oama-CrR 18,0206
NASA Contractor Report 178026
NASA-CR-178026
ICASE REPORT NO. 85-57 19860009521

. S ',"' e
. R S S
"44'..1 . 'F“l ‘..
A
RN

) AT
. e e
Yy i

i3

MULTIGRID METHOD FOR NEARLY SINGULAR
AND SLIGHTLY INDEFINITE PROBLEMS

Achi Brandt

Shlomo Ta“asan

Contract Nos. NAS1-17070, NAS1-18107
November 1985

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

NASA

National Aeronautics and
Space Adminustration -

Langley Research Center
Hampton, Virginia 23665






s =

1) gt §

s n
7L, teeet
. Ramd)

AT
LA






MULTIGRID METHOD FOR NEARLY SINGULAR AND
SLIGHTLY INDEFINITE PROBLEMS

%
A. Brandt

Weizmann Institute of Science, Rehovot, Israel
and

. *%k
S. Ta“asan

Institute for Computer Applications in Science and Engineering

ABSTRACT
This paper deals with nearly singular, possibly indefinite problems for
which the usual multigrid solvers converge very slowly or even diverge. The
main difficulty is related to some badly approximated smooth functions which
correspond to eigenfunctions with nearly zero eigenvalues. A modification to
the usual coarse-grid equations is derived, both in Correction Scheme and in
Full Approximation Scheme. With this modification, the algorithm exhibits the

usual multigrid efficiency.
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INTRODUCTION

Usual multigrid for indefinite problems 1s sometimes found to be very
inefficient. A strong limitation exists on the coarsest grid to be used in
the process. This limitation is not so much a result of the indefiniteness
(existence of eigenvalues with different signs) itself, but of the nearness to
singularity, that 1is, the existence of nearly zero eigenvalues. These
eigenvalues are badly approximated (e.g., they may even have a different sign)
on coarse grids, hence the corresponding eigenfunctions, which are usually
smooth ones, cannot efficiently converge. As a remedy, one could avoid using
grids which are too coarse, but in many cases this would degrade efficiency.

This trouble of the coarse-grid approximation has been resolved by
introducing a modification to the usual coarse~grid equations, based on the
observation that there are just few smooth eigenfunctions which are not well
represented on the coarse-grid, and these can be controlled by specially added
relations. This modifiction removes the restriction on the coarseness of the
grids that can be used.

Another 1ssue when dealing with indefinite problems is the choice of
relaxation. Mode analysis shows that the Gauss-Seidel relaxation is suitable
for such problems if fine enough grids are considered. Indeed, even though
some smooth components diverge with this relaxation, on fine enough grids this
divergence is slow and can, therefore, easily be corrected by the coarse-grid
corrections. On coarser grids, however, the divergence of smooth components
in Gauss-Seidel relaxation 1is faster, hence, another relaxation scheme is
needed. We have used for that purpose the Kaczmarz relaxation, which always

converges.



The multigrid algorithm obtained here has good asymptotic convergence
rates for problems in which the indefiniteness is not too high, i.e., the
number of eigenvalues with the "wrong" sign (positive in our text) is small.
For higher indefiniteness another method has been developed and will be

reported elsewhere.

2. RELAXATION

Generally, in order to achieve good multigrid performances, the relaxation
involved need to have good smoothing properties on one hand, and at most slow
divergence on the other hand. We discuss below Gauss—Seidel and Kaczmarz

relaxations and their proper use in our context.

2.1. Gauss=-Seidel

Fourier analysis of Gauss-Seidel relaxation even for slightly indefinite
problems shows that on fine grids high frequencies converge very fast. The
reason for tﬁis is that the principal part for indefinite problems is the same
as that of definite ones. Smooth components may diverge on such grids, but
slowly enough to be handled by the coarse-grid correction. For example, in
case of the operator A + kz in two dimensions the worst divergence factor
per sweep of smooth components is 1/(1-—HQk2 hz), h being the mesh size.
On coarse grids, typically when this factor becomes larger than 1.2 or so,

Gauss—Seidel relaxation can no longer be used.



2.2. Kaczmarz Relaxation

Given an equation

Ax = b (2.1)

where A 1is an n x n nonsingular matrix, define a new unknown y such that
A" y = x (2.2)

where A* is the adjoint of A. The equation obtained for y is
AA" y = b, (2.3)

The matrix I is symmetric positive definite for any A which is
nonsingular, Hence, Gauss-Seidel relaxation for equation (2.3) will
converge. It induces a relaxation on equation (2.1) via the relation (2.2).

