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ABSTRACT

We match formal asymptotic expansions with differently scaled variables

to obtain a uniform approximation to the similarity solution of the shock-

wedge diffraction problem.
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1. INTRODUCTION

The time-dependent compressible Euler equations are a hyperbolic system

of five conservation laws

0.1 )

In spherical coordinates

form

+ 2(r,e) E R x S , the equations assume the following

( 1.2) 1 2 1
ut + F(e,u) + - L Gi(e,u)e + - H(8,u) = o.

r r i=1 i r

Since they are rotationally invariant, there exists K(e) such that

-1 '"K F(e,Ku) = F(u)

-1 -1 '"- L K
e

Gi(e,Ku) + K (e)H(e,Ku) = H(u)
i

for some r, ~i' ~. Then, by setting u = K(e)v we can express (1.2) as

0.3 ) vt + (r(v)) + 1 L ~i(v)e + 1 ~(v) = o.
r r i r

For convenience we suppress the tildas in (1.3). A similarity solution of

(1.3) depends only on s = ~, e and satisfies

0.4) (F(v) - sv) + l (G(v)) + l H(v) + v = 0
sse s
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where

or, in nonconservative form

Let L(v)F (v) = A(v)L(v) withv

If we multiply by L(v) on the left

•

(1.5)

(1.6)

(A - s)Lv + 1 LG v + 1 LH = o.
s s v e s

Suppose one substitutes

into (1.5), with vo a constant solution. Then vl(e,s) will satisfy the

linear equation

Suppose we had the appropriate boundary condition, and subsequently

solved the boundary value problem for vI. Note that the system degenerates

where s = Aj(VO)' j = 1, ••• ,5; therefore, one suspects the solution
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VI (6)S) will develop a singularity at that point. Later we will see that the

singularity is typically of the form Is - A.. This shows that vI
J s

up at A
j

and therefore the expansion (1.6) is no longer valid when

blows

s is

too close to In our case "too close" means within 2e: •

In order to see nonlinear phenomena such as shocks and expansion waves,

one needs to let

than 0.6).

s vary near A
j

• Thus we are led to an ansatz different

Near an eigenvalue Aj(VO) we rescale

and we let

O.7a)

Note that if

then in the expansion (1.6)

O.7b)

Our application is the shock-wedge diffraction problem in two dimensions

(Figure 1.2). We will substitute (l.7a) and solve for v explicitly by

matching its boundary values with the third term in (I.7b), which is obtained

from Keller and Blank [II where the solution to the linearized problem is

given. The term v will capture the position of the diffracted shock, within

the order of approximation. It will contain vorticity generated by the curved

shock. The O(e:) approximation) VI' is too crude to see such effects.
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To be specific we consider the isentropic, two-dimensional Euler

equations in polar coordinates and self similar form (see (1.4»:

p(R - r) p0 p pR

(l.8) peR - r)R + p +.!. p0R + pR +.!. pR2 2 O.r r - p0

peR - r)0
2 p0 2p0R

r p0 + e

Ix2 +
2 -1 yHere r = y e = tan -t x'

[R] [cos e sin :] [:] .o = -sin e cos

and the equation of state is p = ApY.

The assumption of constant entropy is no loss of generality because the

changes in entropy are of order lower than the order of our approximation.

Differentiating (1.8) and simplifying

R - r p 0 'p 0 0 p P

2
+.!.c R - r 0 R 0 0 0 R

P r

2
0 0 R - r ·0

c 0 0 0
r

p e
(1. 9a)

o

+.!.. 0
r

o

p

o

o

o

-0

o
:]= o.
o
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Multiplying on the left by the eigenvector matrix

p

-p

o

o
R - r - c

o

p

-p

o ~] [:]
r

(1. 9b)
c0 p0 0 -p0cp p cp p

+.!:. c0 -p0 cp R +.!:. 0 cp p0 R = O.r r

2c
0 0 0 0 0 0 0p e

Consider now a weak shock impinging on a wedge so that at time t = 0

the shock reaches the wedge. The initial values at t = 0, comprising of the

states ahead and behind the shock, are shown in Figure 1.1.
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-----

(0)
p= po
u=o
v= 0
p= pO
C= CO

Figure 1.1

The problem above could be viewed as the simplest Riemann Problem in two

dimensions that cannot be reduced to one dimension. A Riemann Problem is an

initial value problem with piecewise constant states and straight

discontinuity interfaces. The existence of a solution remains an open

question; however, it is presumed the solutions are of similarity type. We

wish to obtain the first few terms in the uniform formal asymptotic expansion

approximating the similarity solution in Figure 1.1. The solution is

symmetric about the real axis. Its upper half plane restriction is shown in
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similarity coordinates in Figure 1.2. It consists of the reflected shock

which interacts with the expansion wave E and curves into the

diffracted shock SD.

