Wiscombe (1980), who give an analytic formula for the period as a
function of real refractive index. For fii,, = 1.5, this period is 0.7393 for spheres with size parameter
x>>1.

To see the extent to which this period applied for smaller values of x, we made a number of high-
resolution plots of Mie single-scattering albedo, w, and asymmetry factor, g, as a function of x, using
the Mie algorithms of Wiscombe (1979, 1980). The complete course of these quantities, from x = Oto
30, is shown in Fig. 5(a); then, in Figs. 5(b-i), the sub-ranges x = 2-6, 6-10, 10-15 and 15-20 are shown
in detail (solid lines). For w below x = 10, the peak-to-peak period is about 0.85, while the trough-to-
trough period is in the range 0.71 to 0.76. Both periods settle down to around 0.74 +£0.02 for x > 10.
For g, the period is consistently around 0.78 for all x <25.

Since the deviations from the theoretical period are relatively small, we averaged the Mie single-scat-
tering albedo and asymmetry factor over an interval 6x = 0.7393, using 201 equally-spaced points
centered on each value of x. These averages are tabulated for integer values of x in Table 2 alongside the
exact (unaveraged) values. Then, they are plotted as dotted lines in Figs. 5(b-i). The resulting curves are
almost completely smooth, with only a faint residual oscillation due to not averaging over the exact
period.

The averaging was actually done over cross-sections and intensities (which makes more physical sense)
rather than directly on w and g:

Qua = ¥ Qq /%2 (59a)
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Figure 5. Mie single scattering albedo w and Mie asymmetry factor g vs. Mie size parameter x:
{a) for the full range x = 0-30 considered in this study; (b-e) exact (solid line) and size-
averaged (dotted line) w in the sub-ranges x = 2-6, 6-10, 10-15, and 15-20; (f-i) exact (solid
line) and size-averaged (dotted line) g in the same sub-ranges.
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Qext = X2 Q/ X2 (59b)
Wavg = Qe Qoxt (59¢)
8avg = X 8Qua”/ X Qgey (59d)

The overbar indicates size-averaging over a rectangular size distribution of spheres spanning the range
AX.

Turning now to the phase function, we observe that the deep downward spikes in exact Mie phase
functions, separating the (approximately) ‘x’ peaks between 0 and 180 degrees, must be due to very
particular cancellations of terms in the Mie series. Small changes in x cause big changes in the location
of these spikes. Hence even a modest amount of size-averaging reduces them considerably. The peaks
between the spikes, on the other hand, are less affected by size~averaging. Thus, the general effect of
size-averaging is to smooth the Mie curves considerably.

Figure 6 illustrates this phenomenon. The thin solid curve is a size-averaged (Ax = 1) Mie phase func-
tion for x = 15 in the angular range 80-180 degrees; the thick solid curve, the exact Mie result. The
dotted and dashed lines show the exact and size-averaged < T,(—0.10) > phase function; these bear
out our remark above, that nonspherical results tend to be rock-steady under size-averaging, com-
pared to spherical results.

Away from scattering angle © = 0, Mie phase function values tend to have several incommensurate
periods as a function of x — not just 0.8. For example, at 180 degrees (the worst angle), Shipley and
Weinman (1979) find periodicities of 0.42, 0.81, 1.1, etc. using power-spectrum analysis. Thus, there
is no clear theoretical justification for averaging over an interval Ax = 0.7393. In fact, when we used
this fixed averaging interval, it gave too much averaging for small x, and not enough for large x.
Hence, we found it more convenient to use Ax = 0.1x for all size-averaged spherical phase functions.
This of course aliases all the oscillations, but still leads to an acceptable degree of smoothing of the
most unrepresentative parts of the Mie curves.

To maintain consistency between our treatment of single-scattering albedo, asymmetry factor, and
phase function, we will also compare (in Sec. IX) nonspherical w and g with their spherical counter-
parts averaged over Ax = 0.1x. That is why the latter values were also included in Table 2. Except for
X = 3, this causes very little change in the spherical-nonspherical percentage difference plots,

Goedecke, in a comment at the end of Wiscombe and Mugnai (1980), suggested using the pro-
jected-area distribution of the non-spherical particles as the size distribution for averaging the
spherical results. Since many of our particles exhibit 10% deviations from a sphere, we had something
like this in mind in picking Ax = 0.1x. However, in detail, Goedecke’s idea would seem more ap-
plicable to large particles (x > >1) than to the ones we studied, because projected area and scattering
cross-section are closely related only in the geometric-optics limit.
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size parameter x = 15. Shows the relatively small effect of size-averaging on
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Since we will not be showing size-averaged scattered intensities, it is worth noting that the effect of
size-averaging is much greater on i, than on iy. For i, it is typical for down-spikes to be raised by fac-
tors of 5 to 10, and sometimes even by factors of 100. For both intensities, the smoothing is usually
greatest in the angular region 80-150 degrees. The oscillatory structure in the 0-80 and 150-180 degree
regions is more resistant to size-averaging.

Looking ahead to Figures 9 and 10, the reader can see examples of exact and Ax = 0.1x size-averaged

spherical phase functions and degrees of polarization.

Table 2. Mie single-scattering albedo (w) and asymmetry factor (g): exact, Ax = 0.7393 size-averaged
and Ax = 0.1x size-averaged. x is Mie size parameter.

X i Wavg Wavg g 8avg Bavg
(Lx=0.74) (Lx=0.1x) (Ax=0.74) (Lx=0.1x)
1 0.787 0.824 0.788 0.200 0.304 0.203
2 0.907 0.908 0.907 0.634 0.640 0.634
3 0.922 0.919 0.921 0.747 0.748 0.747
4 0.910 0.909 0.909 0.772 0.772 0.772
5 0.873 0.877 0.876 0.751 0.751 0.752
6 0.819 0.816 0.816 0.701 0.686 0.690
7 0.736 0.729 0.730 0.611 0.604 0.604
8 0.678 0.688 0.689 0.612 0.631 0.633
9 0.707 0.712 0.713 0.748 0.748 0.749
10 0.742 0.738 0.737 0.829 0.827 0.826
12 0.709 0.708 0.708 0.860 0.859 0.859
14 0.638 0.637 0.639 0.838 0.837 0.839
15 0.647 0.645 0.645 0.847 0.850 0.852
16 0.660 0.663 0.663 0.868 0.871 0.871
18 0.656 0.654 0.653 0.884 0.883 0.883
20 0.600 0.600 0.603 0.875 0.876 0.878
22 0.609 0.608 0.608 0.900 0.899 0.899
24 0.612 0.612 0.609 0.913 0.913 0.912







IX. SINGLE-SCATTERING ALBEDO AND ASYMMETRY FACTOR

Single-scattering albedo and asymmetry factor, aside from their intrinsic interest, play a crucial role in
all simple models of multiple scattering (e.g., Joseph, et. al., 1976). Figure 7 shows percentage dif-
ferences between spherical and nonspherical single-scattering albedo. Figure 8 is similar, but for the
axymmetry factor. Results are shown only for the MIXTURE, and for T, particles up through T,; we
had much less data for Tg, Tg and T, particles, and it showed deviations of less than 1-2% from the
spherical results. Because of computer time limitations, we could not collect enough data to make
these curves smooth; however, we believe that they are not seriously aliased, even if they present a
rather unattractive appearance.

Percentage differences for the MIXTURE (Figs. 7a and 8a) are with respect to exact (dotted line), Ax
= 0.1x size-averaged (dashed line) and Ax = 0.7393 size-averaged (dot-dash line) spherical results. It
doesn’t matter much which Mie curve is used, as the reader can easily see, and the differences from the
sphere are generally below 3%.

In Figs. 7(b-d) and 8(b-d), percentage differences for T, particles are only with respect to the Ax =
0.1x size-averaged Mie results; on each of these plots, the dotted, dashed, and dot-dash lines represent
the various|e| values shown, in increasing order. In the T, and T, cases, there are two of each kind of
curve; one is for the positive value of ¢, the other for the negative value. The two curves are not
separately identified because they are so close to one another.

The spherical-nonspherical differences in Figs. 7 and 8 were usually much greater than the spread be-
tween the exact and size-averaged spherical curves in Fig. 5. Also, spherical and nonspherical asym-
metry factors almost always differed in the second decimal place, so the angular-quadrature error in
computing nonspherical g’s (in the 3rd decimal place) is not significant either. This gives our conclu-
sions about the effect of nonsphericity on w and g a certain robustness.

The ‘noise level’ on the percentage differences in Figs. 7 and 8 is somewhere between 0.1 and 1%. The
lower limit has to be 0.1% because we always rounded the nonspherical quantities to 3 significant
digits. The upper limit is due to obtaining only ‘fair’ rather than ‘good’ EBCM convergence in some
cases.

Because we only present plots of spherical-nonspherical differences in w and g, and because plots of w
and g are difficult to read to 3 significant digits, we have tabulated them, as well as Q,, and Q,,, for
each Chebyshev particle studied, in Table 3. (Q,., is necessary to convert phase functions back to in-
tensities; see Eq. 55.) The particular value of ‘x’ at which each tabular column ends generally
represents the largest integer for which we were able to obtain at least ‘fair’ convergence in the EBCM.
For ¢ = 0.05 (and sometimes even for e = 0.10), however, calculations are stopped before this barrier
is reached.
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Figure 7. Percentage difference between spherical and nonspherical single-scattering albedo,
vs. size parameter x: (@) MIXTURE (a uniform blend of all particle shapes considered);
(b) T, for e = 0.05,0.10, and 0.15; (c) T, fore = —0.10, +0.10, and —-0.20, +0.20; (d) T,
for e = 0.05, +0.05, —0.10,+0.10, and —0.15,+0.15. In (a), differences are with respect
to exact (dotted line), Ax = 0.1x size-averaged (dashed line), and Ax = 0.7393 size-
averaged (dot-dash line) spherical results. In (b-d), differences are only with respect to
the Ax =0.1x size-averaged spherical results; the dotted, dashed, and dot-dash lines
represent the various e values shown, in increasing order. Dog-legs are due to large
steps between computations; there may be finer structure not revealed by these plots.
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Figure 8. Percentage difference between spherical and nonspherical asymmetry factor, vs. size
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parameter. Same cases, and same meanings for the lines, as in Fig. 7.
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The set of data in Table 3 is one of the key products of this study. It is much more extensive than any
which has been computed before; and the entire experimental literature does not contain even 1/10
this much data on nonspherical w and g. Furthermore, together with Asano’s (1980) study for
spheroids, this is the only study to show the effect of nonsphericity plus random orientation on both w
and g simultaneously.

It may be of some interest for the reader to compare these results with the predictions of the Pollack/
Cuzzi (1980) semi-empirical theory, which are that:

w. > w

spher (603)

nonspher

gnonspher < gspher (6Ob)

where ‘spher’ refers to an equal-volume sphere, as in our case.
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Table 3. Scattering efficiency Q,,, absorption efficiency Q,, single-scattering albedo w, and
asymmetry factor g for spheres{(S),Ax = 0.1x size-averaged spheresA(Savg), and various
Chebyshev particles as a function of size parameter x (equal-volume size parameter
_for the nonspherical particles).
SCATTERING EFFICIENCY Q.

X S Save T5(0.05) T4(0.10) T5(0.15) T,(-0.10) T,(0.10)
2 1.66 1.66 1.65 1.65 1.63 1.64 1.64
3 3.05 3.05 3.05 3.05 3.04 3.04 3.04
4 3.54 3.57 3.54 3.53 3.53 3.57 3.59
5 3.25 3.21 3.24 3.23 3.22 3.24 3.26
6 2.34 2.29 2.35 2.38 2.42 2.37 2.36
7 1.51 1.55 1.52 1.59 1.73 1.62 1.62
8 1.35 1.39 1.38 1.47 1.61 1.42 1.44
9 1.65 1.65 — — — 1.64 1.64
10 2.00 1.96 1.98 1.99 2.03 1.92 1.90
12 1.78 1.79 1.78 1.75 1.71 1.79 1.82
14 1.35 1.36 1.35 1.36 1.42 1.42
15 1.41 1.43 1.43 1.46 1.45 1.43
16 1.57 1.57 1.56 1.59 1.54 1.51
18 1.57 1.56 1.56 1.53 1.53 1.56
20 1.30 1.31 1.29 1.30 1.37 1.38

X T,(-0.20) T,(0.20) T,(-0.05) T,4(0.05) T,(-0.10) T,(0.10)
2 1.61 1.59 1.65 1.65 1.64 1.64
3 3.00 3.00 3.05 3.05 3.04 3.04
4 3.59 3.65 3.55 3.55 3.57 3.57
5 3.26 3.32 3.25 3.24 3.26 3.23
6 2.48 2.54 2.35 2.35 2.36 2.38
7 1.82 1.87 1.54 1.55 1.60 1.65
8 1.57 1.55 1.38 1.37 1.47 1.45
9 — — — — 1.76 1.75
10 1.83 1.75 2.00 2.01 2.04 2.06
12 1.76 1.89 1.80 1.79 1.86 1.85
14 1.60 1.62 1.34 1.35 1.36 1.36
15 1.58 1.48 1.39 1.39 1.39 1.39
16 1.55 1.42 1.55 1.54 1.51 1.51
18 1.43 1.52 1.57 1.57 1.58 1.59
20 1.44 1.54 1.30 1.30 1.36 1.36
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Table 3 (Continued)

SCATTERING EFFICIENCY Q,

X T,4(-0.15) T4(0.15) Te(-0.05) T¢(0.05) T¢(-0.10) T(0.10)
2 1.62 1.61 1.65 1.65 1.63 1.63
3 3.02 3.02 3.06 3.06 3.06 3.06
4 3.59 3.58 3.55 3.55 3.57 3.57
5 3.28 3.22 3.24 3.24 3.25 3.23
6 2.40 2.46 2.35 2.35 2.37 2.37
7 1.68 1.76 1.54 1.54 1.62 1.61
8 1.60 1.61 1.38 1.38 1.46 1.46
9 — — — — 1.71 1.72

10 2.11 2.14 2.00 1.99 2.04 2.00

12 1.93 1.79 1.80 1.84 1.86

14 1.37 1.38 1.50 1.51

15 1.44 1.44 1.55 1.55

16 1.59 1.59 1.65 1.65

X T4(-0.05) T4(0.05) Tg(-0.10) T4(0.10)

2 1.65 1.65 1.62 1.61
3 3.06 3.05 3.05 3.05

4 3.56 3.56 3.59 3.61
5 3.24 3.25 3.23 3.26
6 2.35 2.35 2.37 2.36
7 1.53 1.53 1.59 1.58
8 1.36 1.37 1.42 1.43
9 — — —

10 2.00 2.00 1.98
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Table 3 (Continued)
ABSORPTION EFFICIENCY Q,;,

X S Save T;(0.05) T5(0.10) T5(0.15) T,(-0.10) T,(0.10)
2 .170 170 0.170 0.169 0.168 0.169 0.169
3 259 .261 0.259 0.259 0.260 0.259 0.260
4 352 357 0.352 0.352 0.352 0.355 0.358
5 471 455 0.467 0.458 0.448 0.456 0.450
6 518 515 0.519 0.518 0.513 0.514 0.506
7 .543 573 0.552 0.566 0.576 0.565 0.579
8 .641 .628 0.641 0.642 0.640 0.625 0.632
9 .684 .664 — — — 0.679 0.661

10 .695 702 0.703 0.713 0.720 0.701 0.705

12 729 .740 0.740 0.764 0.779 0.745 0.747

14 765 769 0.788 0.810 0.783 0.782

15 768 784 0.795 0.828 0.793 0.793

16 .808 .800 -0.824 0.845 0.808 0.809

18 .823 .830 0.848 0.874 0.841 0.839

20 .865 .861 0.875 0.897 0.866 0.866

X T,(-0.20) T,(0.20) T,(-0.05) T,(0.05) T,4(-0.10) T,(0.10)
2 0.167 0.168 0.170 0.170 0.169 0.169
3 0.258 0.264 0.259 0.259 0.260 0.260
4 0.357 0.362 0.353 0.353 0.355 0.355
5 0.444 0.434 0.466 0.466 0.456 0.455
6 0.519 0.516 0.516 0.518 0.509 0.521
7 0.570 0.574 0.549 0.551 0.563 0.563
8 0.623 0.628 0.641 0.628 0.644 0.620
9 — — — — 0.686 0.697

10 0.708 0.707 0.695 0.704 0.711 0.722

12 0.757 0.763 0.765 0.761 0.777 0.776

14 0.797 0.799 0.782 0.785 0.824 0.826

15 0.812 0.814 0.814 0.807 0.840 0.842

16 0.829 0.827 0.831 0.835 0.854 0.858

18 0.857 0.853 0.859 0.856 0.886 0.892

20 0.881 0.878 0.887 0.887 0.913 0.912
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Table 3 (Continued)

ABSORPTION EFFICIENCY Q,,

X T,(-0.15) T,0.15) T,(-0.05) T,(0.05) T,(-0.10) T,(0.10)
2 0.169 0.168 0.170 0.170 0.169 0.169
3 0.261 0.260 0.259 0.259 0.260 0.260
4 0.356 0.355 0.353 0.353 0.354 0.354
5 0.449 0.445 0.468 0.468 0.462 0.459
6 0.504 0.526 0.520 0.521 0.520 0.526
7 0.572 0.567 0.549 0.550 0.564 0.571
8 0.647 0.636 0.635 0.632 0.632 0.629
9 — — — — 0.697 0.681

10 0.732 0.738 0.705 0.704 0.737 0.735

12 0.789 0.761 0.761 0.791 0.777

14 0.795 0.795 0.835 0.840

15 0.814 0.816 0.860 0.857

16 0.835 0.833 0.879 0.874

X T4(~0.05) T4(0.05) Ty(-0.10) T4(0.10)

2 0.169 0.170 0.168 0.169
3 0.259 0.259 0.259 0.259
4 0.353 0.351 0.350 0.351
5 0.468 0.467 0.458 0.459
6 0.522 0.522 0.526 0.527
7 0.550 0.550 0.563 0.566
8 0.631 0.634 0.624 0.636
Y — - J—
10 0.704 0.702 0.711
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Table 3 (Continued)
SINGLE-SCATTERING ALBEDO

X S Save T5(0.05) T5(0.10) T5(0.15) T,(-0.10) T,(0.10)
2 907 907 0.907 0.907 0.907 0.907 0.207
3 922 921 0.922 0.922 0.921 0.921 0.921
4 .909 909 0.910 0.909 0.909 0.910 0.909
5 873 .876 0.874 0.876 0.878 0.877 0.879
6 .819 .816 0.819 0.821 0.825 0.822 0.823
7 735 730 0.734 0.737 0.750 0.741 0.737
8 677 .689 0.683 0.696 0.716 0.694 0.6958
9 .708 13 — — — 0.707 0.713
10 742 737 0.738 0.736 0.738 0.733 0.729
11 740 736 — — —_ 0.733 0.731
12 710 708 0.706 0.696 0.687 0.706 0.709
13 660 .666 — —_ 0.670 0.673
14 .639 639 0.631 0.627 0.645 0.645
15 647 .645 0.643 0.638 0.646 0.643
16 .661 .663 0.654 0.653 0.656 0.651
17 670 667 — — 0.657 0.657
18 657 652 0.648 0.636 0.645 0.650
19 625 625 — —_ 0.627 0.633
20 600 .603 0.596 0.592 0.613 0.614

X T,(-0.20) T,(0.20) T,(-0.05) T,(0.05) T,(-0.10) T40.10)
2 0.906 0.904 0.907 0.907 0.907 0.907
3 0.921 0.919 0.922 0.922 0.921 0.921
4 0.910 0.910 0.910 0.910 0.910 0.910
5 0.880 0.884 0.875 0.874 0.877 0.877
6 0.827 0.831 0.820 0.819 0.823 0.820
7 0.762 0.765 0.737 0.738 0.740 0.746
8 0.716 0.712 0.683 0.686 0.695 0.700
9 — — — — 0.720 0.715
10 0.721 0.712 0.742 0.741 0.742 0.740
11 — — — — 0.735 0.738
12 0.699 0.712 0.702 0.702 0.705 0.704
13 —_ —_— —_— — 0.659 0.655
14 0.668 0.670 0.631 0.632 0.623 0.622
15 0.661 0.645 0.631 0.633 0.623 0.623
i6 0.652 0.632 0.651 0.648 0.639 0.638
17 —_— - o —_ 0.647 0.646
18 0.625 0.641 0.646 0.647 0.641 0.641
19 — — —_— — 0.621 0.621
20 0.620 0.637 0.594 0.594 0.598 0.599
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Table 3 (Continued)

SINGLE-SCATTERING ALBEDO

[Ty

T,(-0.15) T,(0.15) T4(-0.05) T4(0.05) T,(-0.10) T,(0.10)
0.906 0.906 0.907 0.907 0.906 0.906
0.920 0.921 0.922 0.922 0.922 0.922
0.910 0.910 0.910 0.910 0.910 0.910
0.880 0.879 0.874 0.874 0.876 0.876
0.826 0.824 0.819 0.819 0.820 0.818
0.746 0.756 0.737 0.737 0.742 0.738
0.712 0.717 0.685 0.686 0.698 0.699
0.729 0.731 — — 0.710 0.716
0.742 0.744 0.739 0.739 0.735 0.731
0.737 0.740 — — 0.733 0.731
0.710 0.702 0.703 0.699 0.705
0.666 — — 0.664 0.667
0.633 0.634 0.642 0.643
0.639 0.638 0.643 0.644
0.656 0.656 0.652 0.654
0.650 0.651
Ty(-0.05) T4(0.05) Ty(-0.10) T4(0.10)
2 0.907 0.907 0.906 0.905
3 0.922 0.922 0.922 0.922
4 0.910 0.910 0.911 0.911
5 0.874 0.874 0.876 0.877
6 0.818 0.818 0.818 0.817
7 0.736 0.736 0.739 0.736
8 0.683 0.684 0.695 0.692
9
0

