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SUMMARY

A method 1s presented for estimating the crack-extension resistance curve
(R-curve) from residual-strength (maximum load against original crack length)
data for precracked fracture specimens. The method allows additional Info'rma-
tlon to be Inferred from simple test results, and that Information can be used
to estimate the failure loads of more complicated structures of the same
material and thickness.

The paper first reviews the fundamentals of the R-curve concept. Then the
analytical basis for the estimation method 1s presented. The estimation method
has been verified 1n two ways. Data from the literature (Involving several
materials and different types of specimens) were used to show that the esti-
mated R-curve 1s 1n good agreement with the measured R-curve. A recent pre-
dictive blind round-robin program offered a more crucial test. When the
actual failure loads were disclosed, the predictions were found to be 1n good
agreement.

INTRODUCTION

The crack-extension resistance curve, or R-curve, 1s one of the most pow-
Wful concepts available to the fracture analyst. In this paper, a useful
extension to that concept will be described. The R-curve can be used to pre-
dict failure loads for any Initial crack size 1n any specimen or structural
configuration (of the same material and thickness and 1n the same environment)
for which a stress Intensity analysis 1s available. Now 1t 1s possible to
reverse the process. That 1s, 1f the residual strength curve (fracture stress
against original crack size) 1s known, the R-curve can be determined.

First the fundamentals of the R-curve concept will be reviewed. Although
1t has been presented earlier, the derivation of the R-curve estimation method
will also be reviewed. Then three applications of the estimation method will
be described. The method was used to show that several sem1emp1r1cal fracture
analyses are each equivalent to a particular R-curve formulation. The R-curve
was estimated 'to a useful degree from published residual strength data for a
variety of specimen configurations. Finally, the estimation method was tested
1n an ASTM predictive blind round-robin program.

R-CURVE CONCEPT

Four papers are significant In the history of the R-curve concept. Irwln
(ref. 1) first Introduced the concept 1n 1954 and corrected 1t 1n 1959
(ref. 2). In 1961, Krafft (ref. 3) extended the concept by postulating that
(a) for a given material and thickness, crack propagation resistance depends
only on crack extension, and (b) an effective crack extension can be Inferred



from compliance measurements. He stated that "...the Information necessary to
predict fracture Instability over a wide range of dimensions 1s not a single
Gc value but the shape of the entire resistance curve." In 1968, Clausing
(ref. 4) showed that "...the complete GR curve can be determined 1n one
stable specimen by measuring load and crack length as the crack propagates."

The R-curve concept 1s Illustrated schematically 1n figure l(a) for an
Infinite body containing a crack whose original length 1s 2a0. The strain
energy release rate, Ga, 1s given by

r 2 aGa = * ir F

where a 1s the applied stress and E' 1s the effective modulus. Ga
represents the driving force (per unit thickness) tending to cause crack prop-
agation. The material's resistance to crack propagation, GR, 1s a function
of crack extension A. As stress normal to the crack 1s applied and Increased
to 90 percent of the critical stress 1n figure l(a), the crack must extend
only a small distance to develop a large resistance. At this point the crack-
extension resistance equals the driving force and the crack 1s stable. As the
stress 1s Increased, progressively larger amounts of crack extension are
required to resist the crack driving force. Finally at the critical stress oc
the driving-force curve and the R-curve are tangent. Beyond the point of tan-
gency the driving force Increases faster with crack length than does the mate-
rial's resistance. This Instability condition represents the failure of the
body. The point of tangency defines the fracture toughness Gc and the
critical crack length 2ac. Since the driving force curve for an Infinite
body 1s a straight line, both the fracture toughness and the amount of crack
extension at Instability Increase with Increasing original crack length. If
the R-curve exhibits a plateau, Gc and Ac may asymptotically approach
limit values.

In simple finite bodies and test specimens the presence of stress-free
boundaries results in an additional increase in the crack driving force as the
crack extends toward a.boundary. Thus the slope of the driving-force curve
Increases continuously with Increasing crack length. The Instability condition
for a typical finite-width specimen 1s shown 1n figure l(b). As the Initial
crack length 1s Increased from zero, both Gc and Ac Increase at first,
but reach maximum values that depend on the specimen width and on the forms of
both the driving force curve and the R-curve. As the Initial crack length 1s
Increased still further, both Gc and Ac begin to decrease.

Instability predictions can be done graphically or analytically. Graph-
ical methods will not be treated here, but the analytical method 1s outlined
in the following section.