The state (2) behind the reflected shock is constant and could be

obtained exactly, together with the shock angle, from shock polars [4]. We

only need the first two asymptotic terms which we derive in Section 2. The

curve separating state (2) from the expansion wave is characteristic, and the

solution is expected to have a gradient discontinuity across it, in analogy

with the one-dimensional rarefactions.

5I (0)
(1)

p(1)

PO
R(1)

CO
e(1)

CO

(2)
p
-pO
R(2l
-co
e(2)

-co------~---------~--~~~--
Figure 1.2
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Away from the "corner" where E meets SD' we scale the radial variable

in accordance with (1.7a) and obtain the asymptotic behavior of SD and E.

The region where E meets SD requires a special ansatz where one needs to

scale e appropriately as well. This is to be expected since changes in the

tangential direction are substantial there. As a result we obtain a transonic

equation, resembling the small disturbance equation in steady flows, for which

we can provide boundary condition by matching with the outside. Solving this

boundary value problem analytically, or even proving the existence of a

solution, remains an open question. One encounters difficulties analogous to

the boundary value problem for the small disturbance equation.

Hunter and Keller have applied weakly nonlinear geometrical optics, [2],

to the shock-wedge diffraction problem [3]. Their ansatz makes use of

additional fast varying variables in analogy with the geometric optics

construction for highly oscillatory solutions. This method, however, did not

apply to the interaction at the "corner" (see Figure 1.2). In contrast with

[3 J we consider the equivalent boundary value problem for the pseudosteady

solution in similarity coordinates and systematically match asymptotic

expansions in which the original variables are rescaled to reflect nonlinear

behavior. This way we can obtain the uniform asymptotic behavior over the

whole space.

We mention that in one space dimension DiPerna and Majda [5] have

justified the weakly nonlinear geometric optics construction.
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2. SHOCK REFLECTION

Here we will obtain the first two terms in the asymptotic approximation

to the shock reflection at the wall (see Figure 1.2). The small parameter,

throughout this paper, is M = e:. From normal shock relations, one easily
Po

computes that for state (1):

(1)
12...-=1+e:
Po

(1)
u--=

(2.1)
(1)

v

(1)
c

o

where 81 is the speed of the incident shock.

We will now show how to obtain the asymptotic terms for state (2). The

first term is simple and easy to compute. It corresponds to the linear theory

of reflection. In particular it shows that the angle of reflection equals the

angle of incidence. The second term is rather tedious to compute.

We rotate the plane so that the wall becomes horizontal (see Figure 2.1).

The Rankine-Hugoniot conditions across the reflected shock in Cartesian

coordinates are:
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p(u - Xo) pv

(2.2) sin a pu(u - xo) + p + cos a puv = 0,

pu(u - xo) 2pv + P
SR SR

where Xo is the veloci ty of the incident shock along the ramp, a is the

angle of reflection and the subscript at the brackets denotes a jump at the

reflected shock.

Figure 2.1

From (2.1) we obtain the rotated velocities for state (1):

(1) y _ 3 2 3
_u__ = (g + 4 g )cos a + O(g ),
Co

v(O y - 3 2 3--- = -(g + 4 g )sin ao + O(g ),Co
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and

1 [1 + y + 1 £] + 0(£2).
cos a 4

For state (2) we set

(2) (2) 2 (2) 3_P_= 1 + e:Pl + e: P2 + O(e: ),
Po

(2) (2) + 2 (2) 3u
--= 1 + e:u1 e: u2

+ O(e: ),
Co

(2) = 0,v

and

2tan a = tan aO + e: tan al + 0(£ ).

Substituting in (2.2) we obtain the O(e:) equations

and the solution



-12-

After some algebra we obtain the following equations from 0(£2) terms:

_p(2)
(2) 2 72

aO sin aO tan 81 + cos a
O

y -
0,- u2 + tan =cos aO 2

(2)
(2) u2 2 5 - 3y-P2 + + 2 sin a

O
+ = 0,cos aO 2

(2) 2 2
-P2 + tan aO tan 81 + sin aO - cos aO + 2 - y = 0

(2) u(2)from which we can obtain the solution P2 ' 2' 81, as long as

For simplicity of notation we won't write them down explicitly.