0.740 0.740 0.736
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Table 3 (Continued)
ASYMMETRY FACTOR g

X S Save T4(0.05) T;(0.10) T5(0.15) T,(-0.10) T,(0.10)
2 .634 634 0.634 0.635 0.636 0.636 0.637
3 747 747 0.747 0.746 0.746 0.746 0.749
4 72 72 0.771 0.768 0.766 0.770 0.773
5 751 752 0.749 0.745 0.743 0.751 0.755
6 .701 .690 0.700 0.696 0.691 0.696 0.695
7 611 .604 0.611 0.613 0.621 0.618 0.611
8 .612 .633 0.614 0.623 0.640 0.633 0.634
9 .748 749 — — — 0.738 0.739
10 .829 .826 0.822 0.801 0.786 0.816 0.815
11 .860 .857 — — — 0.848 0.849
12 .860 .859 0.854 0.830 0.801 0.853 0.857
13 .843 .845 — — 0.845 0.849
14 .838 .839 0.839 0.820 0.842 0.844
15 .847 .852 0.855 0.845 0.854 0.852
16 .868 .871 0.874 0.867 0.868 0.866
17 .884 .882 — — 0.878 0.877
18 .884 .883 0.886 0.878 0.880 0.882
19 .876 .879 — — 0.880 0.882
20 .875 .878 0.877 0.874 0.881 0.882

X T,(-0.20) T,(0.20) T,4(~0.05) T,(0.05) T,(-0.10) T,(0.10)
2 0.638 0.645 0.636 0.636 0.639 0.639
3 0.741 0.752 0.749 0.749 0.751 0.752
4 0.771 0.775 0.772 0.772 0.774 0.775
5 0.757 0.762 0.751 0.750 0.750 0.750
6 0.707 0.716 0.696 0.696 0.690 0.688
7 0.653 0.666 0.606 0.607 0.600 0.611
8 0.659 0.657 0.613 0.613 0.617 0.618
9 — — — — 0.727 0.719
10 0.792 0.780 0.820 0.817 0.804 0.798
11 — — — — 0.835 0.832
12 0.834 0.851 0.852 0.852 0.834 0.833
13 — — — — 0.818 0.813
14 0.851 0.859 0.834 0.834 0.811 0.805
15 0.861 0.857 0.850 0.850 0.829 0.826
16 0.868 0.860 0.875 0.874 0.856 0.852
17 — — — — 0.874 0.870
18 0.874 0.882 0.890 0.890 0.881 0.880
19 — —_ — — 0.882 0.881
0.889 0.893 0.886 0.885 0.881 0.880

20
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ot

Table 3 (Continued)
ASYMMETRY FACTOR g

X T,(-0.15) T4(0.15) T4(-0.05) T4(0.05) Te(-0.10) T4(0.10)

2 0.644 0.645 0.637 0.637 0.644 0.644
3 0.754 0.755 0.749 0.749 0.753 0.753

4 0.775 0.778 0.773 0.773 0.777 0.777

5 0.751 0.751 0.752 0.753 0.754 0.753

6 0.688 0.687 0.698 0.698 0.691 0.693

7 0.603 0.622 , 0.607 0.607 0.602 0.607

8 0.626 0.630 0.605 0.607 0.605 0.614

9 e — — —_ 0.705 0.712
10 0.789 0.781 0.817 0.817 0.788 0.787
i1 0.818 0.813 —_— —_ 0.819 0.821
12 0.820 0.845 0.845 0.809 0.826
13 0.808 — — 0.816 0.816
14 0.838 0.836 0.822 0.820
15 0.853 0.852 0.841 0.840
16 0.875 0.873 0.862 0.860
X T5(-0.05) T5(0.05) Tg(-0.10) T5(0.10)

2 0.637 0.637 0.644 0.647

3 0.750 0.750 0.756 0.756

4 0.774 0.774 0.776 0.778

5 0.751 0.751 0.750 0.753

6 0.700 0.701 0.694 0.694

7 0.613 0.614 0.607 0.608

8 0.610 0.610 0.602 0.603

9

0

0.820 0.818 0.787




X. SCATTERED INTENSITIES IN FIXED ORIENTATION

One goal of this research was to provide a set of results against whicl. the validity of the EBCM could
be tested, either by other exact theoretical techniques or by laboratory experiments. All our random-
orientation results are available for this purpose. However, they may not be the best choice, for
several reasons:

e random-orientation intensities are rather smooth functions of angle; correctness of the
EBCM could be more incisively tested against more highly structured angular patterns, dif-
fering more from a sphere;

e random-orientation results depend to some extent on the quadrature over orientation, which
introduces an unknown error;

e comparison with microwave-analogue measurements (see Appendix A) would be easier in
fixed orientation;

® it is intensities which are measured in the laboratory, while all our random-orientation plots
are for phase function and degree of polarization; it requires some effort to deconvolve in-
tensities from these plots

e our random-orientation results are for unpolarized incident radiation, whereas laboratory
sources (esp. lasers) are frequently polarized.

Hence, we have decided to include a small selection of fixed-orientation intensities, using both parallel
and perpendicular polarized incident light, in Appendix B. These are for Chebyshev particles with e =
0.10 and x = 5,10. Shapes were chosen so that the EBCM could be tested for convex [T,], concave
[T;, T4, Tgl, and asymmetric [T;] particles. Two fixed orientations for which no cross-polarization oc-
curs were chosen: nose-on and ‘perpendicular-to-nose-on’ (6, = 90°, ¢, = 0).

Solid lines in App. B refer to the equal-volume sphere; dotted lines to the nose-on orientation; and

dashed lines to the ‘perpendicular-to-nose-on’ orientation. The ‘fair’ convergence criterion was not
used to produce any of these results.
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XI. PHASE FUNCTION AND DEGREE OF POLARIZATION IN RANDOM ORIENTATION

MIXTURE

Figures 9 and 10 show the phase function (55) and degree of polarization (58), respectively, for the
MIXTURE of 23 particles. These are the most general results of our study, vis a vis the ‘net’ effect of
nonsphericity plus random orientation on the angular variation of scattering.

The arrangement of these plots is similar to that in Appendices C and D (described below). Each phase
function plot (for 60-180°) is on the same page with its corresponding percentage-difference-from-a-
sphere plot (for 0-180°). The MIXTURE phase function for x = 2,3,4,5,6,8,10,15, and 20 (solid line)
can be compared with the exact (dotted line) and Ax =0.1x size-averaged (dashed line) spherical phase
functions. The solid, dashed, and dotted lines have the same meaning on the degree of polarization
plots (Fig. 10). The percentage differences in Fig. 9 are with respect to the exact (dotted) and size-
averaged (dashed) Mie phase functions.

Although we calculated results for many more integer values of ‘X’ in the range 10-25 than we show
here, the decision was made to omit these results because, too often, the changes from one value of ‘x’
to the next were not noteworthy.

The two spherical curves in Figure 9 bear out our remarks in Sec. VIII, to the effect that down-spikes
in the angular range 80-150° tend to be washed out by size-averaging. One should be cautious of the
visual impression that size-averaging biases the phase function upward, however; often, this is due on-
ly to plotting on a logarithmic vertical scale.

T, particles

The bulk of our results for phase function (60-180° only) and degree of polarization are contained in
Appendices C and D, respectively. On each such plot, the solid line shows the Ax =0.1x size-averaged
spherical result, while the dotted, dashed, and dot-dash lines refer to T, particles with successively in-
creasing values of |e|. Note the change of convention relative to the MIXTURE; there, we used a
solid line for the nonspherical result because we wanted to show two spherical results (exact and size-
averaged).

These Appendices were designed to allow the reader to flip through them rapidly, generating almost a
moving picture of spherical-nonspherical differences as a function of particle size. Thus, a rapid feel-
ing for the results can be obtained. In Appendix C, the phase functions are plotted at the top of each
page, and their percent differences from a sphere at the bottom; thus, the ‘action’ can be stopped at
any point to compare the two.

PRECEDING PAGE BLAMY MOY FiLbED
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MIXTURE x=2.
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Figure 9. 60-180 degree phase function for nonspherical MIXTURE (solid line), exact sphere
(dotted line), and Ax = 0.1x size distribution of spheres (dashed line) for x =
2,3,4,5,6,8,10,15, and 20. Companion plots show percent differences of the
nonspherical phase functions from the spherical ones for the full range of angles
(0-180 degrees); interrupted lines refer to the same spherical cases as in the
corresponding phase function plot. Note how size-averaging the spherical results
frequently mimics the effect of nonsphericity.
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MIXTURE x=4.
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MIXTURE x=6.
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x=10.
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SCATTERED INTENSITIES IN FIXED ORIENTATION
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Figure 10. Degree of polarization for nonspherical mixture (solid line), exact sphere {dotted line),
and Ax = 0.1x size distribution of spheres (dashed line) for x = 2,3,4,5,6,8,10,15
and 20. Note how, as in Fig. 9, size-averaging the spherical results frequently mimics
the effect of nonsphericity.
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The organization of the Appendices can be likened to a sequence of 3 nested loops. The idea was, to
group the most similar results closest together, then the next most similar, and so forth. Thus, the in-
nermost ‘loop’ is over the magnitude of the deformation parameter e of a Chebyshev particle; results
from those values of e for which the EBCM converged are plotted on the same frame.

The reason for grouping different values of e closest together, is to test our intuitive notions of pertur-
bation theory. When e doubles, so these notions go, the differences from the spherical phase function
and degree of polarization should double also. Thus, dividing the percent differences by the cor-
responding |e| should cause them to fall almost on top of one another. This does not in fact happen
— far from it — else we should have presented the percentages in this way.

The middle ‘loop’ is over particle type. Since T, * and T, particles bear a subtle similarity, as describ-
ed in Sec. II, they are placed on facing pages, for easy comparison. The first particle in each group is
T,, since it is the only unsymmetric one; then the other T,’s follow in order of n — 2, 4, 6, 8. Ty,
results are omitted because only the |e| = 0.05, x < 8 cases could be converged, and they did not dif-
fer much from a sphere.

The outermost loop is over size parameter x (from 2 to 20), because the biggest changes occur as size
changes. As noted above, we omitted all of our results from x = 11 to x = 25 except x = 15 and 20,
because we were unable to see big enough differences among the x > 10 plots — just an increasingly
complex jumble of oscillations. We feel that further filtering — perhaps the subtraction of a common
oscillatory term from all curves — is necessary to make any sense out of this data. Or perhaps phase
function and degree of polarization are the wrong quantities to look at; they just do not make
spherical-nonspherical differences stand out in stark relief.

Until a better way is found to look at spherical-nonspherical differences for x > 10, our use of the
EBCM all the way up to x = 25 (no one had gone beyond x = 10 before) remains more of a fours de
Jforce than a way to gain fundamentally new insights.

We tried to keep the vertical-axis range of our plots as small as possible, in order to magnify spherical-

nonspherical differences. At the same time, we wanted to avoid having a different scale for every plot.

The compromise we struck was to fix the range for large groups of plots (for example, at one full

decade), but to slide this range up or down to match the quantities being plotted, as necessary. This

way, the spread between curves on neighboring plots is comparable, even when the vertical scales are
" not identical. '

It was also the question of vertical resolution which drove us to plot phase function separately for
0-60° and 60-180°. The forward peak of the phase function takes several decades to contain it, yet
spherical-nonspherical differences are all but negligible there. Meanwhile, the important differences
in side-scattering were shrunk to Lilliputian proportions.

Note that the percentage difference plots in App. C change from a linear to a logarithmic vertical scale
past x = 6. This is because the percentages become very large — over 100% in many cases — in spite
of the relatively small deviations from sphericity. Percentages below about 1%, we regard as in the
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noise level, and have explicitly accounted for this in the logarithmic plots by starting the scale at 1%
(which is labelled ‘0).

0-60° phase function

We present in Fig. 11 only a sparse sampling of our phase function results in the angular range 0-60°.
(The corresponding percentage differences from a sphere for 0-60° can be found in Appendix C.) The
meanings of the various lines are the same as in Fig. 9 (for the MIXTURE cases) and as in Appendix C
(for the T, cases).

The reason for omitting much of this data, is simply that it proved uninstructive. After all, 0-60° is
primarily a diffraction region, dominated by ‘rays; that do not actually ‘hit’ a particle but merely bend
around it. (One cannot really talk of ‘rays’ at x = 1, but already by x = 10 the concept has some utility.)
These ‘rays’ are insensitive to particle shape and refractive index. They are sensitive primarily to pro-
jected area (van de Hulst, 1981); and the differences in projected area between randomly-oriented
Chebyshev particles and equal-volume spheres are minute.

Hence, as might be expected, the spherical and nonspherical phase functions tracked each other very
closely in this region — so closely, often, that they were indistinguishable. Some of the plots in Fig. 11
were selected to illustrate this point. The remainder show cases where the differences are more
substantial.

Acknowledgments: We are indebted to the National Center for Atmospheric Research for providing
the computer time for these studies; to David Kennison of NCAR for assistance with some of the
graphical presentations; and to NASA for publishing this compendium, whose completion spanned
over 5 years and hence came to be affectionately known as ‘The Eternal Project’.
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Figure 11, 0-60 degree phase function for nonspheres (solid line for MIXTURE, interrupted lines
in other cases — dotted, dashed, and dot-dash lines correspond to the various
¢ values shown, in increasing order) and for Ax = 0.1x size distribution of spheres
{dashed line for MIXTURE, solid line in other cases). Exact sphere result (dotted line) is
shown only for MIXTURE. Size parameters x =5, 10, 15, and 20 only.
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APPENDIX A: REVIEW OF NONSPHERICAL SCATTERING

There is barely a field of science or engineering that does not have some interest in scattering of radia-
tion. In many of these fields, the problem can be separated into single scattering by individual objects,
followed by multiple scattering among them. But rarely do scattering objects have those ideal shapes
— sphere, spheroid, circular cylinder, and so forth — that allow an ‘exact’ solution of Maxwell’s
Equations in infinite series of eigenfunctions (Morse and Feshbach, 1953, pp. 492-523).

Instead, the problem of scattering by rather nasty-looking shapes constantly presents itself. Mostly,
the effect of shape is ignored; as van de Hulst (1981) says, ‘‘the formulae for spherical particles are us-
ed in 95% of all applications.’”” Assuming sphericity is certainly the path of least resistance;
well-documented computer algorithms for spherical (‘Mie’) scattering are available (Wiscombe, 1979,
1980) and have been available since Dave produced the first ones in 1968. Circular cylinder and
spheroidal algorithms are also available, although less widely used.

But the assumption of sphericity is rarely made after first studying the effect of nonsphericity, then
discounting it. Instead, it is almost invariably made a priori. Hence, there is an increasing desire to go
back and check this assumption, and find out where it breaks down.

The questions one asks about nonspherical scattering depend, of course, on one’s research interests.
Those who use lidar and radar to sound the atmosphere, for example, want to know only about the in-
tensity and polarization in direct backscatter. Military planners want to block enemy radar and com-
munications with airborne ‘chaff’, whose shape (among other factors) is adjusted to obtain the max-
imum extinction cross—section with the minimum amount of material.

Medical researchers want to side-scatter laser light off blood samples and determine the state of the
suspended cells. And they want to know the absorption cross-section of human organs in the
microwave region. Aerosol specialists want to infer aerosol size distributions from the angular
distribution of near-forward-scattered light. Climate theorists want to know how ice crystals in cirrus
clouds control the Earth’s radiative fluxes.

Each group has a different set of questions it wants answered. We shall begin by reviewing the ques-
tions that are being asked about nonspherical scattering, in order to set the stage for the following
discussions of experimental and theoretical results.

A.1 CURRENT QUESTIONS

Neglecting quantum and non-linear effects, the questions revolve around one or more of the follow-
ing list of classical scattering quantities, arranged in order of increasing complexity:

extinction cross-section

scattering cross-section
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absorption cross-section
single-scattering albedo
radiation pressure cross-section
asymmetry factor
unpolarized scattered intensity at any angle from the direction of the incident radiation
unpolarized phase function
Legendre moments of unpolarized phase function

polarized scattered intensities, parallel and perpendicular to the plane of scattering (the plane of
the incident and scattered beams)

Stokes parameters
Mueller matrix
Legendre moments of Mueller matrix elements

To add to this list, there are different possible states of the incident radiation: plane wave, spherical
wave, finite beam, and so forth. And while the above quantities all traditionally refer to the ‘far—field’
{far enough from the particle that radial components of the scattered field can be neglected), there are
also important problems of near-field scattering as well — for example in paint or snow.

The orientation of the particle is another complexifying factor. Some particles are simply in fixed
orientations, as in microwave-analogue experiments. Others are partially randomly oriented, as ice
needles in a cirrus cloud, or falling raindrops. Most are completely randomly oriented, as aerosol
particles.

Generally, as one moves down the above list, the effect of nonsphericity may be expected to become
moré and more important. Those who are interested only in cross-sections may be justified in ignoring
nonsphericity in 95% of the cases. On the other hand, those who need the lower right-hand 2x2 sub-
matrix of the Mueller matrix may find it almost impossible to ignore nonsphericity. Those whose
problem areas lie in between, are in a grey area where they may or may not ignore it, depending on the
size, deviation from sphericity, and refractive index of their scattering objects.

Refractive index plays a particularly important role. When the real index differs significantly from
unity, and the imaginary index is nearly zero, nonsphericity exerts its maximum effect. On the other
hand, when real index is near unity (as for a bacterium suspended in water), or the imaginary index is
large (as for a carbon particle), nonsphericity can often be safely neglected.
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Questions of nonsphericity may also be embedded in a larger context: for example, multiple scatter-
ing, or size-averaging. Size-averaging and shape-averaging wash out the fine details of nonspherical
scattering, making the ensemble (we assume) look more like a collection of spheres. And the greater
the extent of multiple scattering, the less the fine details of the phase function matter; only the cross-
sections and the first few Legendre moments play a role. In such settings, nonsphericity may be more
or less important, depending on the width of the size distribution and the total optical thickness of the
scattering medium.

Looking at the list of scattering quantities above, and the variety of complexifying factors, it is clear
that a program of research in nonspherical scattering must be carefully focussed to address very
specific questions. Otherwise, it risks being swamped by the sheer number of possible variables, and
the variety of parameters which can influence those variables. Up to the present, the foci have been:

e Can the nonspherical particle be replaced by an ‘equivalent sphere’? If so, which equivalent
sphere (equal-volume, equal-area, . . .) is best?

e Can we make simple, empirical adjustments to Mie theory‘to mimic nonspherical scattering?

e When Mie theory just won’t work, can we use either an exact solution for cylinders or
spheroids, or a small- or large-particle approximation?

e Can we discern general features of nonspherical scattering just by looking at a few canonical
shapes (in the lab or theoretically)?

e What impact does nonsphericity have on our remote sensing capabilities, ranging from in-
terstellar dust effects on astronomical observations to ice particle effects on radar?

The general tenor of the questions in nonspherical scattering is therefore somewhat as follows: What is
the least amount of shape information we need to know? Can we just make simple modifications to
existing theories to get what we want? For the fact of the matter is, few people outside of elecirical
engineering (where unusual antenna shapes are routinely studied) want to know the exact scattering
from a doughnut or a dodecahedron in fixed orientation. They just want to know the general effect of
nonsphericity, shorn of its details. In what follows, this is the tack we shall take in describing ex-
periments and theoretical results.

A2 MEASUREMENTS

We will survey only a selection of measurements specifically aimed at studying nonsphericity. There
are a large number of instruments which routinely measure the scattering from nonspherical particles.
Yet these are of no use for our purposes, because they all make simple empirical adjustments to ac-
count for nonsphericity (if they account for it at all). Thus, their goal is not to study nonsphericity, but
to get rid of it, like an unwelcome dinner. guest.
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Traditionally, the measurements have tended to fall into two categories:
o visible light scattering from micron-sized particles
» microwave scattering by centimeter-sized objects

In the future, much more of the electromagnetic spectrum will be available, using tuneable lasers and
cryogenically cooled detectors; but until recently, experimenters were strongly constrained by the
relatively primitive state of source and detector technology, and by the lack of windows in the spec-
trum of the Earth’s atmosphere.

Visible light scattering experiments involve relatively simple and cheap instrumentation, and have just
as frequently been done in the field as in the laboratory. Microwave scattering experiments, by con-
trast, require expensive instrumentation and large laboratories, and have as a consequence been
undertaken by only a few groups.

Microwave

The ““microwave-analogue method> was pioneered by Greenberg (1960, 1961), with the application
of interstellar dust in mind. The idea was, to manufacture centimeter-sized scattering objects with
desired shapes and refractive indices. Then, in a large, anechoic chamber, perhaps 100 feet across, one
directed a microwave beam at the object and measured the scattering at all angles. By special tech-
nigues, even the extinction cross-section could be measured; and for independent confirmation, one
could place temperature sensors in the object and measure the Joule heating directly (to get absorption
cross—section).

The ‘analogue’ part of the method meant simply that the results could be extrapolated to smaller or
larger sized scatterers, keeping the ratio size/wavelength fixed, in much the same way as
aerodynarmicists extrapolate wind tunnel model results to full-sized aircraft.

Very few published results came out of Greenberg’s effort. Greenberg, et. al. (1971) presented a few
measurements of extinction cross-section for spheroids, while Greenberg (1972) made measurements
for stacked cylinder configurations. Wang (1980) has given extinction cross-sections for aggregates of
2, 4, and 8 spheres, as well as stacked cylinders.