This relaxation of (2.1) is called Kaczmarz relaxation. Its i-th step is

+— i = LI
xj + xj aij 61 @G 1, ,1)

6y = (bi - ZJ 343 XJ)/):J laijlz

where aij is the complex conjugate of ajgje For general smoothing

properties of this relaxation, see [1] Section 1.1 and [2].
Kaczmarz relaxation converges whenever solution exists, and can therefore
be used on coarse grids. Moreover, when more than one solution exists the

convergence is to the one closest to the initial approximation (Tanabe [3]).



Hence, this relaxation would not allow the growth of error eigenfunctions
corresponding to A = 0, and would similarly allow only very slow change in

eigenfunctions corresponding to )\ close to 0.

3. TROUBLES WITH THE COARSE-GRID APPROXIMATION
Having settled the question of relaxation, another difficulty is
encountered: some coarse grids do not well approximate some smooth
components. To understand this situation, suppose the error on the fine-grid
(grid h) contains a smooth eigenfunction ¢h, so that the corresponding
h h

residual is Lh ¢h =X ¢ . The corresponding equations on the coarse-grid

(grid H) are

where IE is the fine-to-coarse transfer, i.e., some local averaging. Since
¢h is a smooth eigenfunction of Lh, Iﬁ ¢h is approximately an
eigenfunction of LH, but with slightly different eigenvalue xH. The

solution of the coarse-grid equations is approximately

After interpolating the VH as a correction to the fine-grid solution, the

new error is approximately



where IE is the interpolation operator and since ¢h is a smooth function,
h _H h h

we assume that IH Ih ¢ = ¢ . Thus, due to the coarse-grid correction the

error 1s reduced by the factor |1 - Ah/AHI; hence a condition for good

convergence is

Ah
1 -5 <1 (3.1)
b

for any eigenfunction ¢h which has poor convergence by relaxation.

When Ah, AH are close to zero, relation (3.1), even if it holds on fine
enough grids, it may strongly be violated on coarse grids., Such coarse grids
cannot then be used in the multigrid process. Without them, however,
efficiency may very much degenerate. We will therefore present a new method

in which restriction (3.1) is removed.

4. MODIFIED COARSE-GRID EQUATIONS: Two~Grid Case

The modification described here 1s based on the assumption that there are
only few smooth eigenfunctions for which relation (3.1) is violated. Denote
by Hy the subspace spanned by these badly approximated eigenfunctions. We
assume for the description below that HO is known. In Section 6 we present

a method for approximating Hg.

4.,1. Correction Scheme (CS) Version

Assume first that Hy 1is spanned by one function ¢h, and let uh be the

exact solution of the fine-grid (grid h) equation

L u =F. (4.1)



Suppose the current approximation Eh to uh satisfies

', o = G+ e, oD (4.2)

If n were known we would have the approximation Gh + n¢h on the fine-grid

instead of Gh. This would yield the coarse-grid (grid H) equation

R IE[Fh - Lhgh o gt ¢h] (4.3)

where v approximates the error vh = uh - Gh - n¢h. Since by (4.2) the

latter does not have components in H,, equation (4.3) could be used to
accelerate fine—-grid convergence. However, since n 1is not known, we need to
add another equation on the coarse grid which will enable us to solve also for

n. A reasonable cholce for such an equation is an approximation of equation

(4.2), namely

<, T =0 (4.4)

where Tﬁ is some fine-to—coarse transfer, not necessarily identical with

Iﬁ. Equations (4.3), (4.4) form the modified CS equations.

Suppose now that Hy 1s spanned by {¢T,---,¢E} and <¢?, ¢£> = ij.

Because of linearity, the corrected CS equations for this case will be

1 H
Lv=1R-2n.1hL
=t 4

h ¢? (4.5a)

i, ¢?> =0 j = 1,000, (4.5b)



h h h ~h ~h

where R =F =L u, u being the current fine-grid approximation, and
¢? = Tﬁ ¢?. The coarse—grid correction will finally be done either by
~h  ~h b, N H
u +«u + v o+ N, ¢ 4.ba
L '21 Ny b (4.6a)
J—.
or by
~h ~h, haH, N h
«u + v + . 6. (4.6b)
u s jzl n; ¢J

depending on whether or not ¢? are stored on the fine grid, u and 35
being the computed (approximate) solutions to equations (4.5). The difference
between (4.6a) and (4.6b) is usually unimportant, so ¢? need not be
stored. The only case where (4.6b) must be used is when the fine-grid problem
is much closer to singularity than the coarse-grid one. In that case ﬁj may
be large; therefore, IE ﬁj ¢? may have large high frequency components, which
will magnify the residuals on the fine grid. By doing (4.6b) one avoids

introducing high frequency components that arise from interpolating Hj ¢§,

J
and therefore the mentioned difficulty is removed. See Section 7, Tables 5

and 6.

