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local sonic speed
sonic speed at freestream
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least-square flow velocity interpolation coefficient
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infinitesimal impingement area on body surface

infinitesimal freestream cross-section corresponding to
dA
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NOMENCLATURE

ith Langmuir-0 multi-droplet droplet diameter
parametric cubic blending function basis; i=1,2,3,4
Cunningham drag correction factor

gravity force acting on the droplet

gravitational acceleration

stepsize used in the numerical integration of
trajectory differential equation

computational x,r,0 mesh node indices

unit vectors // to x,y,z axis

Stokes' parameter of droplet = CD(RV)-RV/24

Knudsen number = A/d

position vector along a trajectory segment

length of a trajectory segment = |p - ql

liguid water content of droplet cloud at freestream
liquid water content at body surface

Mach number of air flow relative to droplet
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Mach number of air flow at compressor face

Mach number of air flow at freestream

mean volumetric diameter of the droplet cloud

unit normal vector at body surface (pointing outward)
unit vector // to V_

inertia parameter of droplet = p*dez/(IBuC)
freestream static pressure of air

trajectory segment end points

bi-cubic patch boundary condition matrix

Reynolds ngmber of air flow based on d

Reynolds number of air flow relative to droplet
radial boundary for cylindrical computational domain

normal or tangential resiliency coefficient of solid
particle
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tangent vector along a constant-v parameter curve on a

patch surface = 3r(u,v)/au
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twist vector 3 r(u,v)/3uav

total surface area of body surface (or a patch)
arc length along a constant-6 curve on body surface
freestream static temperature of air

time, dimensionless with C/Vm

time
u-parameter basis function = [l u u2 u3]
v-parameter basis function = [l v v2 v3]

droplet velocity, dimensionless with Vo
droplet velocity

potential flow velocity, dimensioniess with V°°
notential flow velocity

freestream air velocity

droplet velocity or position computed at a corrector step
(Adams predictor-corrector)
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droplet velocity or position computed at a predictor step
(Adams predictor-corrector)

normalized line (trajectory segment) length parameter

sub-cell volume of a cylindrical field cell, with a
corner at node (i,Jj,k)

compressor face x-boundary

freestream x-boundary of cylindrical computational domain

dropiet trajectory position, dimensionless with C

cylindrical coordinates

Cartesian coordinates

freestream starting point grid

impingement point grid

impingement centroid grid

angle of attack (pitch angle)

local impingement efficiency

ratio of specific heats of air = 1.4

incident angle at mpact (solid particle)
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Kraonecker delta
flowfield resolution (error)
density ratio = p/p*

integration error estimate at Adams predictor-corrector
step

maximum absolute discrepancy between UC and U

P

maximum relative discrepancy between UE and Up
density of air

density of droplet

absolute air viscosity

roll angle

yaw angle

Levi-Civita anti-symmetric tensor
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unit direction vector along the line from p to g
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1.0 INTRODUCTION

The extent and local flux rate of water droplet impingement on affected
ajrcraft surfaces constitute the basic information needed for the design
and analysis of various ice protection systems.

The cause of aircraft ice accretion is mostly due to the presence of
atmospheric clouds containing supercooled water droplets. The water
droplet content of clouds generally decreases with altitude and beyond
about 22,000 ft above sea level, called the icing altitude, clouds
consist mainly of frozen particles and do not pose, in most
circumstances, a significant icing hazard [1]. For a given condition
within the icing envelope smaller supercooled droplets may freeze
entirely upon impact with the aircraft surface (rime icing), whiie
larger droplets, requiring larger amounts of latent heat removal, may
freeze slowly with runback (glaze icing).

As the supercooled droplets impact on the surface, the governing
transport parameter is the local droplet mass flux rate at the surface,
which is in turn related to the normalized local surface flux function, 8
(local impingement efficiency):

unit weight
unit area - unit time

H

Local droplet impingement intensity = B-Vg - LWC [

-

Total droplet 1mpingement 1ntensity

unit weight |
Vm-LNC% BdS [ unit tige

o unit weight |
where LWC = liguid water content at freestream [ unit volume
S = total surface area of body [unit area]
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The definition of B as the local droplet flux rate normalized to the
freestream flux rate follows from the continuity of droplet mass flow
applied to an infinitesimal droplet stream tube (Figure 1) of
differential area vectors dim at freestream (dim is not // to
V_ in general) and dA at the surface of impact:

(LWC) V_- dA_ (LWC)'V - dA (mass flow continuity)

(LNC) V_ h_- dA_ = (LWC) (-V-7) dA
n.dA_ (LWC)'{-V-n) mass flux at dA
B = dA = = (].O)
(LWC)V mass flux at dA_
where n = unit normal vector at dA,
n, = unit vector // to V_,

V (V) = local droplet velocity vector at dA (dA_),

(LWC)' = liquid water content at dA.

dAm surface

Figure i - Oroplet Stream Tube



The ice protection systems currently 1n use or in development on various
aircraft can typically be categorized into two kinds:

System Source Typical Aircraft Application
(a) anti-icing hot air (bleed) engine inlet, wing l.e.,ram

air scoop, pitot tube

(b) de-icing pneumatic boot wing l.e., rotor blade
(pulsed air)
electrothermal [2] wing l.e., pitot tube, rotor
blade, stabilizer

electroimpulse (3] wing l.e., rotor blade,
strut, stabilizer

fluid (freezing wing l.e. [4]
point depressant)

In an anti-icing system, heat 1s continuously supplied (during system
operation) to the affected surface. so that all of the impinging water
can be evaporated or maintained above freezing. Thus, for the steady-
state heat transfer analysis of the system, the total as well as the
local water impingement ntensities must be known at the icing
interface.

As for the de-icing system, ice is allowed to accumulate to a certain
level and heat or some form of mechanical energy is suppiied in a
transient manner to shed off the 1ce, thereby saving substantial energy
expenditure (compared to the anti-icing system) at the expense of the
aerodynamic penalty due to ice accretion. For the performance analysis
of a de-icing system, the extent and shape of the ice accreted must be
known as well as the tolerable level of 1ce accretion 1n terms of the
associated aerodynamic penalty. Analytically, this reguires ice
accretion modeling [5,6], for wnich the locai water mpingement



intensity is an 1input, and detailed flow analysis about the body with
the prescribed ice shape [7,8].

Thus the determination of local water droplet impingement efficiency (B8)
on aircraft surfaces is a fundamental task in quantifying the aircraft
icing phenomena.

Despite its importance in the désign/analysis of ice protection systems
for most of the present day engine inlets and wings which are highly 3-
dimensional, there has been very little analytical or experimental work
to determine the water droplet impingement efficiencies on 3-dimensional
configurations.

The purpose of this research work is to develop a 3-dimensional particle
trajectory analysis computer code to predict the local water droplet
impingement efficiency (B8) on a representative commercial turbofan type
engine inlet. This work grew out of the need to develop analysis tools
leading to improved engine anti-icing and sand separator systems at the
Boeing Military Airplane Company (BMAC), Wichita.



2.0 PREVIOUS RELATED RESEARCH

A detailed review of the relevant research literature is discussed in a
recent report by Shaw [9].

The bulk of the available literature in the area of 8 determination
comes from the extensive NACA icing research efforts in the 1940-1950
time period. The NACA research program concentrated mainly on the
experimental determination of 8 on axisymmetric geometries [10,11] and
2-D airfoils {12-16].

One of the earlier analysis efforts is due to Langmuir and Blodgett [17]
who calculated water droplet trajectories to predict impingement
efficiencies about circular cylinders using a differential analyzer.

More recently, a number of researchers developed several water droplet
trajectory codes to compute B [18-20} as well as to model ice accretion
[(5,6] and to assess aerodynamic penalties [7,8] on 2-D airfcils. Code
development applicable for engine inlets was limited, partly due to the
more complex flowfields involved and due to a complete lack of test data
on these geometries. However, a code [21,22] was developed by BMAC and
applied to various axisymmetric engine inlet anti-icing analysis
problems.

Trajectory code development for 3-dimensional impingement problems has
been of limited extent. Although two codes [23,24] exist that are
capable of analyzing 3-D impingement problems, calculation of B was not
reported.

The 3-0 code developed by Norment (23] wuses the Hess-Smith
incompressible panel potential code [25] and a variable order Adams
predictor-corrector integrator to solve the trajectory differential
equation. To compute the fluid dynamic forces acting on the droplet at
each trajectory position, it uses the direct approach of computing the
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flow velocity at the required position by summing over all the panel
source and vorticity contributions. Since each droplet trajectory
involves computing hundreds of intermediate trajectory steps, the
computing time will generally be high. As with other panel flow codes,
the accuracy of computed flow velocities is ultimately limited by the
panel density. For a trajectory segment near the panel surface, the
intermediate trajectory steps will be crowded (compared to a segment far
away from the surface) because of stronger flow gradients there. If the
mean distance between these intermediate steps is small compared to the
linear dimension of surface panels, the direct approach will result in
non-smooth flow velocities along the trajectory and lead to numerical
problems in solving the trajectory equation of motion. Thus, the choice
of the direct approach for the trajectory code seems gquestionable in
view of the inherent danger and high computing times involved. This
code currently uses the non-lifting version of the Hess-Smith panel
code, and is not applicablie for problems involving engine inlets.

The recent 3-D code developed by Stock [24] employs a finite volume 3-0
Euler flow code [26] and a 4th order Runge-Kutta scheme to solve the
trajectory -equation of motion. [t was applied to the droplet
impingement problem on a 3-D engine intake, utilizing a body-fitted
computaticnal mesh (grid approach). Body-fitted mesh definition of
computational flow domain is generally accepted as one of higher flow
resolution than any other fixed orthogonal mesh systems, because of its
grid adaptability near the boundaries [27]. However, because of the
finite volume approach employed, uniform flow velocity was assumed
throughout the volume of each mesh cell, while at Tleast five
intermediate trajectory steps were computed in each mesh cell. This
approach may be acceptable in the far field region, where the flowfield
is approximately uniform. MNear the boundary surface, the assumption of
flow uniformity can be incorrect in predicting particle impact on the
surface. The tangent impact points computed from this code indeed
reveal erratic jumps between several pairs of adjacent tangent
trajectories [(24].
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Since it 1is the fluid dynamic forces acting on the droplet that
determine the droplet trajectory, accurate flowfield definition is a
prerequisite for accurate droplet trajectory computation. For the grid
approach, the additional requirement of accurate flow velocity
interpolation along the trajectory must be met. Also, an accurate
surface geometry definition of the body is needed in order to locate the
impingement points precisely. This is not a trivial task for 3-
dimensional geometries such as engine inlets. B is a local surface flux
function and 1its accuracy is very sensitive to the 1local surface
geometry. Flat panel surface definition, as is done in panel potential
flow analyses, will not be adequate unless sufficient panel density is
used.