Waterman (1965, 1971) measured scattered microwave intensities from hemispherically capped
cylinders and cones made of metal, primarily in order to verify his EBCM calculations.

Zerull (1976) and Schuerman, et. al. (1981) have published by far the largest collection of microwave
analogue measurements. They measured scattered intensities from roughened spheres, cubes, oc-
tahedra, and irregular convex and concave particles, with various effective size parameters up to 20.
Comparing to equal-volume spheres, their main conclusions were that:

¢ for size parameters X < 6; agreement is within a factor of two; as x increases beyond 6, dif-
ferences escalate dramatically
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e nonspherical curves have greatly damped oscillations as a function of angle

® agreement is very good in the forward peak (scattering angles 0-30 °), with nonspherical par-
ticles probably scattering somewhat less than spheres there

® nonspherical particles side-scatter (angles 30-140°) as much as an order of magnitude more

© transparent nonspherical particles backscatter less, and their backscattering exhibits a much
milder variation with angle

® backscatter from opaque nonspherical particles shows an increase toward 180°, while the
backscattering for spheres shows no such rise

Zerull also found that concave particles tended to scatter more energy at most angles than
equal-volume convex particles.

Visible

Visible light measurements have traditionally suffered from an inability to calibrate the instrumenta-
tion using particles of known shape, size and refractive index. This problem has been somewhat
alleviated of late, however, as monodisperse polystrene latex spheres have been more reliably
manufactured (e.g., Bottiger, et. al., 1980). Also, the ‘vibrating-orifice aerosol generator’ can
generate guasi-monodispersions of various water-soluble aerosols (Pihnick, et. al., 1976; Coletti,
1984).

There are many more visible than microwave measurements, reflecting the relative simplicity and com-
pactness of sources and detectors at visible wavelengths; but these measurements are almost exclusive-
Iy of scattered intensity in the 10-170 degree angular range. The arrangement of source and detector
precludes measurements near the forward or backward directions, although Ashkin and Dziedzic
(1980, 1981), in their ‘optical levitation’ technique involving suspension of particles by laser light
pressure alone, have obtained direct backscatter measurements.

Lacking especially the important 0-10 degree scattering, it is difficult to obtain an accurate estimate of
scattering cross-section (and hence of phase function) from integrating the scattered intensities over
angle. As a result, there has been a tendency to normalize experimental results to the equal-volume
sphere phase function at 10°, which may introduce biases into some of the conclusions drawn. Recent-
ly, however, Coletti (1984) has used Fraunhofer diffraction theory to extrapolate his results into
0-10°, which goes far toward correcting this problem.

Extinction cross-section measurements have suffered from the classic problem that a detector with a
finite aperture picks up some of the diffracted light. Depending on how much of this light is detected,
the extinction can be mis-estimated by as much as a factor of two. Careful correction for the diffrac-
tion can eliminate this effect if the particle projected area is known, but too often this is not the case.
And with large errors in both extinction and scattering cross-section, almost nothing can be said about
absorption cross-section, and hence the single-scattering albedo.
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A number of early results on nonspherical scattering were reported at the First International Con-
ference on Electromagnetic Scattering in 1963. Hodkinson (1963) measured extinction and for-
ward-hemisphere scattering for quartz, diamond, flint, and coal dust particles of sizes 1 to 6 microns,
in aqueous suspension. The curve of extinction as a function of size parameter x (= 10-50) did not
display the large oscillations found in its Mie theory counterpart; instead, it just rose monotonically to
an asymptote. Fraunhofer diffraction plus geometrical optics for a sphere gave a fair fit to the results
for 0-60°, but not for 60-90°,

Napper and Ottewill (1963) measured scattered intensities from transparent cubes and octahedra of
size 0.5-0.7 microns. The octahedral and equal-volume Mie results agreed well in 60-120 degrees, but
the cubes side-scattered much more in both polarizations.

Huffman and Thursby (1969) measured scattered intensities from irregular ice crystals, as well as hex-
agonal plates and columns, in the angular range 10-150°. They showed that if they picked a size of
sphere with equal scattering at 10 degrees, that sphere scattered considerably less to the side (around
90°).

In a well-done classic study, Holland and Gagne (1970) measured the Stokes parameters of light scat-
tered from 0.1 to 1 micron plate-like, randomly oriented quartz crystals. They argue for comparing to
equal-projected-area rather than equal-volume spheres, which gives good agreement out to 40° but
underestimates the nonspherical side-scattering from there to 140 degrees or so. Past 140°, the situa-
tion was reversed: Mie theory was more than a factor of 3 higher. Waggoner, et. al. (1972) also found
that nonsphericity depressed backscattering, although it must be emphasized that neither study could
reach 180°.

Proctor and Harris (1974) and Proctor and Barker (1974) measured extinction for numerous size
distributions (spanning 0.1 to 50 microns) of quartz and diamond dust suspended in water. When they
plotted extinction vs. the phase shift parameter

o= 2Xx (r’ﬁ - 1)
they found no oscillations, unlike Mie theory; only the first main peak showed up.

Chylek, et. al. (1976) measured scattered intensities for transparent salt particles of size 0.04 to 2
microns. They showed a result which seemed contrary to everyone else’s, namely less side-scattering
for non-spheres than for spheres. However, it seems that they used polarized incident light, whereas
the previous measurements used unpolarized light. In fact, for one of the two incident polarizations in
Holland and Gagne’s experiment, a similar result to Chylek, et. al. was obtained. Pinnick, et. al.
{1976) continued this work, and found that either assuming voids in the particles, or averaging over
sizes in Mie theory, improved agreement with spherical results.

Perry, et. al. (1978) made one of the rare studies of the complete Mueller matrix. They used cubic salt
and rounded ammonium sulfate particles of size 0.1 to 2 microns. They found that Mie theory could
fit results for the rounded particles all the way up to x = 12, but for the cubes only up to x = 3. The
nonspherical particles always had higher side-scatter, and lower backscatter, than equal-volume
spheres.
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Bottiger, et. al. (1980) also measured the Mueller matrix. Their scatterers were not ‘natural’ aerosol
particles, but rather aggregates of 2, 3, or 4 polystyrene latex spheres, levitated electrostatically. They
thus achieved a much greater degree of shape control than in previous experiments. They found that
the strong angular oscillations in spherical Mueller matrix elements tend to be washed out — the more
50, the more spheres were in the nonspherical aggregate.

Saunders (1980) suspended 50 micron salt crystals on spider webs and measured scattered intensity at
180° as they hydrated. He also subjected the hydrating particle to an electric field, causing distortions
undetectable by microscope yet sufficient to cause large variations in backscattered intensity. This
proved that direct backscatter is very sensitive to even slight nonsphericity.

Coletti (1984) has scattered laser light from quasi-monodispersions of transparent salt particles and
absorbing dye particles. He finds almost a complete washing-out of the angular structure in Mie
theory, with the only remnant being the first side-peak in the diffraction region. The difference be-
tween the scattering for two orthogonal incident polarizations is also much less than in Mie theory,
and sometimes vanishes entirely.

Other sources of experimental information include Berry (1962), Donn and Powell (1963), Kirmaci
and Ward (1979), Sassen and Liou (1979), and the book edited by Schuerman (1980).

Summary

This is but a limited survey of nonspherical scattering experiments, and one oriented toward at-
mospheric science, but it should be sufficient to give a flavor of the results.

All the measurements to date show the following tendencies, relative to Mie theory:
Y damping of the oscillations vs. angle and vs. size parameter

(i) more side-scattering (60-120°), for unpolarized incident light

(iil) less backscattering (140-180°) unless the particle is opaque

(iv) nearly equal forward scattering (0-50°)

W) rapidly worsening agreement as size parameter increases past x = 3to 5

(vi) less difference between scattering resulting from the two possible orthogonal polarizations of
the incident radiation '

A3 THEORIES — EXACT OR NUMERICAL
In the past 25 years, numerical techniques for scattering and absorption by variously-shaped objects

“have proliferated like weeds. This is due to the relatively few exact solutions of Maxwell’s Equations
for the ‘simplest-case’ scattering problem (an incident plane wave). The exact solution for a circular
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cylinder in perpendicular incidence was given by Rayleigh in 1888, and extended to oblique incidence
by Wait in 1955 (see also Liou, 1972; Cohen and Alpert, 1979, 1980). Lorenz in the 1890’s, and in-
dependently Mie in 1908, and Debye in 1909, gave the solution for a sphere. Yeh (1965) gave a partial
solution for elliptic cylinders. Asano and Yamamoto (1975), in a much-acclaimed paper, gave the
solution for a spheroid.

1t is unlikely that this arsenal will be enlarged much in the future. The reason is simple: the solution
even for a spheroid is already so complex that it offers very little advantage over a good numerical
solution (except to furnish an independent check). The spheroidal solution suffers from numerical ill-
conditioning, preventing its use above size parameter x = 30 or so {Asano, 1979); and in random
orientation, it gobbles up monstrous amounts of computer time (Asano, 1980). Thus, even for this
simplest of all nonspherical shapes, the exact solution behaves in many ways like a numerical solution.

The better numerical solutions, in turn, behave in many ways like an ‘exact’ solution — for example,
by expanding the solution in a set of orthogonal eigenfunctions. This is all symptomatic, we believe, of
a general crumbling of the formerly rigid barriers between ‘exact’ and ‘numerical’ solutions.

For those who wish to pursue the question of ‘exact’ solutions in more detail, we offer a few more
remarks. The problem boils down to solving the ‘‘vector Helmholtz equation’” (Morse and Feshbach,
1933, Ch. 13) for the electric field. This is done by expanding the electric field in an infinite series of
eizenfunctions in one of the 11 coordinate systems in which the vector Helmholtz equation is
separable. (These series are double series in general; only for the sphere and circular cylinder do they
degenerate to single series.) The eigenfunctions used inside the scatterer are different from those used
outside of it, because the ‘inside’ expansion must be finite at the origin, while the ‘outside’ expansion
must produce outgoing waves at infinity.

Then, the usual Maxwell boundary condition (continuity of the tangential component of the electric
field) is applied on the surface of the scatterer; the inside and outside expansions must be ‘matched up’
there. This is where all the difficulties arise. In every case but the few which have already been solved,
the boundary condition leads to a set of equations which cannot be solved analytically. (If boundary
conditions were not the major hang-up, scattering from a cube, involving only simple Cartesian coor-
dinates, would have been solved long ago. Instead, it remains an unsolved problem.)

Those who wish to see exact solutions for metallic scatterers in various unusual coordinate systems
may consult the book by Bowman, et. al. (1969), where the main thrust is antenna design. Kouyoum-
jian (1965) gives the original references for solutions for metallic cones, disks, strips, and parabolic
cylinders. Of greater interest, perhaps, is the solution by Borghese, et. al. (1979) for an arbitrary
cluster of spheres; indeed, it seems to this author that sphere clusters would be excellent archetypes for
general nonspherical particles. Apparently, however, the solution of Borghese et. al. is nightmarish to
put into practice. ‘

Returning now to numerical solutions, we observe that they are primarily used in the range 1 to 10 of
size parameter (the so-called ‘resonance region’). Below 1, small-particle approximations are useful;
above 10, large-particle approximations. Very few numerical methods have been applied for size
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parameters above 15 or so, partly because, in general, the computational demands escalate as some
high power of size parameter.

Fortunately, the seemingly innumerable numerical techniques fall into two rather broad classes: dif-
ferential equation (including finite element) methods, and integral equation methods. Each ‘new’
technique is usually only a minor variation on a familiar theme. It is these themes which we shall at-
tempt to highlight here. But first we shall deal with a method that defies classification.

Purcell-Pennypacker: aggregates of dipoles

Purcell and Pennypacker (1977) suggested replacing a scatterer by a cubic array of point dipoles
spaced no farther than (wavelength/4 =) apart. Each dipole has a polarizability such that the correct
bulk refractive index is predicted by the Clausius-Mosotti relation. Exact account is taken of all
mutual dipole-dipole interactions, leading to a set of 6N linear equations for N dipoles.

In this method, the surface disappears, and with it all the nastiness associated with surface boundary
conditions. That is the beauty of the method. It is elegant in its simplicity, and therefore has attracted
a good deal of attention. Kattawar and Humphreys (1980), for example, have applied the method to
two nearby spheres.

Purcell and Pennypacker themselves considered no more than 100 dipoles. Yung (1978), however, has
been able to reformulate the method as a variational principle, enabling him to use the prodigicus
number of 16,000 dipoles {corresponding to a size parameter of about x = 6). Until computer memory
and speed become very much larger, x = 10 is probably a practical upper limit to this method.

Rayleigh hypothesis

Rayleigh was interested in the scattering of a plane wave from a sinusoidal diffraction grating. Be-
tween the peaks and valleys of the grating, there are both upgoing and downgoing waves. Rayleigh
made the hypothesis, now associated with his name, that only the upgoing wave eigenfunctions need
be considered in the solution. This hypothesis was accepted without question until about 1950, when it
became embroiled in controversy (Millar, 1973).

As it applies to scattering by a finite object, this controversy still raged through the 1960’s (Bates,
1969; Bates, et. al., 1973; Millar, 1969; Millar and Bates, 1970). Consider a scattering object C with its
inscribed (S;;) and circumscribed (S,,) spheres, as in Fig. A.1. At any point P outside C, but inside
Sout» there are both incoming and outgoing waves; after all, part of C is outside the sphere passing
through P, and thus can radiate inwards towards P . . . .

If we think in terms of rays, of course, this could only happen if C were concave. But, mathematically
speaking, the problem exists for all objects, and the solution ought really to be of the form (see Fig.

A.1 for region designations):

(Region I) expansion in eigenfunctions regular at the origin
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{Region II) expansion in incoming and outgoing eigenfunctions
{Region III) expansion in outgoing eigenfunctions.

For some very simple problems, including Rayleigh’s sinusoidal grating, Millar (1973) has actually suc-
ceeded in showing the quantitative limits of validity of the Rayleigh hypothesis. If the grating is
described by

f(z) = acoskz

where ‘2’ is height, then the Rayleigh hypothesis fails if ka > 0.448, or, loosely speaking, if the waves
on the surface become too ‘violent’. By naively comparing this case to the case of Chebyshev particles
(Eq. 1 of the text), and analogizing z with theta, one might expect the Rayleigh hypothesis to fail also
for Chebyshev particles such than n e > 0.05 or so. This is curiously close to the actual limits found on
EBCM convergence for size parameters exceeding 5 or so.

Millar shows that a necessary and sufficient condition for the Rayleigh hypothesis to be valid is that
the singularities of the Region III expansion all lie in Region I. Thus the hypothesis may be valid with
one origin of coordinates, and not with another. Its validity may also change, depending on which
eigenfunctions are used in the Region III expansion. And if the scatterer has corners or edges, this
almost always causes singularities to occur in Region II, invalidating the Rayleigh hypothesis.

Sout

Figure A.1. Cross-section of a general scattering
object with surface C, inscribed sphere
S;, and circumscribed sphere S ;.
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But following this gloomy prognosis, Millar offers a way out which seems almost too good to be true.
We merely have to abandon our craving for an ‘exact’ solution, and satisfy the boundary conditions
only in the least-squares sense. Then an expansion in any complete set of outgoing eigenfunctions is
satisfactory in Region II. It will even converge uniformly in Region III (although the convergence may
be slow, if the eigenfunctions chosen are ill-suited to the geometry).

In the various debates over the Rayleigh hypothesis in the literature, the EBCM was always regarded
as immune to these difficulties — apparently, because it sidesteps the whole issue of making an expan-
sion of the scattered field in Region II. One is left with an uneasy feeling, however, that the problem
has perhaps been papered over rather than resolved.

Differential equation approaches
According to Mei, et. al. (1978):

““During the last 15 years, computation in electromagnetic scattering has been actively pursued
almost entirely in terms of integral equations. . . .this drift to integral equations is very natural —
and for good reasons. In integral equations, the computations are limited to the scatterer itself;
while in the finite methods they are generally spread over the entire space. In integral equations,
the radiation conditions are automatically satisfied, while in the finite methods they reguire
special numerical treatments which are often unsatisfactory. But recent advances . . . have
urgently demanded the results of scattering by . . . inhomogeneous bodies. The only practical ap-
proach to such problems appears to be direct solution of partial differential equations rather
than solution by integral equations, the formulation of which in an inhomogeneous medium is a
difficult task.”

This explains why methods which proceed directly from the vector Helmholtz equation, without re-
formulating it as an integral equation, have recently regained some popularity.

Differential-equation methods are invariably simpler in concept, and simpler in execution, than in-
tegral-equation methods, and they avoid the singular-kernel problems in those approaches. They
tend, however, to consume much more computer time. A well-thought-out-example is the method of
Patwari and Davies (1966). They assume an expansion in outgoing-wave eigenfunctions in Region I11.
Then they carry this solution from S, to C (the scatterer’s surface) using a finite-difference form of
the vector Helmholtz equation. The expansion coefficients are then determined by boundary condi-
tions at C.

Reilly’s (1973) method is an interesting variation. He uses a Galerkin method, and applies boundary
conditions on S, rather than on C.

Perhaps the simplest method of all is ‘point-matching’, reviewed by Richmond (1965). The scattered
field is expanded in an N-term series of outgoing-wave eigenfunctions, then the boundary conditions
are enforced at N points on C, leading to a set of N linear equations for the expansion coefficients,
Point-matching has been used by Greenberg, et. al. (1965), among others, to study nonspherical scat-
tering. However, the validity of point-matching became the subject of a heated debate (Bates, 1967,
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1969: Bates, et. al., 1973; Millar and Bates, 1970) connected with the Rayleigh hypothesis. The general
feeling nowadays seems to be that it has uncertain convergence, is inaccurate, and uses too much com-
puter time.

There have been efforts to rescue point-matching by generalizing it. In ‘least-squares matching’, one
enforces boundary conditions at M > > N points in a least-squares sense. In ‘spectral-component
maiching’ (Millar, 1973), one picks a set of smooth basis functions, multiplies the boundary condi-
tion by each of these in turn, and integrates over C. (If the basis functions are delta~functions, this
reduces to point-matching.) This can make the Rayleigh hypothesis valid even when it fails for point-
matching. Of course, computation is increased considerably, because many surface integrals must be
done. Spectral-component and least-squares matching are closely related from a mathematical point
of view.,

As Mei, et. al. (1978) have noted in the quote above, the necessity to calculate scattering from in-
homogeneous objects has breathed new life into differential equation methods. But they have revived
mostly in the form of ‘finite-element’ methods (e.g. Morgan and Mei, 1979; Yeh and Mei, 1980),
which Mei et. al. review in detail.
integral equation methods
Integral equation methods reformulate the vector Helmholtz equation as an integral equation using
Green’s functions (Morse and Feshbach, 1953, p. 1769 ff.). The boundary conditions are included
automaticaily. Within and/or on the surface of the scatterer C, one solves either for

¢ the induced current J, or

© the electric field E;,.
The scattered field is then found from the vector form of Huyghens’ principle or its equivalent.
There are three variants, involving:
(A) volume and surface integrals for either J or K, in one vector equation;
{B) surface integral equations only

(1) coupled equations for J and its spatial derivatives, with singular kernels;

(2) coupled equations for J alone, with a higher-order singularity than in (1).
The singularities in (B) come from the so-called ‘free-space Green’s function’. They are the cross that

integral equation methods are forced to bear, in return for escaping the boundary condition
nightmares of differential equation methods.
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Livesay and Chen (1974) do nothing fancy at all. They just calculate E;, by directly evaluating the
volume integrals in a type (A) formulation. A second quadrature over E,, then yields the scattered
field. They can end up with huge matrices compared to the EBCM, but they do avoid the surface in-
tegrals required in the EBCM.

Some methods avoid numerical evaluation of the singular integrals in type (B1) formulations by
analytic methods. The EBCM (Waterman, 1965, 1971; Barber and Yeh, 1975; Mugnai and
Wiscombe, 1980) uses different spherical harmonic expansions inside and outside the sphere passing
through the singularity. Chu and Weil (1976) and Holt, et. al. (1978) evaluate the integrals analytically
just in the neighborhood of the singularity. Actually, since the (B1) singularities are integrable in the
principal value sense, sophisticated modern quadrature techniques could probably handle them; but
no one has tried this.

The singularities in type (B2) formulations are non-integrable. The only approach which has so far
been used is the Hadamard finite part idea (Senior and Weil, 1977), although the physical interpreta-
tion of this procedure is elusive.

“Moment methods’ are a particular variant of integral equation methods (cf. the book by Har-
rington, 1968, and the review article by Miller and Poggio, 1978). If the integral equation to be solved
is written schematically as

ILF=G
where L is a linear operator, then the idea is to expand F in a set of basis-functions f,

N

F= ) af,

n=1

and then to take M weighted moments of the resulting equation:

N
Ya | Waltp= | w,0

n=1

Taking M < N, one then solves this set of linear equations for the coefficients a-sub-n in the Jeast-
squares sense.

Moment methods are frequently applied to ‘wire structures’, either actual (like antenna arrays), or
simulacrams of real objects.

In spite of the revival of differential equation methods for inhomogeneous scatterers, it is worth
noting that Wang and Barber (1979) have extended the EBCM to such objects (see also Druger, et. al.,
1979).
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A.4 THEORETICAL — APPROXIMATE
Approximate methods fall into the following general categories:
s Rayleigh or Rayleigh-Gans limit
o  geometrical optics and extensions thereof
e perturbation theory
® thin in one dimension
e  semi-empirical
& replace by a simpler shape
Small particles

Stevenson (1953) gives the general theory for scattering by arbitrarily-shaped bodies in the Rayleigh
limit where size divided by wavelength is small. Kleinman (1967, 1978) made important improvements
in this theory (see also Herrick and Senior, 1977; Senior, 1976, 1980). A completely analytic solution
still eludes us, except for 5 simple shapes, including ellipsoids. The ellipsoid solution has been widely
exploited (e.g., Huffman and Bohren, 1980). For general shapes, one must solve a simple integral
equation for the polarizability tensor by numerical methods.

