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Cryogenic Propellant Scavenging 
Final. Report 

August 1982 - March 1985 

B. Louie, N. J. Kemp, and D. E. Daney 

Chemical Engineering Science Division 
National Bureau of Standards 

Boulder, Colorado 80303 

This report is a detailed description of a computer model that has been 

developed for assessing the feasibility of low g cryogen propellant scavenging 

from the Space Shuttle External Tank (ET). Either pump-assisted or pressure-

induced propellant transfer may be selected. The receiver tank is chilled by 

emitting a low flowrate of single-phase cryogen through small nozzles. When 

two phases are present the flowrate is increased to represent transfer through 

the main piping. The program will accept a wide range of input variables, 

including the fuel to be transferred (LOX or LH2), heat leaks, tank 

temperatures, and piping and equipment specifications. 

The model has been parametrically analyzed to determine initial design 

specification for the system. Pressure-induced transfer of LH2 can be 

accomplished in approximately 7 minutes with a 3-inch (0.076 m) line size. 

Pump-assisted scavenging of LOX can be completed in less than 4 minutes by 

using a 2 HP (1491.4 W) pump and a 3-inch (0.076 m) line. To maximize the 

quantity of LH2 recovered, the receiver tank should be prechilled to -290 of 

(94.1 K). It was determined that the LOX receiver tank does not require 

prechilling and can have a temperature as warm as 300 of (421.9 K) without 

significant ventihg of fluid. 

Key words: computer model; cryogenic; fluid transfer; low-g; scavenging; 

thermodynamics. 
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1. INTRODUCTION 

The continuing success of the frequent Space Shuttle flights has encour­

aged interest in suborbital scavenging of propellants. Currently, the surplus 

liquid hydrogen (LH2) and oxygen (LOX) are jettisoned with the external tank 

(ET) or vented to space after the main-engine cutoff (MECO). Nearly 10,000 

pounds* (4535.9 kg) of fuel remain after MECO, which can be compared to the 

full payload of 65,000 pounds (29483.4 kg). Significant savings can be 

realized immediately with the proposed scavenging. Accomplishment of this 

task would support the longer range concepts of tethered vessel storage or 

orbiting space station operations. 

Brux and Stefan [1] have studied the physical phenomenon of cryogenic 

propellant transfer and discuss the logistics of the task, including receiver 

tank configuration and location, various heat fluxes, and the duration of a 

mated coast period after ME CO required to meet settling thrust requirements 

for the ET. They find the concept feasib-Ie, provided a positive acceleration 

of 1 x 10-4 g(s or greater is continued for a period of five to twenty 

minutes. A period of twenty minutes is required for the worst-case transfer 

of both fluids. The transfer of liquid oxygen requires a 2 to 7.5-inch (5 to 

19 cm) line size and a boost pump. Liquid hydrogen transfer can be 

accomplished using a 4-;nch (10 cm) line size with no pump. Simulation of the 

transfer incorporates a receiver tank cool down period, during which a low 

flowrate of cryogen is circulated. 

*This report does not conform with NBS policy on SI units. At the request of 

the sponsoring agency, NASA-JSC, English units are used for the input and 

output of data. 
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The present investigation was undertaken to determine the possibility of 

propellant scavenging and to evaluate the conditions required for successful 

ET residual transfer. A computer model written in FORTRAN IV (FORTRAN 66) is 

based on a thorough thermodynamic analysis of the shuttle receiver vessel, 

including cooldown of the vessel interior, and heat fluxes to the ET and 

shuttle tank. The model is analyzed parametrically in order to provide 

information to be used in the design of such a system. 

This report summarizes our development of a computer model for cryogenic 

propellant transfer at the National Bureau of Standards. Fundamental 

equations, system description, and assumptions are presented in section 2 

entitled PROGRAM DEVELOPMENT. Program logic and descriptions of parameters, 

subprograms, and numerical methods are discussed in section 3 entitled PROGRAM 

DESCRIPTION. The effect on the overall time of transfer and other operational 

characteristics is analyzed using parametric variations. Factors that are 

considered include heat leaks, vessel prechilling, and cooldown requirements. 

These topics are discussed in section 4 entitled RESULTS AND DISCUSSION. 
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2. PROGRAM DEVELOPMENT 

The physical situation described by the computer model is the transfer of 

cryogenic propellant between two tanks ;n a low-gravity environment. A simpl;-

fied schematic of the propellant scavenging system is shown in Figure 1. The 

points labeled 1 and 2 respectively denote the main fill line into and vent 

line from the receiver tank. 