4.2, Full Approximation Scheme (FAS) Version

The Full Approximation Scheme is essential for nonlinear problems or when
local refinement is used. It is important, therefore, to derive the modified
equations in that formulation too. This derivation can be done directly from
(4.5), but to gain an additional insight we do it independently. The usual

FAS equation on the coarse grid is



~h

L' u =F + 1,(u) (4.7)

H =H ~h H _.h ~h
L u

where rﬁ(ah) =L I u -1 is the "fine~to~coarse (defect)

h h
correction," Fi = Ig Fh, Gh is the current approximation on the fine

grid, and Tﬁ is the fine-to-coarse solution transfer (see [l, Sections 8.1-
8.21).

In the present case, however, we wish to approximate on the coarse-grid
only the part of the error which is free of Hy components; hence, the Hy
components of the correction, z nj ¢?, should be considered part of the fine

grid approximation, replacing (4.7) by
H H H H[~h N h
Luw =F +qfu + ] n ¢.). (4.8)

The additional conditions, ensuring that the coarse-grid correction is indeed

approximtely free of H, components, can be written as
<uH, ¢?> = <1 ﬁh, ¢?> + nj<¢?, ¢?>, (3 = 1,ee0,N). (4.9)

Equations (4.8) and (4.9) together should determine ul and Npseee,M Once

N.
an approximate solution (GH, ﬁl"."ﬁN) has been calculated, the correction

to the fine grid solution can be done analogously to either (4.6a) or (4.6b),

but the former option yields here a particularly simple formula, namely

~h  ~h  _ho~H  =H ~h
( u’)

u «u + IH u

(4.10a)



which is just the usual FAS correction formula. The latter option, which must

be used in some extreme cases, reads

N
e e @At T onpe)+ [ongey . (400

Equation (4.8) 1is not in a form convenient for calculations on grid H.

In case the problem is linear, a more convenient form is

N
P HE=F o+ ) oq (4.11)
PLIE
where
fﬂ = rl 4 TH(Gh)
h
(4.12)
_ H _h H ~h
-1 )M+ (T G

and w? = rﬁ(¢?). The solution of (4.9) and (4.11) thus involves the 2N+l
input functions ?H, ¢?,.-.,¢g, ¢?,---,¢g, of which ?H should be calculated
and stored whenever the algorithm switches from level h to level H, while
the other 2N functions can be calculated and stored once for all. The same
equations can be used also for nonlinear problems, but with ¢? generally
calculated by

H_ -1y H,~h h H, ~h

wj =€ {Th(u + e¢j) - rh(u )}, (4.13)
with sufficiently small positive ¢. The dependence of ¢? on Eh is very

crude (e.g., no dependence at all when b s linear); hence it will usually

be unnecessary to update them on a new switch to level H.
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5. GENERAL MULTIPLE GRID EQUATIONS
Suppose a sequence of discretization with mesh sizes h1 > h2 D see >hM

is given, where hj = 2h Let the hk-grid equations be

3+

Lk Lk+l for k < M, and M approximate some

where approximates
differential operator L.

Usually, if level M well approximates the differential equation (even in
terms of Hy components) then level M - 1 will approximate level M well
enough for acceleration purposes. Hence, modified coarse~grid equations may
not be needed on level M - 1. Denote by g the finest level on thch
modified equations are needed. We describe now the modified equations on

levels k £ %, assuming the subspace of bad components, HO, is spanned on

level & by the orthogonal set {¢f,...,¢§}.

5.1. CS Version

For k < ¢ the equations to be solved for vk, n? on level k are

N
k k k _ k .k e+l g+l
L™ v =f 2 ng Loy L > (5.1a)
j=1
<, 99> = of (G = 1,000,8) (5.1b)
where
gk o g (gl kL Gkl (k < 2) (5.2a)

T Tk+l



—11_

N
~ ~ +
R e AT AL IS AL S () (5.2b)
L j el 3j -
j=1
Frl o gt (5.2¢)
+ ~k+ +
o5 = 0y bogkt, gl (k < 2, § = L,eee,N) (5.24)
L _ s =
pj =0 (j = 1,e0¢,N) (5.2e)
k _ =k k+l Vs .
¢j =TI ¢’j (k < 23 j = 1,00e¢,N) (5.2f)
% _ =k =ktl k _ [k k+1
Torr = Tir1 Toaro Lo = Lerr Ton (5.2¢)
Tk Ik are fine-to-coarse grid transfers, not necessarily the same
ktl® Tkl 8 ’ y .
~k ~k k k
v, nj are the current approximation to v, nj respectively. Initial
approximations are Vk = 0, ;? = 0., The input functions for level k are

thus fk, ¢? and Ii+1 L'q’+1 ¢§+1, (j = 1,0¢+,N), of which only £%  should be
updated on every new switch from level k + 1.