The Rayleigh~Gans approximation is even more restricted, requiring not only small particles but a
refractive index near unity as well (van de Hulst, 1981). The trade-off is that great analytical progress
can be made in this case, and, like many asymptotic approximations, it is useful outside its strictly
defined range of validity. Barber and Wang (1978) found it reasonably aceurate up to refractive in-
dices of 1.1 and size parameters of 1. And there are more applications than one might imagine; for ex-
ample, to scattering by cells in aqueous solution.

Acquista (1976, 1980) developed an extended Rayleigh-Gans approximation, based on an iterative
solution to Shifrin’s integro-differential formulation of scattering. It is valid all the way up to size
parameters of 5 or so.

Large particles

The class of methods for particles large compared to the wavelength is extensive. Kouyoumjian (1965)
gives an excellent review. He notes that progréss in developing large--particle asymptotic solutions to
Maxwell’s Equations (or to particular solutions like Mie theory) has been excruciatingly slow, due to
the great mathematical difficulties (see also Kline, 1962).

“Geometric optics’’ is the simplest large-particle approximation. It refers to the calculation of intensi-
ty along ray paths as those rays experience reflection and refraction at the boundaries of a scatterer,
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and absorption within it. The Fraunhofer diffraction pattern is normally added to the geometrical op-
tics approximation, to account for the strong forward peak in scattering from large particies. Phase
and polarization information can be carried along with the intensity, as van de Hulst (1981) shows, but
usually the interference between rays is ignored, since even a slight spread in size or wavelength will
wash it out.

Geometric optics is particularly simple for a sphere (Liou and Hansen, 1971), because the ray paths re-
main in a plane. For any other shape, the ray paths are twisted 3-D curves, and an analytical solution
borders on the impossible. Instead, a Monte Carlo approach is normally taken: the scatterer is bom-
barded with enough rays to give decent statistics on the scattered energy at each angle. Jacobowitz
(1971), Wendling et. al. (1979), and Coleman and Liou (1981) all did this for a hexagonal ice cylinder.
Takano and Tanaka (1980) did it for circular cylinders.

Concave particles greatly complexify geometric optics. A ray emerging from the scatterer cannot be
logged and forgotten; this can only be done when it finally leaves the circumscribing sphere, since
there is always the possibility that it may re-enter the particle. Thus, the ray paths may ramify almost
endlessly.

Reflection from a large, randomly-oriented, convex particle is rigorously identical to the reflection
from a large sphere (van de Hulst, 1981; Hodkinson, 1963). The diffraction is close to that from an
equal-projected-area sphere. Hence, if the particle absorbs enough to extinguish transmitted rays,
reflection plus diffraction from an equal-projected-area sphere is an excellent approximation to the
nonspherical scattering.

Some authors (e.g. Pollack and Cuzzi, 1980) postulate that the transmitted rays suffer greater devia-
tions for any non-sphere than for a sphere, accounting for the higher side-scattering from non-
spheres.

Chylek (1977), drawing on a result of Vouk (1948), notes that the extinction cross-section of a large,
randomly-oriented particle always exceeds that of an equal-volume sphere.

Maxwell’s Equations can in principle be expanded as wavelength tends toward zero (the so-called
‘Luneberg-Kline expansion’), leading in zeroth order to the famous ‘eikonal equation’ (Kline, 1962).
But the eikonal equation is non-linear, and the equations for the higher-order terms of the Luneberg-
Kline expansion become increasingly complicated and non-linear; furthermore, these equations break
down near light-shadow boundaries, where diffraction occurs. Little progress has been made on these
higher-order equations.

Keller (1962), in a famous piece of work, developed a theory which extends geometric optics by adding
“diffracted rays”’. These are produced whenever an incident ray hits an edge, vertex, or shadow
boundary, and behave according to their own laws, different from ordinary rays.
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Perturbation theory

The idea of perturbation theory is simple enough: assume the scatterer is bounded by the surface
r, = 15 [1 + e {(6,¢)]

where e < < 1. Then expand everything in powers of e. Yeh (1964, 1965) worked out the order ¢ cor-
rection terms for deviations from a cylinder as well as a sphere. Erma (1968a,b) corrected Yeh’s for-
mulation and extended it to arbitrary orders. Neither author gave any numerical results. The formulas
for scattering quantities are complicated; double series for order e, triple series for order €2, and so on.

Chylek, et. al. (1978) made some first-order perturbation theory calculations and generally found
unacceptably large errors for e > 0.10. For e = 0.05, they found roughly 1% errors compared to the
exact spheroidal results of Asano and Yamamoto (1975). They also pointed out that perturbation
series become useless, and may in fact diverge, once the Mie coefficients a, and b, develop sharp
spikes (beyond size parameter X = 6 or so). This is because perturbation theory involves derivatives of
a, and b,. When these derivatives become large, the omitted terms in the perturbation series become
larger than the ones which are kept.

Two particles are ‘conjugate’ if they are described by

1, = 1y + g(6,9)

{with g such that ry > 0). Using perturbation theory, Chylek, et. al. (1979) showed that, for small g,
the two conjugate particles have an average scattering equal to that of a sphere of radius r,. This is an
interesting twist on the idea of replacing a particle by an equivalent sphere; here two particles (or a
single “‘self-conjugate’ particle) can be replaced by an equivalent sphere.

Thin particles

If a particle is thin in one of its dimensions, it is possible to approximate the integral equations describ-
ing scattering. The work of Chu and Weil (1976), Weil and Chu (1976, 1980), and Senior and Weil
(1977) is an example of this approach. They have applied it to both ice crystal plates and aerosol
particles.

Semi-empirical

The word ‘semi-empirical’ denotes a class of methods containing a mixture of experimental and
theoretical results.

Emslie and Aronson (1973) and Aronson and Emslie (1980) developed such a method for the dust
blanketing the Moon and Mars. They modeled the small dust grains as ellipsoids in the small-particle
limit and the large grains as spheres in the geometric optics limit. Roughness on the spheres was
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mimicked by distributing absorbing dipoles over their surfaces, which could interact with the
geometric optics rays. Intermediate-sized particles were treated by interpolation between these two ex-
tremes. There were probably too many tuneable parameters in this model, but it did yield agreement
with measured emission and reflection spectra which had not been previously explained.

An abortive semi-empirical theory which involved truncating the sharp spikes in the Mie coefficients
a, and b, was proposed by Chylek, et. al. (1976). The idea was that these spikes were associated with
‘surface waves’, which would be suppressed on nonspherical particles. Unfortunately, the spikes do
not correspond to surface waves, and in any case exact calculations by Mugnai and Wiscombe (1980},
among others, show that surface waves persist even on rather nonspherical particles. This theory
became embroiled in controversy (Acquista, 1978; Chylek and Pinnick, 1979) from which it has never
recovered.

Pollack and Cuzzi (1980) suggested a theory based primarily on the measurements of Zerull (1976).
They use equal-volume Mie theory for nonspherical particles with size parameter x < %, where x, is
tuned in the range 3 to 10. For x > X, the absorption cross-section is still gotten from Mie theory,
while the phase function is gotten from a sum of

e Fraunhofer diffraction

e reflected rays from a sphere

® transmitted rays fitted to mimic Zerull’s measurements (involving a second tuneable
parameter).

The single-scattering co-albedo of the sphere is multiplied by the ratio
surface area of particle/surface area of sphere
to get the co-albedo for the particle.

Coletti (1984) has devised another semi-empirical theory based on his own measurements, and similar
in some respects to that of Pollack and Cuzzi.

Replace by a simpler shape

Perhaps the simplest approximation is to replace the particle by a simpler shape, which however has to
fulfill two sometimes contradictory requirements:

e the scattering properties of the simpler shape have to be relatively easy to calculate, and

o they have to resemble those of the actual particle.
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Spheres are by far and away the most popular replacement. The only question then is: of what -
radius? Equal-volume spheres are the choice of 90% of all investigators. Equal-surface-area

and equal-projected-area spheres also have their devotees. A less well—explored option is to match,
not a material property of the particle, but an optical property: extinction cross-section, for example.

The argument for equal-volume spheres (aside from the relative ease of measuring particle masses) is
that, at least for particles of small size parameter, scattering depends primarily on volume, not shape.
This is gainsaid, however, by Aronson and Emslie (1980) and by Huffman and Bohren (1980), who
find that, even when one averages over shape and orientation, ellipsoids do not behave like spheres.
Likewise, Liou (1974) has found that equal-volume spheres are a poor substitute for ice cylinders in
the 8-12 micron infrared window region.

Equal-projected-area spheres are generally regarded as the best replacement for particles of large size
parameter, because the forward diffraction peak depends primarily on projected area (Hodkinson,
1963). Since this peak is the prime determinant of the low-order phase function moments, and since
these moments are the prime determinants of multiple scattering, it is worth considering the equal—'
projected-area sphere for that application. Holland and Gagne (1970), among others, find that the
scattering from 0 to 40-50° is best approximated by equal-projected-area spheres.

A5 SPECULATIONS AND IDEAS

MNonspherical particle scattering is so exceedingly rich and various that there is no hope of jumping
immediately, by a sort of Aristotelian contemplation, to an all-embracing theory. The rush to
‘semi-empirical’ theories is, in our opinion, premature; it has already led to one bad mistake, and is
likely to lead to more. Instead, we should proceed inductively, examining many special cases first.

Mie theory should be abandoned only grudgingly. Single equal-volume spheres are surely not an ade-
quate replacement for all, or even most, nonspherical particles. But we are far from having exhausted
Mie theory. There are still several largely unexplored replacement possibilities:

@

a sphere having the same volume-to-surface-area ratio

¢ a size distribution of spheres (e.g., Wang et. al., 1979)

@

a multi-layer sphere (e.g., Kerker, 1969, Ch. 5)

e a sphere with continuously-varying refractive index (e.g., Kerker, 1969, Ch. 5).

The last two possibilities are based on the simple idea of trading off nonsphericity against in-
homogeneity. Imagine a tumbling nonspherical particle as a ‘fuzzy sphere’, with a solid core shading
gradually outwards. Between the core and the periphery, the refractive index would gradually change
to that of the surrounding medium. By picking a functional form for this change that allowed a
reasonably simple radial solution, with one or two adjustable parameters, it might be possible to
match nonspherical scattering properties. Because scattering from an inhomogeneous sphere is orders
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of magnitude easier to calculate than scattering from any non-sphere, this idea is immensely
attractive.

Modifications to Mie theory to account for non-sphericity may also be possible; but not until a
definite physical interpretation can be assigned to the terms. In this regard, Complex Angular Momen-
tum Theory (Nussenzweig, 1979) may prove useful for larger particles, since it replaces the Mie expan-
sion with a series of only a few terms, each of which can be assigned a simple physical meaning.

If we are finally forced to abandon Mie theory for some particularly recalcitrant cases, we should at
least try to use equivalent spheroids. This gives us two parameters to tune to match the actual
nonspherical results, and that may be enough.

Concave particles, and particles with voids, may defy all our attempts to replace them with equivalent
spheres or spheroids. Since such particles are of great practical importance, we should make every ef-
fort to find their scattering properties, both experimentally and from exact theory. Our own EBCM
calculations have shown great differences between the phase functions of convex and even mildly con-
cave particles.

We need to develop a minimal, prototypical set of shape parameters. Up to now, we have either pick-
ed shapes which were easy to calculate for, or which Nature thrust upon us. Very little thought has
been devoted to the abstract concept of ‘Shape’, and what characterizes it. Greenberg (1980) has sug-
gested some of the shape information which may be important. OQur own list would include:

e some measure of surface roughness

e the 3 semi-axes of the ellipsoid which best approximates the particle

e the hole volume or ‘porosity’.
Present numerical methods need to be speeded up dramatically. Even the fastest of them, like our vec-
torized EBCM code, consume far too much computer time. At the same time, faster ways of averag-
ing over orientation need to be found; this is a real roadblock in present scattering calculations.
Once faster numerical methods are available, it will become possible to routinely average over shape,
size, and orientation, something which is now impractical except in test cases. Then we can more in-

cisively answer questions as to how much each kind of averaging reduces spherical-nonspherical
differences.
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APPENDIX B

Parallel and perpendicular scattered intensities vs. scattering angle for two fixed orientations, nose-on
(dotted line) and perpendicular to nose-on (dashed line); for Chebyshev particles T,(+0.10),
T(—0.10), T,(+0.10), and T¢(—0.10); and for size parameters x =5 and 10. Spherical results (solid
line) are shown for comparison. Note the much larger spherical-nonspherical differences in fixed
orientation than in random orientation. These results are intended for direct comparison with
experiment.

3258 WO FRISED

141




SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

142

o8l

0LL 091 0SSt

SUOjjeUBLIO paxlj Om) U} Sajojed AsysAgayd 10y JTONY
"sA (1ejnojpuadied pue |a|jered) SIILISNILNI AIHILLYOS [eousydsuoN ‘g xipuaddy

FT1ONY ONIHILIYOS
o141 0ot

oyl Ot 0TI

06 08

09

LA L R B |

T T T

PR W T S |

I

i

v 1y

| S W T |

A

Lododd 1

e G=X

ot 0=13l

-0t

L)
[<]
-

0L

204

d

ALISNZLNI TATIVHY

FTONV ONIH3LLVIS
09 S 0% 14 oy s ot 14 +24 Gt ol S

0

LU L T N L N LA L B N LR

-

saasdleaasd gl s baanadaaaala sl asliing

‘08°0=¢ ‘G=X or°0=I3

ALISNILINI 13TVEVd



APPENDIX B

08!

(penunuo))
IIONY ONIYILLYOS
6L1L 091 061 oOvlL OEL 0Z1L OLL 00t 06 08 [+74 09
LA I A NS A SR BN B 1 T LI | 7 T ¥ H v o1 f f +T.1 ¥

T

L | RS WO DU SOV N N R |

N N '

oro=e

.0t

01

ALISNILNI HVINJIANIdY3d

FTONV ONIHILIVIS

68 0§ 114 ¢34 &€ 124 4 (14 ) ot e

)

.......... eyl

pdda by st daa st s adasaalasaglaaaalaaaabaaaafrssilaisg

.

‘06°0=¢ G=X or°0=13 S

ot

20t

ALISNILINI HYINOIONIdHId




SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

144

(ponunuo)) g xipuaddy

FTONY ONIHILLVOS
o8t OLL 091 OsL OvL O£t 0L Ott 00t 08 oL 09
i T T T T T T ¥ T T T T T 7 T T T ] T
N
[AY
[
[ Y
Y S T 4
" [
[
i i
K v B
r 1 1
i A i
|- m (
i \ .
[ v i
\H 4/ . 1
A N\ 3
L .

TV

S S

i

b dnd

08

oro=i3l

L0t

ALISNILNI13TTVHVd

JTONY ONIHILLIVIS
09 ©G 0% 14 oy 15 o€ 14 (114 S 0} s [}

LELALIS B 100 B A B A 2 e e e LS

bbb sl d s s dasas bas st gty oaatasaateasadayaatssy ot
[ 4

‘06" 0=¢ G=X 01°0=13 L

ALISNIINI 131VvHVYd



145

(penunuoD) g xipuaddy

IIDNV DNIHILLYIS FTONV ONIHILLVYIS
oBi oLt 091 oSt oviL oel ozl oLt (111 06 08 0L 09 09 <1 0% 114 ov S€ [0 sT oz 1% oL s 0
LN S S B R RN R RO St S e NN N S S BN E GE N N e IR R R R R N RN R R N R NSNS E
- ool Dol l..To_.
3 :
2 3 3
> = z
- =) g
(=]
2 2 g
o 5 5
o .3 =
[a W) eo_.m m
m m
A 2 =z
7 7]
3 3
0t
TR U WSRO AU VRN UNDIEN WU SN S J S F I U R S S NN N 1 pada b g s baa g da i d by by daasstas s ilssarabyaaptiserdiaia

PR |
‘06°0=¢ 'G=X 010=13 3L '06°0=¢ 'G=x Ql0=1@ %




146 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

o
™YY T T 7 T ?_’
. i
(=]
= -~
o r de
& | 47
oL —4 &
] -
=
(]
— - @
NE 1w
W0 -~ -80
RS 17z
] o
- 18 ¢
- oo
- - w
ol -°E
— -0
™ - w
e
o
It = -8
B e
L. .
-~ - &
&
+*" -
= 18
i ] =)
o 4R o
L. J =
=
[ SR W1 ! el L o ey
_ o =
o~ ] O
e e O
ALISN3LINI T3TIVHVd ;
" S B B S S T T T T 7 3 ¢
E 7 R
S I/.. "g
C: /34 3]
S /] o,
Co 3 o
ok K <
L ]
oL Jw
o =
LI h
ol .
— . —_ O
L. 1<
C 1w
L SN _ma
0 18 2
ImE:: 1° 2
<[ ] Q
- - do Z
- - 16 =
B ] E
[« 2 SR Juw «
- 1 O
Al 17 3
or ]
— . . — O
LN 18
QF- ]
C Jw
. b
+ £ ]
L - O
= f 1
C Ja
Cid o5 —O
- B
[«] o

ALISNILNI TITIVHVd



<
et
(panunuoD) g xipusddy
FTONY ONIHILLIVIS FTONY ONIH3LIVOS
[+]:]]) oLt 091 0s1 ovi [+1>9 % oct oLt ool 06 08 oL 09 09 SS 0s sy oy & ot =14 [¢14 113 [+13 1] 0
LD SN S S BN N SN Mt B Jl“.-_ﬂ T T T T T
)
5 - . . ..
i
. . e . . B . E
i
- . B [ 1 . B r
- - - . eeea oo d - . . . B
{ .
. . . o . . . .
o : 3 ,-01
-
m
3
» &
% 5
&) 2
z 5
o ot 2
A z
< 7
3
0t
Y WO Y SR T T W S IV BT SH S S S R S S BT T _.._.:.__..._:...:::.....:...:._ ._._..__.._.___._

‘06°0=¢ 'G=X  QI'0=l3l JL ‘06°0=¢& G=X  Q1'0=I3 L

o~
=
ALISN3LNI HYINDIONIdY3d




148 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

Qo

U200 B J S B T T T ?3

L ; . J

[=]

R .o 48

. i b
. (=3
o,_ + -1 9
<D ; -

o L ; ) 48
I 17
K °

- h - <

bt

s r E
) . . -gg
L . . - <
) o ©

; - 2

- EE

- = t
oL . ~23

pa
A I - n
ot
TF 18
@ L b
s
gn 18

= 1R =)

. i O

. =

PR S V0 W R W A d A S .E

- bl

o - °° 'O jmt

4 2 =t - o
O

S’

o jaa)

CT T 4 x

- . J o]

.

W -4 53

o ] bt

C E é’-'
SE 3R
oL Ju
i E: 17
S ]

SN -d

- v -Q

Fo 1 u
LO'T_II —_QLZ'J
| ] b3
[ 1. ¢
£ 1° &

- =
o[ ng
—r 1 @

(o2 :c
LI o s
L .

- Jw

- 4 £
P E ]

o Je
=L ;

. Ja

r. . -

Ci i i i -‘o
‘© © °

ALISNILINI 13TvHVd



149

" APPENDIX B

FTONV ONIHILIVOS FTONV ONIHILIVOS
08f OLL 091 0SL Ovi OEL OZF OLL 001 06 08 0L 09 09 s 0s =14 ov 214 [+15 &2 oz St ot S 0
T T T T T T T | ANEULIER S S S N AL AR RN B P = N R R AR RN A A R SR A RS R RE.
A i \ pal N\ :
- . - =0V R AN
L ) i . -

ot

0

=|3

o
[~
-

ALISN3LNt HYINOIONIdY3d

......... ‘e

A b g g b g da s gl aatal

‘06°0=¢

'G=X  01'0=I3 AR

0t

ALISNILNI HYINJIANIJH3d




150 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

o
w
o
-~
g- 4%
o le
I in
e L i
[~3
o -1 <
T 1.4
O 48 0
©r L4
I i s
M o 2
- 1Y g
i 1.5
49 <
oI peliy'S)
o=t . 15
e 48
i} e
s i
- - O
o
“+
o -8
E‘—. -
— o o~
~ k]
L J O
=
| S S 1
(| —g .g
© © ° o =]
- - - - 8
N’
as]
T T T 3 x
. . u e}
- ] 'g
- -4 o
- h Qu
E: - =)
oL 1o <«
3 j\r\
) E
e« - 0
(11 o 1%
@@L ]
- Jdo
:. :q
R B
(=2 o Juw
— -"’g
[ 3 ;
®xr Jg =
- 1 @
- . lrJ:J
- Ju <
o 18 3
i L - w
O:: Jo
_|_i_... 1
o p
- _'.og
+oF: qe
- -4 2
- 1w
Giiiili i Giiiiidoq AR ligiiiii i Jg
- - N - [-]
o (o) Q o .O_

ALISNTINI 13T1IVHVYd



APPENDIX B

lel=0.10

T,*

15 20 25 30

10

[~3
ILE 2 A B @
-
o
e -~
-
oS . BE)
& s
=3 , 1g
Il @
® i
[=]
-
-
o 8
L] 'Q
[=3
»” - &
-
= ‘ L
o S Q
tobepommbnnn, . 43
Il < -
— -
@ F- - ol . : 7
e - - 0
o
+
oF 18
= ]
b+ - 2
AdAd A4 Lidddodod .l -3
~ ©
.~ - o T )
o o © o =3
- - - - -
ALISNIINI HVINDIAN3dH3d
T ™ TIrrT T T 1%
L . . ; . ,
o p
- p
N - 0
: - D
L. 4
P o 2
o p
- @
SE 1R
o - Jdw
I 1%
b I o
- R
- p
ok Jw
et : 4®
[ » .
Ll -
C..o. 3
L. p
- p
-
-
-

Jiisii

10*

ALISNILNI HVINDIANIdYad

°
2

10

SCATTERING ANGLE

SCATTERING ANGLE

Appendix B (Continued)



L

2

SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

| BLALAL A T B 7

180

]
170

i
160

1
150

¥=0.,90.