Chilldown 
Spray Nozzles';; 

(tangential) 

o ..... 1--­
o 

0 ..... 

II. X It It 
x 

: t 
ET Tank 

x 
... l( 

It It x x ... 

Figure 1. Flow schematic for cryogenic propellant scavenging 
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The process begins with a cool down of the receiver tank by spraying the tank 

walls with cryogen. This is accomplished by emitting a low flowrate of 

cryogen through tangential spray nozzles while the main fill line is closed. 

Following the cooldown period the cryogen is transferred through the main fill 

line by utilizing ullage pressure in the supply tank or by pumping. The 

transfer is complete when the receiver tank is full, when the supply tank is 

empty, or when the back pressure in the receiver tank becomes too large. 

The model is developed from the differential mass and energy balances 

applied to the receiver and external (ET) tanks. There are two separate 

thermodynamic conditions which must be considered for the receiver tank. 

During the cooldown period, there is only vapor in the tank. Following this 

single-phase process, a two-phase transfer into the tank by the cryogen must 

be described. Allowances for pressure relief are made to cover those 

instances where the tank pressure becomes too great and venting of the vapor 

to space results. The receiver tank derivation is based on the following 

assumptions: 

(1) Heat leaks into receiver and supply tanks (dQ and dQs) are inde­

pendent of tank temperature and pressure. 

(2) The enthalpy of the vented fluid (h2) is equal to the receiver tank 

vapor enthalpy (hv)' 

(3) Receiver tank vent pressure is independent of tank temperature. 

(4) There is sufficient settling so that only liquid is drained from the 

supply tank, and only vapor is vented from the receiver tank. 

A complete derivation of the single-phase receiver tank equations is 

given in Appendix A. Although the equations are derived for a differential 

mass, dm, they are equally valid when dm is considered a flowrate. Figure 2 
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shows the thermodynamic properties for the receiver tank associated with the 

fluid in the inlet, vent and tank. The equations are summarized as follows 

(definitions for the equation variables are found in the table of 

nomenclature): 

Mass balance -

dp = 

Energy balance -

Inlet 

dm1 
h1 
U1 

dQ1 
~ 

1 

L-

Receiver Tank 

1.t/L 2.t 
dm dmv, dm, 
h hy, hi 
U Uy, u1 
P It ,Pt 

P,dQ 

2 

I--' 

Venting 

dm2 
h2 
U2 

dQ2 
P2 

Figure 2. Flow schematic for the receiver tank 
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Differential temperature equation -

(hI - h) ~ 
~Tdm + C dmI + C 

" " dT = (3) 

Differential pressure equation -

for P < vent pressure: 

(4) 

dm = dmI and dm2 = 0 

for P ~ vent pressure: 

dP = 0 

(5) 

dm = dm - dm 2 1 (6) 

A complete derivation of the two-phase receiver tank equations is given 

in Appendix B. These equations are summarized as follows: 

Mass balance -

(7) 

Energy balance -

(8) 
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Constant volume -

v = VQ mQ + Vv mv (9) 

o = vQdmQ + mQdvQ + Vv dmv + mv dv. 

The density, PQ or Pv' is substituted for the specific volume. Solving for 

the change in the mass of the liquid yields the following equation: 

dm = Q 

- -- (dm + dm ) - P mn P
Q r 

Pv 1 2 Q N 

aV + m av J dP 
ap Q v ap v (10) 

If the pressure is less than the vent pressure, the change in the pressure is 

given by: 

(lla) 

where 

F(P) = m [(au) (1 -PQ) + P (§2) (u - un )l 
Q ap Q Pv Q ap Q v N J 

(lIb) 

+ m [( au) (1 - P Q ) + P (av) ( u - u )] 
v ap v Pv v ap v v Q 

and dm2 = O. 
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If the pressure is the same as or exceeds the vent pressure, the tank 

pressure is constant. The differential pressure and mass flow through 

the vent are as follows: 

dP = 0 

(12) 

The ET model is based on the assumption of non-equilibrium (thermal 

stratification) between the liquid and vapor phases remaining in the supply 

tank. This assumption is valid because the prechilled supply tanks contain 

subcooled liquids and the nominal amounts of fuel remaining after MEeO are 

extremely small. Thus, no significant mass transfer can take place between 

the phases unless the temperature increases enough to vaporize the liquid. 