For efficient relaxat;on, instead of storing fk one should store fk
and update it whenever the ﬁ? are changed.

Note that ng-l is designed to be a correction to n?. Thus, the coarse-

grid corrections for 2 < k < & will be done by the replacements
ﬁj « M, + 7. (G = 1,000,N) (5.3a)

(5.3b)
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I L S (5.3c)
k-1
while for k = ¢ + 1 use
~t+1 ~Q+1 2+1f~0 N ~0 2
v « Vv +1 vi+ Y ony ¢ (5.3d)
. LM%
J
\
or
N
T T S (5.3e)

(see discussion in Section 4.1 for the use of (5.3d) versus (5.3c)).

5.2. FAS Version

For k < % the equations to be solved for uk, n? on level k are given

by
K k_=k . Y ok &k
L u =F + ) n, v, (5.4a)
RTINS
k k k k k .
{u, ¢j> = cj + nj o (j = 1,¢0e,N) (5.4b)
where
k _ =1} k ,~ktl ktly  k  ~ktl k k+1
tbj =g Tk+l(u + e¢j ) Tpp (8 Dp Lel \pj (k < 2) (5.5a)
(hence ¢§ = TE+1(¢§+1) + IE+1 ¢§+1 in the linear case)
+ .
vit=o (G = 1,0e0,N) (5.5b)
Tk (§k+l) - Lk Tk Gk+l-— Ik Lk+l Gk+l (5.5¢)
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(G =1,e00,N) (5.5d)

=k k =k ~k+1 k ~k+1 k+1 ~k+1
F = - L u

= L Ik+l u + Ik+l(F ) (5.5e)
k =k . N ok ok
Fo=TF + ) n, ¥, (k < 2) (5.5¢£)
jmp 3
'ﬁ"“'l - F!H-l (5.5g)
0 (k = 2)
oy = Ty W, e+ (5.5h)
Tkl | gkl kel (k < 2)
j k|
~k ~k k
UJ =g, + nj aJ (G = 1,ee¢,N) (5.51)
k k k
S = b, 6.0 j = 1,e00,N 5.57
oy ¢J ¢J @ ) (5.53)

and H?, Gk are the current approximations to n?, uk respectively. Intital

approximations are ﬁ? = 0, Gk = T§+1 Gk+1. The input functions are fk,

¢T,'-',¢§, ¢T:"‘,¢§a of which only ?k must be recalculated each time the
level k problem is formulated.
For efficient relaxation, instead of storing Fk and o? (j = 1,¢e¢e,N)

one should store Fk and ;? and update them whenever ﬁ? is wupdated.

Initially (when the level k problem is set up) ?k = ?k and 3? = o?.

The coarse-grid corrections will be done by the replacements
~k . ~k + ~g—1

) . 2<k< gy j=1,000,N 5.6
ny €Nyt ong (2 < k<23 ) (5.6a)
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P oo F6 o4 g Rk (2 <k<p) (5.6b)

) . 2 < k 5 3 = 1,000, 5.6
of < 0y t g oy (2 <k< 25 ] N) (5.6¢)
~k  ~k k  ~k=1  =k-1 ~k

u u + Ik_l(u Ik ) (2 <k <M, (5.6d)

In case, for some 2 < k < g+l, the grid k problem is much closer to

singularity than grid k+l problem, (5.6d) should be replaced by

N N
~k  ~k k [~k-1 k-1 ~k ~k=1 k-1 ~k-1 k
u <« u + Ik—l(u - L u - z n. . )*‘ Z ¢j (5.6e)
- J_
which 1s the analogue of both (5.3c) and (5.3e). Of course, (5.6e) can always
be used, but (5.6d) is somewhat simpler (cf. end of Section 4.1).
Observe, indeed, that in the linear case
k k+1 k e+l g+l

L Vg T E 6y T L M4y

and by identifying uk with Tt+l Gk+l + vk + z n? ¢§ the equivalence of the

FAS and the CS is easily seen.

5.3. Solution Process for Modified Equations

We refer in this section to the FAS version, namely the equation

N
AL ) n% ¢$ (5.7a)
R I
J
k k k k k
< > =g+ s oo j = 1,e00,N), 5.7b
uv, 6y oty o (j ) ( )
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k

where the unknowns are the function u The CS

and the constants nT,...,nE_

version 1s treated similarly. As before, Gk, ﬁ?, fk and E? will denote the
current (stored) approximations to uk, n?, the right-hand side of (5.7a) and
the right-hand side of (5.7b), respectively.
In relaxing equations (5.7) we distinguish between the following:
(i) a local relaxation sweep

Relax Lk uk = fk for Gk by either Gauss-Seidel or Kaczmarz, keeping

ﬁ?, and therefore also fk, fixed.