METHOD OF ANALYSIS

Conventional Instability calculations require dlfferentiable mathematical
expressions for both the crack driving force curve and the R-curve. The former
1s obtained from el.astlc fracture mechanics theory, the latter by curve-fitting
to experimental data. For Instability to occur, the magnitudes and the slopes
of both curves-must be equal. This requires the simultaneous solution of a
pair of equations. As shown 1n references 5 and 6, following some algebraic



manipulation, the Instability condition can be written 1n a particularly useful
form as

0U -

9(0
- —

g'(Ac)

a + A

where g(A) = E'Gp
g'(A) = E1 dGR/dA
a = (a/Y)(dY/da)

and A 1s the effective crack extension, a0 1s the Initial crack length,
Y 1s the stress Intensity calibration factor, and the subscript (c) means
"evaluated at the Instability point." This form 1s useful for computing since
the first term Includes only material properties and the second term Includes
only geometrical parameters. Now 1f the functions g(A) and g'(A) and the
appropriate equation for a are substituted Into this equation then, for
prescribed values of a0 and W, Ac 1s the least positive root of that equa-
tion. This root can be found by any of several numerical methods. Finally,
the fracture stress oc 1s calculated from the crack driving force expres-
sion. By repeating the calculation for relative crack lengths from near-zero
to near-unity, the complete residual strength curve may be developed
polnt-by-polnt.

Conversely, 1f an equation for the residual strength curve 1s available,
1t 1s possible to derive an expression for the_ corresponding R-curve. To do
this we must differentiate one of the Instability equations with respect to the
critical crack extension Ac. That operation 1s described 1n detail 1n
references 5 and 6, so only the results will be given here. The mathematics
are greatly simplified 1f we reduce the problem to one of a single Independent-
variable. This 1s done by prescribing the manner 1n which a0 and W may
vary. Three cases will b e considered. . . . - ; • •

for W = constant

Case I: W = Constant

Assume that there 1s a function f such that we can define

f(a0) = 4

f'(a0) = df(a0)/da0

Following differentiation and algebraic manipulation we have

0 = (1 + 2ac)f(a0) + <a0 .+ Ac)f'(a0)

The use of this equation will be explained shortly.

(2a)



',;•••::.:.< ;;Case >'-I-l: a0/W = Constant

Now assume that there 1s a function h such that

h(a0) = eg

h'(a0) = dh(a0)/da0

and corresponding to equation (2a) we have

for a0/W = constant

h(a0)> (ao + Ac) h'(ao) (2b)

Case III: a0 = Constant

This case 1s of limited usefulness but 1s Included for completeness
Assume that there 1s a function j such that

for a0 = constant
= dj(W)/dW

and corresponding to equations (2a) and (2b) we have

W J(W)
(2c)

The R-curve 1s developed as follows. First, at a given point on the residual
strength curve, the appropriate function (f, h, or j) and Its derivative are
computed and substituted 1n the appropriate one of equations (2a, b, and c),
which must then be solved for Ac. A numerical solution 1s usually
required. Then Ac and <y£ are used to calculate Gc. The
resulting pair (Gc, Ac) define a point on the R-curve. The process 1s
repeated at additional points on the R-curve. If desired, the R-curve can be
expressed 1n terms of KR = (E'Gp)1/?. Also, a suitable function can be
fit to describe GR or KR as an explicit function of A.

APPLICATIONS

Equivalent R-Curves

In reference 5 this method was used to examine the relations between sev-
eral sem1emp1r1cal fracture analyses (SEFA) and the R-curve concept. That
study explained why a SEFA might yield good results with one set of data and
poor results with another. It was shown that for each SEFA there 1s an equiv-
alent R-curve whose magnitude and shape are determined by the SEFA formulation
and Its empirical parameters. That R-curve 1s equivalent In that 1t predicts
exactly the same relation between fracture stress and Initial crack size
(residual strength) as the SEFA.

This was done by rewriting the SEFA formulation (1f necessary), then sub-
stituting Into equation (2a), which can then be solved to give an explicit



formulation for the effective R-curve. :The equivalent R-curves were found to
differ markedly from one SEFA to another. Figure 2 (from ref. 5) shows (1n
dimenslonless form) equivalent R-curves for four SEFA, (refs. 7 to 10). The
Newman equivalent R-curve 1s asymptotic to unity 1n figure 5(c). The Bockrath
curve 1s exponential and thus has no asymptote. The shapes of the equivalent.
R-curves are Intrinsic to the specific SEFA formulation.