For the present investigation, the grid approach is adapted based on the
consideration of computational efficiency. Flow velocities were
computed using a 3-0 compressible full potential flow code [28,29) on a
cylindrical mesh system. Linear and Tleast-square interpolation
techniques are employed for flow interpoiation along trajectories to
ensure smooth ard accurate resolution of the flowfield. State-of-the-
art bi-cubic parametric surface modeling techniques [30] are utilized to
obtain an analytical definition of the 3-D engine inlet surface studied
as well as to compute the impingement points accurately. Variable step
fourth order Runge-Kutta and Adams predictor-corrector integration
schemes were used to solve the trajectory equation, together with an
automatic stepsize control scheme to maintain the desired integration
accuracy in the numerical solution of the trajectory differential
equation.



3.0 TRAJECTORY MODEL

The general motion of droplets moving through turbulent air flow regimes
is not considered in this study. A rather simplistic approach, taken by
researchers as early as 1940's [17], is to describe the quasi-steady
motion of small spherical droplets moving in the steady flow of air,
while the motion of droplets does not disturb the air flow. The
predominant force acting on a droplet is then the fluid dynamic drag
arising from the relative (slip) velocity of air with respect to the
droplet. This is a valid approach in view of the fact that for the
typical icing design conditions of intermittent and continuous maximum
[1], the maximum concentration and mean volumetric diameter (MVD) of
droplets are:

intermittent maximum continuous maximum
LWC MAX = 3.0 gm/m’ LWC MAX = 0.8 gm/m>
MVD MAX =~ 50 um MVD MAX = 40 pm

For the concentrations and sizes of droplets within the icing envelope,
the assumption of undisturbed airflow and spherical shape (due to
surface tension) of droplets are quite valid.

3.1 Model Assumptions

(1) Single phase (air) flow about the body - particle phase does not
disturb the flowfield of the gas phase.

(2) Quasi-steady-state approximation - at each instant and position,
the steady-state drag and other forces act on the particle.

(3) Compressible or incompressible potential flowfield of the gas phase
about the body.



(4) Spherical shape of particles.

Additionally, viscous flow effects such as thick boundary 1layer
formation and flow separation are not considered because particle
impingement usually occurs in the forward part of the body.

3.2 Trajectory Differential Equation

Under the model assumptions, the forces acting on the particle are the
fluid drag, buoyancy, and gravity. By applying Newton's second law and
non-dimensionalizing (Appendix 8), the particle equations of motion
reduce to the following:

- R. . 2 (5 _
dU/dt = Co(R )R- (V,-U,)/(24P) - (1-0)g C8.,/V, (3 = 1,2,3) (3-1)
where
* 2 .
p = p V_d7/(18uC) = inertia parameter of droplet.
t E time (dimensionless with C/V_),
o} z p/o* = density ratio of air to particle,

characteristic dimension of body,

(o]
1]

RV = relative Reynolds number of droolet,
[1] = particle velocity (dimensionless witn V_),
v = potential flow velocity (dimensioness with V_).
Because of the way the slip velocity, V - U, appears in the slip

Reynolds number (RV), equation (3-1) must be solved numericaily in
general: in some 1deai cases, when V is a simple function of position
and Rv can be expressed in a special form, equation (3-1) can be solved
analytically [31,32].



3.2.1 Meaning of P (inertia parameter)

For a particle injected into the uniform flow, V = Vw, and obeying the
Stokes' law of drag (CD = 24/Rv):

dU/dt = (V_-U)/P , (3-2)
(neglecting (l—o)gC/Vm2 << 1.)
Equation (3-2) can be written as
d(U-V_)/dt = -(U-V_)/P (since V_ is constant)
which integrates to
- V) exp(-t/P); (‘u‘O = U(t=0)) (3-3)
From equation (3-3), U » V_as t - » monotonically, i.e., velocity of
the particle relaxes to the flow velocity after a 1ong'time. Thus P is

the non-dimensional equivalent of the velocity relaxation time (rv)
characteristic of the particle:

©
1]

T, (V/0)

s
(1]

o*dz/(l8u) [unit time] (3-4)

Equation (3-4) implies that the Targer, heavier particles will take
longer time to relax to the flow velocity than the smaller, 1lighter
particles. [n the general case of arbitrary flow and CD # CD (Stokes),
the velocity relaxation time concept is still useful in that a rough
order of magnitude estimate of the particle motion in a given flow can
be obtained.

10



3.2.2 Scaling of the Trajectory Problem

As was done in the previous section, the trajectory equation (3-1) can
be simplified for the case of Stokes' drag law:

2
du./dt = (V,-U.)/P - (1-0)gC8,,/VS (3-5)

Equation (3-5) 1implies that, neglecting terms due to gravity and
buoyancy, the particle trajectory for a specified starting condition is
completely determined by the inertia parameter P for all dynamically
similar flows. The only trajectory similarity parameter required is P,
in addition to the usual flow similarity parameter such as the Reynolds
and/or Mach number (depending on the degree of flow compressibility). As
long as the Stokes' law of drag holds along the trajectory, matching of
P gquarantees the trajectory similarity for the same set of initial
conditions for all dynamically similar flows. This similarity concept
for constant P breaks down at the 1limit of the Stokes' law of drag
because K(Rv) is non-linear in Rv; its deviation from unity at a point
in the trajectory is a measure of the extent to which the drag
coefficient differs from the Stokes' law value. Consequently, the
trajectory problem cannot be scaled in general due to the trajectory
dependent Stokes' parameter, K(RV).

3.3 DOrag Coefficient for Spherical Particles (CD)
The particular form of the drag coefficient used in this study

incorporates an analytical form for the standard drag curve and the
Cunningham drag correction for molecular slip and compressibility

effects:

CoM,R,) = Cp'"“"(R,)/G(M/R,) (3-6)
where

CDinC' =z incompressible sphere drag coefficient

N
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G(M/Rv) = Cunningham drag correction factor

3.3.1 Incompressible Sphere Drag Coefficient (Cninc.)
There exist some experimental drag data [33,34] on water droplets in
sizes well above the millimeter range where the droplets tend to deviate

from sphericity. The effects of droplet instability/break-up are
pertinent for larger droplets and hence are not considered here.

The deviation of water droplet drag data from that of the standard drag
was found to be significant only for droplets of diameters larger than
about 1 mm and for Reynolds numbers greater than about 1000. This
observation was mainly due to the flattened shape of droplets in the
size and Reynolds number range studied in the still air settling speed
measurement [33]. In fact, a recent investigation [35] reported that,
in both the Navier-Stokes flow analysis and settling speed measurement
results, no significant differences in drag larger than the measurement
errors were found between the solid and ligquid spheres.

Equation used is the integrable form of Putnam [36},

c 1‘nc.(R ) =C Stoke's(R ) - (1 + é R 2/3) (3-7)

0 v 0 v v

which agrees to within about 5% of the standard drag curve in the range,
0 < R,<1000. Comparison of this equation with several other available
forms is listed in Appendix C; equation (3-7) is listed as CD (Putnam).

3.3.2 Cunningham Orag Correction (G(M/RV))

For small dropiets less than about 5 um diameter, reduction in drag can
occur because of the molecular slip of air. Whenever the size of the
particle becomes comparable to the mean free path of air molecules, this
non-continuum effect can be significant. The first attempt to correct
for this was made by Millikan in his 0il drop experiment. He used the
following correction formula to the Stokes' viscous drag for o011
droplets:

12



C.d/A
Cp = €t T (1 e (A7) - (Cp+ e 17 (3-8)

where A is the mean free path of air,
d is the particle diameter,

Cl’ C2 and C3 are empirical constants.

The factor A/d is also known as the Knudsen number (Kn) which can be
shown to be proportional to M/R, from the kinetic theory of gases [37]):

A/d = Ky & M/R,,
where M = Mach no. of gas flow relative to the particle.
The form of the correction adapted in this study is due to Calson and
Hoglund [38], who proposed the following empirical fit to available
experimental data for the ranges M<2.0 and R <1000:

G(M/R)) = A/B (3-9)

where

p =)
111

L+ (M/R,) [3.82 + 1.28 exp (-1.25R /M)[, (3-10)

[ws]
u

1 + exp (-.427m73:63 -3Rv‘°88).

(3-11)
The numerator in equation (3-9), A, has the same form used by Millikan
and only the numerical constants have been modified. This term
reoresents the drag reduction factor to the incompressible drag due to
the molecular slip or rarefaction effects.

The aenominator, B, 1n equation (3-9) is the additional correction to

account for the Mach number dependence of the particle drag
(compressibility) in continuum flow.

13
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It must be noted that the Cunningham correction,
equations (3-9), (3-10) and (3-11), must be

evaluated

expressed as in

every

trajectory step in the flowfield. The relative Mach number, M, can be

evaluated from the compressible Bernoulli equation applied

potential flow velocity:

vé/2 + a2/(y-1) = V%2 + a%/(y-1)

where a = /YRT,
a, = /YRTSQ-
Thus,
_ -1 WA
o = 17§ (1 - (Vv vy + T
Moo= IVEUL -V /AR

Substitution of (3-13) into (3-14) gives

M= 1701 - [(v-1)(1-v8)/2 + RT_ + v22) 72

14

to the

(3-12)

(3-13)

(3-14)

(3-15)
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4.0 COMPUTATIONAL METHOD

Analytical determination of water droplet impingement efficiency
involves calculation of the flowfield about the body and cailculation of
individual particle trajectories that lead to impingment on the body.
The local impingement efficiency (B) is obtained by computing the
impinging surface droplet flux relative to freestream flux as a function
of body surface coordinates.

4.1 COMPUTATIONAL PROCEDURE

Droplet impingement analysis on the 3-D engine inlet involved the
following major steps:

(1) Bi-cubic parametric description of the inlet surface.
(2) Potential flow analysis about the inlet.

(3) Numerical integration of the trajectory equation.

(4) Calculation of the limiting envelope of trajectories.

(58) Calculation of B from the intermediate trajectories within the
1imiting envelope.