(ii) a global step

This will be the step for updating HT,'°',n§’ and the HO components

in ok by using (5.7b) together with (approximatley) the Hy components of

~

(5.7a). Most generally this is done by solving simultaneously for Bj’ nj

(j = 1,¢¢¢,N) the system of 2N equations:

k N N
1 kl k k ~k ~ 1

P = j = 1,600 .
< 61 121 Bi ¢i)’ ¢j <F 121 ng ¢i, ¢j> & > ,N) (5.8a)

K kK ko ~k .~ k
W+ g, o5, 0 =+, o8 { = 1,e00,N) (5.8b
un T By by #5705 TNy oy ( ) (5.8b)

and then introducing the following changes

YL 7B, o (5.9a)
2y J013
3

~k o~k A

. < n, tn, j = lyeee,N 5.9b

nJ nJ nJ (J ’ ’ ) ( )
N

e 7 on, of (5.9¢)
j=1 1 3
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o, =0, +n, a, (3 = 1,ee0,N). (5.9d)

The local relaxation is used to smooth the error in uf and therefore
should be donme at all levels. On the other hand, it may be enough to do step
(i1) on the coarsest grids only, since it deals with global variables (n§)
and with global changes to uk, Thus, step (ii) will be done on grids k < m,
where usually m < g¢. This will usually reduce the storage requirement of the
algorithm, since there is no need to store ¢§ on levels m< k< g 1In

fact, it is often unnecessary to store even w? for m <k < f. Indeed for
m < k < £ these functions are only used in the interpolation step (5.6b),
which can be skipped in case of a V c¢ycle, because as a smooth change to

ﬁk, its effect on the subsequent relaxation on level k is negligible. On
the other hand, step (5.6b) cannot be skipped in case it is followed by a
switch back to the coarser (k - 1) grid, since in this case the smooth
update to %k is essential. Thus, in case of W cycles, w? must be stored

for all levels k £ %. Generally, m < £ can be used only if no intermediate

level k (m < k < 2) 1s much closer to singularity than level k+l.

5.4. Summary. Work and Storage

A cycle for improving 3 and ﬁk = (nT,---,nE) (k < 2) 1is denoted by

y L, F,a

~k ~k
(u™y n7)

+CMG(Gk, ﬁk ko gk ”k)

and is defined recursively by the following steps (A) through (D).
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(A) Make the following vl(k) times

(a) a local step for Lk uk = Fk

(b) for k {m make a global step defined in (5.8),'(5.9). For k =1,
choose vl(k) to guarantee convergence to small residuals, or solve the

equations directly, and then terminate the cycle. If k > 1, continue,

k=l _ gk-l ~k  ~k-l

(B) Starting with u Kk Yy T 0 (j =1,e¢s,N) make the cycle
~k=1 ~k-1 ~k~1 ~k-1 k-1 ~k-1 ~k-1
("m0 ) «eMG(w Y, L, L0, F T, 0 )

v(k) times, where fk-l, g?-l are defined by (5.5) with k replaced by
k - 1.
(©) ;?ﬁ?ﬁ;‘;‘l (k <m j = L,eee,N)

n. b, (k < m)
a. (k < m)

and interpolation is done either by

or

N
~k=-1 k
L

The second option is necessary in case the grid k problem may be almost

singular.
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(D) Make steps (a), (b) of (A) vy(k) times.

y(k) = 2 corresponds to a W cycle; hence if +y(k) = 2, the global step
has to be dome on level k, which implies m > k. If y(k) =1 we can choose
m to be smaller than k. Since equations (5.7) are for k < £ < M, this
cycle is part of a bigger cycle for k = M.

The storage and work required by this algorithm are essentially the same

as 1n the usual multigrid algorithm, since all extra work and storage involved
are made on very coarse grids, often only on level 1, sometimes also on level
2. In fact, £ = M-1 should be used only when the finest (grid M) problem is
itself a rather poor approximation to the differential problem, so usually

2 < M-1, in which case the extra work is negligible compared to the work of

relaxing grid M.

6. APPROXIMATION OF SUBSPACE H,
In the preceding discussion it is assumed that H; 1s accurately known.
This section deals with how accurately H; needs to be known and how to

approximate it.