1
140

1
130

x=10.
3
120
SCATTERING ANGLE

o
er 1=
‘-‘_. =
o
ir 18
W §
- -8
N e
[
& .
- 1@ 3
» J <
Z
I S I W S | L 3
) ® g
Ll o O
ALISNILNI 13TVHVYd S)./
m
T T T Y T T T T T T 73 T T T T 8 X
-+ : 'U
- Y 8
:: Tw o,
- ] )
ok e <
03:: :m
St ER
[ o e
=30 ]
- Jde
C 1<
N 3 w
(=1 o dw
= [ 18 g
I E: 3 3
“F i8 2
C. ] E
o F: 48 5
Le R T - w
1 de
ﬂ-—» 1w
@ L p
o :g
= Je
= O a
3 i
1 i Liiiiii i Biiiiioiod TR S T . P
@ - ~ - [-]
o o o 9 g

ALISNILNI T3TIVHVYd



9¥=0.,90.

x=10.

lel=0.10

T,

le1=0.10

Ty~

APPENDIX B

T ™ T

1 |
160 170 180

i
150

i 1
120 130

1
110

SCATTERING ANGLE

1
100

ALISNILNI YV INDIANIdHId

60

1500 0 A S B A0 5 5 I B S M WS A0 O

55

50

45

40

35

30

IR LSS NS S AN SR AR AR AN LU AR

25
SCATTERING ANGLE

e

20

15

IEEREREREE!

10

Lo biddada & i Lidiiid i i Litiii i i .

< -
o (=] o
- -

10

ALISNILNI YV INIION3dHad

Appendix B (Continued)




154 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

o

@

@

o

~

e

o o

o 2

o o

i ©
E)

[~}

<

2

130

x=10.

110 120
SCATTERING ANGLE

1e1=0.10
100

+
70 80 %0

ALISNIINI 13TIVHVd

gyvyv oyt M A AR AR orrery LA AR IR .3

C. . . . b

- . ]

- : ]

: : 0

. S -

- : ]
. . -

g+ . -

. . Jeo
& R
4 o : ]

g = . . -l
Q- . 1
([ . d=
L Co

- . ]

. o Je

c : ]«

C. : p
R : h w
(=2 . Jdw ©
R e . 4 ™ zZ
0 M
% - . - [G]

- P dg 2

- : 1, 2

C. : ] E

. - -

- D dwe
or: 18 8
LI S ~t w0

g .
or: Jde
- :N
9t ]

o Jw

= o -

- p
ol - Je
e 0 3

C. 3

.. -

O A i Lidiidi i i i biii i i d 1§ Lidiid i "o

° ° © © )

2 2 2 2 2

ALISNILNI 13T7VHVd



APPENDIX B

o
l:!‘l‘ ‘\ I RAR B 7 1 PryrT T ¥ T mmirryrr T T 9
S N N i . Teeea -
L °
e+ B -~
oL. 49
D 2
o 48
If a
=)
- - <
b
o
sh 3
I
=
“L &
o
or 2
=
—
o o
nhr e
w
+ o
&
= o
Y
SN i Lesa g o 4 g A o
&
b - o < b
=) ) © =) o
= 2 - - -
ALISNILINI Y INDIONIJHId
=
TITTTY 1%
- Jwn
N - N
oL Jdo
[ N 4
o Jw
{1 o p
C Je
e -
o Juw
- . -
g J
ol Jde
- Ie
= &
- kL
o o
e &
_‘0_ L.
- 0
» =
+ F
« o
B
- w
=
-
e © B ‘© ° )
- - 2 - -

ALISNZLNI YYINDIONIdYHEd

SCATTERING ANGLE

SCATTERING ANGLE




(ponupnuo)) g xipudddy

FJTONV ONIHILLYIS FTONV ONIHIALLVOS
081t 0Lt 09L  0SL  Owl ot 0ZL 01y 00! 06 08 [+74 09 e 11 0% 14 oy s€ ae 14 174 13 (113 & (]
L 1 1 L] L L] ) — ) — L) — ¥ — L) [] 1) ] L) i L — -I°F 4—-——--—-—_-—-—_-_—--_1-—-—--—--——-u-_--_-<-—¢-- °°F
S BRI gl T
Pl =
)
>
2
>
(¢
e
m
[
z
e
m P
M T »ﬁl,u, bt
b N OSRGOS U S O SISO 1S S e
0L T i
I
11
I8
201

ALISNILNI T3TTVHVd

SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

56

1



APPENDIX B

¥=0.,80.

x=10.

1£1=0.10

Te~
!

- ..
Lid 1t
- o
~ - o [} D)
< o [=4 [=] <
- - = - -

Ty

Y¥=0.,90.

BRI REARRRAEEREERE AR AR EH

x=10.

TTY

0.10

lel=

Tg™

NN NN NN FE N NN

10*

ALISNILNI HVINDIGN3dY3d

-
s
- ]
- .
- ]
" .
- .
- ]
» .
s 3
-
T
o
e

80 90 100 110 120 130 140 150 160 170 180
SCATTERING ANGLE

70

80

15 20 25 30 35 40 45 50 55 60
SCATTERING ANGLE

10

Appendix B (Continued)






APPENDIX C

Phase functions in the side- and back-scattering regime (60-180 degrees) vs. scattering angle for ran-
domly oriented Chebyshev particles T;, T,, T4, Tg, and Tg; for various deformation parameters be-
tween —0.20 and 0.20 (as shown above each plot); and for size parameters x =2,3,4,5,6,8,10,15, and
20. Solid line is for Ax = 0.1x size-averaged spherical result, interrupted lines are for non-sheres: dot-
ted, dashed, and dot-dash lines refer to the various e values shown, in increasing order (in general, the
larger the value of |e|, the greater the general deviation from the spherical result). Not all particles are
represented at larger values of x because of an inability to achieve satisfactory convergence of the
EBCM.

Next to each phase function plot is a plot of the percentage deviations of the nonspherical phase func-
tions from the spherical one, but for the full range of angles (0-180 degrees) rather than just 60-180
degrees. The interrupted lines in these plots refer to the same nonspherical particles as in the adjacent
phase function plot. Note that when the percentage differences become larger than about 100% the
vertical scale becomes logarithmic, and in order to display both positive and negative values, percent-
ages smaller than 1% in magnitude are assumed to be zero.

PRECEDING PAGE BLANK NOT FILMED

159







1o 081-.0) ITONV 'sA ‘suoijouny eseyd [eousyds snouea pue [eousydsUOU 8Say) UsemMlsq SIONIHILLIA
LN3OH3d H.081-,09) ITONV "SA UOIEIUBLIO WOpUES Ul S9|dIled AsUSAqeUD 10) SNOILONNH ISYHA 'O xipuaddy

L2 AW B Ry | R

3719NY 9INIY3L1IYIS 370NV ONIH3L1VY3S

08L 0LL 091 0Si opL  OEL 021 Ot 001 06 08 0L 09 081 091 oyt oclt [Je]} 08 09 ov 314 o]
LN RN RS R S SR A RN R S S SN AN S AN N B S SRS R S S T T U T T T T T T T T T T T T T T 9~

L d z2-
0t - - oz-
L dgi-
- ~ 91~

- - pi-

APPENDIX C

NOILINNS 3SVHd
T
i
e
NJ4 3SYHd TY3143HdS WOH4 4410 INIDJHAd

e
U RN TN WU YUY WS S NN VS ST U TN S S T SR T W S N PR SO NN S U T Y T W ST SO N 9

'e=X  GI'0'01'0'co'0=13 (_®L) e=X  G1'0'01'0'¢00=13 (_8L)




SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

162

(ponunuoD) O xipuaddy

JTONY ONIYILLIVYIS

08t  0LL 09t 0&L oOvL O£l 0Z¢ Ol 001 06 o8 0L 09 0814 091

379NV ONIY311VYIS
ozt 00t 08 09

oy

L AN (S S R R RN Eay U S A S R B BN T T T

-0t

NOILONNS 3ISVHJ

o0t

bk T U W S |

U S WO S 1 ' i I

i T T T T T T

i i L L H i i

9c-

4 pe-

()

N2'0'01'0=I3

02'0'01°0=I3

NO4 3SYHd T¥IIH3HIS WOH3 4410 IN3DY3d



APPENDIX C

(o133

oLt

091

0st

3TIONY ONIY3LLIVYIS

ovl

oet

ozt

ot

0ot

06

08

(penunuop) 5 xpusddy

0L 0%

T

T

LA |

i

T

]

i

ovi

JT7ONY ONIHIL1VW3IS

ozt

oot

08

09

oy

(114

" NOILONNS 3ISYHd

i H 3
0200

1°0=13

CE)

T

i i

£ 1

U T T

T

~
TN NI~

o=X

020°01°0=13

A,.N.s_

9z~

ve-

(24

0zZ-

81~

9L~

Pi-

[ 2

oL-

N34 3SYHd TTWIIY3IHAS WOH4 4410 LIN3JH3d




SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

164

081

oLy 094 06l

ovi

(panunuo)) D xpuaddy

3T9NY ONIH3LLV3IS
0EL 0ZL O 00L O06 08 0L 09

ovlL

FTIONY SNIY3ILLIVYIS
ozt 00t 08

09 ov

T T T T

T LA | L T | L LA B A T T T

,-01 -

NOILINN4 3SYHd
T

0t +

| S0 S WS VS S WU SN W | i

i

T T T T T T T

I 1 i i i i i

Gg1'0'01°0'¢o0=131  (,*L)

=X

g1'0'01°0'go0=131  (,"L)

9c-

ve-

ee-

0g-

8L-

9L~

P~

NJ4 3ISYHd T¥I1H3IHdS WOHd4 4410 IN3IJH3d



165

APPENDIX C

o8l

379NV ONIY3ILLYOS

(penunjuoly) O xipusddy

JTONY ONIHILIVIS

oLt 094 0s1 ovi el [sr4} oLt 00t [1]) 08 oL 09 o8t 091 ovi oclL 00l 08 09 ov 02
7 T H T T ¥ T T T T T T T ] 1 T ¥ i T 1 T T ¥ T T H T 1 T T T T T
-0t - .
0 - -
I
Il - )
m T VAN E
-n / \,
s I % \ :
Z \ // ]
- : I~ \
— L /L \ . d
Q eyl N N\,
P — .\ / / N\, -
N\ \. 4
“ N ]
N N .
Sso ~ -
N .
i N ]
o0t - T R s et L s
e T R N e e J
| N
L. /,/./‘/ —
L ] I3 1 L L ] 1 | i i 1 i i 1 ] 1 i 3 ] 1 } 1 1 i 1 i _ L { i L L 1 i ]
iy . . o ¥ _ . . - ¥
2=X gro'orosoo=r (L) z=X ¢r'o'010co0o=13 (L)

9z~

ve-

0Z-

8L~

91-

vi-

(45

oL-

NJ3 3S¥Hd M¥31¥3HdS WOH4 4410 IN3O¥3d




SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

166

08t

JTONY ONIY3LLIVIS
oLt 091 08t Oyl OEL O0ZL OLL OOL 06 08

(panunuo)) O xipuaddy

09

T T ! T+ r t 1 T T 7 T T T L

| TSRS SN SR SR SO

1 i 1 s
‘2=x 01°0'¢o0=13 (,°L)

,-0t

NOILONNA ISVHd

ovt

oci

3TI9NY ONIY3ILLIVYIS
00t 08

0

9 oy

e14

T

1 L i L

- g2~

— 02-

-4 81~

gy~

-y

- 2L~

- o1~

or

0'¢0'0=I13

| Aw,s_

ND4 3ISYHd T¥JI1d3HJS WOHd4 4410 LN3JHW3d



ovlL

oci

37TONY ONIY3L1YIS
004 08

09

T T T T T

b
(penunuo)d) O xipuaddy
JTIONY ONIY311VIS
0814 oLl 091 061 ovi 0EL oct otl 001 06 08 [+ 74 09 081 091l
LA L A L R M S NN S SN SN AN AN SN S ENE S B A S N B T T T
08 w
S :
) "
8 2
&3 5
(=9 a
(=9 o
< z
o0}
Lot -4 ] L ] (T I O | 1 1 L | L | I i 1 T 1 r L | i
2=X 01'0'c00=131 (.°L)

‘=X

01°0'G0°0=13I

(

O.H_v

N34 ISVHd TYIIHIHAS WOHd4 4410 IN3IJHW3d




SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

168

(ponunuo)) O xipuaddy

319NV ONIY341V3IS

39NV ONIY3LLVIS
08i O0LL 09L O0SL Ovi OEL 0ZL OtL 00L 06 08 0L 09 08L 09t ovt ozt

T T T [LIPP=S SN SN L B LR AL R
. .

oot o8 09 ov 114 0

/
-0t - !
i

- 9i-
—~ v~

- 2L-

NOILINNd 3SYHd
T

v
1 [ L ] i i i i 1 1 1 L i i 1 i L L i 1 . 1 i L n ] 1 1 " 1 Il | i 1 )
g=X  01°0'600=13 (,8%L) ‘2=X  01'0'600=13 (,%L)

- pye-
| / \
- 2e-
- 02-

-4 gi-

NJ4 3SYHd TWIIYIHAS WOH4 4410 IN3IDH3d



169

APPENDIX C

3TONY INIYILLYIS
08L 0Ll 091 0&i OvlL OEL 02V OLL 00L 06 08

(penuniuoly) O xipueddy

ATONY ONIY3IL1IYIS
ovi ozt oot 08

0

% (14

0z

9z~

T L | AL i LS LA B T T AL R A |

YU NN YO WU T NN U S S 1 L 1 A4

T

oL 09 081 091
T T T T T
-
R
-0t o
R
T
b
)
m
-
C
z
O
—
—
Q
s
o0t
" i i 1

T T T T T T T T

)] L | L A i )

1

- pe-

- zz-

- 02~

1 ] 3 i L L
‘e=X  01°0'¢o0=131 (_%L)

'2=X  01'0°'60'0=13

A.,o_s.

NJ4 3SYHd T¥J3I1Y3HdIS WOH4 4410 LIN3JH3d




170 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

x=3
T 1 1
1 1 {
150 160 170 180

)
140

|
130

T
i
110

1€1=0.05,0.10,0.15
t
\\\\\
N\
i
120 ¢
SCATTERING ANGLE

{
100

I
90

(1)

1

N

~
80

\
1
70

107"

NOILONNS 3SVYHJ

180

1||||l|]|tll}tlll]‘Il._xv||||x[|vu;|ls||(lvul[r|vr;||s|

/i

Appendix C (Continued)

x=3

1
100

I£1=0.05,0.10,0.15
SCATTERING ANGLE

60

(Tg7)

[ATR R RN UE WO N I T A A A A

;
1
w o v <o v o @
g ¢ 2 o ° ¢ 2w g & 8 3
[ T I TN

E11111111|I|||1l|1|:|||1|lx|xnl|11|;c)

NJ4 3SYHd TWI14IHIS WOHS 4410 LN3IJ¥3d



x=3.

1e1=0.10,0.20

(T2")

x=3.

1£1=0.10,0.20

(T2")

APPENDIX C

T T T T Y Y T
i : 1 1 1 i L
5
o
-
NOILINN4 3SYHd
L A L O L L L LA B B B
B 1
A\ A
L 5 A 4
\ A
-
’
/\
/
o //1 o
7
/ §
- 7 3 ..
) e
;o
e d el e tbaaa e e b e b g aada v sl lraa
o 0 o n (=] [yl (=] n [=3 in [=1 [Tad
o - - t - - N o ™« ™
\ ¢

1 ' ' ]

NJ3 3SYHd T¥JIH3HdS WOH4 4410 IN3JH3d

70 80 90 100 110 120 130 140 150 160 170 180
SCATTERING ANGLE

60

40 60 80 100 120 140 160 180
SCATTERING ANGLE

20

Appendix C {Continued)




172 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

x=3
! 1 L i i 1
120 130 140 150 160 170 180

110

lel=0.10,0.20
SCATTERING ANGLE

]
100

(Te")

i
a0

1
\
\
\
1
70

60

107

NOILINNS 3ISVHd

180

S8 0 L R L L S L O L AL B L AL AL BRI B
F

P
/ v -}
/ H
-
-
> H
- ;! -

160

-
-

Appendix C (Continued)

!
b
!
\

. =4
1<
-

x=3

1
120
SCATTERING ANGLE

l
100

1
80

le1=0.10,0.20

~———

(T27)
0

1
20

™ /)

{i
[k
[
i N

U

it ala s le gt aaald
[=3 v [} 0o =} © B - n [=3 © Q 0
& ©

- - ' - - N o b
1 ] ] ] ] )

[N REWEE WL
PR RS T T A N0 W 0 O S | i o

NJ4 3SYHd TYJ1H3HdS WOH4 4410 LINIJY3d



x=3

1£1=0.05,0.10,0.15

(Ty")

x=3

le1=0.05,0.10,0.15

(Ty")

APPENDIX C

T T T
L
%
- 5/ =
i
i
A%
L \ .
A i i ) i i i F
T
(=4
<
NOILINNd 3ISVHJ
|ll]1‘1l[!lll||‘1r'¥lll'll;'v]l!vl[llil‘[l‘!l|l|ll|l.‘IIV
! H \
L i kKt i
' A
o \
L ' ! \ i
“ i
L | / X 4
I ; , -
|- / e o
- | e o .
| T
i ! - ]
lltt1llli‘lllt}lllll“’lllllll!Iflltll!!Il'llllf‘lll'llll
[=] n o n (o] s} fel w0 o u [=4
N - - [ - - o o ™

¢ ' i B

N34 3SVHd TYIIY3HAS WOH4 4410 INIOH3d

[

-35

70 80 90 100 110 120 130 140 150 160 170 180

&0

60 80 100 120 140 160 180
SCATTERING ANGLE

40

20

SCATTERING ANGLE

Appendix C (Continued)




174 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

t 1
160 170 180

1
150

x=3

] 1
130 140

1
120
SCATTERING ANGLE

1£1=0.05,0.10,0.15
o

T
=
1
100

T
1
90

(1)

|
80

T
1
70

NOILONNS 3SYHJ

Appendix C (Continued)

=3
liV|IIUI|lI!|]||l!‘l(l!|(:.1Il[|lll?lll![lll‘1|illl{llllE
L i i \ \ i
; i \ \
" i 4 N\ \ 49
| : | \ -
i 1 ! J 1
i /7 e
™ /'/ e =)
W -~ - 13
2 - L -
4 -
- ,// /-/— .
L -
e /'/ [=]
[ToNn //’ /_/’ "‘(:Lu
-t R Ve ]
. R
or v I (L]
- Pt z
e o <
oL /,/‘7.:" -4 ©
— - I3 - o
(@5 - ¢ ’ . p4
; / ! ps
g_ L~\ AN 5 Jo W
4 ~. \\1"., @ =
o S NS o
L S Vi - <
i I O
w £ w
= r HIEY “3
Hoon
I
i/
L Wi 4
I/\ s
AW 4 Qe
- r }
Bt / b
S~ .
7t
L S Jdo
i o
L [t 4
e
lllllllAllllIlllt‘l:!Ill[AllllIllllllll‘lllllillllllll°
=] N o 0 (=] 0 o © o w0 o 0
o~ - - [ - - o o g l"1

L] ¥ 1 t '

NJd4 3SYHd 1WIIH3HAS WOM4 4410 LN3IDYId



x=3.

1e1=0.05,0.10

(Tg")

x=3

1e1=0.05,0.10

(Te")

APPENDIX C

NOILONN4 3SVYHd

LI 2 I N 20 M

T W S

1

S

!
1
1
!
100
1
1
i
1
[}
)
A

|‘n|>||31111vxrvR||r|||||l;|||»|||y|
: t

gt e a b aad el il

(=
N

'al < '3}
-

-

N34 3ISYHd TYOIY3IHAS WOH4 4410 INIJY3Ad

(=3 Iy} o 0
1 - -~
1 i

o
h

w
o
[

o
o
'

-35

] | 1 i 1 i
120 130 140 150 160 170 180
SCATTERING ANGLE

110

!
100

L
80

&0

40 60 80 100 120 140 160
SCATTERING ANGLE

20




176 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

180

T T T T T
R A

\

\

N\

x=3.
1
i i
150 160 170

1
140

1
130

1
120

110

(Te™)  161=0.05,0.10
T 1 1
1 i i
80 90 100
SCATTERING ANGLE

Il
70

NOILINNd 3ISVHd

180

LI S 0 L O UL 0 L L L B
1 H {

1

1
!
i
i
A

160

~

Appendix C (Continued)

- : / ~

x=3

\
1
120

T
AR S -
L
100
SCATTERING ANGLE

1£1=0.05,0.10
80

T
i
60

(Te)
w0

I3
!
]
1
[
i
1t
(I
i
\
i
1
i

id
pia e byaa s b et ra l\'an:li_Lnlnnu|l||nJ_I_L1|11LA_n:IA1A_1o
[« ['q} f=] v [=] [ (=] 73} < oy < w0
N - - ' - - o o L -
1 [ [ v [ {

NJ4 3SYHd TYJ143HdS WOY4 4410 IN3IJY3d



1ef=0.05,0.10 x=3.