The steps involved in the procedure are illustrated in Figure 2.
4.2 BI-CUBIC SURFACE PARAMETRIZATION

Any point on a 3-dimensional surface element (patch) can be analytically
defined in terms of a set of patch corner boundary conditions through
bi-cubic surface parametrization (See Appendix A). Parametrization is
complete when all the patch corner boundary conditions (patch boundary
matrices) are obtained for the particular system of patches making up
the composite patch surface of the inlet. This procedure involves cubic
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parametric splining of the two sets of curves defining the composite
path surface, using the accumulated chord length parametrization and
Hermite interpolation schemes (39|, to compute the required end point
tangent and twist vectors for each curve segment.

The purpose of parametric surface description is two-fold:

(1) It provides accurate surface normal velocity boundary conditions
required for the full potential flow code input.

(2) Accurate trajectory-surface intersections (impingement points) can
be obtained through such parametrization (Appendix A).

A wiremesh diagram of the inlet derived from the bi-cubic patch
parametrization is shown 1later in Figure 15. In the figure, the
straight line edges of the wiremesh patches are for illustration only.
These do not represent the actual patches whose edges are curved. For
the inlet investigated in this study (737-300 prototype inlet), about
600 patches were used to define the surface.

4.3 POTENTIAL FLOW ANALYSIS

Flow velocities are computed by the 3-D full potential code [29] on
cylindrical mesh grids (69 x meshes, 49 r meshes, and 16 6 meshes). The
flow code solves the full partial differential equaticns of compressible
transonic potential flow by a finite difference scheme. The convergence
acceleration is achieved by the successive line over-relaxation (SLOR)
and multigrid techniques [40,41|. The multigrid scheme utilizes four
levels of coarse and fine grids about the original mesh chosen such that
during iteration cycles flow solutions are passed from one level to
another to achieve the extremely fast convergence of flow solutions.
For an average engine inlet flow problem involving 50,000 mesh points,
the CRAY-1S computing time is only about one minute.

A typical adaptive mesh grid used for engine inlet flow analyses 1s
shown later in Figure D8, Appendix D.
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4.3.1 Flow Accuracy (3-D full potential code)

This particular CFD (Computational Fluid Oynamics) computer code used
for this investigation is an example of a time-tested code. Since its
initial production version developed in the early 1970s, many validation
comparisons with experimental data are available, including the NASA
wing-pylon-nacelle model (Figure D1, Appendix D). Practicaily all of
the Boeing commercial engine inlets were designed using this code and
later correlated with wind tunnel data. However, most of these
validations are Boeing proprietary data and cannot be included here.
Figures D2 through D07 (NASA wing-pylon-nacelle model) and Figures D9
through D11 (full scale commercial turbofan-engine type inlet) are from
NASA CR3514 and these show good agreement with the measured surface Mach
number data.

4.3.2 Flow Velocity Interpolation at Trajectory Steps

Two different interpolation schemes are employed:

(1) Volume weighted linear interpolation in field cells.

(2) Least-square interpolation in surface cells.

Example of the two types of mesh cells are 11lustrated in Figure 3
showing a typical coarse mesh definition of the flow domain about an
engine inlet.

4.3.2.1 Linear [nterpolation Formula

Figure 4 depicts a cylindrical field cell with the mesh node origin at

(i,j,k); i, j and k are the x, r and 6 mesh indices of the node. The
flow velocity, V(x,r,e), at an interior point, (x,r,6), is

18
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V(x,r,8) = (VO‘)-l'{V(i,j,k)'w(i+1.j+l,k+l) + V(i,3,k+1) -w(i+1, §+1,k)

+ V(i+l,],k+1)-w(i,j+1,k) + V(i+1,j,k)-w(i,j+1,k+1)
+ V(i,5+L,k) -w(i+l, §,k+1) + V(i,3+1,k+1) -w(i+1,],k)

+ V(i+l,j+1,k+1) -w(i,j,k) + V(i+l,j+1,k)-w(i,j,k+1)}
where

X: € X <X,

. < <r
i v

8, <6 <8

j+1® Yk = k+1°®

V(i,j,k)= Flow velocity at the node (i,j,k),

Vol

2 2
(xi+1-xi).(rj+l-rj) : (ek*—l—ek)/z

total volume of the cell,

w(i,j,k)= volume of the sub-cell whose two corners are
(x,r,8) and (Xi’rj'ek)’

Explicitly, w's are:

W(1,3,K) (x-x;) - (rP-r%) - (8-0,)/2

WOHLIK) = (kg x) - (rrd) - (8-8,) /2

w(i’j+1’k)

n

(x-x7)+ (15, r%) - (6-8,) /2

W(indkel) = (xoxp) - (rPr8) (8, -0) /2
Wi, g+, k+1) = (x-x.)+(re. . -r%)-(8, . ,-8)/2
' ’ i j+l k+1
w(i+l,¢1,k) = (x:. -x)-(r. . -r2)-(8-8,)/2
I+l i+l i+l K
w(i+l,j,k+l) = (x -x)~(r2~r2)-(6 -98)/2
'3y i+1 3178y
w(itl, j+lkol) = (x. (-x)- (2. -r%)-(8, . -8)/2
’ ’ i+l j+l k+1
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) (i+1,5,k+1)

FIGURE 4 - Cylindrical Field Mesh Cell
4.3.2.2 Least-Square Interpolation Formula

When a mesh cell intersects the surface, as in the surface cell shown in
Figure 5, interpolation becomes difficult. For example, a straight
forward application of the Taylor series formula would require
evaluation of the flow gradients with respect to the coordinate
variables which depends on the particular way the surface intersects the
mesh cell. This is a time consuming process since all the possible
cases of surface intersecting cell geometries have to be accounted for.

A different approach 1is employed in this study, whereby the flow
velocity at a desired point is assumed to be a function of the space
coordinates and the unknown set of coefficients are to be determined
from the least-square fitting of this function at the exterior and mesh-
surface intersection points (Figure 5) associated with the surface cell:
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V(XI’XZ’XB) = El + Eéxl + E§x2 + agXy t AgX Xy ¥ QX Xy + Azxyxg  (4-2)

This is equivalent to the lowest second order Taylor expansion about the

point (x?,xg,xg) in a vector form:

V()(1”(2”(3) = V(o) + g X'(éz )o ¥ %T'g g X1XJ(g;Y%k.)o +0(3)
i=1 ' oX; i=1j=1 i73
I v v v
= V(o) + X1(§§H)o * x2(§§é)o * x3( x3)o
2 2= 2+
a_V oV aV
+ 1/20 %% (Sm), + XoXa( =), + XyX5( )
172 Bx]3x2 0 273 8x23x3 0 173 8x]8x3 0
+ 0(2;higher order) + 0(3) (4-3)

where (0) and subscript o are taken to mean the guantities evaluated at
some arbitrary origin (x?,xg,xg)

cell.

in the neighborhood of the surface

Thus the least-square model, equation (4-2), reduces to the lowest
second order Taylor expansion of the flow velocity if the following
equalities are made:

a; = V(0)

31. = (%;(V-i)o s 1=2,3,4
Eé =172 ( gi?éxz)o

5 - 172 (5,
3= 172 ( gi—‘]’—g;(; .
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Equation (4-2) can be put in the matrix form

1

ol

(g €, €3 &4 &5 &g &7 = [V(x],%5,%3) ] (4-4)

bwl\)v—-.

2}

al al o | s
o

r_
Pind

where

8= b 8 = xpe B3 2 g0 Bg % X3 £5 % XyXp0 £ = XpX3 and £, = xjx5.

For a total of n (n>7) boundary points (exterior mesh and surface-mesh
intersection points) defining the surface «cell, the successive
application of equation (4-4) to the n boundary points results in:

811812 - £1.6 51.7 ) _ V(1)

a1 82 - o e £2.6 52,7 El V(2)

B3 mmm e 32

<. . aq . (4-5)
.« . ad =

. ag .

. . d6

e e . 3, V(n-1)

_“':n,l ........... &n.6 5n,7_ ) ) _V(n) |

This is an over-determined system with 7 unknowns (a's) and n equations.
V(k) is the known flow velocity at the kth boundary point. The matrix
(g(I,d)] (I=1,2,...,n; J=1,2,..,7) contains the terms involving only the
coordinate positions of the n boundary points defining the surface cell.
Equation (4-5) is solved for a's wusing Householder's least-square
minimization procedure for over-determined system of equations [42]:
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T (e 5T, )
E = £ V. ) s 1 =1,2,00004,n
_ Imm "1
1=1m=1 M= 1,2,00000 .7
Minimizing E with respect to Ek (k=1,2,000e- 1) s
ni7
- 9E 9 T - 7.2
0=5 = 0L 5 [y - V)
Nl T, -
"L wm [y - 1) (Egpdy - 1)
n 7 T
- $=§m§] CEimem = V) (Eqpbym)
n T
=2 L ey (B - 1)
L T T
Therefore  [£]'[€1[A] = [£]'[V]

where [£]
(A]

[V]

[}

(510
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In some special situations when n < 7, extra mesn or surface-mesh points
(and associated flow velocities) adjacent to the surface cell are used
to meet the matrix dimensional requirement, n > 7, in solving for the
least-square coefficients {Ei}'

To achieve computational efficiency, all of the surface intersecting
mesh cells were identified and the jeast—square coefficients determined
and stored in a file prior to the running of the 3-D trajectory code.
Each mesh cell is identified, as shoyn in Figure 5, with the set of mesh
node indices, (i,j,k), and the associated set of 21 least-square
coefficients, {a;(i,J,k)}, 1=1,2,3; m=1,2,...,7 (1 1is the coordinate
component index for computing V1). As long as a trajectory position
(x,r,0) is inside the surface cell (i,i,k), the coefficients (al(i,j.k))
are used in equation (4-2) to compute the interpolated flow velocity at
that position (x=xl, rexX,, e=x3).

AW
|

, A= mesh surface
|
]
!
t
t

intersection

point
O = interior mesh

node

®= exterior mesh
node

FIGURE 5 - 2-Dimensional [1lustration of a Surface
Cell Associated with an Exterior Mesh Node (i,j,k)

For the surface cell (Figure 5) associated with the node (i,j,k), the
least square coefficients {Em(1,j,k)} can be obtained from the positions
and flow velocities at B, C, and the node (i,j,k).