6.1. Accuracy Needed for Hj

Let ¢2 (1 > 1) be the smooth eigenfunctions on the finest grid
h h

= 1h =
L ¢ = )\i ;> <¢i, ¢j> = Gij, (6.1)

and let Hg be for simplicity spanned by ¢T alone. Suppose that ¢1 is
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not known to the algorithm, and instead ¢h is used, where

i>l

o = ; a ¢?, (6.2)

h

Suppose an error v = e has emerged on the fine grid so that

h
1 41

h ,h h
LTV = e A 4y (6.3)

and the corresponding modified CS coarse-grid equations are

H_H H_h h _ H
L" VvV + “Ih L7 ¢ =e; A ¢ (6.4a)
i s =0 (6.4b)

where ¢H = Iﬁ ¢h, ¢? = Ig ¢?. For smooth eigenfunctions ¢2, we can assume

that ¢2 are again eigenfunctions

H H H

- H H H, _
L™ ¢y = Ap by <bg» 65> = 844 (6.5)

ij
neglecting changes in eigenfunctions since important to our discussion are
only changes in the eigenvalues. If we write the solution to (6.4) as

H

vi= T B e (6.6)

i>1

then (6.4) gives
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H —
A{ By vty e =0 i>2 (6.7a)
H h _.h
Al El + nxl a = Al e (6.7b)
] a, E, =0, (6.7¢)
131 i1
Equations (6.7) imply
q, a, e
. e (6.82)
B+ q, a
171
E) =nB/a;, B =-nq;a;  (122) (6.8b)
where Ah
2 i
B= ) a,a, q =-—%. (6.9)
i520 + 1 1\
- i
Hence, the coarse-grid correction is
H H H
Vi +ne = ) (E, +na,dé,
1t Lo
B+ ay i 9 3 34 H
T 2918 % ) 2 1- qi)el 1+ (6.10)
B+ a; 122 8+ qy a)

Extra errors have thus been introduced in the directions of {¢g, ¢g,---,};

but these should be small (relative to el), since q; should be close to

H

1 for ¢i not in Hy (and also a; will be small compared to a; by the

condition below) and, more importantly, these errors can efficiently be

reduced by the next coarse-grid correction. Our focus here should thus be the

behavior of the ¢T component.  Assuming 12 ¢T = ¢T by smoothness, the
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coarse-grid correction, when interpolated to the fine grid and subtracted from

the old fine grid error, gives in this component the new error El ¢?, where

- 2\-1
e, = (1 -q))B(B+q aj) e (6.11)
The main condition for convergence is therefore
(] - A8
<1, (6.12)
Xh 2 + AH
14 TN 8

and the convergence factor per cycle is bounded (below) by the left—hand side
of (6.12). This bound is indeed small when A? is a good approximation to
?, T. But if that is not the situation (which is

why one should want to include ¢? in Hy in the first place) then the

A\,, i.e., when IA? - X?I KA

necessary condition for fast convergence is that both IAT 8| and |AT B|
h a2
171

fast convergence can be summarized as

are small compared to A Since ~1 for 1 > 2, the condition for
a4 Z

h
171
] a? << min1, —— | a%. (6.13)
152 1 I/t
2 1

This condition implies in particular that, if AT = 0, that is, if ﬁhe
given problem is singular, then a, = ag = eee = 0, i.e., the eigenfunction

¢? must be known exactly. This seems to be too stringent, but in fact, the
increase in accuracy for ¢? can be obtained as the algorithm proceeds, by
doing for each cycle of the original problem, a cycle for improving ¢T.

(See Section 7, Tables 8 and 9.)
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On the other hand,(6.13) implies that there 1is no complication when the
coarse-grid problem is singular (see Section 7, Tables 1-4).
Generally, condition (6.13) ‘gives a precise idea as to how closely ¢?

should be approximated.

6.2 Algorithm for Approximating Hy

We motivate the algorithm by considering the case where HO is spanned by
one function. It is assumed in this discussion that the finest grid problem
is well-posed. This implies that errors in components which belong to Hg
show sizeable average residuals on the finest grid.

The method for approximating Hy 1is based on the following observation:
components which belong to HO are spanned by eigenfunctions whose
eigenvalues are much closer to =zero than others, and exactly such
eigenfunctions will converge in Kaczmarz relaxation much slower than other

eigenfunctions. Hence, if the coarse-grid equation
LW =0 with homogeneous boundary conditions (6.14)

is relaxed, starting with a random approximation, then when convergence has
slowed down, the dominant part in the resulting ﬁk must be a component in
Hy; therefore, ﬁk at this stage can serve as an approximation to a function
in Hy on the coarse grid. Hy is needed on finer grids. A first candidate
will be just an interpolation of ﬁk to these grids. However, since inter-
polation introduces high frequency errors which will leave large residuals in
equation (6.14) on finer grids, and therefore give the wrong ¢§, one needs to

smooth somehow the interpolated ﬁk from coarser grids. A reasonable way to
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do it is to relax (6.14) on fine grids after obtaining a first approximation

from coarser grids. This is summarized in the following algorithm.