(Tg")

x=3.

1e1=0.05,0.10

(Tg")

APPENDIX C

T T T
’
.
- e -
7
/
i
- A -
4
- hil
i vl 1 1 1 L L J
T
(g
NOILONNd 3SVHd
LIS L L L M I L L L L W 20 LA
H 1
! \
- ! K \‘ -
| \
H 5, Y
- ! l' -
| /
| | /
L | ; e _
\ e
| -
- | P -
| -
i -
! -
B : -~ 1
o
s
- ) -
4
k
L I p
I
t
4
- H p
3
i
Ly
L [ .
b
[
[AAI]IIAI’IAIIlllI)‘li:llllllltllllllll]ll’Ilillillllllll
o w0 [w} e} fo] w0 (=] w© i~ 0 (g 0
o~ - - i - - o N ™ ™
'

1 i ' '

N34 3SVHd TYIIY3IHAS WOH4 4410 IN3IJH3d

70 80 90 100 110 120 130 140 150 160 170 180

60

40 60 80 100 120 140 160 180
SCATTERING ANGLE

20

SCATTERING ANGLE

nued)

1




178 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

x=3
i 1 1 1 1 i
120 130 140 150 160 170 180
SCATTERING ANGLE

110

le1=0.05,0.10

(Tg")
T L
1 1
90 100

!
80

¥

1

1
70

NOILINNS 3SYHd

180

B 0% [ 2 U S I B O 0 L LSS S LSS BN LA TR S SIS SR LN BN B
H i

-

A
1
1
\
f~ 1
+

Appendix C (Continued)

- ; 7 4

]
140

x=3

1
120

1£1=0.05,0.10
SCATTERING ANGLE

(Tg™)

20

L]
P
i
P
i

lllllAJ_LlllLlll_LlllhllIlll'!l|llL||||l||lLl|l||lll||ll o

© n o w o 1] o n o 0 =] 0
& - - t - - &N o~ o ™
1 1 1 1 1

NJ4 3SYHd TYI1Y3HdS WOYd 4410 LIN3OH3d



179

APPENDIX C

081

oLt

039t

oSl

ANV ONIH3L1YIS
oyt O0EL 0ZL OtL 00i

06 08

(ponuniuo)) O xrpusddy

0L

0%

Y

T 7 T L | ¥ 1 T T

| W | R ) bnd

i

LA

.01

G1'0°'01°0'600=131

(

Ty

NOILINNA 3SYHd

08t

091

ovi

30NV ONIY311VY3S
oz 0oL 08 09

ov

i

T

T T T T 1 T T

%

X

G1°0'01°'0'G0°0=13

A.._nt_

o€~

0¢-

[

oy

0s

N34 3SVHd TWIIY3IHIS WOM4 4410 LIN3IOY3d




SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

180

08t

oLt

3T9NY ONIY3LLYIS

09t 01 OvL oOelL 02i OLlL 00l 06 08

(ponupuo)) O xipuaddy

oL a9 o8l

319NV ONIY311YIS

T

LZNENY (A Sl S BAAS IR B S SR ER H R E B IR |

1 T

1 T T T T T T

NOILINNG 3SVHI

1 I 1 L 1 L 1
0z'0'01'0=t3t  {,%L)

09t ovi ot [s102% 08 09 oy [1]4 0

T T T T T T T T T T T

- |’////
/ /// AN 7
A S T
1L L | i 1 i 1 i 1 1 i
. — . . — K4
p=x 0z20'01°0=131 (,iL)

op-

[=
™
'

o
.
'

(=)
-
¢

oL -

114

W

oy

0s

B

NJ3 3SYHd WOIHIHAS WOW4 3410 IN3OH3d



APPENDIX C

o8t

0Lt

091

0S4

ITONY ONIY3LLIVYIS
ovl  OEL 0ZL OLL 0O

06

0

T

T

T

LI i T 7 1 T i

|- i L | OO SO I S |

.01

0z'0'01°0=13I

T

NOTLONN4 3SYHG

o8t

ovi

ocl

JIONY ONIH3LIVYIS
001 08

0%

orv

L4

i !

T

T T T T T

1 i L i t

p=X

02'0'01°0=13

A..N,_Lv_

op~

ot~

0Z-

0g

(s34

0s

NOd4 3SVHd TYIIH3IHGS WOH4 4410 IN3IIH3d




SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

182

084

0L1

09¢

[¢1-33

3TIONY ONIH31LYIS

oyt O€L 021 OLL OO0l

06 o8

(penunuo)) O xpuaddy

oL 0%

LI |

LA N N SRS AL RN B

PR NN WU SN S W N S

T

Ot

G1°0'01°0'60°0=I3

)
!

NOILONNS 3SVHJ

08t 091 ovi

3TIONY ONIH3L11VYIS
ozt 00t 08 09 ov

l ¥ I ¥ T T T T I T

p=x

gr'o'o10'soo=13 (L)

ov-

oe-

oz~

oL~

ot

oc

ot

oy

0%

NJOd4 3SYHd T¥J3IH3IHdS WOH4 4410 IN3OH3d



APPENDIX C

08¢

JTONY ONIY3LLYIS
01 091 0SL OvL OEL 0ZL OLL 004

06 08

0L

T

AN L A A R AR D N AN BEN N |

SN WY OO GU SUS NN Y SR T |

T T
Bhal

T

T

G1'0'01°'0°'co’'0=I2

09

.01

NOILONNS 3ISYHd

(ponunuoy) O xipueddy

o081 091

oyl

37IONY ONIY3IL1YIS
ozi 001 08 09

ot

0z

T T T

i I

1

1

T T 1 T i T T

i i i T

‘=X

G1'0'01°0'¢0'0=13

ﬁs.

414

oe

or

0%

NJd4 JSVYHd ¥3IH3HdS WOH4 4410 LN3JH3d




INGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

5

§
5.

184

o8t

[sFA}

39NV ONIY3IALLYIS
094 081 Ovt OEL 0ZTi OiL

oot

[+1-]

oe

(panunuo)) O xipuaddy

0L

09

T T

LIBANAS [N S S |

=TT 1 77 T

| S SRS SN UG SN SN S

T

,-01

01°0'co0=13

()

NOILONN4 3ISVHd

3TONY ONIH3ILLIVIS
oyl oclt

004

08

09 oy

T T

i 1

T

|

ot

06

0

0=13

L)

ov-

ot~

oi-

ot

[¢14

ot

ov

0%

N34 3SVHd YIIH3IHdIS WOYd4 4410 LN3IOH3d



ITONY ONIH3ILLYIS

08L  OLL 09F 0SE OPi OEL 021 Ot

001

06

08

(penunuoy) O xipusddy

0L 09

L IR EL R R S R S BN R e M s

APPENDIX C

U ST S S VR N R | \ i

| 1 l i

T

T

¥

T 7

-0t

NOILONNS 3ISYHJ

v=X 01'0°'G0'0=I3

(o)

JIONY INIH3LLIYIS

081 091 ovi oclL oot 08 09 ov

T T T i} T T T T T T Y T ¥ T T T T

1 1 ! 1 £ i L i 1 i L 1

[¢14 0

Oop-

o1

(4

0g

Ov

01°0'¢00=I131  (_8L)

0%

N3J 3SYHd TWOIY3HAS WOH4 4410 LNIDY3Id




SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

186

0814

oLy

o9t

051

39NV ONIY3L1LVIS

ovi

0EtL

02t

ottt

0ot 06

[o1:]

(panunuo)) O xipuaddy

S

JTIONY ONIH3LLYIS
oL 09 08l 091 ovi ozt 00t 08

T

T T

T

T

T 7

S S T

T

frnd

i T T

L1

T T T T T T ¥ T T T

ot

b

NOILONNd 3SVHd

| 1 I ! 1 "l i i

01°0'GO'0=I3I

o)

=X

01°0'G0'0=I3!

oy~

Ot

914

ot

aov

0s

N34 3ISVHd IWIIH3IHHS WOH4 4410 IN3JH3d



187

APPENDIX C

08

i

oLt

031

0gt

379NY ONIY3LLIYIS

oyt

ogl

ozt

ot

ool

06

08

(ponuniuoly) ) xipusddy

0L

09

T

T

T

T

T

T

L

T

T

T

T

T

p=x

01'0's0'0=I3I

Ty

NOILINNS4 3SVYHd

o8t

091t

ort

ITONY ONIE3L1IVYOS

oct

001

08

09

ov

oc

T

-

T

Y

¥

i

)

!

1

H

p=x

or

0'¢00=I13

ov-

oc

0t

ov

0%

NJ4 3SYHd 1¥OI1Y3IHdS WOYS 4410 LN3I3Y3d




SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

188

(ponunuo)) D xipuaddy

JIONY INIHILLIVIS F19NY 9ONIY3LLVY3S
081t oLt 091 0sl ovt GElL oZt ott 001 06 [2]:] 172 09 08t 091 ovt 0ct 001 08 09 032 374 .0
T ] T T T T T 1 T T T H T T T T T T T T T T T T T T T T T T T T T T T T T T T T
. -1 Ov-
— = OE~
-0t L o

o

T

b=

w

m

m

[y

P

o

=

(@]

zZ
- - 0S
- — 09
- - 0L

" L i | i i i L i I\ 1 i L L L i 1 i 1 i i i i i 1 " 1 L 1 i 1 1 i1 L i 1 i 1 | 1
‘G=X G1'0'01°0'Co0=1 (_EL) ‘G=X GI'0'01'0'G0'0=13 (_%L)

NJ4 3ASYHd TYIIH3IHdS WOHS 4410 INIJH3d



APPENDIX C

(penunuon) O xipuaddy

FIONY ONIYILLIVYIS JIONY ONIY3LIVYIS

(0173 oLt 091 0si ovi 0El oci ot 0ot 06 08 474 09 081 09t ovi ozt 00l 08 a9 oy o2 0
LI [ IR NN I SN RN RN S SN SRS RN A S S R AN ENAN B SN RN T T T T T T T T T T T T T T T T T

,-0t

NOILONNS 3ISVHd

0L

R i !

02°0'01 ' 0=13

YRS SN W AN YO SN N WU NS WY S S

| Y
‘G=X  02'0°'0T°0=I3I

A_m_t_ ?_N,s,

N34 3ISVYHd TWOIY3IHLS WOH4 4410 IN3IOH3d



(panunuo)) D xipuaddy

379NV ONIH3LLIVIS 3T9NY ONIY3LLVIS

08t 041 091 O0St  Ove O€t 0T+ OLL OO0 06 08 oL 09 osi 091 ovi 0Z1L 001 08 09 ov oz 0
T [N N ANNE ANNE UM SN NN N NS S N S NAN SN SN SEN N AU BN R N T T T T T T T T T T T T T T T T T

0t

20'010=13

SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

190

NOILIONNG 3SVHJ

0i

024

oge

o

0s

09

672

NJd4 3SYHd TTYJ3I1H3HdS WOH4 4410 LNIOH3d



(ponunuo)y) O xipusddy

(=38
et
3T7ONY ONIH3ILLIVYIS
081t oLt 091 [6}-33 oviL ot (4] (3} 00t 06 o8 [+72 09

T T T T T T ¥ T T T T T T T T T T ma T T T T ¥
QO
o
Jnd
a
Z
49]
o
(=}
<

VW T T SRR S RN S T | L4 1 b b

! | OO S KN R I S |
‘G=X  GI'0'01°0'G0'0=13  (,*L)

-0

NOILONNSd 3SYHd

ovi

JTONY ONIY3LLYIS
oz1 ool 08 09 ov

014

T T T T T T T T 1 T

1

Il 1 L 1

g=x

gr'0'01°0'¢0'0=13  {,*1L)

op-

og-

oZ-

oL-

ol

0c

o€

oy

0G

09

0L

NJ4 3SYHd TY¥JIY3HdS WOH4 4410 LINIJYIJ




(panunuo)) O xipuaddy

ITONY IONIW3LLIYIS 3TONYV ONIY3LIVIS
08L 0LL 09L OSL Ovi 0EL 0Zt Ot 00t 06 0B OL 09 o8t 091 ovi ozt 001 08 09 oy (174

L L A 1T T T T 1T T T 71T 77 17 T T T T T T T T T T T T T T T T

-0t

NOILONNS 3SYHd

0z

0ot

oy

0%

09

0L

NJ4 3SVYHd TYDIHIHdS WOH4 3410 IN3J¥3d

SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

192

i 4 i ] L 1 1 L i L L i

FUNEES WOVUIY TN ST SN SN SR W N S | T S SO S SN B |

(0)

i3 L I
'g=X GI'0'01°0'¢0o0=I13 (_"L) ‘g=X GI'0'01'0'GO0=I3I



&3

APPENDIX C

ost

[s73%

(ponunuo)) O wipuaddy

J7INY ONIH3LLIYIS
09t 0SL Opi OEL 024 OLL 0OL 06 08 0L 09

T

T

| S R Rt S I G SR NAN I SUSEE ARSNE SUNEE NS SENDE SN NN SR R SEN SR N

N WA SIS WS T SUNUN WU N AN FHE SUI SN W S SRS S N S S R

=X 01'0'G00=131 (%)

,-01

NOILINN4 3SYHd

379NV ONIH3LLIYIS
091 ovi ozt 001 og 09 ov oz 0

T T T ¥ T T T T T T T T T T T

- 02

-1 0€

- ov

-1 08

-1 09

| I L i L i} i i t

1 L 1]
‘g=X 01060 0=13 (,51)

NJ4 3SV¥Hd TYJIIY3HdS WOH4 4410 IN3IJY3d



194

JTIONY INIH3L1Y3S

1'0°'G0°0=I3

SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

09

0L

(ponunuod) O xipusddy

JI19NY ONIMILLYIS

ozt o0l 08 09

NOILIONNd 3ISVHd

L L [ It i

o=x

01°0°C0'0=13

on)

oy~

0e-

oe-

o1-

oL

oc

ot

ov

0%

09

oL

N34 3SYHd TYIIY3IHAS WoWd 4410 INI3H3d



195

APPENDIX C

o8t

0Lt

084

054

319NV ONIY3L1VIS

ovi

o1 4%

ogtL

atl

0ot

06

08

0L

(panupuoly) O ¥ipusddy

09

T

T

4

T

T

T

.04

NOILONNI JSYHd

ov!

JI9NY ONIHILLYIS
ozt 001 o8

09

ov

0z 0

¥

|

T T T T T

§

- o0¢

~ 0t

- 0%

- 0S

-1 09

01°0°G0°0=13I

(o0

NJ4 3ISYHd TWIIY3IHAS WOYd 4410 IN3IY3d




SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

196

JIONY ONIHW3LLVYIS

08L 0LZL  09L 0SL  oOvi OEL 0ZL OQLl

0ot

06

08

(ponunuo)) O xpuaddy

oL 09

ovi

oci

3TIONY ONIY3LLVIS
001 08

| I AN S SRS SR R S NN S I R |

T

T | S W (U S S |

1

A

T T

i i

1T T T T

.0t

T

T T T T T

NOILONNA 3JSVYHd

.

o L i3 i

1

A .
‘G=X  01°'0°'G0°0=13I

(-°L

‘G=x

01°'0'¢0'0=I13

L)

[/} Ad
o150
oz-

oL~

oL
oz
o€
ov
0§
09

13

N34 3SYHd T¥JII143IHIS WOYd 4410 IN3IDH3d



197

APPENDIX C

08t

0Lt

09t

051

ovlL

JTONY ONIY3IL1IYVIS
OEL 0ZL Ot 001 06 08 OL 09

T

]

L2 I MO IR St S R [ SN RN S S S S

L1

A I | I

It

X

3 | 1 ) i ]
G1°0'01°0'60°0=131  (_®L)

-0t

NOILONNA 3SYHd

J7IONY 9NIY3ILLVYOS

o8l ovl oct 001 o8

09

ov

02z

T T T T ¥ T T T T T T

gr'o'01’'0°'co0=I3

A-W,s_

09

0L

08

NO4 3SYHd TYJ1Y3HdS WOH4 4410 INIJYId




SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

198

o8t

oLt

09t

0sl

379NV ONIY311V3S

ovi

ot

ozl

(19}

00t

06

[¢:]

(ponunuo)) O xipuaddy

oL

09

T

T

'

) B

T

| E W |

T T T

U SO S W

T 1T

1

7

ovi

oci

JIONY ONIY3LLVY3S

00t o8

o

| Bl

T @

T

,-04

T T T T T

NGILONNd 3ISVHdJ

T

T

T

TTTr T T

9=X

0z'0'01'0

L
=|3|

(D)

| N

i

g

B ovrer i

L B I {

I

PR S

LA bt

fot g r il

‘9=x

02°0'01°0=12

(+

1
Nhuv

01~

N34 35YHd TWIIY3IHIS WOH4 4410 LN3JH3d



199

(penunuoly) O xipueddy

JTONY DNIH3LLIVIS
08f 0ZL 094 ©0SL Ovi OEL 02 OLL 0OL 06 08 OL 09 081 091 ovlL

JTIONY ONIH3LLIYIS

oZlL 001 08

09

ov

0z

T Y T T YT TTTTT v T v« T T T T

,-01

T

NOILINNS 3ISVYHJ

APPENDIX C

{

IS FON WORDW DWW S | PR

i 1 i ) L ] i 1 | "
9=X 02°0°01°0=13 (_&L)

‘9=x

02°0'01°0=I3

( ._N&

op-

0L

08

NO4 3SYHd TVIIH3IHAS WOH4 4410 IN3JIY3Id

-




SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

200

081l

GZ1 094 0S¢

JTIONY INIH3ILLYIS
ovi  OE1 0T Ol

(1] 06 08 112 09

(penunuo)) O xpuaddy

ovi

JTI9NY ONIH3LLVYIS
ozt 001 08 09

T T T T T

T T T 1 T 7 . r .17 ¢t 1

TR SO S SUNUN R N | Lol

T T T

-0t

NOI1LINNd 3SVHd

T

T

T T T T T T T

A H

i 1 [} 1
c1'0'01°0'co'0=13  (,"L)

=|3

D)

08

NJ4 3SYHJ TY¥IIH3HdS WDH4 4410 LN3JH3d



201

(penunuo)n) O xipuaddy

JIONY ONIH3LLVYIS 3719NY INIY3L1VIS
081 oLy 091 05t Oyl 0€lL 021 01l OO0t 06 08 o7 09 o8l 091 ovi oct 00t 08 09 ov 174

T T T 71 LN DL DL D S B DL N R AR R DR B T T Y T T T T T T T T T Y T T T T

APPENDIX C

-0t

NOILINNA 3ISVHJ

G1°'0'01°0°'G0°0=13

ov-

og-

314

ot

oc

og

ov

0s

09

0L

o8

NJO4 3SVHd TYIIY3IHAS WOYd4 4410 LN3JH3d




(panupuo)d) O xpuaddy

JIONY INIYILLYIS 371INY ONIY3LLIVIS

08t 0L 0941 0L Oyl OEL 0ZL 0Lt 00) [¢13 08 0L 09 o8l 091 oyt 0zt 001 og 09 oy 24 0
[N R S S R I N N SRR S A LA ML B T 7

¥ T T T T T T T T T T T T T T T T

-0t S J

NOILONN4 3SYHd

SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

202

414

13

ov

0s

0%

0L

08

ND4 3SYHd TvOId3HdS WOoHd 4410 LN3OH3d



203

APPENDIX C

081

oLt

0914

0s1

ovl

39NV ONIY3LLIVIS
o€l  0ZL OLL

oot

6

(penuniuod) O

08 0L 09

T

] A

T

|

T TTTTTTTTTTTY

T

i

=
T

LA B

,-0t

NDILONNd 3SYHd

‘9=xX

i 1 i | & i i
01°0'6¢0’'0=13l

o

xipuaddy

ovl

octL

379NV ONIY3LLYIS
00t 08

09

ov

414

T

T

T

T

T T T H T

A

‘9=X

01°0'c0'0=I3

[=3
<
t

oe-

013

ov

0s

09

0L

08

NJ4 3SYHd ¥3I143HdS WOY4 4410 LN3JH3d




SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEYV PARTICLES

204

08t

oLl

0914

[+/-11

ovt

JTONY ONIYALLIVIS
og4 02t oLl 0oL

(panunuo)) O xpuaddy

09

ovi

oct

ITONY ONIY3ILLYIS
001 08 09 oy oz ]

LANEEN LA AL B |

] bdd, [} i 1

.01

T T i i T T i ! T T T ¥

NOILONNG 3SWHd ~

1 i

L

-1 02

-1 0€

-1 Ov

- 0S

- 09

- 0L

1 1 1 i L 1 08

01°0'60°0=131  (

A1)

‘9=X

01°0'c0'0=13 (,%L)

‘N34 3ISYHd TYIIY3IHAS WOH4 43410 LN3DJHAd



205

APPENDIX C

(ponunuoyy) O xipuaddy

39NV ONIY3L1VYIS JTIONY ONIY3L1IVYIS

o8f OZL 09F 0SL OWL OEL o0Zi OiL o0t ¢ 08 oL 0% 081 091 ovt ozt 0ot 08 09 [+14 174 )
1T T T T TTTTYTTYTYT YT ¢ v T T T T ¥ T T T T 7 T T y T 1 H T

1
o
<

€

!
(=4
L3

1

0t

- -1 02

-~ -1 0¢

NOILINNS 3SVHJ

- o

- 0s

- -1 09

= - 0L

[ S T W A [} i i . 1 L 1 s 1

I W S S R WS

s [ B )
'9=X  01°0'60°0=131 (_%L) ‘9=X  01°0°'60°'0=I3l

( _,_wt_

NJ4 3SYHd TYIIYIHAS WOH4 441G IN3JHW3d




206 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

(T,") 1€1=0.05,0.10,0.15 x=8
T T 4
a0 90 100 110 120 130 140 150 160 170 180
SCATTERING ANGLE

70

60

NOILONND JSYHd

180

TT 7T T | AAASALELENL I LR 0 I B S LA e B R T 717 1T
i - i
/ /!

i
160

Appendix C (Continued)

{
140

!
100
SCATTERING ANGLE

a0

1£1=0.05,0.10,0.15

(T37)

L | ! ( ( - : <

1
| ke )
[T A S [ TEY N W I afe to4 T Loaeaa sl FRNER IR TT B

o~ - -

~

(=} o o (=4 [=4
-

[}

10°

- pust i -

N34 3SYHd TYJ183HdS WOM3 J410 LN3IJH3d



APPENDIX C

lei=0.10,0.20

x=8.
T

(T2")

NOILONNA 3SYHdJ

x=8.

fel1=0.10,0.20

(T2*)

T

Jila 4§

P
1 [0 W O B | (BT AW S | =, S G WSt )

| LS YT T T T T TTTTe T

bbb AL

10°

~ - -
o (=) (= o
- - -

§

N34 3SVHd TYIIHIHAS WOM4 4410 INIOY3Ad

-10?

