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Vacuum metal-organic-chemical-vapor-deposition (MOCVD) is a new fabrication

process with improved safety and easier scalability due to its metal rather than

glass construction and its uniform multiport gas injection system. It uses source

materials more efficiently than other methods because the vacuum molecular flow con-

ditions allow the high sticking coefficient reactants to reach the substrates as

undeflected molecular beams and the hot chamber walls cause the low sticking coeffi-

cient reactants to bounce off the walls and interact with the substrates many times.

This high source utilization reduces the materials costs per device and substan-

tially decreases the amounts of toxic materials that must be handled as process

effluents. The molecular beams allow precise growth control. With improved source

purifications, vacuum MOCVD has provided p GaAs layers with I0-_ minority carrier

diffusion lengths and GaAs and GaAsSb solar cells with 20% AM0 efficiencies at 59X

and 99X sunlight concentration ratios. Mechanical stacking has been identified as

the quickest, most direct and logical path to stacked multiple-junction solar cells

that perform better than the best single-junction devices. The mechanical stack is

configured for immediate use in solar arrays and allows interconnections that

improve the system end-of-life performance in space. A GaAsP cell of 13% AM0 effi-

ciency has been fabricated onto a transparent GaP substrate (GaAsP/GaP). Mechan-

ically stacking this GaAsP/GaP on current technology silicon cells would give a com-

bined 20% AM0 performance. Practical efficiency levels of fully developed systems

should be 27% AM0 for GaAsP/GaP on silicon and approaching 30% AM0 for GaAsP/GaP on

a direct band gap bottom cell. Incorporating these devices in light concentrator

systems offers the highest efficiencies, the best tolerance of nonideal device

behavior, and the most protection against damaging radiation.

INTRODUCTION

Vacuum MOCVD is a new fabrication process that has been under development at

Chevron Research for the past several years (ref. 1) to produce high efficiency

solar cells. A novel and beneficial feature of the vacuum configuration is that gas

transport is by molecular flow, while in higher pressure, conventional MOCVD it is

by laminar flow. The vacuum configuration incorporates some of the best features of

molecular beam epitaxy (MBE). It produces high quality layers and solar cell junc-

tions equivalent to the best obtained by other methods. It is well suited to the

formation of solar cells on a transparent substrate which can readily be stacked

mechanically onto another cell to form multiple-junction devices. Multiple junc-

tions offer the potential for significantly improved device performance (ref. 2).

Mechanical stacking circumvents many of the problems encountered in other multiple-

junction configurations and it provides cell interconnections that improve the

end-of-life efficiencies limited by different junction degradation rates in space.

*This work was supported in part by contracts with the Solar Energy Research

Institute and with the Air Force Wright Aeronautical Laboratory.
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When the series resistance and device temperature can be kept sufficiently low, con-

centrated light systems offer the best overall performance characteristics.

VACUUM MOCVD

A simplified schematic of the vacuum MOCVD system is shown in figure I. The

operating pressure of the reactor is in the I millitorr range where convective heat

loss is negligible. In conventional higher pressure systems, such convective losses

are large enough that multikilowatt, radiant, or RF induction heaters are required

to maintain the 600-700°C reaction temperatures. For heating energy transmission,

these systems use glass- or quartz-walled chambers. In contrast, the required tem-

peratures in the present vacuum system are produced by a 600-watt resistance heater.

The whole figure I system, including the heater, is enclosed by a stainless steel

outer chamber (not shown) which remains at room temperature. This improves the

safety in handling the toxic and pyrophoric gas sources because there are no strong

temperature stresses on the outer walls and because the metal does not shatter like

glass. In addition, any small gas leaks are into, rather than out of, the vacuum

enclosure. Since the main structural element is steel, the system can be scaled up

in size more easily than glass-based systems. The multiple gas injection ports

shown in figure I maintain the growth uniformity during such scaling.

Figure 1 illustrates the ep_taxial growth of GaAs onto a GaAs substrate. The

source gases of arsine (AsH 3) and triethylgallium (TEG) are fed in from the side and

bottom, respectively, of the inner graphite reactor chamber, which has hot walls.