Algorithm
Repeat the following for i = 1l,e¢ee,N (N = din HO)

(A) Set k=1

(B) W© = random function if k =1
U L L 1f k> L.

k-1
(C) Relax (6.14), starting with initial approximation ﬁk, keeping
ﬁk orthogonal to {¢T,---,¢§_l}, until convergence becomes slow
(D) k«k+1

(E) 1if k < 2+l go to (4), else ¢§+1 = ¥l

Kk k+l
o5

K+l (k = 2,8=1,+00,1).

(F) Define ¢§ =1

In case N is not known in advance, stop the above procedure when step
(C) no longer reaches slow convergence in just a few sweeps. If, after few
cycles of solving the original problem, convergence rate still deteriorates,
repeat (A) through (F) once more, replacing the random function in (B) by the
residuals left by the original problem on the coarsest grid. If the addition

of the new function ¢§+1 to the set {¢f+1,...,¢iti} does not improve

convergence rate significantly, it means that the accuracy of {¢f+1,...,¢i+l}
is not enough and this can be improved by inverse iteration on the grid

k = g+1 (using standard multigrid for doing the inverse iteration). The
improvement of the functions ¢§+1 by inverse iteration 1is done by one
multigrid cycle before each multigrid cycle of the original problem. Such an

improvement is needed when the original finest grid probelm is much closer to

singularity than the next level; see Section 7, Tables 8 and 9.
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Finally, if cycles on level g+l converge satisfactorily, but not on
finer levels, then ¢ should be increased (by 1). The above algorithm can

then, of course, be shortened, starting with the known H, on level 2.

7. NUMERICAL RESULTS

Experiments were performed with the new algorithm using the model problem

(A+K2)U =F in @ = (0,1) x (0,1)

U=g on 9.

The tables below show the residual history on the finest level. We denote
by M, m, £, h; the following:

M -=- the finest level,

2 =— the finest level on which corrected equations are needed,

m —— the finest level on which the global step is performed,

hl —— the mesh size of the coarsest grid (grid 1).
The subspace Hy was calculated by the algorithm of Section 6.2, where in
step (B) 40 relaxations were done on the coarsest grid (k = 1) and two on
every finer grid (1 < k < 2). The algorithm CMG of Section 5.3 was used with

vl(k) =2, vz(k) = 1 when Gauss—Seidel relaxation is used,

vl(k) = vz(k) = 3 when Kaczmarz relaxation is used,

vl(k) =13 for 'k =1,

y(k) =1 for k> 2, y (k) =2 for k=2,
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We give below the discrete first two eigenvalues of the Laplacian for the
grids used in the examples of this section. This will enable us to see how

far from singularity is each of the different levels used in the process.

h h

h A AZ
.25 -~18.74516600406 -41.37258300203
125 ~19.48683967711 -47.23375184668
0625 ~19.67587286709 -48.81161578777
.03125 =19.72335955067 -49,21342550952

In Tables 1-4 interpolation of corrections was made according to (5.6b);
in other tabels the interpolation is specified. Residuals were transferred by
9-point full weighting and the local relaxation was Gauss-Seidel for kh £ .5
and Kaczmarz for kh > .5. 1In all examples M = 4, h; = .25, ¢ = 3, m = 2,

Tables 3, 4 show a case in which the second eigenvalue is very close to
zero, and its corresponding eigenspace is two—-dimensional. Therefore, only
two functions were used in spanning Hz. The algorithm for finding functions
in H; finds first these eigenfunctions whose eigenvalues are closest to
zero. Therefore, the eigenfunction belonging to the first eigenvalue was nét
used in these computations, and it was not needed as can be seen from the fast
convergence shown by these tables. This clearly shows that H; 1s related to
almost—-singularity, not to indefiniteness.

In Tables 5, 6 we show that in case the finest grid problem is too close

to a singularity one must use interpolation of correction according to (5.6e)
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(or (5.3e) in the CS version) and not the usual FAS interpolation. In these
two tables the exact Hy was used.

Table 7 shows that if ¢ 1is not known accurately enough, poor results are
obtained. ¢ in this example is found by the same procedure described in the
beginning of this section.

In Table 8 inverse iteration (done by usual multigrid) was used to improve
the accuracy of ¢. Starting with ¢ obtained as in Table 7, one multigrid
cycle of inverse iteration was done to improve ¢ before each multigrid cycle
for the original problem. Results are identical to the ones obtained with the
exact ¢ (Table 5).