The least-square interpolation formula, equation (4-2), resolves the
potential flow velocity near the surface very accurately and smoothly.
This is shown 1n Figure & where the comparison 1s made between the
interpolated dand the CFD output velocities at the mesh-surface
intersections on the lower cowl surface of the 737-300 prototype engine
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inlet. [t should be noted that the interpolated curves are obtained not
by fitting the CFD output flow velocities at the surface (solid symbols
in Figure 6) but from the least-square coefficients of the surface cells
involved, by using equation (4-2) continuously along the cowl surface.

4.4 Numerical Integration of the Trajectory Differential Equation

Substituting the drag coefficient, expressed as in equations (3-6),
(3-7), (3-9), (3-10) and (3-11), into the trajectory equation (3-1)

du,/dt = CoEOKES(R )R (1 + éRv2/3)-(Vi-Ui)-[24P-G(M/Rv)l'l (4-6)
- (1-0)g €8, V72

1 + (M/RV)[3.82+1.28exp(-1.25RV/M)]

-4.63 _ 35--88,

where G(M/R)
1 + exp[-.427M

M = M(V,U) as shown in equation (3-15)
R, = RV(_,U) as defined below eguation (3-1)
Vv = V(X)

From the above functional relationships, the R.H.S. of equation (4-6)
depends only on the particle position and velocity:

Together with the definition of U as the time derivative of x, we arrive
at the following two coupled first order differential equations in time:

1
<l

dx/dt (4-7)

0]
-
—
x|
-
<
~—

dU/dt (4-8)
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The above represents an initial value problem and thus requires a self-
starting type procedure 1n the numerical integration. The Runge-Kutta
method 1is a self-starting type with high degree of accuracy. One
disadvantage is that a large number of function evaluations is involved.

Compared to the same order Runge-Kutta integrator, the Adams predictor-
corrector requires one-half the number of function evaluations with
comparable accuracy, but is not self-starting.

In this study, a combination of the 4th order Runge-Kutta and Adams
predictor-corrector schemes with an automatic stepsize control is used
to solve the trajectory equation (4-6). A flow chart of the numerical
integration scheme is snown in Figure 7.

4.4.1 Runge-Kutta Scheme (4th order)

The 4th order scheme, accurate to 5th order in Taylor expansion, is used
to start or restart the integration process from the initial condition
or when the stensize is changed due to the error control process at the
end of an Adams predictor-corrector step.

The coupled first order equations (4-7) and (4-8) take the following
Runge-Kutta forms

U(n+1) = U(n) + h-[A + 2B + 2C + D]/6 (4-9)

X(n+1) = x(n) +h-{a + 20+ 2C + dl/6 (4-10)
where

h=t .-ty U(n) = Ut)s X(n) = x(t,)

3 = U(n), A= Flx(e,),0(t,)]

b =3+ h-A/2, B = F(x(t,)+h-a/2,b|
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u
&

a + he(A+B)/4, T = F[x(t )+h-(A+b)/4, C]
d = ¢+ h-C/2, D = ?[Y(tn)+h-(‘§+5+2E)/4, d|
4.4.2 Adams predictor-corrector scheme (4th order)

This scheme predicts and corrects the next time step (tn+4) from the

three previous Runge-Kutta time steps (tn+1’ tn+2, tn+3):
FUp(n+4) = T(n+3) + h-[-9F(n) + 37F(n+1)-59F (n+2)+55F (n+3) ] /24
Predicted
7p(n+4) = x(n+3) + h-[-9U(n) + 37U(n+1)-590(n+2)+55U(n+3)]/24
[T (n+d) = T(m3) + h- (F(re1)-5F (nv2)+19F (n3)+9F (X (n+4) T (ne4) } | /24
Corrected
L;C(n+4) = x(n+3) + h-[U(n+l)—5U(n+2)+19U(n+3)+9Ub(n+4)]/24

where
F(n) = Fix(n),U(n)].

This procedure is recursive, i.e., as long as the agreement between the
oredicted and corrected values are within the specified error margin
integration proceeds in a step by step manner.

4.4.3 Automatic Stepsize Control

After each predictor-corrector computation, the integration error (e¢) 1s
checked to determine whether to accept the corrected values and proceed
or to reject the step and restart the integration using the Runge-Kutta
procedure. The integration error at a particular step 1s not the
truncation error occurred at that step corresponding to the particular
choice of numerical scheme, but is the global error of the numerical
solution from the true solution at that step. The approach of
controlling the truncation error at every step wusually nvolves
additional number of function evaluations comparable to those required
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FIGURE 7 - INTEGRATION SCHEME FOR TRAJECTORY COMPUTATION
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(1)

(2)

to integrate the equation, and still does not gquarantee satisfactory
control of the global numerical error.

The approach adapted here 1is to use the discrepancy between the
predicted and corrected values as a measure of the integration error,

€ = e(UE, Ub). The two types of error indicating the discrepancy
between 'Up and 'UC are the absolute, el(Ué-U;), and the relative

i1 .
sZ(Up/UC), errors:

Type of
Situation Error Preferred Min. Error ( emin) Max. Error ( emax)
Tc1,1T,1 Targe relative (e,) ? 0.01(1%)
ITc!.1T 1 small  absolute (e) ? §V(flowfield error)

The error bound on €1 must be tied to 8§V, since the R.H.S. of the
differential equation (4-6) depends on (V-U); if |V| is accurate tc &V,
then the absolute error of U should be of the same order of magnitude.
However, if € is within the flowfield accuracy, €, may be wunacceptably
large;

IU;I.IugI may be small (comparable to §V) but
ooty or 1o1-tui/ulr 1 may be large.
c p''c p'c
Thus, the flowfield accuracy (&V) plays an important role in the error
control process. &V for the 3-D inlet flowfield was about 0.001 based
on the flow velocities normalized to the Mach number at freestream

(M_ = .267).

Based on the above physical considerations, the following 1integration
error estimate/control scheme 1s devised:
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(1) €1s €5s el(i) and ez(i) initialized to zero (i=1,2,3)

i
|

(2) 1Ml <8V ie (i) = qul-ul (4-11)
|ug| > 8V 3 e,(1) = MAX {|(u;-u;)/u;|, -rululing (4-12)
(i=1,2,3)
ey = MAX (g, MAX [e)(1),e;(2),e;(3)])

€, = MAX (e,, MAX [e,(1).e,(2),e,(3)1)
(3) case 1 (eq <2 8V);

emin < € = £, < emax - successful predictor-corrector step

€= €y < emin - rejected, h' h-xl (increase stepsize)

€ = g, > emax » rejected, h' h/x2 (decrease stepsize)

case 2 (e1 > 2 8V) +» rejected, h' = h/,\2 (decrease stepsize)

Thus, the error control scheme first checks to see if the maximum
absolute error (e;) of (UC,

U) components 1s within the flow
resolution. [f it is (case 1)

? then it checks whether the maximum
relative error (ez) is within the set relative error margin
(emin, emax). Otherwise (case 2), the step is rejected, and stepsize
decreased to restart the integration process using the Runge-Kutta

procedure.
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For the 3-0 inlet trajectory analysis, the following error control
parameters are used:

§v = 0.001 a
emin = 0.001 , emax = 0.01 :
Xl = 1.5 v Ay = 1.87

Integral or integer fractional relationship between xl and Az is to be
avoided because of the danger of repetitive stepsize changes.

4.5 Calculation of the Limiting Envelope of Trajectories

The limiting envelope of droplet trajectories is the surface traced out
by the inner and outer tangent trajectories (Figure 8). For droplets
starting at freestream constant-x plane with the same initial velocity
as VQ, the bounding radial starting positions, (romin(eo), romax(eo)),
are searched for each selected value of eo which results in a pair of
tangent trajectories. Repeating this process by sweeping eo with
selected increments, the freestream impingement bound, F(romin(eo),

r max(eo)), is determined. T represents the cross-section of the

0
impinging envelope of trajectories at the freestream constant-x plane.

A tangent trajectory is determined via a trial and error process. Along
a radial line (eO ray) on the constant-x freestream plane, a pair of
radial starting positions ol and rop are searched that result in
impinging and non-impinging trajectories, respectively, to the engine
cowl surface. Once ol and rop are found, an iterative bi-section
procedure 1s applied until a set tolerance is met:

(1) ol (impinging), T2 (non-impinging); (xo,eo,Uo = Vw) fixed

(2) r_ = (rOl + roz)/Z (new guess)
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(4) compute trajectory

until particle impinges: set r ) = r  ———=(2)

reaches computational
boundary without impinging e——e{5)

(5) o © r02 —(2)

If o2 had the trajectory end point radial position (at the fan face,
the downstream computational boundary) within the fan radius,

min = . wi rmax =r_,.
ro n ro1 Otherwise, o a ol

Steps (1) thru (5) are performed for eo(") = eo(n-l) + A6,
n=1,2,---,nmax; nmax = 30, 60(0) = 0° and A9 = 180°/nmax.

The 2(nmax+l) tangent trajectories found this way represent the limiting
envelope of trajectories, whose impingement points on the cowl surface
now represent the limiting impact points. Any trajectories which start
at (xo,romingrogromax,eo) will impinge on the surface region enclosed by
the boundary curves defined by the inner and outer limiting impact
pcints.

4.6 Calculation of the Local Droplet Impingement Efficiency (8)

One can now run a number of trajectories starting at an array of points
within the region, F(romin(eo), romax(eo)), in an orderly fashion to
obtain the array of impingement points on the cowl surface (Figure 9).
Let §6(I,J) and Yh(I.J) denote the array of starting points from

F(r0m1n(e°), r max(eo)) and the corresponding impingement point array

0
on the surface, respectively.
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We can define the associated area elements;

ao(i,j) = area of the element formed by the four corner points,
(xO(I,J), xo(I,J+l), xO(I+l,J), xo(I+1,J+1)}
at the freestream constant-x plane,

am(i,J) = area of the element formed by the four corner points,
{?ﬁ([,d), ?ﬁ(I,J+1), Yﬁ(1+1,d), ?ﬁ(I+I,J+1)}
at the surface,

where I = 1,2,..., IMAX (IMAX = nmax)
Jd= 1,2,..., JMAX (JMAX = nmax/2)

i= 1,2,..., IMAX-1
j= 1,2,..., JMAX-1

The local impingement efficiency (B8), as 1in equation (1.0), can be
approximated by

B(X (1,9)) = M=% (19 (4-13)
a,(1,3)
where x.(1,§) = centroid location of a_(i,]).