When this occurs, the transfer of fuel stops since severe pump cavitatiGn 

conditions are present. 

The following set of equations describes the supply tank at any time: 

Energy balance -

vapor phase: 
dQ 

dh = --Y + ~ dP 
v mv v 

(13a) 

liquid phase: (l3b) 

Pressure equation -

dP = (14) 
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Temperature equation -

(15) 

Derivations of the above equations can be found in Appendix E. 

Once the supply tank liquid enthalpy is determined, the enthalpy of the 

fluid entering the receiver tank can be calculated by: 

and 

h = h 1 s 
dQ1 W 

+-+­
dm1 dm 1 

10 
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3. PROGRAM DESCRIPTION 

3.1 Overview of the Computer Model 

Figure 3 shows the components of the computer simulation program and the 

communication paths as indicated by the direction of the arrows. 

Functions 

FLO 
PUMPFLO 

FRICT 
TH 

DVDPV 
DVDPL 
CWALL 
DUDPV 
DUDPL 
PEFF 
T P 

Figure 3. 

Subroutine 
Cool 

Subroutines 

PFAIL 
CHECK 

PPHI 

Subroutine 
Supply 

Components of the computer model 

The program is written in FORTRAN IV and uses program sUbsections called 

subroutines and functions. The four major program sections are the main 

program SCAVAG and the subroutines COOL, SUPPLY and PFAIL. SCAVAG performs 

three distinct operations in modeling the scavenging of cryogenic propellant: 
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1) it serves to initialize the system parameters and direct the program flow; 

2) it transfers the calculations of the single-phase receiver tank and the 

external tank to subroutines; and 3) it performs the calculations of the 

two-phase receiver tank. COOL and SUPPLY perform the thermodynamic 

state calculations of the single-phase receiver tank and external tank, 

respectively. PFAIL sets up plotting arrays and prints messages signifying 

which completion procedure is chosen in the program. 

Provision is made at the start of the main program to select the propel­

lant for the simulation. The namelist option is used to select the 

propellant. The program default value is NGAS~l, which signifies that LH2 has 

been chosen. By using the namelist FUEL and setting NGAS=2, LOX can be 

selected. 

The default values for the parameters for the entire system are initial­

ized according to the propellant chosen. Many of these values are the same as 

those used by Brux and Stefan [1]. The parameters and their default values 

are given in Table 1. A namelist option called NAME is used to change any of 

the initialized values. 

COMMON statements are used to pass the same value for a parameter between 

different portions of the program. For instance, the calculations in the main 

program and subroutines are dependent on the elapsed time or the quantity of 

propellant. Table 2 gives a general description of the parameters associated 

with each of the COMMON statements. 

Propellant selection is important in determining the correct fluid 

thermodynamic properties. The properties data are part of the Fluids Pack 

computer programs [2] which use routines based on real fluid properties for 

oxygen and parahydrogen to calculate various thermodynamic properties [3, 4, 

5J. The thermodynamic properties, such as saturation pressure, density, 

12 



Table 1. System Parameter Descriptions and Initialization Values* 

Parameter Value 
Location Name Description LOX LH2 

Supply 
Tank 

Receiver 
Tank 

Transfer 
Piping 

Cool down 
Piping 

*Units 

PET Pressure 
TET Temperature 
QET Heat leak 
VET Volume 
TOTAL Mass of propellant 

to be transferred 

PRESS Pressure 
TEMP Temperature 
Q Heat leak 
VOL Volume 
MWALL Mass of tank wall 
PVENT Vent pressure 

DIAM Pipe diameter 
LENGTH Length of straight pipe 
NELBOW Number of elbow fittings 
NGATE Number of gate valves 
NGLOBE Number of globe valves 
NANGLE Number of angle valves 
NBUTT Number of butterly valves 
METER Number of flow meters 
QPIPE Heat leak 
POWER Pump power 

CDLENG Length of straight pipe 
NNOZ Number of nozzles 
NOZOIA Nozzle diameter 
HEADIA Header diameter 
CONST 1./orifice constant 

20 (0.138) 
-315 (80.2) 

0 (0) 
19786 (560260.4) 
6270 (2844.0) 

1 (0.007) 
60 (288.6) 
o (0) 