140

70 80 20 100 110 120 130 140 150 160 170 180

&0

180

160

- 40 60 80 100 120
SCATTERING ANGLE

20

SCATTERING ANGLE

)

d

oniinue

(C

ix C

pend

P

A

207



208 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

x=8.
1
120 130 140 150 160 170 180

110

le1=0.10,0.20
SCATTERING ANGLE

(Tg")
80 <%0 100

70

60

180

T T T 71 T T TTTTT T T =TT TTTIT LI B R R
. ! H

Appendix C (Continued)

§
140

x=8

0.10,0.20
I
i
100
SCATTERING ANGLE

lef=

60

i
" 1

(T")

i
20

/7
¥
i
i
!

i
i
i
i
. |
i
i
i

Pon

IS UNS T T S TR I S N it g1 ) pto g aasgad i ‘.;."nno

o - " L)

(=4 o o o (=4
- = - -
[

10°

NJ3 3SVHd Tw31¥3HdS WOY4d J410 IN3JY3d



ORIGINAL
OF POOR

APPENDIX C

PAGE IS
QUALITY

1£1=0.05,0.10,0.15 x=8.

(1))

NOILINNG 3SYHd

LA B e B B

x=8

le1=0.05,0.10,0.15

TITTT =T LA2 1 2 20 n ama) TR T
/

~
+
o« -
[l
~ | -
|
ITER | [ IR U NI DI T bdiasa s o =4 4 0 sl SRR
- ~ - - o~
(] o o o o
- - - -
[

NJ4 3SYHd TYJIIH3HAS WOH4 4410 1IN3JY3d

-
[

70 80 90 100 110 120 130 140 150 160 170 180
SCATTERING ANGLE

60

40 60 80 100 120 140 160 180
SCATTERING ANGLE

20

Continued)

(

lix C

Appendix

209




210

SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

x=8

le1=0.05,0.10,0.15

(T¢7)

Xx=8

lel=0.05,0.10,0.15

(T,7)

T T

AL

T | LA N S B

10°

baga 4

o~
Q (=
- -

N34 3ISYHd TYIIY3IHIS WOHd 4410 LN3JH3d

70 80 90 100 110 120 130 140 150 160 170 180
SCATTERING ANGLE

60

60 80 100 120 140 160 180
SCATTERING ANGLE

40

20

Appendix C (Continued)



le1=0.05,0.10 x=8.

(Tg")

8.

let=0.05,0.10

(Tg")

APPENDIX C

ORIGINAL PAGE 1[5
OF POOR QUALITY

TrTr =T

Atat i1

T 0 S O B

Z,
lljllll-ﬂ'—'

i

ETEReT |

10°

10?

o

o

-
(=4
-

1

NJ4 3SVHd TYIIY3IHAS WOH4 4410 1IN3IJH3d

-10?

" 90

110 120 130 140 150 160 170 180
SCATTERING ANGLE

100

70 80

60

40 60 80 100 120 140 160 180
SCATTERING ANGLE

20

Appendix C (Continued)

4

Y

211



212 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

x=8.
1
120 130 140 150 160 170 180

110
SCATTERING ANGLE

(Tg~) 1£1=0.05,0.10
80 Q0 100

70

60

180

T T Ty T T TTTTIT

o’
i
160

Appendix C (Continued)

x=8

1
120

SCATTERING ANGLE

H
N A
i
100

1e1=0.05,0.10

(Ts )

Laia i beovaag o

10°
10°

"NO4 3SYHd IYIIY3HIS WOH4 4410 LN3JHId



ORIGINAL PAGE 1S
OF POOR QUALITY

o
3]
o
- ~
o
— ]
@+ 2
WL
x o
- <5
- wl
of T
(=]
=z
I o x
QL 3]
Tol QS Z
o o
o 0
fl e r
LU T e
W) 5]
o O
- (=)
——— -
+®"
B - &
S~
(=3
- @
(=]
i ™~
L
[=4
<o
TV v 1 F
w
I F
5
i 5’
o F o
Rl z
N <
or ©
Oy =
=
© =
St z
Ll =
b <
2 (8]
wn
o
+ L
[~}
)
N~
|
r i
I S | klllllli] illlllll
Ll ~ - - N
o o (=] [=3 o 9
t

NJ4 3SVHdJ

TYOIY3HAS WOH4 4410 IN3IJY3d

Appendix C (Continued)




214

SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

£1=0.05,0.10 x=8.

(Tg™)

x=8

le1=0.05,0.10

(Tg ")

TrrTrT T

Il

T

'
P
v
1
|
i
i

T

10°

~
[=]
-

© o
e

o
[

NJd4 3S¥Hd T¥JIH3IHAS WOH4 4410 IN3OH3d

70 8O 90 100 110 120 130 140 150 160 170 180
SCATTERING ANGLE

60

40 60 80 100 120 140 160 180
SCATTERING ANGLE

20

Appendix C (Continued)

&



[

APPENDIX C

oBl

J9NY INIHILLIYIS
oLt 091 0561 ovi ottt oci (1193 00l 06 o8 oL

(ponunuoD) O xipusddy

09

| SN A SN EENEE A MSR M SN | SN SN SN S BN SRS SUNNE SN NN SN R SN B

RN S S WY SR S | S RS I R B ) i

ovi

JIINY ONIHW3L1VY3S
ozl oot 08 09

(=]

T

T ¥ T T T 1 1

.01

Lot rasd

T T
I

NOILINNA 3SYHd

freTTT

T

T

1 i 1 1 1
‘0T=X ¢1'0'01'0'co’0=131 (_%

01=x

G1'0'01'0'co’0=13

G

Ot~

NJ4 3SVYHd TYJIIYIHIS WOHI 4410 1IN3JY3d




216 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

x=10.
120 130 140 150 160 170

110
SCATTERING ANGLE

(T,*)  1€1=0.10,0.20
80 90 100

70

‘60

180

YT T 7 [T T T LIS LI T S g ey =TT TTTTT T

Appendix C (Continued)

i
140

10.

=

1
120

1
100
SCATTERING ANGLE

80

le1=0.10,0.20

1
60

(T2")

!
20

00 I ] 1 lllllll\ 1 llid 4 4 1

“ o~ - . "~
o o =) o o o
- 1

NJ4 3SYHd TWIIH3IHAS WOHd 4410 IN30H3d



217

APPENDIX C

a8t

0Ly 091 0St

3TONY ONIY311Y3S
ovt ©OEiL ozl

1191

001

0

o8

(ponunuo)) H xpuaddy

0L 09

LR LI A R

T

LA DL |

7

Y

i

T

i

i

R N B N I | TS D WOUUEN SN VS SN T S N N 1
‘

01

X

ocoor

=|3

(

i L
L)

.01

NOILONNA ISYHd

370NV ONIH3L11VYIS
091 ovt ozt 001 08 09 ov 0z

o

L L D A A A A A S

111101

|
|

[N d

ITENR R

i

SRS

I :

1 L i It

( _Ne_v

‘01=X 02°0°01'0=I3

01~

NJ4 3SYHd TYJIIY3IHHS WOH4 J410 IN3IHAd




218 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

180

EAY T T
o
- ~
o
o - el
=) -
- b
[ b
x -
Q
- <
e} - ow
2 3
y o
z
Sr 2=
St (&)
- g =z
or &2
- o
S 2
oL Z e
o -
Tt 23
w 8
Q
—~I &
+
=
~ S
[=
- ~
Pomn
I B
3 =
o
ot
. =
NOILINNd JSVYHd @)
Q
N
Q
T T T LALAE AL e BAARE= § _as
————————————————— 5
- =1
L
o jol
L ] a
o
~ g
Il -
“ L
o &
Te) -
=1 .
< o 2
o o
— T3
o z
< o
w0 L o
(] ® -
- -
ST S
1 .8
E u 0
—~
+'¢'_ 4
i
~F
f o
o
i e ] .
Ll g4 [T Wil Lol I WIS T! Iy
- ~ - - ~
2 2 e ° ° 2
i

NJd4 3SYHd TYOI43HAS WOY4 4410 1N3JH3d

.



APPENDIX C

x=10.

0.05,0.10,0.15

lel=

(Ty7)

-80 90 100 110 120 130 140 150 160 170 180
SCATTERING ANGLE

70

107!

60

LA 2 e |

le1=0.05,0.10,0.15 x=10.

(Ty7)

T T

TrrrT Ty

- -
AUA L D)

ramanny il
- -

120 140 160

100
SCATTERING ANGLE

~ -
o o
- -

N3J 3SYHd TY3IY3HdS WOY4 4410 IN3IJH3d

(=]

Appendix C (Continued)

o



220 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

(Tg*)  161=0.05,0.10 10.
1
80 Q0 100 110 120 130 140 150 160 170 180
SCATTERING ANGLE

70

60

180

TTTT Tt T T T T T

160

Appendix C (Continued)

140

10.

120

le1=0.05,0.10
1
80 100
SCATTERING ANGLE

i
60

(Tg")

i
20

-
ipAd b obd TSR IR sinaad s AW | TN ET! I

- ~
(=

- -
1 1

10°

102

10’
0

NJ4 3SYHd TYIIHIHdAS WOHd 4410 IN3JH3d



APPENDIX C

o
«©
(=]
~
o
0
= )
i
o4 o
-4
- ow
|
o g 2
v—: - <
=] o O
Te] vr\_tE
2 i
o o K
il C :
@ Q
o O
o
~~
I
= g
S
o
@
Q
~
(=]
L]
>‘|"'ll 3 LA LA B B B | LARIALER I T T Ty AYANEAS) «@
B
o
ol 0
: S
ol -
o
T
Ed o
- N
- W
o
= z
L g <
o MY
To R S Z
o o
B w
o =
Il :
@[ O
%)
—~
L
©
B
S
il i) 4
~ ~N
o (=)

N34 3Sv¥Hd TY¥OIYIHAS WOH4 4410 IN3IIY3d




222 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

o
LR LS 1 J 2
o
~ ~
o
» 2
e o
o {8
i
x-—
jou]
: 3
o o
=T ez
o r 0(3
o L 82
o @
o o B
I ol
—_— "'(
L+ O
o UV
- o
P =
i
F ¥
~ L
o
o @
o
B ~ o~
e
r L
b d i I i 8 é
-yt
g}
=
S
=
T Re
ge]
- o
[0}
ja
I g
o
ot
nr
x.—--
m
o
<© =z
L g =
(=) "%
w0+ —
2 &
o r - Jires
I 2
wr )
[52]
- o
2
P
T h
©
E | o
S -
B oz 4o
. I
- 1‘ o E .
P I T I | L lli'lll 1 1 llll(;} L 1 i i lllllll L 1.1 1.t o
” N - - o~
© © =] o © ©
t

NJ4 3SYHd WI1H3HJS WOY4 4310 LN3J¥3d



15.

X=

1e1=0.10,0.20

15.

1£1=0.10,0.20

g open
&

ORIGINAL PAGE L
APPENDIX C OF POOR GUALITY 223

(T2")
1 ] | i I i | 1 I
80 90 100 110 120 130 140 150 160 170 180
SCATTERING ANGLE

i
70
)

60

{Continued

NOILONNS 3SVYHd

180

LALAL R BN SR M 12 TTITT =T TLII» 1T 7 T 7TTTTTY LANAN S 2 B

160

Appendix C

60 80 100 120 140
SCATTERING ANGLE

(T2")

20

dddd 1 d ¢ ‘unle L IR, s I | i) 0.4 alul Lodo A A LAkt

L) o~ - o

o o o o o o

- - - -
[}

NOd 3SVYHd TYIIYIHIS WOHS 4410 LINIOH3Id




SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEYV PARTICLES

224

08t

39NV ONIY3L1V3S

(ponunuo)) D xipuaddy

3TONY ONIY311V3S

oLl 091t 0sl [+] A% OE} ot [+ 81 [oe] 06 [03:] oL 09 081 091 ovtL (743 00¢ a8 09 oy 4 a
LN S S B B B Bt S R S B S S A B N | T T B B B L E A S A S R B T 3
L J
L
E 3
r ]
10 i 1
T
>
v
m L 4
) L
c
s | M
3] r ]
o E E
Q
z
[ i ]
: ; 3
i g H
£
] 2 ]
L ] - 1
[ Y RS S ST N SRR S | R L S SR R T SUUUT S NS SUN N SR N SUN SN S | L E
. . . . _ . oy 2
gI=x 0z0010=13 (L) GI=Xx 020010=1 (2L

01-

0t

0t

NO4 3SVHd TWYOIY3IHLS WOH4 4410 iN3JH3d



APPENDIX C

1e1=0.05,0.10
¥

(T,")

LR A

‘r)' —t
-

i 7

x —t

o 4
g

S _

Te] 4
o

o -
i

% 4
——~

+ -
<

B~ _
S

VNS L jllllil 1 1,42 412

© k) ° ° ©
1

N34 3SYHd TT¥IIYIHAS WOHd 4410 LN3IIY3d

-10?

70 80 9 100 110 120 130 140 150 160 170 180
SCATTERING ANGLE

&0

40 60 80 100 120 140 160
SCATTERING ANGLE

20

225




226 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

(T,")  181=0.05,0.10 15.
i
i 1 ] 1 1 I 1 1 1
80 90 100 110 120 130 140 150 160 170 180
SCATTERING ANGLE

)
70

60

180

LULEE R M L2 1 YOO B S | LILSLI M M B B T T T T T T

Appendix C (Continued)

—1
160

-l
140

15.

X=

il
120

1
100

1e1=0.05,0.10
SCATTERING ANGLE

(T7)

i
40

!
20

|
|
|
|
|
i

il dodd Af4 8 dedd b

i llJ_Lllll Jood 1 o

o - - o~
© =] (=] o [~
- - - -

1 [}

10°

N34 3SYHd TYIIY3IHIS WOH4 4410 LIN3IOH3d



APPENDIX C

x=15.

le1=0.05,0.10

(Tg")

15.

1€1=0.05,0.10

(Tg")

EW|

|
|
|
|
i
|
|
|
|
|
|

Adlid i

m

10

o
(=]
-

NJO4 3SVHd TVIIH3IHES WOH4 4410 IN3JH3d

SCATTERING ANGLE

SCATTERING ANGLE

A
(¢

227



28 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

15.
1 i {
150 160 170 180

X=

i
140
SCATTERING ANGLE

i
130

|
120

(Tg~) 1€1=0.05,0.10
1 1
90 100 110

1
80

1
70

&0

NOILONN4 3SYHd

180

L2 I 0 G 0 Tyt | AL A
~ L

Appendix C (Continued)

x=15

1e1=0.05,0.10

SCATTERING ANGLE

(Tg )

ALLLE fod

10°

NJ4 3SYHd ¥JIH3HdS WOHd4 4410 LN3IDM3d



WG A A @
QIRICANAL IS

| OF POOR QUALITY
APPENDIX C 229

(T;7) 1€1=0.05,0.10 x=20.
H
3 i ] i | { |
90 100 110 120 130 140 150 160
SCATTERING ANGLE

i
80

i
70

Appendix C (Continued)

20.

X=

80
SCATTERING ANGLE

1e1=0.05,0.10

60

(Tg7)

20

U 00 O T fogga g g llllllll iz 0ol Lo sl o

o~ - -
(= (=] [~} (o]
- - -

[

NO4 3SYHd ¥JIH3IHAS WOHd 4410 LN3JH3d

10°
~10?




230 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

(T,*) 1€1=0.10,0.20 20.
1
i 1 /] } 1 I 1 ]
80 90 100 110 120 130 140 150 160 170 180
SCATTERING ANGLE

|
70

60

180

LJLI 0 1 A A AL S

T~ T T T T TTTT T T TTrIT

!
R B T S (RLCUTITReTous -
'
i

160

Appendix C (Continued)

140

20.

120

80 100
SCATTERING ANGLE

1£1=0.10,0.20

60

(T2")

20

| ST
I I S | I3 O I I i EIE LY B S0 S AL § I A L4 lllll i KIS . o

10°

o~ - L
o o [=] (=] k=]
- - -

[l

N34 3SYHd TYIIH3IHAS WOH4 4410 LN3JHId



APPENDIX C

20.

X=

1£1=0.10,0.20

(T27)

1e1=0.10,0.20 20.

(T27)

Ty

Lad )

Ty

—

dedotdaagl

10?

N34 3SVHd TYII¥3IHdS WOH4 3410 IN3IDHIL

70 80 S0 100 110 120 130 140 150 160 170 180

60

60 80 100 120 140 160 180
SCATTERING ANGLE

40

20

SCATTERING ANGLE

xC

i

Append

231



232 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

20.
A ] 1
150 160 170 180

X =
T

1 | 1
120 130 140
SCATTERING ANGLE

1
110

1e1=0.05,0.10
1

L 48
-
N -
* [ =]
= 1¢
~ E
E ik
[
- - O
~
. P
r B
i [=3 :
© =
.t
fax)
=
S
S’
- Q
LI o R AP T T T T Tt @ e
___________ - R
. o
- O ae 1 =
| ST = 4
- | | e 3 §
[«
N
o 2
[aV]
T
o] I
- o
- w
L -l
o g
- o <
s I [=]
(=] T W
O+ Z
o @
(@3 o g u
L E
s f =
© [%2]
. 2
—~
+
ol
=L o
~ <«
I
’,._ [~
o~
- |
‘ 3 s . "
RTTETE NTP WA Tt FRERNE RN LA S R W7 °
@ Ty ! - ’ - o~
o [=] o Q [} o
'

N34 3SVYHd TYIIH3IHAS WOY4 4410 IN3JH3d



233

APPENDIX C

o8t

3IONY INIY3LLVYIS

(ponunuo)) o ¥ipueddy

JTONY ONIY3LLIVIS

cLL 091 0st  OvL  oelL o2t OLL OO0} 06 08 0L 09 08t 09t oviL (4] 001 08 09 ov 114
7y T v 1Ty T T Ty oy T T T
[
<
i 1 i
"
b
o
k)
X
»
@ .
.04 - e
m - T
n -
& - 4
-t = “h 7
— o 1y 3
Q 1
= [
1 !
L [F [
A .
r 1 1
- 1 .
L: \ .
- !
S Y
! v
J
[ ]
PSS U NN NI SRS AN SO SN NI U RS N ORI SN SO [ S S SN S S S 3 A At o L l L 1 ! ] 1 i s 1 1 1 n
. . . . — . = ¥
02=x 01°0'¢00=131 (_"L) 02=X 01'0'Go'0=* (_."1)

04~

OL-

NO4 3JSVYHd TYIIY3IHAS WOH4 4410 IN3IOH3d







APPENDIX D

Degree of polarization vs. scattering angle for randomly oriented Chebyshev particles T;, T,, T,, T,
and Tg; for various deformation parameters e between —0.20 and 0.20 (as shown above each plot);
and for size parameters x = 2,3,4,5,6,8,10,15, and 20. Solid line is for the Ax = 0.1x size-averaged
spherical result, interrupted lines are for non-sheres: dotted, dashed, and dot-dash lines refer to the
various e values shown, in increasing order (in general, the larger the value of |¢|, the greater the
general deviation from the spherical result). Not all particles are represented at larger values of x
because of an inability to achieve satisfactory convergence of the EBCM.

pUEDES PAGE BLANK NOT FILMED

235







DEGREE OF POLARIZATION

APPENDIX D

(T3~) 1€1=0.05,0.10,0.15 x=2.

237

¥

1.0 A 1 ) ] ) ] N ] . ) . 1 L L . i

] 20 40 60 80 100 120 140 160
SCATTERING ANGLE

Appendix D. DEGREE OF POLARIZATION for Chebyshev particles in random orientation,
vs. ANGLE

180




238 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

(T,”) 1e1=0.10,0.20 x=2.

1

T v Y 7 T T

DEGREE OF POLARIZATION
(=]

M..O o —
-8 .
= -]
-1.0 3 L L L A 1 i i L i 1 I 1 L 1 1 I
o 20 40 60 80 100 120 140 160 180
SCATTERING ANGLE
+ —_— ' —
(T, £1=0.10,0.20  x=2.
1.0 7 T v T v T v r v 7 v T v T v T v
L 4
8 .
& -
g & b -
e
o 5 J
~
I -
o
L=< - -
B
g 0
L o -
)
w2 B
fad
@ o -
o
& -4 E
-6 b -
- ]
-1.0 A 1 i i A 1 i 1 J i I i 3 i L L A
o 20 40 60 80 100 120 140 160 180

SCATTERING ANGLE

Appendix D (Continued)



DEGREE OF POLARIZATION

DEGREE OF POLARIZATION

-1,

APPENDIX D

X=2.