The unit direction vector, ﬁw, of Vm for the general engine 1inlet
attitude having a set of pitch (a), roll (¢) and yaw () angles  with
respect to the space coordinate axes can be obtained from the Euler
rotation matrix applied to the unit vector obtained when the engine
inlet body axes and the space axes coincide:
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(n(1) n(2) n ()1
- cosacosy sinasingcosy-coseésiny  sinacosdcosY+singsing] [ 17

= cosasiny sinasingsinp+cose¢cosy sinacossiny-sindcosy 0

-sina cosasing C0SQcose J O-
[ cosacosy]

= cosasiny (4-14)

| -sina
Substituting (4-14) into (4-13),
B(xc(i,j)) = cosacoswao(i,j)/am(i,j) (4-15)

Equation (4-15) means that for a general orientation of the body with
respect to the space coordinate system, we can choose the constant-x
plane at the freestream as the plane of trajectory starting positions to
compute the flux ratios. The projection of the freestream flux along
the direction of VQ is accounted for by the factor (cosacosy) involving
the pitch and yaw angles only.

Thus the grid of B8 values can be computed numerically, using equation
(4-15), at the centroids of the impingement point grid, Iﬁ(I,J). Unless
the grids are dense, i.e., large IMAX and JMAX, the 8 distribution on
the surface defined at Eé(i,j)'s'will not be smooth. Also, 2;(1,j)'s
are not particularly useful in organizing and presenting the
computed B distribution on the surface because of its point
function definition of 8 on 3-D surfaces.
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In order to obtain a more accurate B distribution and to express it
as a function of the surface arc length(s) along a set of constant-8
cowl contours, the following had to be done:

(1) Select a desired 8 (constant-8 cowl contour along which 8 is
to be determined)

(2) From the coarse impingement centroid grid, Yc(i,j). and the
corresponding IB(I,J) grid computed, find the I, and I, (6-ray
indices) that result in the condition

ec (II’J) <0 < GC (IZ,J) , J=1,2, ---, JMAX
- - - o
(3) Determine KMAX: [eo(Iz) - eo(Il)]/KMAX =1

(4) Find tangent trajectories for the rays,

8,(K) = 8(I;) +K i K =1,2,..., KMAX-1

(5) Compute a,(k,j). ap(k,j), B(x.(k,j)); k
J

1,2,..., KMAX-2
1,2,..., JMAX-1

Steps (1) thru (5) are repeated for all other 8's desired.

Thus a much finer grid definition of 8 is obtained that encloses a
particular constant-8 cowl contour desired. By parametric cubic
splining of the contour curve, the arc length (s) of a point on the
curve can be computed with respect to the cowl hi-lite position:

(s = 0 is the hi-lite; s+ = outside; s- = inside).

Moving the points along the cowl contour with sélected As, B at a point
along the contour can be interpolated from the surface grid cell corner
values [B(Yc(k,j)), B(YC(k,j+1)), 3(§£(k+1,j)), B(Y&(k+1,j+1))} of the
centroid grid that encloses the point in question (Figure 10).
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+ impingement point grid, ih(I,J)
t

=9 impingement centroid grid, X (1,3)

constant-8 cowl contour

X (k,+1)
-]
x(k:3) Q@ ~ \
\\ A/ \\ //’
\\ /(
.- \
\ - \
\ v \
/‘/\T. Q ————— do_
g - xc(k+] ,j+1)
X (k+1,3)

B() T B(X_(k1,d+1))-usv + B(R_(k,d+1))us (1-v) + B(X, (K,3))* (1-u)+(1-v)
+ B(X_(k+1,3))+ (T1-u) v

Figure 10 - Il1lustration of the Centroid Impingeﬁent Grid [I;(i,j)]

and g8 Interpolation
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4.7 Method for Solid Particles

Most of the assumptions involved in the trajectory model are valid also
for analyzing solid particles such as sand grains. One exception is the
assumption of spherical shape - sand particles come in ali shapes
(irregular). [f sand particles are characterized in terms of mass,
however, one can still consider the shape to be spherical with an
effective diameter characterized by their settling behavior in still air
such as the terminal velocity and range. Stokes' diameter, for example,
is the effective diameter of an equivalent spherical particle having the
same mass and terminal velocity, based on the Stokes' drag, as the
actual particle. Available data on sand particles of varying shapes
[43,44] indicate that, as long as the size is not too large (<lmm), the
settling behavior is about the same for particles having similar masses.

The other consideration is the impact behavior - solid particles will
bounce off the surface of impact. Shape of the particle will affect the
bounce kinematics in a complicated way. Detailed analysis of such
behavior is not worth pursuing, except to say that it will involve
analyses of statistical nature. Some experimental data ({45] are
available that characterize the average behavior of solid particle
kinematics at metallic surfaces of impact.

The controlling kinematic parameter is the resiliency coefficients, n
and r., relating the normal (Unz) and tangential (Utz) particle

velocities after the impact to those before impact, Unl and Utlz
Un2 : 'rnUnl (4-16)
Uz = "y

The normal and tangential components of Ul are
U, = E(Ul-ﬁ) (4-17)
Utl = nx (Ul x n)
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where n = unit normal vector at the impact point (pointing outward
from the surface)

Combining (4-16) and (4-17),

Un2 = -rnn(Ul-n)
UtZ = rtﬁ X (U1 X n)
U2 = Uﬁz + UtZ = rtﬁ X (U1 X n) - rnﬁ(Ul-ﬁ} (4-18)

With known values of the resiliency coefficients, the particle velocity
immediately after impact (Uz) can be determined from equation (4-18). In
the numerical integration of the trajectory equation, incorporation of the
particle bounce mechanism amounts to restarting the integration process
with the renewed initial condition, (?ﬁ, 'Uz), at the point of impact,
(xm).

The impact point position (Ym) and the unit normal (n) are computed as
described in the trajectory-bi-cubic patch ntersection algorithm
(Appendix A).

Some available experimental data [(45] indicate that the resiliency
coefficients are functions of the impact incident angle, Yoo QS well as
the incident particle velocity magnitude, |U

s
rn = rallUphe )

rt = Y't(|U1|, Ym)

More research work in the measurement of these parameters are required in
order to obtain an adequate empirical kinematic model for sand particles.
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5.0 RESULTS AND DISCUSSIONS
The basic numerical integration scheme of solving 3-D particle
trajectories in potential flow of air was first checked by analyzing the
water droplet impingement problem on a spherical body. This task was

performed for a number of reasons:

(1) Availability of the well documented NACA wind tunnel impingement
data [1ll].

(2) Well known incompressible potential flow solution in anaiytical
form suitable for speedy code implementation.

(3) Trajectory-surface intersection is easy to compute on the body.

(4) B computation on the body is simple due to its axisymmetry.

Having gained confidence from the axisymmetric analysis, the numerical
scheme for a full-fledged 3-D impingement analysis was worked out,
incorporating much of the code developed for the axisymmetric problem.

5.1 ANALYSIS OF DROPLET IMPINGEMENT ON A SPHERE

The potential flow velocity, V, can be expressed in terms of the
Cartesian coordinates, (x,y,z):

V(x,y,z) = 1+ %r'3(1-3x2r'2), -%xyr's, %xzr‘sl (5-1)
where R x2+y2+22,

(x,y,2) = (X,Y,Z)/R = non-dimensional field point

R = radius of sphere located at (0,0,0)
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The intersection between a trajectory segment, T(w), and the surface of

sphere, x2+y2+z2 = 1, is obtained by solving
- _ 3 )
T(w) = p + Elw - ) (p; + g;Lw)" =1 (5-2)
i=1
1 = x2+y2+22

which is quadratic in w (w,L,p and £ are defined as in equation (A-34),
Appendix A).

Calculation of the limiting envelope of trajectories follows the same
procedure described in Section 4.5, except that the scan for 8 rays is
not required due to the axisymmetry of the problem. However, several
trajectories having different 8 starting values were checked to verify
the axisymmetry in computed trajectories.

The local impingement efficiency (B) takes the following simple analytic
form (Figure 11):

B(w) = rdr /(rds) = - d[r02/2]/d[coswl (5-3)
2 2 2 ] . h s
where o Xo ¥ Yo * 258 freestream starting radial position

of an impinging trajectory (dimensionless with R),

s/R; angle subtended by the impingement point at the

w =

origin (center of sphere). y

rodro

FIGURE 11 - [Tlustration of 8
for an Axisymmetric Geometry
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Using the definition, w = s/R, equation (5-3) is expressed in terms of
the dimensionless arc length, s/R:

B(s/R) -d(rZ/2]/d(cos (s/R) (5-4)

For a number of impinging droplet trajectories (i=1,2,...,n) equation
(5-4) can be evaluated by a cubic spline of {(rg/Z)i} as a function

of {cos(s/R)i}. The cubic spline derivatives thus obtained determine
B(s/R).

5.1.1 Langmuir-D Tunnel Droplet Size Distribution

The numerical procedure was carried out utilizing the accepted tunnel
droplet size distribution due to Langmuir [17]. This distribution is a
discretized plot of the cumulative LWC fraction versus the seven droplet
sizes normalized to the mean volumetric diameter (MVD), as shown in
Figure 12.

For a tunnel cloud condition of a particular MVD, calculation of B8
involves weighting according to the multi-droplet size distribution:

7

I ci8;(s/R) (5-5)
i=1

whare Bi is the local impingement efficiency due to the droplets of
diameter group di' C; is the fraction of the total LWC contributed by
droplets in the diameter group di'

8(s/R)

5.1.2 Results

The following tunnel condition was used in the computation in order to
compare with the NACA test results:
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R (sphere radius) = 9 inches

v, = 157 kts

psw = 28 in.Hg

Tew = 50°F

MVD = 11.5 and 14.7 um

A plot of a typical water droplet trajectory is shown in Figure 13 for a
14.7 uym diameter droplet. Also shown are the two potential flow
streamlines (freestream starting position of the droplet trajectory was
identical to that of the upper streamline). The droplet trajectory
exhibits the inertial behavior through its departure from the high
curvature portions of the upper streamline.

Figure 14 shows a comparison of computed and test data of B vs. s/R for
the two MVD tunnel clouds. Computed results are in good agreement with
the experimental data, well within the reported experimental errors of
10% in LWC and 6% in MVD for the tunnel clouds measured.

The significance of the Cunningham drag correction is indicated by the
closer agreement, near the flow stagnation region, between the computed
and test 8 values. This observed trend is understood in terms of the
increased droplet impingement by the smaller droplet size population of
the Langmuir-0 droplet spectra, resulting from the appreciable
Cunningham drag reduction for these droplets. The impinging droplet
flux due to smaller droplets is more localized near the stagnation
region than in the case of larger droplets because of the differences in
their inertia.