This configuration combines some of the best features of MBE and tradi£ional CVD

while avoiding some of their serious problems. The expensive and comparatively rare

TEG is used efficiently. In the molecular flow vacuum, the TEG molecular beam

delivers Ga directly to the substrate without deflection and with a high sticking

coefficient (ref. 3) that is dependent on the AsH 3 overpressure (ref. 4). The

sticking coefficient is less than one since some GaAs forms on the bottom wall of

the graphite chamber. Essentially all the TEG reacts in the chamber with none

detected at the exit port with a residual gas analyzer (RGA). This indicates a Ga

utilization efficiency of the order of 50% or greater for large-scale systems with

planar geometry where multiple TEG injection nozzles provide growth uniformity. The

AsH 3 distributes uniformly throughout the reaction chamber due to its low sticking

coefficient (estimated 0.01 value) and its multiple bounces off the hot chamber

walls. This provides many opportunities for the AsH 3 to react on the substrate sur-

face. An AsH 3 overpressure is required for good epitaxy (ref. 3), and the AsH3/TEG

flow ratio of 6:1 used in this system indicates an AsH 3 utilization of the order of

15%. Upstream decomposition of the AsH 3 in a thermal cracker (shown in fig. I)

gives more efficient growth with a reduced AsH3/TEG flow ratio of 3:1 and a 30%

estimated AsH 3 utilization. A strong AsH 3 signal is detected by the exit port RGA

under all these conditions.

The gas utilization is much lower inthe conventional, higher pressure, laminar

flow MOCVD systems. Only those molecules in the boundary layer next to the sub-

strate contribute to the epitaxial growth. Most of the gas is swept past the sub-

strates without touching them. This gives Ga utilization of the order of a tenth or

less. These systems are cold walled and require much higher AsH 3 over pressures

with arsenic-to-gallium flow ratios typically in the 20-100 range (ref. 5). Such

wastes increase the materials cost per device by at least a factor of two. The

problems of safe effluent management are multiplied by the orders of magnitude

higher volumes of toxic AsH 3 released through the exit port of higher pressure sys-

tems. In MBE machines using AsH 3 (ref. 4), most of this gas is lost since it has

essentially a single chance to strike the substrate. MBE growth uniformity is
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difficult to achieve with a single Ga injector nozzle (ref. 3). The multiple

molecular Ga beams in the present vacuum MOCVD system provide for uniformity along

with the precise growth control characteristics of MBE.

MATERIALS AND DEVICES

A continuing problem of MOCVD is that source material quality is only beginning

to be improved to the level of older techniques like liquid phase epitaxy (LPE).

However, recent advances in moisture removal from AsH 3 (ref. 6) and purification of

the p dopant source (ref. 7) have provided layer growths of high quality. Figure 2

shows the quantum yield spectra measured on a special n + on p GaAs sample fabricated

by vacuum MOCVD. The n + layer was degenerately doped so that its contribution to

the quantum yield was negligible due to Auger recombination (ref. 8 and 9). The

resulting curve fits show that the electron diffusion length (Ln) in the p layer is

10 _. This is equivalent to the best values achieved by other growth techniques
including LPE.

Figure 3 shows the I-V properties of two p on n solar cells grown by vacuum

MOCVD with 20% AM0 efficiencies at sunlight concentration ratios of 59X and 99X.

The ternary GaAsSb cell was formed with molecular beams (see fig. I) of both TEG and

triethylantimony using a GaAs substrate and a graded Sb composition transition

layer. The external quantum yields of these devices are shown in figure 4. Their

peak values are 90% and 95% and flat, indicative of long diffusion lengths and low

surface recombination velocities. The GaAsSb band gap is 1.35 eV. Both cells had

surface passivation by a several hundred-angstrom thick layer of AIGaAs or AiGaAsSb

formed by switching on a triisobutylaluminum molecular beam at the end of their

growths. Both cells also had two-layer antireflection coating applied. This per-

formance is equivalent to the state-of-the-art results reported for other fabrica-

tion techniques. All the solar cells reported in this paper have 0.0386 cm 2 active

areas, and all the efficiencies are active area values.