L

le1=0.05,0.10,0.15

¥ A T v ¥
-1
20 40 60 B0 100 120 140 160 180
SCATTERING ANGLE
(T,*) 1€1=0.05,0.10,0.15 x=2.
T v ¥ T ¥ v ¥ T 1 o T R L 1
]
]
20 40 60 80 100 120 140 160 180

SCATTERING ANGLE

Appendix D (Continued)

239



240

DEGREE OF POLARIZATION

DEGREE OF POLARIZATION

3.

“1.

SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

'<T6'— )

1e1=0.05,0.10

X

2.

40

60 80 100
SCATTERING ANGLE

160

180

(Te’)

le1=0.05,0.10

o 20

40

60 80 100
SCATTERING ANGLE

Appendix D (Continued)

180



DEGREE OF POLARIZATION

DEGREE OF POLARIZATION

APPENDIX D

1.0 . :

T<Ta'_ )

1e1=0.05,0.10 x=2.

T v T v R

ot

L i 1 A t A ! N Lo i i A

40 60 80 100 120 140 160

SCATTERING ANGLE
+
(Tg")
T T

le1=0.05,0.10 x=2.

T

U
L]
1

1
IS
T

T i ) i ) 1 ) T i L i

-1.0 4 .

40 60 80 100 120 140 160
SCATTERING ANGLE

Appendix D (Continued)

160

241




242

1.

DEGREE OF POLARIZATION

SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

(T,~) 1£1=0.05,0.10,0.15 x=3.
¥ T u T T Y \ T 7 T 12 7 Y T T
‘ ;
-
Y/
g
o
. I 4
\‘ . . /// A )
\
\{\ '/// .
\'\ .//
e / .
\\// ]
: 3 N ] N N 1 N L : i N e e
20 40 60 80 100 120 140 160

SCATTERING ANGLE

Appendix D (Continued)

180



DEGREE OF POLARIZATION

DEGREE OF POLARIZATION

t.

~-1.

APPENDIX D

SCATTERING ANGLE

(T,7) 1e1=0.10,0.20 x=3. :

k) T v T ¥ T v T I T v T v T
- -
o ﬁs
L d
- -

| } L A i I A, 1 I

20 40 60 80 100 180

(T,*)  161=0.10,0.20 x=3.

v ¥ ¥ v ¥

=

™ v 1 v 1

T

1 A i A i L 1 fl 1

40 60 80 100 120 140 160
SCATTERING ANGLE

Appendix D (Continued)

180

243



DEGREE OF POLARIZATION

DEGREE OF POLARIZATION

SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

T

(T,~) 1€1=0.05,0.10,0.15 x=3.

T T T T g T T

] 20 40 60 80 100 120 140 160 180
SCATTERING ANGLE
(Ty")
4
33 L)

1e1=0.05,0.10,0.15 x=3.

T

T T T T T T T T

0 20 40 60 80 100 120 140 160 180
SCATTERING ANGLE

Appendix D (Continued)



DEGREE OF POLARIZATION

BEGREE OF POLARIZATION

-.8

-1.0

(Te")

APPENDIX D

x=3.

o
N
LA

T

1£1=0.05,0.10

N ¥

£ ] A ] A J PR | i

20 40 60 80 100 120 140 160 180
SCATTERING ANGLE

+ e —
(Tg*) 1e1=0.05,0.10 x=3.

T L} v T v ¥ i i v ¥ ¥ ¥

! e -

20 40 60 80 100 120 140 160 THG

SCATTERING ANGLE

Appendix D (Continued)




246 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

[
P

(Tg~) 1€1=0.05,0.10 x

T T v s & T v
- e
.8 - -
L p
.6 - E
=z L
&5 ¢ 4
—
- - <
<
:‘ -2 = -
a
< + 4
S
a 0
L = -
O
w -2F 4
[}
c -
& i
8 -l -
=6 ~
-8 | il
L J
1.0 L 1 ) i L 1 L 1 L 1 L 1 " 1 i 1 "
[e] 20 40 60 8o 100 120 140 160 180
SCATTERING ANGLE
+ - s
(Tq 1£/1=0.05,0.10 x=3.
1.0 T T T T T T T T T T T T T T T T T
r 1
8 -
- -4
.6 -
2 j
6 %
—
- L y
<
> .2 =
o
< L
5 j
a 0
i - 4
(S
w -2 e
L
a - 4
[T
B -l .
~-.6 —
~.8 - —
1.0 N 1 ) 1. A | o ! L A | i | an 1 L
0 20 40 60 80 100 120 140 160 180

SCATTERING ANGLE

Appendix D (Continued)



DEGREE OF POLARIZATION

)

APPENDIX D

1£1=0.05,0.10,0.15

x=4.

247

T

T C T

-—

T T

T ¥ v

i i { he 1 ) |

1 A }

60 80 100 120

SCATTERING ANGLE

Appendix D (Continued)




248 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

(T,”) 161=0.10,0.20 x=4.

T T

1 M T M ¥ T

DEGREE OF POLARIZATION
(=

“1.0 2 ! I H i i L L F i 1 | 1 i 3 i L
o 20 . 40 60 80 100 120 140 160 180

SCATTERING ANGLE

(T,*)  161=0.10,0.20 x=4.

DEGREE OF POLARIZATION
o

0 20 40 60 80 100 120 140 160 180
SCATTERING ANGLE

Appendix D (Continued)



DEGREE OF POLARIZATION

APPENDIX D 249

T

(1)

1.0 T T T

1€1=0.05,0.10,0.15 x=4.

T Y 3 T 7

DEGREE OF POLARIZATION

] 20 40 60 80 100 120 140 160 180
SCATTERING ANGLE

(T,*) 161=0.05,0.10,0.15 x=4.

1.0 —— T T

1.0 . L L ! ) 1 1 | A i L 1 s 1 . L
0 20 40 60 80 100 120 140 160 180

SCATTERING ANGLE

Appendix D (Continued)




250

DEGREE OF POLARIZATION

DEGREE OF POLARIZATION

-1.

-1.

SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

(Tg~) 1€/=0.05,0.10 x=4.

L5 L 173 i T v T M L

I

40 60 80 100 120 140
SCATTERING ANGLE

(Tg*) 1e1=0.05,0.10 x=4.

T T 2 2 T

40 60 80 100 120 140
SCATTERING ANGLE

Appendix D (Continued)



DEGREE OF POLARIZATION

DEGREE OF POLARIZATION

-1.

‘<Ta‘— )

APPENDIX D

1e1=0.05,0.10

X

4.

¥

SCATTERING ANGLE

Appendix D (Continued)

| 1 A I N 1 A i L i A
20 40 60 80 100 120 TR
SCATTERING ANGLE
+
(Tg*) 1€1=0.05,0.10 x=4.
¥ T ¥ H v H T T T T T T T T
p

. ] L 1 i 1 A i) s i 1 1 . A

20 40 60 80 100 120 140 160 180

L



DEGREE OF POLARIZATION

[

1.

£

SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

(T3

¥ T T T Y T ¥ ¥ T \ T 7 13

£1=0.05,0.10,0.15 x=5.

i 1 i 4 i L i i 4 i | 4 § A i

20 40 60 80 100 120 140 160
SCATTERING ANGLE

Appendix D (Continued)

180



DEGREE OF POLARIZATION

DEGREE OF POLARIZATION

-1

APPENDIX D

(T,”) 181=0.10,0.20 x=5.

T

T N h

] Il il 3 i ! i Il i A A

4

20 40 60 80 100 120 140 160 180
SCATTERING ANGLE
(T,*) 1e1=0.10,0.20 x=5.
Al T T T 1 v 1 ¥ i A Ll v ¥ v v

L A 1 1 { L ! I I A !

40 60 80 100 120 140
SCATTERING ANGLE

Appendix D (Continued)

LA



e

4

DEGREE OF POLARIZATION

SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

(T,”) 1e1=0.05,0.10,0.15 x=5.

0 : : :

T

¥ T ¥ T v

0 A i 1 L L 1 L 1 s i \ ! . i s L X
o 20 40 60 80 100 120 140 160 180

SCATTERING ANGLE

(T,*) 1€1=0.05,0.10,0.15 x=5.

) fl i i 1 I I I 1 I 1 i i A H 1 I 4
0 20 40 60 80 100 120 140 160 180

SCATTERING ANGLE

Appendix D (Continued)



DEGREE OF POLARIZATION

DEGREE OF POLARIZATION

‘<T6‘_ )

APPENDIX D

X=95.

T

le1=0.05,0.10

Y

SCATTERING ANGLE

Appendix D (Continued)

1
3 ] i i1 A ) L 1 L ] i H I H
20 40 60 80 100 120 140 160 160
SCATTERING ANGLE
+
(Tg*) 1e1=0.05,0.10 x=5.

T T ¥ T v T LENR— Y T T y T

1 ) I H A ke L Il L 1 i s I

20 40 60 80 100 120 140 160 180

255



256

DEGREE OF POLARIZATION

DEGREE OF POLARIZATION

SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

(o)

le1=0.05,0.10

X=9.

7

1

1 " 1 i i i

20

40

(T5")

60 80 100
SCATTERING ANGLE

1e1=0.05,0.10

1

i 1 1 L i L

i

20

40

60 80 100
SCATTERING ANGLE

Appendix D (Continued)

140

180



DEGREE OF POLARIZATION

-1.

L)

APPENDIX D

1£1=0.05,0.10,0.15

x=6.

257

T

A

A

20

40

60 80 100
SCATTERING ANGLE

Appendix D (Continued)




258

OF POLARIZATION

DEGREE

OF POLARIZATION

DEGREE

-4

SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

x=0.

()

1£1=0.10,0.20

Y

60 80 100
SCATTERING ANGLE

120

140

x=6.

180

(T,*)  1e1=0.10,0.20

7

n

60 80 100
SCATTERING ANGLE

Appendix D (Continued)

120

140

160

180



DEGREE OF POLARIZATION

DEGREE OF POLARIZATION

APPENDIX D

(T,”) 16/1=0.05,0.10,0.15 x=6.

T

o 20 40 60 80 100 120 140 160 180
SCATTERING ANGLE

(T,*) 1€1=0.05,0.10,0.15 x=6.

-1.0 L | " [ 1 L | A 1 | . 1 L e
[} 20 40 &0 80 100 120 140 160 80

SCATTERING ANGLE

Appendix D (Continued)

259



[

S %

DEGREE OF POLARIZATION

POLARTZATION

DEGREE OF

SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

E

x=06.

(o)

£1=0.05,0.10

i

A4

L 5 L A i L

60 80 100
SCATTERING ANGLE

le1=0.05,0.10

4 i i X 1 L

i

60 80 100
SCATTERING ANGLE

Appendix D (Continued)

120

140

160

180



261

APPENDIX D

6.

X

le1=0.05,0.10

(Tg™)

NOILYZ1dv¥10d

40 334930

120 1640 160 180

100

SCATTERING ANGLE

le1=0.05,0.10

40 60 80

20

x=6.

(Tg")

NDILIVZIYVIOd 40 334930

60 80 100 120 140 160 180
SCATTERING ANGLE

40

20

Appendix D (Continued)




262

DEGREE OF POLARIZATION

G

SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

(T”)

x=8.

T

T

1€1=0.05,0.10,0.15

T

1 . 1 i i

40

60 80 100
SCATTERING ANGLE

Appendix D (Continued)

120

140

160

180



DEGREE OF POLARIZATION

DEGREE OF POLARIZATION

APPENDIX D

x=8.

(T,™)  1e1=0.10,0.20

T T

T T

I I A I} A ) L 1 I L. 1 i 1

A

20 40 60 80 100 120 140

SCATTERING ANGLE

x=8

(T,*) 1€1=0.10,0.20

i

20 40 60 80 100 120
SCATTERING ANGLE

Appendix D (Continued)

140

160

263



264

DEGREE OF POLARIZATION

DEGREE OF POLARIZATION

SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

-1.0
0

(T

1€1=0.05,0.10,0.15

x=8.

Y

v

i

60 80 100 120
SCATTERING ANGLE

140

x=8.

1£1=0.05,0.10,0.15

T

60 80 100 120
SCATTERING ANGLE

Appendix D (Continued)

140

160

180



265

APPENDIX D

x=8.

le1=0.05,0.10

(Te™)

NOTLIVZIHVYIDd 30 334030

120 140

100

SCATTERING ANGLE

le1=0.05,0.10

40 60 80

20

x=8.

(Tg")

NO11V¥ZIY4¥10Dd

40 334930

60 a0 100 120 140 160 180
SCATTERING ANGLE

40

20

Appendix D (Continued)




266

DEGREE OF POLARIZATION

DEGREE OF POLARIZATION

SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

-1,

(Tg~) 1€1=0.05,0.10

x=8.

T

T i1 ¥ T 7

20

a0 60 80 100
SCATTERING ANGLE

(Tg*) 1e1=0.05,0.10

5 L o ) !

20

a0 60 80 100
SCATTERING ANGLE

Appendix D (Continued)

120

140 160 180



267

APPENDIX D

e1=0.05,0.10,0.15 x=10.

(Tg)

NOILVZ1IYVI0d 40 334330

60 80 100 120 140 160 180
SCATTERING ANGLE

40

20

Appendix D (Continued)




268 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

(T,”)  1€1=0.10,0.20 x=10.

¥

8- . . } i

& ~ : : -

DEGREE OF POLARIZATION
<

1.0 L | L 1 L 1 L | L 1 ) I L 1 A ! L
0 20 ’ 40 60 80 100 120 140 160 180

SCATTERING ANGLE
(T2")
2
—

£/=0.10,0.20 x=10.

DEGREE OF POLARIZATION
o

1.0 L | 1 L L i ). L I L i i i i i i A
0 20 40 60 80 100 120 140 160 180

SCATTERING ANGLE

Appendix D (Continued)



DEGREE OF POLARIZATION

DEGREE OF POLARIZATION

APPENDIX D 269

(T,~) 1e1=0.05,0.10,0.15 x=10.

T

1.0 " | L ! s } n 1 A 1 L { i i n A L
o 20 40 60 80 100 120 140 160 180

SCATTERING ANGLE

(T,”) 1€/=0.05,0.10,0.15 x=10.

1.0 L ] L ! L 1 A i A 1 A { i 1 A 1 2
0 20 40 60 80 100 120 140 160 180

SCATTERING ANGLE

Appendix D (Continued)




270 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

(Te")  1€1=0.05,0.10 x=10.

1.9 v T Y T v T v T v
L@ e -
KN =
= - -
& 4
-
. - <
N
o) ‘2 - =
&
= - ;
b
g
[ - E
o
w -2 -
tw
o ~ .
(&)
o o R
-6 = ‘: -
- "‘l H ! )
-8 v ¥ —
L 4
10 . L i 1 n L L i . i L i . i ) 1 :
0 20 40 60 80 100 120 140 180 180
SCATTERING ANGLE
+ . —
(Tg*)  1£1=0.05,0.10 x=10.
1.0 T T ¥ T T T T T Y T T T T 7 ¥ | —
L r
.8 N
-3 o n

DEGREE OF POLARIZATION
[=]

1.0 . i I 1 ) ! . 1 L i f i L 1 " L L
o ‘20 40 60 80 100 120 140 160 180

SCATTERING ANGLE

Appendix D (Continued)



APPENDIX D

15.

)g::

1e1=0.05,0.10

(Tg™)

NOTLYZIYYIDd

40

334930

60 8o 100 120 140 160 180
SCATTERING ANGLE

40

20

Appendix D (Continued)




272 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

(T,”)  1e1=0.10,0.20 x=15.

~ N\

DEGREE OF POLARIZATION
(=]

E - o —
-8 b -
9.0 L L i i L i i 1 i | 1. i’ i L I i i
0 20 40 &0 a0 100 120 140 160 180
SCATTERING ANCLE
(T,*) 1€/=0.10,0.20 x=15.
1.9 T Y T T T T T T T T ¥ T T T ¥ T u
L 4
.8 - -
- o -

DEGREE OF POLARIZATION

o 20 40 60 80 100 120 140 160 180
SCATTERING ANGLE

Appendix D (Continued)



273

APPENDIX D

x=15.

lelI=0.05,0.10

(Ty")

NOILYZIYYI0d 40 334930

100 120 140 160 180

80
SCATTERING ANGLE

l€1=0.05,0.10

40 60

20

x=15.

(Ty")

NDILYZI¥¥10d 40 334930

60 80 100 120 140 160 180
SCATTERING ANGLE

40

20

Appendix D (Continued)




274

DEGREE OF POLARIZATION

DEGREE OF POLARIZATION

SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

(Tg~) 1&1=0.05,0.10 x=15.

[
A
i

¢
&
1
-
i

| i i A L A L A ! 4 A A
0 20 40 60 80 100 . 120 140 180 180

SCATTERING ANGLE

(Te*)  16/=0.05,0.10 x=15.

-1.0 . -
[ 20 40 60 80 100 120 140 160 180

SCATTERING ANGLE

Appendix D (Continued)



275

APPENDIX D

x=20.

1e1=0.05,0.10

(T3")

NOIL1YZI¥YI0d dJ0 3349230

60 80 100 120 140 160 180
SCATTERING ANGLE

40

20

Appendix D (Continued)




276 SINGLE SCATTERING FROM NONSPHERICAL CHEBYSHEV PARTICLES

(T,”) 1€1=0.10,0.20 x=20.

1.0 . - - - - ; v T 7 — T - v - - -
L 4
.8 -
6 4
r4 -
& ¢
—
= L
<<
N
— '2-.
@
< L
B
& 0
i L
o
w -2
w
a -
0
a ~4r .
-.6— -
L -
-.8 - -
-1.0 " 1 . 1 L | L 1 L 1 n | n 1 L 1 L
o . 20 40 60 80 100 120 140 160 180
SCATTERING ANGLE
+ - —
T €1=0.10,0.20 x=20.
2 ’
1.0 — T T T T T T T T T T T T T T T
.8 4
4
.6 e
z L e
&
- L 4
<<
N
— -2 - -
o
< - -
=
a 0
[T - —
(=)
w -2+ -
@ - 4
@
o -4 =
- .
__6— -
-8} -
| 4
4.0 L | L 1 L Il L 1 s 1 L L L L I 1 L
0 20 40 60 80 100 120 140 160 180

SCATTERING ANGLE

Appendix D (Continued)



277

APPENDIX D

x=20.

le1=0.05,0.10

‘<T4_ >

180

]
160

20

NOILVZIYVI0d 40 338930

SCATTERING ANGLE

1€1=0.05,0.10

x=20.

(Ty")

NOTLVZIYVI0d 40 334930

60 80 100 120 140 160 180
SCATTERING ANGLE

40

20

Appendix D (Continued)




BIBLIOGRAPHIC DATA SHEET

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
NASA RP-1157

4, Title and Subtitle 5. Report Date
Single Scattering From Nonspherical Chebyshev January 1986
Particles: A Compendium of Calculations 6. ge{gormmg Organization Code
7. Author{s) 8. Performing Organization Report No.
Warren .3& Wiscombe and Alberto Mugnai
9. Performing Organization Name and Address 10. Work Unit No.
NASA Goddard Space Flight Center ' 85B0264
Greenbelt, MD 20771 11. Contract or Grant No.

13. Type of Report and Period Covered

124, Sponsoring Agency Name and Address Reference Publication
National Aeronautics and Space Administration
ashington, D.C. 20546

W
W

14. Sponsoring Agency Code

15, Supplementary Notes

Warren J. Wiscombe: Laboratory for Atmospheres, Goddard Space Flight
Center, Greenbelt, Maryland. '

Alberto Mugnai: Cooperative Institute for Research in the Atmosphere,
Colorado State University, Fort Collins, Colorado, on leave from
Istituto di Fisica dell'Armosfera, Frascati, Italy.

16. Abstract

A large set of exact calculations of the scattering from a class of nonspherical particles
known as ‘Chebyshev particles’ has been performed. Phase function and degree of polariza-
tion in random orientation, and parallel and perpendicular intensities in fixed orientations,
are plotted for a variety of particle shapes and sizes. The intention is to furnish a data base
against which both experimental data, and the predictions of approximate methods, can be
tested. WNo analysis of the data is attempted here; that is reserved to a forthcoming journal
article.

The calculations were performed with the widely-used Extended Boundary Condition
Method. An extensive discussion of this method is given, including much material that is not

asily available elsewhere (especiaily the analysis of its convergence properties). An extensive
review is also given of all extant methods for nonspherical scattering calculations, as well as
{ the available pool Qf experimental data.

]

o
=

17. Key Words (Selected by Author(s)) 18. Distribution Statement
Light Scattering Unclassified-Unlimited

Aeroscl Scattering
Atmespheric Radiation

Nonspherical Scattering Subject Category 74
19. Security Classif. {of this report) | 20. Security Classif. {of this page) 21. No. of Pages | 22. Price
Unclagsified Unclassified 284 Al3
For sale by the National Technical Information Service, Springfield, Virginia 22161 GSFC 25-44 (10/77)

% U.S. GOVERNMENT PRINTING OFFICE:1 985 -625-01% 20020



National Aeronautics and
Space Administration

Washington, D.C.
20546

Official Business
Penalty for Private Use, $300

SPECIAL FOURTH CLASS MAIL
BOOK

Postage and Fees Paid

National Aeronautics and
Space Administration

NASA-451

POSTMASTER:

If Undeliverable (Section 158
Postal Manual) Do Not Return