'original, unrotated coordinates:

(2)
_P__ = 1 + 2£ + (2) 2
Po P2 £,

In the

(2)
u 2 (2) 2

2 cos aO £ + cos aO u
2

£,

(2.3)
(2) (2) 2

~O = 2 sin aO cos aO £ - sin aO u2 £,

(2)
_c__ =

Co

tan 8

y - 1 (2) 2
1 + (y - 1) £ + ( 2 P2 + liz (y - 1)( y - 3») £ ,

8 angle of SR with wall, and from (2.1) and (2.3)
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(i)
_P__ = 1 + (i) + (i) 2 +
Po PI € P2 €

...

(2.4)

and

•••

... , i = 1,2

i = 1

i = 2

i = 1

i = 2

=I
-sin e

0(1)
1

-2 cos a O sinCe - ao)

i = 1

i = 2

i = 1

i = 2

I
y - 3 cos e

R(i) 4

2 = R~2)(e)

{

y - 3- 4 sin e

= 0~2)(e)

i = 1

i = 2

i = 1

i = 2

where (2) R(2) 0(2)
P2 ' 2 ' 2 can be explicitly computed.
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3. INTERIOR ANSATZ

We start with an "interior" approximation analogous to 0.6):

r
-= r
Co

L= 2 =
1 + ep + e p + •••

Po
(3.1 )

R
eR + 2

R +-= e •••
Co

~= eEl + 2 0) +e ....
Co

Substituting in (l.9a) and collecting O(e) terms, we obtain the linear

equations

-r p + R + 1- (0 + if) 0- - - ar r r

(3.2 ) P_ - r R = 0
r r

-r El +.:.. Pa = 0,
r r

which imply the following equation in palone

(3.3)

Remark: Solutions to (3.3) are just similarity solutions to the wave

equation Ptt = ~p.
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We go further and collect O(€2) terms and obtain

(3.4) -2 [ ( -2 )=] = - =r 1 - r P__ + Pee + r P_ = G,
r r r

where G has nonlinear dependence on P__' P_' P, Pee
r r r

In order to obtain the O(€) uniform approximation we seek solutions to

(3.3) with ~ = 0 on the solid body and by Huygen's Principle (see [1] and
ati.

the above Remark) and (2.4):

(3.5)

The solution was obtained by Keller and Blank [1] using the Busemann

transformation

which takes (3.3) into the Laplace equation

The solution they obtained is

(3.6)

! 2A 11 -1 -(1 - 1 )cos ATI
+ -; tg 2A A

(1 + 1 )sin ATI - 21 sin A(e - TI)
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with A = ~ ( 1 ) and tg-1: R+ [O,n]. Note that sin A(n - Za.
O

)
Z n - aO '

= sin An. We are interested in the asymptotic behavior of (3.6) for t near

1.

For

(3.7)

The approximation (3.7) is not valid for e near ZaO' We observe, however,

that if r = 1 + er'" and e = ZaO + e l/Ze"', then

(3.8)

Since -Z -
-r e + Per

o we also have

The two expansions (3.7), (3.8) match in the region where e

e 112« n « 1.

'"ZaO + ne and

Using (3.6) in (3.4) and the Busemann variables,

-
t.p G

Then
'" = 1 GO(e)
p = p - 12 (1 - t) •

Go(e)
and G = 3 + G1(e,t) for (e,t) near (eO,I) with a fixed eO * ZaO

(l - t)

and (1 - t)Z G1(e,t) continuous at t = 1. Let

t.P € H-
I

Z where H-
I

Z is the local Sobolev space for a neighborhood of
oc oc
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Using local regularity results for f:, we obtain ~ 2
p E L

l oc
and therefore

the asymptotic behavior of =
p for !/, near

This shows that in the expansion (3.1), we have

(3.9)

2= 1 + e:p + e: p + •••

+e:
2

0( 1_)+ ••• for at- 2aO.

~

In order to justify the boundary values in (3.5), that is, match (3.1) and

(2.4) to O(e:), it is necessary that

the linear solution (3.6) to

e: 2 1 «e:. Therefore, we restrict

II - r

(3.10) e:
2 « 1 - r « 1.