5.2 ANALYSIS OF DROPLET [MPINGEMENT ON A 3-D ENGINE [INLET

Impingement analysis on the 737-300 prototype inlet was performed for
the following flight conditions:
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a = o° and 25°

Vo, = 175 kts

T, =  50°F

PSOD = 28.2 in. Hg

MCF = .625 (compressor face Mach no.)
d = 30um

The o = 25° condition, close to the 1inlet design separation envelope,
was selected as the 'worst' test case to thoroughly check the trajectory
analysis code. These conditions represent a realistic full-power-
takeoff flight situation, but are not representative of a typical icing
condition. However, as to be seen from the computed results, these
represent a severe flowfield situation in terms of the droplet
trajectory computation, because of the high engine suction flow as well
as the extreme angle of attack involved.

The computational boundaries for the 3-D full potential as well as the
3-0 trajectory code were

1or

R

© CF CF
"max = lorCF
where Xm = freestream x-boundary of cylindrical computaticnal
domain
XCF = compressor face x-boundary
Tep T inlet fan radius
Cmax - radial boundary for cylindrical computational

dcmain.
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The computing time for each angle of attack case impingement analysis
was about 5 min. on the CRAY-1S.

5.2.1 Limiting Impingement Points

The tangent impact points (*) are shown in Figures 15 and 16. The
extent of droplet impingement is indicated by the portion of cowl
surface bounded by these points. The 3-dimensional character of the
flowfield and geometry causes the azimuthal variation of the tangent
impact positions. [t should be noted that no such variation in 6 is
possible for an axisymmetric inlet at zero angle of attack, although
g-variation of a different kind will result at non-zero angles of
attack for axisymmetric inlets (non-axisymmetric flowfield).

The following features are noted from Figures 15 and 16.

(1) Wider extent of droplet impingement near 8 = 135° ('sguashed’
region) for both a = 0° and o = 25° cases.

(2) For a = 0% case, all of the inner tangent impact points lie on the
inner cowl surface; for a = 250, a switch-over occurs at 6 = 110°
beyond which the inner tangent impact points iie completely on the
outer cowl surface.

These observations can be understood in terms of (1) the increased
exposure area to droplet impingement near the 'sgquashed' region due to
the thickening of cowl cross-section near 6 = 135° and (2) the effect of
high angle of attack causing the droplet impingement to occur more on
the outer cowl surface for 6 > 90°.

5.2.2 Oroplet Trajectories on the Inlet Symmetry Plane

The impinging droplet trajectories on the inlet symmetry plane are shown
in Figures 17 thru 22.
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The details of these near the upper (8 = 0°) and lower (8 = 180°) cowls
are depicted in Figures 18 and 19 (a = 0°) and in Figures 21 and 22

0
(a = 257).

The main feature noted in these figures is that the trajectories exhibit
strong inward curvature as they approach the 1lip region. This is caused
by the strong inlet suction flow typical of the full-power-takeoff
setting. The combined effect of the high suction and high angle of
attack is even more pronounced in figures 20 and 22, where some extreme
trajectory turn-arounds are seen near the lower cowl lip.

5.2.3 Computed Local Impingement Efficiency Distributions

Plots of computed B as a function of cowl contour arc length (s)

at 8 = 0%, 45°, 90°, 135° and 180° are shown in Figure 23 for both
angies of attack. Arc length (s) is the surface contour distance
measured from the origin at the hi-lite, along a particular constant-6
cowl contour curve.

The following features are noted from the computed 8 curves;

(1) B peaks broaden and decrease monotically from 8 = 0% to 6 = 135°
for both angles of attack.

(2) Zero angle of attack cases exhibit more rapid rise to the peak 8
values compared to a = 25° cases, with the exception of curves for
e = 180°.

(3) Oouble B peaks are observed for 6 = 180° (¢ = 25°), with a sharp
maximum of 8 = .84 and a weak secondary peak of B = .25.

Observation (1) can be explained in terms of the geometric character of
the inlet; the progressive thickening of the cowl cross-sections

from 8 = 0° to 8 = 135°, thus resulting 1n successively lower local
droplet flux while increasing the extent of exposure to droplet
impingement.
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The second feature can be explained in that the distribution of
impinging trajectories is more asymmetric about cowl hi-lites in a = 0°
cases than & = 25°, as seen in Figures 18 and 21 for example. The
strcng inward curvature of trajectories adjacent to the inner tangent
trajectory causes the location of the near normal impaction to be closer
to the inner tangent impact point. For a = 25% cases the effect of high
angle of attack partially offsets this trend, resulting in a more
symmetric distribution.

The presence of strong turn-arounds in trajectories (Figure 22) is
responsible for the sharp primary B peak in observation (3), causing a
localized region of high droplet flux. The weak secondary peak in B
occurs near the location of near normal impaction; local maxima in 8 is
expected to occur whenever the 1impact velocity of droplet is nearly
aligned with the surface normal vector, as shown in equation (1.0).
Similar observations were also reported in 2-D cases, involving an
airfoil with a leading edge ram air scoop [22] and ice-accreted airfoils
[46], where the trajectories undergo strong turn-arounds due to the
abrupt and strong flow gradients present near the leading edge.

The tails of the 8 curves are not plotted because these will require
extrapolation of 8 in the present numerical scheme (see Figure 10);
although the 8 values must go to zero at the tangent impact points (zero
droplet flux since U-n = o there), the edge of the centroid

grid {?C(i,j)} is reached before getting to the edge of the impingement
point grid {x (I,3)}.

Experimental impingement data for the 3-0 inlet analyzed are not
presently available for comparison with the computed results. However,
there is an on-going research program (Joint BMAC-Wichita State
University) to obtain impingement data for the inlet analyzed as well as
for several other geometries during the time period 1985-1986. Project
director for this research program is Or. G.W. Zumwalit and the
experimental 8 measurement involves a dye-water mixture spraying
technique as well as laser reflectance spectroscopy. Tests will be
conducted at the NASA-Lewis [cing Research Tunnel (IRT) under joint FAA
and NASA sponsorship.
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Figure 15 - Limiting Impingement Points; a = 00, 737-300 Prototype Inlet



25%, 737-300 Prototype Inlet

Figure 16 - Limiting Impingement Points; o
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5.3 TRAJECTORY SIMULATION FOR A SOLID PARTICLE

A sample trajectory simulation of a solid particle was performed using
the flowfield about the 737-300 prototype inlet at 25° angle of attack.
A simplistic bounce kinematic model assuming 50% momentum loss along the
normal and no loss along the tangential direction (rn = 0.5, ry = 1.0 in
equation (4-18)) was used to compute the particle velocity immediately

after the impact.

The particle was injected into the flowfield at about two fan radii
ahead of the inlet with the initial velocity (cylindrical) of

(U,.U,.U
depicted in Fiqure 24.

9] = [0, AN vw]. The ricochet trajectory of the particle is

The sand separator efficiency of an engine inlet can be determined by
tracing many such trajectories to compute the normalized freestream flux
(or the flux through the surface of initial trajectory positions) of
particles that correspond to the particle flux at the sand separator
(scavenge) channel of the engine inlet.
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6.0 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

Based on the results, findings and the physical assumptions of the

present analysis method, the following conclusions can be made:

(1)

(2)

(3)

(5)

(6)

(7)

This investigation represents the first attempt in the analytical
determination of the detailed water droplet impingement efficiency
distribution on a 3-D engine inlet surface.

Accurate surface definition of the 3-D surface is essential in the
3-D droplet trajectory/impingement analyses.

For the grid (mesh) definition of the flowfield, the flowfield
accuracy as well as an accurate means of flow velocity
interpolation are essential in computing accurate droplet
trajectories.

Integration error control in the numerical integration of the
trajectory equation 1is an important consideration in that it
governs the computational efficiency as well as the accuracy of the
computed trajectories with respect to the flowfield accuracy.

This analysis tool can easily be extended for problems involving
solid particles, such as sand ingestion analyses.

Although experimental data is not yet available to directly verify
the analysis results for the engine inlet analyzed, good agreement
is obtained between the published test and computed results for an
axisymmetric problem investigated.

Present analysis tool will not be appropriate for problems

involving large concentration of water dropiets (LWC 2> 10 gm/m3)
or large droplets (d > 1000 um).

64



Some recommendations for further work are:

(1)

(2)

(3)

(4)

Particle heat transfer equations should be incorporated in order to
extend the present method to transonic/supersonic flows or flows in
the engine compressor and turbine stages.

Reliable experimental drag data for large, non-spherical droplets
is needed to extend the droplet size range of the method.

Effect of thick boundary layers on droplet trajectory should be
studied for internal flow applications.

Improved trajectory computation can be achieved by using a body-
fitted mesh definition of the flowfield and solving the trajectory
equation in the transformed Cartesian mesh obtained through the
metric of transformation for the particular body-fitted mesh
chosen.
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APPENDIX A

Parametric Description of Curves and Surfaces

A.1.0 Parametric Curve Description

A 3-dimensional curve segment can be represented parametrically by a
polynomial expansion of the parameter variable u

nmax
ru) = ] au, u e [0,1] (A-1)
n=Q
n=20,1,2,..., nmax
where r = position vector along the curve,
- - th . .
an = n order vector coefficient.

The vectors corresponding to the parameter values of u=0 and u=l, i.e.,
v(0) and r(1l), are the end point positions of the curve segment.

The maximum power (nmax) of the parametric variable retained in the
expansion determines the order of parametrization. Thus nmax=3 (or
nmax=5) represents a cubic (or quintic) parametrization. The cubic and
quintic representations are currently two of the most commonly used
forms of analytic curve/surface construction techniques [39].

[t will be shown later that these curve parametrization equations lead
to surface parametric equations.
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A.l1.1 Parametric Cubic Curve Representation
From equation (A-1), the parametric cubic curve is
- 3

= - = - 2
r(u) = a, +a  u+a,u +aju (A-2)

Equation (A-2) can be written in matrix form,

T (u) = [ul (&)
where (U] = [1 u u2 u3 |
(A-3)
[A] = | a, a; a, a, |
Differentiating equation (A-3) with respect to u,
T o= [0 1 2u W2 (R |T (A-4)

The end point (u = 0, u = 1) quantities of equations (A-2) and (A-3) are

FO) =(1000] (A
T =(1111] (AT
F(=10100] (A
F () =lo123] (A

These can be expressed in matrix form,

(F(0) F(1) 7,00 701" = (N (AT (A-5)
where [1 0 0 o]
(N} = |1 1 11
01 00
_0 12 3J
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The L.H.S. of equation (A-5) is just the vector array of the four curve
end point conditions (positions and tangents) required to determine the
four vector coefficients of the cubic parametrization. To solve for
[A], equation (A-5) is to be inverted:

(BT =1c1 [FO) 7(1) 7 (0) 7)1 (A-6)
where
(cr= vyt =1 000
0 010
-3 3-2 -1
2-2 11

Substitution of (A-6) into (A-3) completes the cubic curve
parametrization,

Fu) = Ul (c) [F(0) F(1) Ty (0) F ()1 (A-7)

Equation (A-7) implies that the cubic parametrization requires only the
end point positions and slopes as inputs.