300 (8494.8) 
350 (158.8) 

30 (0.207) 

4 (10.16) 
100 (30.48) 

20 
0 
2 
1 
0 
1 

104400 (30596.5) 
4 (2982.8) 

20 (6.10) 
6 

0.25 (6.4x10-3) 
1.000 (2.5x10-2) 
1. 639 

32 (0.221) 
-425 (19.1) 

90000 (26376.3) 
53518 (1515415.7) 
3098 (1405.2) 

18 (0.124) 
-290 (94.1) 

o (0) 
780 (22086.5) 
975 (442.4) 
30 (0.207) 

5 (12.70) 
70 (21. 34) 
10 
0 
2 
0 
0 
1 

50400 (14770.7) 
o (0) 

20 (6.10) 
6 

0.500 (1. 3x10-2) 
2.000 (5.1x10-2) 
1. 639 

used to initialize parameters: pressure - psia (MPa), temperature -

OF (K), heat leak - Btu/hr (W), volume - cubic feet (liters), mass - pounds 

(kg), power - horsepower (W), length - feet (m), diameter - inches (em). 
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and thermal conductivity, are found by using subroutines and functions built 

into Fluids Pack. When LOX or LH2 is chosen, the subroutines DATA 02 or DATA 

PH2 are called. 

The distinction between propellants is considered at other points in the 

computer code. The plotting and numerical integration routines are dependent 

on the propellant chosen. PFAIL writes the propellant name into a data file 

which is used in producing the output plots. The time step in each numerical 

integration is based on the values of the flowrate into the receiver tank and 

which propellant is used. Also, since the receiver tank construction 

materials are different for LOX and LH2 , the heat capacity calculation for the 

tank wall in FUNCTION CWALL requires this distinction. 

Table 2. Description of Parameters in the COMMON Statements 

Name Description of parameters 

PARAM 
SUB 
FLOW 
NOZZLE 
PUMP 
NGAS 
ETANK 
PROB 

initialized, constant values 
time dependent 
time dependent and transfer piping 
cool-down piping 
pump values 
choice of propellant 
supply tank 
programmed exit designation 

After the parameters have been initialized, they are converted to SI units. 

This is done to ensure compatibility with the thermodynamic data required from 

the Fluids Pack routines. All subsequent calculations are performed in SI 

units, with the exception of those in the plotting routine. 
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Before the transfer of fluid begins, the equivalent length of pipe between 

the supply and receiver tanks is calculated. Data for equivalent lengths of 

various pipe fittings are taken from Bennett and Meyers [6J. The equivalent 

length of each fitting is linearly proportional to the pipe diameter as given by 

(17) 

The constants are shown in Table 3. The total equivalent length is calculated 

by summing all the individual equivalent lengths. The equivalent length is 

then used by FUNCTION FLO and FUNCTION PUMPFLO to calculate a flowrate between 

supply and receiver tanks. 

Table 3. Calculated Constants for Equivalent Length 

CI CII 

90° elbow 2.53 0.414 
Gate valve 0.571 -0.0125 
Globe valve 38.1 0.107 
Angle valve 14.2 -1.18 
Butterfly valve 1.79 -0.147 

After parameter initialization and unit conversion has been accomplished, 

the thermodynamic condition of the supply tank is established. This procedure 

involves determining the quantity of ullage vapor in the tank. The initial 

flowrate between the tanks is calculated using the pressure difference between 

the tanks and the pressure drop through the piping with FUNCTION FLO. If the 

flow is aided by a pump, the increased flowrate as calculated in FUNCTION 

PUMPFLO is used. 
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3.2 Description of Program Sections 

SCAVAG 

The main program SCAVAG directs the sequence of calculations in the simu­

lation. Following parameter initialization and unit conversion, the cool-down 

of the receiver tank takes place by calling SUBROUTINE COOL. When the receiver 

tank is cooled, there are two phases present and a return is made to SCAVAG. 

It is assumed that the transfer piping is simultaneously chilled. 

The remaining propellant is transferred in two phases. First, the 

enthalpy of the fluid entering the receiver tank is computed by using an 

energy balance on the transfer piping. The density and enthalpy of the liquid 

and vapor are found with Fluids Pack functions. These values are used in the 

first law of thermodynamics to find the internal energy of both phases in the 

receiver tank. Next, the integration of the differential pressure and mass 

equations, Eq. (10)-(12), is carried out over an incremental time step 

(forward Euler method) and incorporates the thermodynamic values above. A 

check is made to see if the pressure in the receiver tank exceeds the vent 

pressure; the mass of propellant in the tank is adjusted accordingly. 