We have not yet completed the O(e:) asymptotics since we haven't matched the

"corner" expansion (3.8). We postpone it until the last section. With a

not near 2aO we wish to move in closer to the eigenvalue and match the

II - r term in the expansion of p (3.7).

4. EXTERIOR ANSATZ

In this section we consider a away from 2a O• Following the procedure

outlined in the Introduction we rescale the radial variable close to an

eigenvalue. The eigenvalue in question is
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Consequently our ansatz is

r
-=

(4.1)

P 2 - - 3- = 1 + €P 1 + € per,S) + o(€ )
Po

.£.-= 1 -2+ c
1

€ + C€ + •••
Co

with PI' R1, 61 from (2.4).

Substituting (4.1) in (I.9b) we obtain the following equations in

nondimensional (barred) variables

2- c) 0 0€ (R - r + + • •• p + R + ·..
0 -2 0 - - R ++ ... P • ••

0 0 -1 + • •• 6 + €0 + ••• -r

1 €(c1 PI)
2-

€6 + • • • €6 + • •• + + + • • • € P + •••1 1

+ €6 + • • • -€6 + • •• 1 + ... €RI + ·..1 I

1 + • • • 0 €6 + • •• €6 + €2 e + •••1 I a

-€P + •••

- R1 €R + ...
e 2 =

€6 + € 6 + ...
r
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0 1 + del + PI) + • • • -e:0 + • • • 1 + e: P1 + •••1

+ 0 1 + ••• e:0 + ... e:R1 + e:
2

R + • •• = O.1

0 e:0 + • • • 0 e:0 + •••1 1

Consider the third equation first. One obtains from 0(1) terms:

(4.2a)

and from O(e:) terms

-0_ = 0 =9 0 = O
2
(e),

r

(4.2b) -0 - R p_ = 0 =9 0 =
r Ie r r

The second equation yields

(4.3) P - R = 0 =9 R - R2(e) = P - Pz- -r r

from 0(1) terms.

Since 0 + R1 = 0 (see (2.4)) and 0 = 0, the first equation has
Ie r

only terms of 0(e:2) or higher. From 0(e:2) terms one obtains

([ - r + c) (p + "R) + 0 R1 + 0 - 0 R1
(p + R)- 1 e 1 -

r e e r

- R 0 + R - 0
2

= O.
Ie - 1

r
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In view of (4.2b), (4.3) and the fact that

one obtains

= 0, i = 1,2, c = y - 1 (y - l)(y - 3)
2 P + 8

(4.4)

where

,...
p = P - P2'

(y + l)p - 2x)pX + P= 0

X --r- _1-1 (y-1)(y-3)+1/8
R2 2 P2 - 8 2 1 R1 •

El

The solution to (4.4) is given by

(4.5)

with K = K(El) the constant of integration, from which

(4.6) = -(y + 1) :!: I(y + 1)2 + 4Kx
p 2K

The solution p is uniquely determined by boundary conditions at x + :i;oo

which are obtained from matching the expansion in (4.1) with (2.4) and

(3.1). To match (2.4), p = 0 as x + +00. This immediately shows that

K(a) < 0 and that p =0 for x > xs ' for some xS• For x < xs p must

pick one of the two branches in (4.6). This can be done discontinuously, by a

jump, or continuously when xs = 0 (see Figure 4.1).

In the former case certain jump and entropy conditions must be

satisfied. We write (4.4) in conservative form
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The jump conditions are

[Y + 1 ~p2 _ 2xp] = a2 x=x
S

~ + ~-
and the entropy condition p(xs ) < p(xs) which says that density increases

upon crossing the shock. Since p(x;) = a we obtain

4
= Y + 1 xs > O.

Therefore Xs ~ 0 in general with xs = 0 for continuous solutions.

Substituting in (4.5) we obtain

(4.7) X
S

(6) = - 3 (Y + 1)2
K(6) 4

for shocks. The solution p could now be uniquely determined if we knew

K( 6) and which branch to choose in case of a jump. These two will be

obtained from matching with the interior expansion (3.7). We will see that

for a shock the solution must pick the upper branch whereas for an expansion

wave the solution is continuous; it picks the lower branch at x = a (see

Figure 4.1).
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p

_y+l
K

Figure 4.1

For r + -~, from (4.6)

p "" ± ff + ••• ;

therefore, from (4.1), in the exterior

x
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From (3.7), (3.9), in the interior,