We have previously reported the I-V properties and quantum yield (ref. 10) for

a vacuum MOCVD p on n GaAsP cell with 15% AM0 efficiency at a 112X concentration

ratio. (The corresponding AM1.5 efficiency was 17% at 133X concentration.) This

cell had a band gap of 1.6 eV and was grown on top of a GaAsSb device on a GaAs

wafer. It was grown with PH 3 gas injected into the reaction chamber through a port

similar to that used for AsH 3 injection. This illustrates the variable band gap

fabrication capability of vacuum MOCVD for ternary III-V solar cells.

MECHANICAL STACK

The 20% AM0 performance is beginning to approach the practical limits of effi-

ciencies that can be readily achieved with single-junction solar cells (ref. 11).

However, stacking two different band gap cells one on top of the other offers the

potential for substantially higher performance levels (ref. 2). In particular,

stacking a GaAsP cell onto a current technology Si cell is promising. Figure 5

shows the 13% AM0 efficiency with 64X concentration achieved in a preliminary

experiment with a GaAsP cell grown onto a transparent GaP substrate. The calcula-

tions show (ref. 12) that mechanically laying this device on top of a silicon cell

would give a combined AM0 conversion efficiency of slightly over 20% with a 250-_

thick GaP wafer and appropriate antireflection coatings. A fully developed

GaAsP/GaP top cell should alone approach an efficiency of about 20%. Mechanically

stacking such a cell on a silicon device should then provide practical performance

levels in the 27% AM0 range (ref. 12). Much of the ground work for GaAsP on GaP has

already been laid by the development of light-emitting diodes which use the same
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materials layers and p-n junction structure. Replacing the bottom silicon cell

with a fully developed, direct band gap material with higher quantum yield (for

example, GaAsSb--see figure 4) should provide mechanical stack performance approach-

ing the 30% AM0 level.

The mechanical stack circumvents many of the problems that are currently imped-

ing the progress of other stacked, multijunction designs. It is a four-terminal

device that eliminates the need for the shorting junction that has proved difficult

to achieve in monolithic layered devices. It simplifies the problems of transition

layers. With a GaAsP cell monolithically stacked onto a GaAsSb cell as described in

reference 10, a several-micron thick transition layer is required between the two

junctions to attain high performance in the top GaAsP; but this thick layer absorbs

photons and limits the efficiency of the bottom cell (to 4% in reference 10). Addi-

tion of A1 to the transition layer reduces the absorption, but the performance of

the top GaAsP junction is substantially reduced because of problems related to the

A1 layer. These basic materials problems are all solvable given enough time and

effort. However, the quickest, most direct and logical path to high performance

multijunctions ready to use in arrays is the mechanical stack.

The monolithic, two-junction stack of reference 10 is a three-terminal device

that circumvents shorting junction problems by using a p-n-p configuration. Before

it could be used in an array, the complimentary n-p-n two-junction device would have

to be developed. All the involved junctions would need to be current matched for

series connections.

The four-terminal versatility of mechanical stacks allows the devices to be

connected so that end-of-life system performance is improved. With different junc-

tions exposed to the space radiation environment, each junction would be expected to

degrade at a different rate. If stacked cells were designed for series connection

with currents matched at the beginning of life, their currents would be mismatched

at end of life with performance loss greater than the efficiency loss of each indi-

vidual junction. Voltage matching provides a more robust space design since device

voltages only vary logarithmically with current changes. Figure 6 shows a 4 by 2

module wiring diagram for voltage matching of top and bottom cells whose output

voltages differ by a factor of two. This can be achieved in GaAsP and silicon by

selecting the correct GaAsP band gap. For the eight-element configuration, four of

the bottom cells and two of the top cells are connected in series to provide the

voltage match. For the other operating voltage ratios, other series-parallel con-

nections schemes (e.g., 4 by 3, 7 by 5, etc.) can be used to achieve voltage

matching.

CONCENTRATORS

Since the short circuit current of solar cells increases linearly with light

intensity, their efficiency would remain constant under concentrated light if their

open circuit voltage and fill factor remained constant. However, the voltage

increases logarithmically with this current rise and the fill factor also increases

(ref. 13). The net result is an increase in device performance with concentration

as long as series resistance and device temperature can be kept sufficiently low.