Table 9 shows a case in which the distance of the closest eigenvalue to
zero is about 1.1078. As seen from this table, improving ¢ by only one
cycle of inverse iteration per cycle of the original problem 1is not quite
enough to maintain the full speed of the algorithm. Once in few cycles the
residuals are magnified, and this happens whenever the Lp—-norm of the error in
the approximation is reduced significantly. This reduction of the érror is
due to a correction of the approximate solution by n¢. If ¢ 1is not

h and

accurate enough, components other than the desired ones enter to u
since their residuals are much higher than those of n¢, a magnification of
the residuals occurs. (A similar phenomen&n can be seen also in Table 7,
where the distance from singularity is larger, but ¢ 1is not improved at all
by inverse iterations.) This would not have happened if we allowed the speed
of convergence of the inverse-iteration cycles to be slightly faster than that
of the main cycles, e.g., by adding an extra inverse-iteration cycle once per
several cycles. But this is not really needed, because all that may happen is

a minor slowdown at high-accuracy solutions (much below truncation errors) for

cases of extreme closeness to singularity.
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In fact, we believe that, to obtain solutions with errors smaller than
trunction error, all one has generally to do is a one-cycle FMG algorithm for
calculating Hy (meaning one inverse—iteration cycle for level k after step
(C) in the algorithm of Section 6.2), followed by a one-cycle FMG algorithm

for solving the original problem.
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Table 1: k2 = 18.745166, dim Hy = 1

cycle # tresidualsil,
1 .363(+3)
2 £172(+2)
3 «114(+1)
4 .891(-1)
5 .762(-2)
6 .685(~3)
7 .652(-4)
8 .658(=5)
9 .684(~6)
10 JT44(=T7)

Table 2: k% = 19.486839, dim Hy = 1

cycle # Iresidualsl,

.363(+3)
174(+2)
J114(41)
.892(-1)
.763(~2)
.687(-3)
.654(~4)
.661(=5)
.688(-6)
749(=7)

O 0 ~N O oWy -

—
(=]
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Table 3: k% = 41.372583, dim Hy = 2

cycle # Iresidualsi,
1 .363(+3)
2 W172(+2)
3 .112(+1)
4 .938(~1)
5 .864(-2)
6 .832(-3)
7 .820(-4)
8 .815(-5)
9 .796(-6)
10 .811(~7)

Table 4: k2 = 47.233752, dim Hy = 2

cycle # Iresidualsi,

.363(+3)
.171(+2)
.110(+1)
.910(-1)
.824(~2)
.778(-3)
.755(=4)
.740(=5)
.682(-6)
.673(-7)

W 0 N O 1 & W N -

[
o
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Table 5: k% = 19.723368, dim Hy = 1, interpolation according to (5.6e).

cycle # Ilresidualsn2

.363(+3)
.172(+2)
J114(+1)
.893(-1)
«765(=2)
.687(-3)
«691(~4)
+685(=5)
«759(-6)
.768(~7)

W 0 N O U & W N -

—
o

Table 6: k% = 19.723368, dim Hy = 1, interpolation according to (5.6d).

cycle # llresidualsll2

.363(+3)
.172(+2)
J114(+1)
.893(~1)
«125

.102(-1)
.162(~1)
.132(-2)
.909(-3)
J42(=4)

W 00 N & U & LW N =

it
o
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Table 7: k2 = 19.72336843, dim Hy = 1, interpolation according to (S5.6e),
¢1 crudely computed.

cycle # uresidualsﬂ2

+363(+3)
174(42)
J114(+1)
.879(~1)
.116

.550(-2)
.134

427(-1)
465(-2)
.534(-3)

W 00 N O W -

[—
(@]

Table 8: k2 = 19.72336843, dim Hy = 1, interpolation according to (5.6e).

¢l successively improved.

cycle # lresidualsl,

.363(+3)
174(42)
J114(+1)
.893(-1)
.765(-2)
.687(-3)
.691(-4)
.683(-5)
+759(-6)
.768(~7)

W 00 N O i & W N -

Pt
o
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Table 9: k% = 19.72335955955, dim Hy = 1, interpolation according to (5.6e).

cycle # nResidualsll2 Hﬁh - uhll2
1 .363(+3) .555
2 JA174(42) .392
3 J114(+1) .392
4 .893(~-1) .392
5 764(=2) .392
6 .687(-3) .392
7 +655(-4) .392
8 «359(-3) .268(-1)
9 .284(=4) .268(-1)
10 «219(-5) .268(-1)
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