Now we can match

••••

1 ITA sin 2A~ /1
~ (sin A~)2 - (sin A(~ - e»)2

if we further restrict r so that

r--

or

2
E .

It r

Co

(4.8)

see (3.10). Note that

E « 1 - E-« 1,
Co

and therefore

1 12A sin 2A~

- n (sin A~)2 - (sin A(~ - e»)2
1

=-
I-K

1=--
I-K

e < 2aO (expansion)

e > 2aO (shock).
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This shows that

and that

K(e) = _ ( 1T(sin
222

A1T~ - sin A(1T - e) )

/2A sin 2A1T

~ = -(y + 1) + I(y + 1)2 + 4Kx
P 2K

-(y + 1) - I(y + 1)2 + 4Kx
= ---'-'--~--""2""'K:':----'----

a < 2aO (expansion)

e > 2aO (shock).

In particular the shock position is recovered from (4.7).

discontinuity occurs when x = o.

The gradient

Given p one can recover the velocities R, e, ~ «4.2), (4.3)). The

vorticity w, generated by the curved shock, is of 0(£2) and is given by

w = R - (re)a r

5. CORNER ANSATZ

As we mentioned in the Introduction, near the corner one needs to stretch

both rand e variables. Motivated by (3.8) we have the following ansatz:

r 1 +-= £rCo

e 2a + £
1
1200

(5.1) .L= 1 + £p(r,a) + 0(£2)
Po
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!:- = 1 + e:c +Co
....

The equations we obtain by substituting in (1.9b) are

(R - r + c) (P_ + R_) + 0 + R = 0
r r 6

O(e:),

To obtain the correct boundary conditions, one must match with the outside

(2.4) and the interior (3.1), (3.8) expansions.

equation

Since 'c = y ; 1 P we obtain

Integrating the second

(5.2a)

o - P_ = 0
x 6

where x = r - R~ + P~.
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For smooth solutions we can eliminate e by differentiating and obtain

(5.Zb) ( ( (y + 1)P - Zx)p) + P + P = 0,
x x aa x

which is the first approximation to the flow in the corner.

To obtain the boundary conditions we match with (Z.4) and (3.1). From

(Z.3), (5.1) one obtains

- 1 -Z '" I/Zr = /z e + 81 + O(e: )

as the equation for SR in

Q W th t -r --l/z-e2""1. e see a

(a,r) where 81 can be explicitly computed from

is the dominating term as e +~. The boundary

conditions for p can now be formulated

(5.3)

and

-Z
-( e -e) ilim paZ-' = PI

e+ClO
a)O

_ oZ _
lim p (a 2' e) =

e+ClO

a<O

i 1, a > 1

i = Z, 0 < a < 1

(see (3.8». Provided a solution exists, the expansion (5.1) matches the

other expansions to O(e:) in the region
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Writing (5.2a) in conservation form we obtain the shock conditions

[ y + 1 -2 -] [-]2 P - 2xp S nx + 0 S n8 = 0

ri normal to shock curve x = S(8) which in turn give

(5.4)

The existence of a solution to the boundary value problem (S.2b), (5.2)

satisfying (5.4) across discontinuties remains an unsolved problem. However,

we remark the following: The equation (5.2b) is of mixed type, hyperbolic

the sonic lines

and elliptic when

and x = y + 1

When(y + l)p - 2x ) O.

are

when (y + l)p - 2x < 0

- i
P = PI = 1,2, i = 1,2

respectively. We note that

and

P 1 x ) see)

2 x < S(8)

is a solution which satisfies the first boundary condition in (5.3) for e) 0

and some eO (see Figure 5.1). The equations are hyperbolic as long as

(i)( + 1)
PI Y

x ) 2
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(2)

-------

(1)

x

Figure 5.1

We expect the equations to change type across the sonic line x = (y + 1) and

the expansion wave to weaken and bend SR until it becomes asymptotic to the

y + 1other sonic line x = 2 (see Figure 5.1). Note that the diffracted shock

2is weak and appears only in the O(e) approximation. We finally remark that

- - 1 - 2 -if p(x,e) is a solution then so is ""2 p(a x,ae) and therefore (5.2b)
a

- - -2 nadmits similarity solutions of the form p(x,e) = e f( 2) with
e
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((y + 1)£ - 2~ + 4~2)£" + (y + 1)(£,)2 - (1 + 2~)£' + 2£ = 0

~ _ x
- -2 •

e
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