Another approach of arriving at the same result is to express r(u) in
terms of a set of four cubic polynomial blending functions, {fil;

Rl

(W) = F(0) Fy(u) + T (0) Fy(u) + F(1)F5(u) + 7 (1) Fy(u) (A-8)

£, (u) Fo(u) Fa(u) Fa(u)] (F(0) 7 (0) F(1) 7 (1)1

Equation (A-8) imposes the following constraints on the blending

functions:
fl f1 FZ f2 F3 f3 f4 fa
u=20 1 0 0 0 0 1 0 0 (A-9)
u=1 0 0
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The cubic blending functions are

n-1

mn ;s m=1,2, 3, 4 (A-10)

N o~8
o
[ oy

Fo(u) =

n=1

Coefficients bmn are determined easily from (A-9) and (A-10):

m=1li l=by byy =
0 =byy +Dbyp +by3+byy bjp =0
0= by, b3 = -3
0- by, *+ 23 + 3by, byg = 2

Repeating the process for the remaining three, we have

f1 (u) =1 -3u2 + 2u3
£, (u) = 32 - 243 (A-11)
fy (u) = u -2u2 + 3u3
f3 (u) = u2 + u3
4 = -
In matrix form, (A-11) becomes
[ F,(u) f£,(u) Fa(u) Fou) =01 u v o] 0 0 o0
1 2 3 4
0 0 1 0
-3 3 -2 1
2 -2 1 1
=[(uv][CI
(A-12)

Substituting (A-12) into (A-8), we see that the same parametric equation
(A-7) resuits.
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A.2.0 Parametric Surface QOescription

The parametric curve formulation can be extended to describe a surface
element (patch) by allowing the vector coefficients in equation (A-1) to
be functions of a second parameter.

A.2.1 Parametric Bi-cubic Surface Representation

Expressing the vector coefficients [Ei] of equation (A-2) as functions
of a second parameter v, we have

Fluw) = T (V) + (U B0+ T’ (A-13)

Since equations (A-2) and(A-8) are equivalent, i.e., Ei‘s are simply the
linear combinations of the curve end point position and tangent vectors,
one can also introduce the parameter v into the ‘equation (A-8) to
describe a patch;

r(u,v) = ?(O,v)fl(u) + Fu(o,v)fz(u) + F(l,v)f3(u) + Fu(l,v)f4(u) (A-14)
[f we had arrived at the curve parametric equation using the parameter

variable name v instead of u and then introduced the second parameter u,
we would have obtained

F(usv) = F(U,0)F (V) + 7 (U,0)F,(v) + F(u,1)f3(v) + 7 (u,1)f,(v). (A-15)
Inspection of equations (A-14) and (A-15) shows that each form uses a
set of single parameter blending functions and hence 1s not symmetric in

u and v. Physical meaning of these equations can be shown from Figure
Al.
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r(0,0)

Figure Al - Parametric Surface Patch
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The parametric form of (A-14) is expressed in terms of the variable end
points (r(0,v) and r(l,v)) and end point tangents (Fu(o,v) and ?u(l,v)).
Therefore it represents a u-parameter family of curves spanning the
patch as the curve end conditions are continuously changed by sweeping v
in the interval, [0,l}. Likewise, equation (A-15) represents a v-
parameter family of curves spanning the patch. In order to obtain a bi-
cubic surface parametrization symmetric 1n u and v, the two eguations,
(A-14) and (A-15), must be combined.

From equation (A-14)

F(4,0) = F(0,0)F (u) + F(1,00f,(u) + F,(0,0)F5(u) + ¥ (1,0)f(u) (A-16)

r(u,1)

F(0,1)F (u) + F(1,1)F,(u) + 7 (0,1)F5(u) + 7 (1,1)f,(u) (A-17)
Taking partials of (A-14) with respect to v
Fouav) = T (0, F (U) + T (LV)F,(u) + 7 (0,)F5(u) + T (1,v)F,4(u)

from which

7(0,0) = T (0,00F (u) + 7 (1,0)f,(u) + ¥ (0,0)f5(u) + 7  (1.0)F,(u)  (A-18)

UV(

Fv(u,l) = FV(O,I)fl(u) + Fv(l,l)fz(u) + FQV(O,})f3(u) + Fuv(l,l)fa(u) (A-19)

Substituting equations (A-16) thru (A-19) into (A-15) and re-expressing each
term on the R.H.S. of (A-15) in matrix form,

F(u,0)f,(v) = [ F(0,00F, (u)+7(1,0)F, (u)+F (0,0)F3(u)+7, (1,0)F4(u) IF(v)

1

= [ fu) fpu) f3lu) F4(u[r(0,0) 000l [H]
r(1,0) 000} f,(v)
r,(0,0) 00 0f | falv)
r (1,00 0 0 0] | f(v)
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Flu,)F,(v) = [ F(0, 1) (w471, 1)F, (e (0,1)F3(u)+7 (1,1)F, () I, (V)

= [ f,(u) f,(u) f3(u) f,(u)J[0 F(0,1) 00} ff,(v)
0r(1,1) 00f|f,(v)
0 Ep(o,l) 00| |fs(v) (A-21)
0r (1,1) 00} |fav)

7 (6,0)F5(v)= [F, (0,00 (w7, (1,008, (u)4,, (0,0)F3(u)+7 (1,0)F4(u) IF5(v)

= [f,(u) f,(u) f5lu) f,(u)]f0 0 E&(o,o) o] [f,
00r, (1,00 0fIf
007,,(0.0) 0f |fg
00r,(1,0) 0f{f,

uv 3 uv
= [f1(u) fz(u) f3(u) f4(u)] 000 iy(0,1) fl(v)
000 rv(],1) f2(v)
000 ruv(O,l) f3(v)
000 ruv(l,l) f4(v)

Adding equations (A-20) thru (A-23), equation (A-15) becomes

Fluav) = [ (u) £y(u) F5(u) £IAIF (V) f,(v) F3(0) F(T (a-20)
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where the patch boundary matrix [Q] is given by

r(0,0) r(0,1) r (0,0) r (0,1)
r(1,0) r(1,1) rv(l,O) Fv(l,l)
Q1= 1% (0,0) F.(0,1) F.(0,0) 7. (0,1) (A-25)
u? u'’ uv: -’ uv'-?
tFu(1,0) Fh(1,]) ruv(l,O) ruv(],l)

Using the relationship (A-12) the blending function arrays can be
expressed as

[FL ), (u)F3(W) )] = (U] [C]

H

T T

(Cl]

L D F (V0 F4 (1T (v]

where {Ul, [V}, and [C] are defined as before.
Thus, the bi-cubic surface parametric equation is

i el @ e’ o’ (A-26)

r(u,v)
Looking at the array elements of [Q] the bi-cubic surface

parametrization requires the four vector gquantities at each of the four
corners of the patch element;
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r = (position vector)

r, = (tangent vector along constant-v curve)
Fv = (tangent vector along constant-u curve)
Fuvg (twist vector)

Equation (A-26) is in a compact matrix form, well suited for numerical
programming purposes.

A.2.2 Geometrical Properties of Bi-cubic Surface Parametrization

From the bi-cubic parametric patch equation (A-26) many geometrical
guantities can be obtained 1n analytic forms.

The unit normal vector (n) at a point F(uo,vo) on the surface:

ru(uo,vo) X rv(uo,v

n o=+ o (A-27)

B IFh(uo,vo) X F&(uo,vo)l

(proper sign is to be chosen for particular application)

Here, ru(uo,v

)

[U* (u ) IECA@ICT V(v )T

o

rV(UO

[U(u ) ICCN@UEITTV (v )1

<
Q
S
n

[u'] [0 1 2u 3u?]

]
Q
2o

oy

d

1}

fv'] [0 1 2v 3v2].

"
%
< jo
-
d
1]
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The surface area (S) of a patch surface:

S = f:f:|?h x v |dudv
33 —= —
- = d 3
were (7,5 75+ 1T ey 30,00,
(35 = [Uelre lred’ vl
@Dy, = ruarelre e’ tvy’

The volume (Vol) subtended by a patch surface at the origin:

3
where re(r xr) =}
1

16
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A.2.3 Coordinate Transformations on Patch Surface

Once a surface is parametrized, transformations, such as translation and
rotation, are easily implemented without having to modify the parameter
functions - only the vector quantities at the boundary corners of the

patch need be transformed. I[f [R| denotes the particular transformation
matrix and r* the position vector in the transformed system

¥ (u,v) = [UICcIEIreI vy’ (A-30)

where components of the new patch boundary matrix (Q*| are

s 1= 1,2,3 (A-31)

Similarly derivative quantities are obtained using the same [Q*|;

T

Fouv) = ut] el (@ (el ) (A-32)

A.3.0 Trajectory-Bicubic Patch Intersection
To compute the impingement point on the surface defined in terms of the
bicubic parametric patch notation, equations (A-25) and (A-26), the

geometric 1ntersection between the trajectory line segment and the patch
must be determined.
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A.3.1 Problem Definition
At the required intersection point, the following must be satisfied:
Fi(u,v,w) = 1i(w) - ri(u,v) =0; i=1,2,3 (A-33)

Quantities T(w) and r(u,v) represent the position along the line
(trajectory) segment and the position on the patch surface respectively:

(line)  1.(w) = p o+ gl (A-34)
where £z (g -Pp)/L = unit direction vector along the line,
L= [p- q = length of the line segment,
w = normalized line length parameter ( 0 <w<1 ),
(p,q) = 1line end position vectors.

