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The properties of the early transistors were determined by the minority- 
carrier lifetime, as is the silicon photovoltaic solar cell. Most of the 
devices on the modern integrated circuits are majority carrier devices, in 
part to avoid this lifetime dependence. It is pertinent to note that the 
micro-electronics industry typically starts with wafers with a minority- 
carrier lifetime of ca. 1000 micro-seconds, but during device fabrication this 
lifetime is reduced to below ca. 1 micro-second, in spite of extraordinary 
cleanliness and precautions. Process-induced defects (PID) are the cause of 
this lifetime reduction, but PID is a rubric covering many poorly identified 
defects or unidentified defects. These defects include point defects, defect 
complexes, line defects, and bulk precipitates. We have some ideas about the 
nature of recombination at point defects and point defects complexes, but one 
of the aspects that needs to be understood is the nature of minority carrier 
recombination at line defects and at precipitates. 

Some of the PlDs are known to be related to the fast-diffusers of the iron- 
series transition elements. One of the common techniques of dealing with 
these elements is "intrinsic" gettering by the oxygen precipitates. But even 
in the gettered state, there may be a residual effect on the lifetime. 

Oxygen is an almost ubiquitous impurity in silicon and plays an important role 
in both integrated circuits and solar cells. The knowledge about oxygen in 
silicon will be reviewed. The isolated oxygen interstitial is electrically 
inactive, but in its various aggregated forms it has a variety of electrical 
activities. The impact of these defects on the minority carrier lifetime is 
unknown. The agglomeration and precipitation of oxygen, including impurity 
gettering and the complicating role of carbon, will be discussed. 

The recent work on the thermal donors is providing a great deal of insight 
into the structure of the precipitates and has promise of leading to an 
understanding of the complex processes associated with oxygen in silicon. 
These results will be discussed. 
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Precipitation 

But this precipitation is very 
COMPLEX 



Precipitation at 450 C 
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[How can oxygen make a donor?] 

Ylidz Split [ 0 Si ] Interstitial 



If these THERMAL DONORS have 
OXYGEN ONLY. 

does that mean that the 
NUCLEATION IS HOMO'EOUS? 
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After 450' C Annealing 
TEM 
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Transmiss ion E l e c t r o n  Microscopy of Heat-Treated Czochra l sk i  S i l i c o n  Showing "Rods" 
( C o e s i t e  P r e c i p i t a t e s ) ,  Assoc ia ted  D i s l o c a t i o n  Dipo les ,  and "Black Dots." CN. Yamamoto, 
P.M. P e t r o f f ,  and J . R .  P a t e l ,  J. 1 Phys. 54 (1983) 231. 
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DISLOCATION 
DIPOLES 

Indications are that during OXYGEN 
precipitation [and COESITE formation], 

SILICON INTERSTITIALS 
ARE EMITTED 

[hence the dipoles) 

And that this process happens even 
during the 450' C formation of 

Thermal Donors. 
And during oxidation at high temperatures. 

On annealing at higher temperatures 
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Stacking 
Fault 

Cz - Si 
WITH CARBON 

THE 450' C THERMAL DONORS 
ARE SUPPRESSSED 

BUT 

upon 600' C annealing 
NEW DONORS 

seem to correlate with 
BLACK DOTS 

Remaining annealing seems the SAME. 

Does that mean that all the Black Dots 

are HETEROGENEOUSLY (C] 

NUCLEATED? 



What else does CARBON do? 

From ribbon - Si => (Sic) ppts. 
Not (yet) in crystal - Si 

[ C = 111) pairs 

Lots of ( C * 0) Infrared bands. 

[ V * C 0 ) = K center p-type damage 

C in "A and B swirls" 

Carbon outdiffuses just like Oxygen. 

denuded zone 

low 0 and C 

if temperature is right 

WHY should the SOLAR 

CELL Industry care 

about these problems? 
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What's the problem? 

Grown-in defects NOT the 
{Recombination centers ) b,2proL,elml 
Katsuka (luminescence)} 

Process-induced defects bl*er 
problem! 

Fast diffusers 
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Quenched in Fe (EPR) 

(Fe) - Interstitial at T, 

(Fe a B), (Fe Al), (Fe In) pairs 

(Fe * C) pair 

(Fell 

Similiar results for Cr, Mn. 

Ni Lb, Cu 

too fast to catch. 



WHAT CAN BE DONE? 
GETTERING 

Internal gettering at oxygen ppts and 
associated defects. 

Jastrzebski Cu, Ni, @ SF's 

IBM Cu @ Oxide ppts. 

Futagami "Heavy metals" at SF'S. 

But we know ALMOST NOTXJNG 

about these states. 

These are NOT EQUILIBRIUM states. 

Remember COESITE is a phase. 

Ourmazd: Ni: in Guinier-Preston phase. 
Fe: tetragonal silicide phase. 

Back Surface Gettering 
Damage 
D2Yusiion 

(maybe useful for solar cells) 



What ELSE can be done? 
[Micro-electronics Industry] 

CLEAN ROOM and 
Extrordinary Cleanliness 

RF Heating Keep environment 
Heat Lamp Heating COLD. 

Change Processing Tubes from SiO, 
to Silicon [Sic liners). 

DOUBLE 
JACKET 
TUBE 

HC1 
in jacket 
volume. 

Form Volatile Chlorides. 

Interstitial Nitrogen? 
An Aside.. 

Substitutional Nitrogen 
is a DEEP DONOR 

Brower 
<111> [EPRl 

distortion .* 

The electrically inactive 
nitrogen "must" be a 

COMPLEX. 
(N-B)? 

MRS Symposium: 
"Selected impuritres in Silicon: 

0, c:~;andhr* 
2-GDecember. 1985 Boston 



DISCUSSION 

ELWELL: Do you believe that the vacancy-assisted diffusion is what's leading 
to precipitation of oxygen in silicon for the thermal donors, or do 
you believe that precipitation is vacancy-assisted? Have you ever 
studied that by comparing the defects you get by ESR for a slice 
taken from the top of a Czochralski wafer, where you are subject to 
a lot of fluctuations, as compared with the early stage of 
precipitation in a wafer grown in a magnetic field, where you think 
the interface is much more quiescent during growth? 

CORBETT: No, it has not been studied to the extent that I think it should be. 
We do know a good bit about many of these vacancy interactions, but 
there is a great controversy raging about what's going on with 
silicon self-diffusion. 

CISZEK: Could you elaborate a little bit on your views of how the carbon and 
the silicon interstitials are interacting in forming the B-type 
swirl defect in float-zone silicon? 

CORBETT: My own opinion would be the entrapment of liquid in the growth. The 
liquid is more dense than the solid and it is simply captured and 
ends up as a material-rich region that throws them into it. 

CZSZEK: Do you have any comments, Dr. Abe? I would be very interested In 
perhaps your latest ideas of what may be going on in that 
interaction of carbon in self-interstitials. 

KALEJS: [Question addressed to Dr. Abel What is your current thinking about 
how the B-swirl may be formed from carbon and silicon 
self-interstitials? 

ABE: I think these are pre- stages of an A-swirl that are not closely related 
to the carbon impurity. 

CORBETT: Can you denude a zone of A and B swirls? 

ABE: A and B swirls consist of silicon interstitials. Silicon interstitials 
diffuse out from the surface so you can perhaps make a denuded zone. 