For 100X concentration and 5% grid contact coverage, grid contact resistances below

about 10 -4 ohm-cm 2 are required to prevent loss of fill factor. Values in this

range were achieved in the figure 3 p on n devices using a silver alloy p layer con-

tact, 500-_ grid line spacing, and 15-_ wide grids. The silver, containing

4.5% manganese by weight (Cominco), was electron beam deposited 1500 angstoms thick

onto the p layer. This was annealed in forming gas for one minute at 450°C and then
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electroplated with 2-3 _ of silver. Ohmic contact was assured as long as the p

layer doping level was above I (1018 ) cm -3. The diffusion length was not seriously

decreased by Auger recombination (ref. 8 and 9), as long as the p doping was less

than 2 (1018 ) cm -3. Curtice (ref. 11) has calculated the trade-offs among device

temperature, efficiency, and concentration ratio for GaAs cells used in space. He

found the 50-I00X range as near optimal. This range spans the figure 3 conditions

where the 20% devices were measured.

An additional advantage of concentrators is that shunt leakage paths can become

saturated at the higher current levels encountered. This means that devices can

exhibit near ideal performance with high efficiency at concentration even though

their characteristics would be dominated by efficiency lowering leakage at unconcen-

trated light levels. Thus, the concentrator applications are more tolerant of non-

ideal device behavior. A final advantage of concentrators is the extra protection

they afford the devices. Most concentrator designs for space have the devices com-

pletely surrounded by metal structures (ref. 14). This provides shielding from dam-

aging radiation like cosmic rays or from high intensity optical radiation not

directly aligned with the optical axis of the concentrator.

CONCLUSIONS

Vacuum MOCVD is a novel fabrication method being developed at Chevron to produce

high quality materials for high efficiency solar cells. It combines the precise

control of MBE with the high throughput of CVD. It uses the source materials more

efficiently than alternate methods and reduces the materials costs per device by at

least a factor of two. It decreases the volume of toxic effluents that must be han-

dled by an order of magnitude and reduces the dangers of toxic gas escape by replac-

ing fragile glass outer walls of higher pressure MOCVD with steel. It is more

easily scalable to higher volume production because the steel structural parts can

be increased in size in a more straightforward manner than glass, while the multiple

injection ports maintain uniformity. Recent improvement in source quality have

given materials with properties equivalent to the best produced by other fabrication

techniques including LPE. These properties include p material with a I0-_ minority

carrier diffusion length. Solar cell devices have been produced with 20% AM0 effi-

ciencies at concentration ratios of 59X and 99X using GaAs and GaAsSb p on n

junctions.

A mechanical stack has been identified as the most rapid, direct, and logical

path to stacked, multijunction devices that can be immediately incorporated into

actual arrays and that have performance levels exceeding the best single-junction

performance. A preliminary experiment has given a GaAsP device of 13% AM0 effi-

ciency on a transparent GaP substrate. Mechanically stacking this device on present

technology silicon cells would provide 20% AM0 efficiency. Full development of this

configuration should give practical performance levels around 27% AM0 with silicon

and approaching 30% AM0 with a direct band gap device for the bottom junction.

Module wiring schemes to produce voltage matching are easily achieved with mechani-

cal stacks and these schemes give multijunction systems with superior end-of-life

performance in space. Concentrator systems give the highest device performance, are

the most tolerant of nonideal device behavior, and provide extra protection against

radiation damage as long as series resistance is sufficiently low. Silver-manganese

metalizations have given low enough contact resistance for 20% efficient (AM0), con-

centrated light performance at up to 100X.
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SIMPLIFIED SCHEMATIC OF VACUUM MOCVD
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Figure I. Schematic diagram of the vacuum MOCVD system showing the growth of GaAs

epitaxial layers on a GaAs substrata.
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Figure 2. Theoretical curve fit of measured quantum yield data points indicating a

10-p diffusion length in the p layer of a n+-p junction.
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Figure 3.

solar cells with 20% AM0 efficiencies.
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Figure 4. The external quantum yields measured on the two cells whose I-V proper-

ties are shown in figure 3.
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GaAsP Cell on GaP Wafer
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Figure 5. The flash simulator measurement of the I-V properties of the GaAsP solar

cell formed on a transparent GaP wafer.
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Figure 6. The 4 by 2 module wiring diagram for voltage matching stacked solar cells

with a 2:1 voltage output ratio and four terminals available for interconnections.
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