(patch) ¥ (u,v) = [VI[cILQ,1Lc1 V]

A.3.2 Numerical Method

Solution of (A-33) is obtained by the Newton-Raphson technique for
solving a system of non-linear algebraic equations:

(1) x(n) = (x], X s x3) = (u,v,w)
- T[X3(n)] - F[X](n)’xz(n)]

’nl

~~

S

S
§

BFi
(2) J..(n) = [5;3 X(n)
3
(3) ¥ J..(n)ea.(n) = - Fi(n) ( & is solved by Gauss elimination )

p AT

(4) x(n+1) = X(n) + a(n)

18
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S T

Steps (1) thru (4) are iterated, each time updated with the correction
vector A, until the equation (A-33) is satisfied within a specified
tolerance.

Since the solution is sought within the specified line segment and on
the patch surface, the following constraints must be 1imposed on the
independent variables:

0 ¢ x(=w) ¢ 1
0 < x2(=v) < 1
0 < x3(=w) < 1

The constraint equations are satisfied by the transformation
ki =5 /(1 +s5) 5 sy e () 30 = 1,2,3 (A-35)

i j 1

The Newton-Raphson steps can be modified accordingly in terms of the new
variable s = CIREPPEE

Jt.(n) = — -—k-ajk = yn)e2sye (1 # s?)'2 (A-36)
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3
JJ%.(n)ea%(n) = - F.[5(n)] (A-37)

s(n+1) = 5(n) + &*(n) (A-38)

Thus the transformation (A-35) modifies the Newton-Raphson Jacobian
elements in a simple way, as shown in (A-36). The components of the
unconstrained Jacobian elements are

ari(u,v)

Ji =3%{ Lw) - r{uwv)] = - —g— = - [U'][C][Qi][C]T[V]T

3 ar{u,v) T T
Jig Tyl 1i(w) - ri(u,v)] = - —¢ = - [ullcIre, Ire] (vl
Ji3 =a%{ 11(w) - ri(u,v)] = EiL

At the converged solution (u, v, W), the intersection point (Ym) and
the unit outward normal vector ﬁ(?ﬁ) dre computed by substitution of

(uo,vo) into the patch parametric equations (A-26) and (A-27):

(x )5 = rslug,v)
(n). =H./ ( f W2 172
33
" J:%kgl €1.J'k”].]l(uo’vo)"JkZ(uo’vo)
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APPENDIX 8

Derivation of the Trajectory Equation (3-1):

(R )-RV-(V]--U.i)/(24P) - (]-g)gc(giz/vi (B-].)

dUi/dt = CD v

A vector diagram of the forces acting on the particle is shown in Figure
Bl.

U xV
N
B s
// //
/ i
/’// _
—=» V -

=]

G

Figure Bl - Forces Acting on Particle and Velocities
at Center of Particle

Drag force, D, is given by

Di = CD(RV)-q-a-cos(i,n) (B-2)
where R, = p(V-Uld/u,
CD = sphere drag coefficient,
q = %—p|V-U|2 = velocity head experienced by the particle
in the flowfield,
a = nd2/4 = projected area of spherical particle,
V. = flow velocity, U = particle velocity,
cos(i,n) = (V—U)i/IV-UI = direction cosine between the unit

vectors ;(// to i-axis) and n(// to V-U).
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Using the definitions, (B-2) becomes

o(Ry)-a: V-Gl-(9—5)1 (B-3)

Buoyancy and gravity forces are

B. = DgT512

; (8-4)
md”/6 = volume of spherical particle

= on¥ .
G. o gréiz 5 1
where the gravity force is assumed to act along the -ve y (i=2) axis.

Summing the forces ( 7 F=ma ),

oCy(R ) +(a/) - [V-U{V-U); - (1-0)gs ., (B-5)

dUi/dt = i

ST

Introducing the inertia parameter, Psp*dsz/(18uc) R
where C is the characteristic dimension of the boundary surface, the

coefficient of IQ - GI(Q - ﬂ), term in (B-5) can be
i
written as

1 1

T oCy(R ) (a/7) = oC(R,)«(na?/a)- (2¢nd’/6) 1= 30C (R )+ (4p*d)”
3pCD(Rv)
18 uC de
CD(RV). pV_d
24PC u

CD(RV)R

24PC
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where R = pVod/u ( Reynolds number based on d ).

Equation (B-5) thus becomes

Co(R,) RV - UJ(V - U),

dUi/dt = - g(1 -U)Giz

24 PC

Non-dimensionalizing (B-6)

df U V] Cr(R,)-R + (V. /V_-U/V_)
Ml U A Ak M 20 - (1 ~0)gCs,/V2
d[ t/(C/V_)] 24 P

which is

Cp(R,) R, (V,-U.)
24p

= 2

where Ui = U./Vm , V. = V./VOO and t = t/(C/VOO).
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Table of Sphere Drag Coefficient (C

APPENDIX C
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Q.05 434.32200
0.10 244,3200

Q.20
0.40
Q.60
.30
1.00
1.20
1.40
1.60
1.30
2.00
2.30
2.00
3.50
4,00
5.00
6,00
3. 00
10,00
12.00
14.00
14.00
18.00
20.00
25,00
30.00
35.00
40.00
S0. 00
&0, Q0
80.00
10Q, 00
120Q.00
140,00
160.00
180.00

200. 00

250.00
300.00
350.00
400,00
500. 00
400,00
3800. Q0
1000, 00

124.4400Q
64,3300
44,1200
34,2600
28.2240
24,0200
21.0000
13.7200
16.8933
15.4200
12.7872
10,9920
9.63273
2. 6220
7.2624
6. 2820
5.0340
4,2763
2.2020
3.4440
2. 14635
2.7307
2.7492
2.3394
2.1324
1.7550
1.8Q78
1.5970
1.4400
1.2330
1.1014
1.0020
00,9257
0.3640
00,3213
0.7324
Q.708%5
00,4603
0.4171
Q. 55892
0.5501
0.5188
0.4743
0, 4469

420, 0000
240, 0000
120.0000
60,0000
40.0000
30, 0000
24.0000
20,0000
17.1429
15. 0000
13, 3332
12.0000
2. 4000
2.0000
&£.3571
&, 0000
4,.2000
4.0000
3.0000
2.4000
2. 0000
1.7143
1.5000
1.3333
1.2000
0.9600
0.3000
0.6857
Q. 4000
0, 4200
Q. 4000
0.3000
. 2400
0. 2000
0.1714
0.1500
0.1333
0.1200
0.0960
0. 0200
Q. 0636
0.0600
0.0480
0.0400
Q.0300
0.0240

T (LAND)

494, 225
231.0261
128.57%¢4
646.46405
45,7168
35.1407
28.7342
24.426R
21.3243
13.9208
17.14%50
15. 646466
12.7774
11,1533
?.23414
2.23414
7.4180
6.4433
5.2042
4.43183
3.9013
3.5121
3.2128
2.9747
2.7801
2.4181
2. 14359
1.9785
1.3329
1.61995
1.4437
1.2674
1.1363
1.0427
0.9717%
0.9160
0.3704
0.8325
Q,7593
0.7075
0,6476
0.6357
0.588%
0.5543
Q.5077
0.4771
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£ (GAUVIN)

——— s . e e s

437,1944
247.4012
125.9577
64,7933
44,2242
33.8604
27 . 6000
23.4003
20,3220
18.1075
14,3224
14,8979
12.3024
10,5529
V. 2394
3.3327
&.77353
6.0547
4.3777
4.1511
2,46539
3.2903
3.0115
2.7701
2.609%
2.2745
2.0415
1.8633
1.7344
1.5281
. 3994
1.2133
1.0917
1.0045
0.9380
0.3332
0.3419
Q.3056
0.7354
0.6837
0.&440
0.46117
0.58627
0.5261
0.4743
0.4383

%

2 (PUTNAM)

3t

C (NORMENT)

——— e e s o —— — ——— ———— —_ — o —

490Q,.23577
243,6177
124,23397
65.4238
44,7425
24,3039
28,0000
23,7441
20.713%
12.4200
16,6216
15,1743
12.5472
10.7734
?.4217
S.5193
7.1392
6.2013
5. 0000
4,2566
3.7472
3.3737
3.0274
2.8574
2.6734
2.3280
2.0873
1.90864
1.76%96
1.5653
1.4217
1.2283
1.1018
1.0110
0.9413
0.8843
0.3413
Q.3040
0.7310
0.6775
Q.63462
0.4&029
0.5520
0.5143
0.4609
0.4240

426.5322
244,7004
124.0419
63.9772
43.73907
33.2742
27.1354
23.1104
20,1842
17.93814
16,2560
14.8662
12.3217
10,6027
?.5507
8.7009
7.339%
6.4363
S5.1557
4,.3399
3.7759
3.3431
3.0479
2.7994
2.59934
2.2314
1.9327
1.8027
1.6661
1.4720
1.3400
1.1699
1.06283
00,9875
0.9304
0.3348
0.8467
0.3140
0.7473
0.6934
0.46469
0.6074
0.54627
0.3315
0.4926
0.4692



APPENDIX D

Comparison between the Computed 3-D Full Potential CFD Flow Data
and Wind Tunnel Test Data ( from NASA CR-3514 and Boeing Document

D6-49848):
Wing pressures at:
—| | yo=0s
I
]
|
l L}
I X
-
]
i
i 1
o—{ |
Pylon pressures at
Z/D=-038
4 { 2D =-02
— J f‘@»
270% &01 L__;___,,J
i . Nacelle pressures
180 at- g = 90°, 180°, and 270°
Figure D1 - NASA Wing-Pylion-Nacelle Test Model; Location of

Pressure Measurements Used for Apalysis Comparison

(from NASA CR-3514)
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Surface Mach number
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Lower surface
0.15 \ﬁwl o QL
. 7 r\_
0.10 If
0.05 f
0.00
0 2 4 6 8 10
X inches
Test data: O Upper surface
<& Lower surface
Figure D2 - Wing Surface Mach Number Distribution, Wing-Pylon-Nacelle

Model; M_ = 0.2, a = 5°, D = 4.5"

(from NASA CR-3514)
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Surface Mach number
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Figure p3 - Pylon Surface Mach Mumber Distribution, Wing-Pylon-

Nacelle Model; M, =

(from NASA CR-3514)
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Figure D4 - Nacelle Surface Mach Number Distribution, Wing-Pylon-
Nacelle Model; M, =0.2,a=5%,0=4.5"

(from NASA CR-3514)
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Surface Mach number
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Figure D5 - Wing Surface Mach Number Distribution, Wing-Pylon-

Nacelle Model; M= 0.6, a = 3°, D = 4.5"
(from NASA CR-3514)
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