It was concluded that 1f, for a given set of data, a SEFA correlates
residual strength closely, Its equivalent R-curve will closely approximate the
effective R-curve ;of the material. It was further concluded that, of the five
SEFA examined, Newman's (ref. 9) appears to be the most generally useful. In
Ref. 2, Newman's SEFA was used to generate equivalent R-curves, which were
then used to predict the load at 5 percent secant offset for center-crack
(fig. 3(a)) and compact (f1g.3(b)) specimens (figures from ref. 5, data from
the literature) using only the Initial crack length and maximum load data.

Estimation of R-Curve from Residual Strength Data

In reference 6 this method was extended to allow the estimation of the
R-curve from residual strength data, without recourse to any SEFA. Here the
functions f, h, and j 1n equation (2) are obtained by numerical approxima-
tion and differentiation of residual strength data. This procedure 1s not
always straightforward, but some comments and hints are given 1n reference 6.

Since residual strength tests are almost always done on center-crack spec-
imens, the examples 1n reference 6 are limited to that geometry. Figures 4(a)
and (b) show R-curves estimated from residual strength data for specimens of'
2219-T87 aluminum and AM355 steel respectively (figures from ref. 6, data from
the literature). In figure 4(a), essentially the same R-curve 1s obtained from
specimens of two different widths. In figure 4(b), essentially the same
R-curve 1s obtained from a series of specimens having constant crack length as
from a series with constant ratio of crack length to specimen width.

In addition to the limitations Inherent 1n numerical analysis, this method
has the same limitation as a standard R-curve test run under load control.
That 1s, for a given specimen the R-curve can only be measured (or estimated)
to the'point at which the crack becomes unstable. Tests run under displacement
control allow a much larger portion of the R-curve to be measured.

ASTM Predictive Analytical Round-Robin Program

A recent predictive blind round-robin program (ref. 11) offered a more
crucial test. Complete test data (Including measured R-curves) for compact
tension specimens of three materials were supplied to all participants. How-
ever, the R-curves were estimated using only the failure loads and original
crack lengths. Failure loads were then predicted for additional compact spec-
imens with different dimensions, for-center-crack specimens, and for special
three-hole specimens which simulate the behavior of a cracked stiffened panel.
Details of the author's participation are given 1n Appendix K of reference 11.
When the actual failure loads were disclosed, the predictions were found to be
In good agreement.



Figures 5(a) to (c) show the measured R-curves supplied to the partici-
pants and the R-curves estimated using reference 6 for the three test materi-
als, 7075-T651 and 2024-T351 aluminum alloys and AISI 304/stainless steel,
respectively. The bold curves were fitted to the data by the round-robin
organizers. The fine solid curves represent functions fitted to points on .the
estimated R-curve, the fine dashed curves represent extrapolation of those
functions beyond the point of Instability. Within the range of applicability,
the estimated R-curves for the aluminum alloys are in good agreement with the
measured R-curves. For the very ductile stainless steel, the .comparison 1s not
as good. The curves have the same general magnitude but completely different
shapes. As discussed 1n the body of reference 11, the 304 specimens exhibited
very large deformations along the crack line during fracture. Clearly the
limits of linear elastic fracture mechanics were severely violated, and 1t 1s
surprising that any R-curve method worked at all.

Because the purpose of my participation was to test the applicability of
the estimation method, the limits of the method were strictly adhered to. That
1s, no attempt was made to predict failure loads by other methods such as a
limit load analysis, even when 1t was obvious that limit load would be the
failure load. For cases where predictions were made, these predictions were
quite good. As shown 1n table XVI of reference 11 (as Participant number 11),
the standard error for all predictions made was less than 0.1.

SUMMARY

This method of R-curve estimation appears to be quite useful. It allowed
an explanation and Interpretation of several sem1emp1r1cal fracture analyses
based on the more modern R-curve concept. But more Important.1s the ability
to. estimate the R-curve from residual strength data. This means that addi-
tional Information can now be inferred from the simple residual strength, tests
which were run many years ago. Such data may be found 1n the literature or
may exist 1n company files. Now the R-curve can be estimated from that data
and used to predict the failure loads of more complicated structures (such as
reinforced panels or cracked holes) of the same material and thickness.
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Figure 1. - Schematic representation of R-curve instability concept
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Figure 2. - Dimensionless R-curves equivalent to various semiempirical fracture analyses for the case of a crack in an infinite
plate.
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