Following this, the supply tank properties are updated by calling SUBROUTINE 

SUPPLY. Finally, the values for the pressure, fl ow rate , and propellant vapor 

and liquid quantities are stored in arrays for plotting. 

This calculation procedure is repeated within a loop until the receiver 

tank is full, until all the propellant has been transferred, or until another 

condition has been encountered which causes the program to be terminated. For 

instance, should the pressure in the tank exceed that of the entering stream, 

the transfer stops. If the simulation proceeds normally, SCAVAG calls 

SUBROUTINE PFAIL to prepare the data for graphic display. 

16 



SUBROUTINE COOL 

The single-phase cool-down of the receiver tank is performed by SUBROUTINE 

COOL until the receiver is at the correct pressure and temperature for a two­

phase propellant. Contained in the call and subroutine statements are three 

parameters that are needed to transfer into and return from COOL. SCAVAG 

provides values for the mass of vapor in the tank and the mass of vented vapor. 

COOL returns to SCAVAG the differential pressure and the current values of the 

mass of vapor in the tank and the quantity vented. A calculation procedure 

similar to that in SCAVAG is followed to solve Eq.(1)-(6). 

Several thermodynamic quantities are needed to solve the single-phase 

differential equations. COOL calls SUBROUTINE PPHI which calculates the 

GrUneisen parameter for the single-phase (vapor) propellant in the receiver 

tank. A heat balance analysis on the transfer pipe affords the enthalpy for the 

entering stream. The Fluids Pack functions are used to find the density, 

enthalpy, and specific heat of the fluid in the receiver tank. When all of 

these thermodynamic values are known, the equations are solved incrementally, 

with the appropriate checks for venting and back pressure. If all the propellant 

has been transferred before any liquid is present in the receiver tank, a call 

is made to PFAIL to prepare the plotting data and terminate the program. Again, 

the supply tank fluid properties are updated by calling SUPPLY. 

To determine when two phases are present in the receiver tank, saturation 

and actual gas densities are compared. If the gas saturation density at the 

receiver tank pressure is greater than the actual tank density, the receiver 

tank is two-phase. SUBROUTINE COOL returns to the main program following this 

determination. 
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SUBROUTINE SUPPLY 

When updated supply tank conditions are required in either the main pro­

gram or SUBROUTINE COOL, SUBROUTINE SUPPLY is accessed to perform the necessary 

thermodynamic calculations. The fraction of the supply tank occupied by either 

phase is determined first so that the heat flux to the tank can be propor­

tioned accordingly. The vapor phase is assumed to be at the tank pressure and 

slightly above the saturation temperature, thereby ensuring that condensation 

will not occur. Next, the Fluids Pack routines are called upon to provide 

thermodynamic values for the vapor and liquid phases. The GrUneisen parameter 

and heat of expulsion for both phases are calculated by using SUBROUTINE PPHI 

and FUNCTION TH, respectively. Finally, the incremental changes in the tank 

pressure and liquid temperature and enthalpy are found by using Equations 

(14), (15) and (13b) and the appropriate time step. 

SUBROUTINE PFAIL 

SUBROUTINE PFAIL, with ENTRY FULL and ENTRY DONE, terminates the program 

and sets up the data and parameters to be plotted. The different entry points 

are accessed by unique call statements. PFAIL is called when: 1) the flow 

between tanks has stopped due to back pressure from the receiver tank; 2) when 

receiver and supply tank pressures are equal and a pump is not used; or 3) 

when there is excessive pressure in the receiver tank and a pump is used. 

PFAIL writes a message indicating why the simulation stopped and what the 

final conditions are. The other entries into PFAIL address other conditions 

and bypass inappropriate operations. ENTRY FULL is called when the main pro­

gram or SUBROUTINE COOL determines that the receiver tank is full of propel-
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lant. When all the fluid has been emptied out of the supply tank, ENTRY DONE 

is called. ENTRY PDATA is called when a programmed exit has been executed. 

Each entry into the subroutine follows a similar computational procedure. 

Initially, the units for the parameters to be printed in the termination mes­

sage are converted to English from SI. Following this conversion, the message 

is printed on the output file stating the cause for program termination, the 

quantity of propellant transferred, and the temperature and pressure for each 

tank. The quantity of fluid vented from the tank is also given. 

Preparation of the data and parameters for plotting involves several 

steps. The upper and lower limits for the plots are determined first. The 

descriptions for the plotting parameters are shown in Table 4. Since each of 

the plots depicts a parameter as a function of time, the lower value is set to 

zero and the upper value is either 10 or a multiple of 50 minutes. Should the 

total time required for transfer be more than 10 minutes, the greater value 

will be used. 

The lower limit for the receiver tank temperature is based on the initial 

temperature in the supply tank, and the upper limit depends on the initial 

receiver tank temperature. Both values are multiples of 100 and in units of 

Fahrenheit. 

The limits on the receiver tank pressure are zero and 50 psia (0.345 

MPa), unless a value in the pressure array exceeds the upper limit. When this 

is the case, the value is incremented by 50 psia (0.345 MPa) iteratively until 

the maximum pressure data point is less than the newly set limit. The upper 

limit for the transfer flowrate is 2000 lb/min (907.2 kg/min) for LH2 or 

10,000 lb/min (4535.9 kg/min) for LOX. 
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Table 4. Variables Used to Plot System Parameters 

Location of low, 
Simulation variable Units Array high bounds 

TIME Minutes X OPLOT(l), OPLOT(2) 
TEMP of Yl OPLOT(3), OPLOT(4) 
PRESS psia Y2 OPLOT(5), OPLOT(6) 
FLOWI Pounds/min Y3 OPLOT(7), OPLOT(8) 
MVAP Pounds Y4 OPLOT(9), OPLOT(lO) 
MLIQ Pounds Y5 OPLOT(II), OPLOT(12) 
TOTAL Pounds Y6 OPLOT(13), OPLOT(14) 
ETQ Dimensionless Y7 OPLOT(15), OPLOT(16) 
TANK Dimensionless Y8 OPLOT(17), OPLOT(18) 

The quantity of propellant in the receiver tank is graphically displayed 

by plotting the vapor, liquid, and combined amounts over time. All these 

limits are dependent on the initial quantity of propellant (TOTAL) to be trans­

ferred. The upper limit for the vapor quantity is initially set to 500 lbs 

(226.8 kg), but it is increased iteratively by 500 lbs (226.8 kg) if one-tenth 

of TOTAL is larger than the limit. The upper limits for the liquid and 

combined quantities are 10 times the value determined for the vapor quantity. 

The quality of the propellant in the supply tank and entering the receiver 

tank is stored in the array as percent vapor. The upper limit for the quality 

is 100% vapor and the lower limit is 100 percent liquid. 

3.3 Descriptions of Other Subroutines 

SUBROUTINE PPHI 

The thermodynamic quantity called the GrUneisen parameter, $, appears 

frequently in single-phase flow [7]. It is found in the equations describing 

the single-phase cooldown of the receiver tank (Eq. (3)-(4)) and the subcooled 
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liquid propellant in the supply tank (Eq. (14)) in the present study. Both 

subroutines COOL and SUPPLY call PPHI during their computational procedures 

for values of $. 

The dimensionless GrUneisen parameter is given by 

$ = l(ap) 
p au p 

(18) 

or 

$ = (~~) (p~) 
p " 

(19) 

When the second form of $ is used, the Fluids Pack subroutine OPOT can be used 

to find the partial derivative and the constant volume specific heat of the 

fluid. The density and temperature are passed from either COOL or SUPPLY to 

PPHI which returns a value for $. 

SUBROUTINE CHECK 

Calls to this subroutine are routinely made to determine the quality of 

propellant. Both SCAVAG and COOL call CHECK to find the quality of the fluid 

entering the receiver tank. SCAVAG, COOL, and SUPPLY utilize CHECK to find 

the amount of vapor in the supply tank fluid. Because pump cavitation can be 

severe wi th a sma 11 quantity of vapor, the run wi 11 be termi nated wi th thi s 

determination. A message is printed which states the percentage of vapor in 

the fluid. 

For inputs of pressure, temperature and enthalpy, SUBROUTINE CHECK deter-

mines if the fluid is single-phase or two-phase and the mole fraction in each 

phase. First, the liquid saturation enthalpy is obtained from Fluids Pack 

using the input pressure. Next, if the input enthalpy is less than liquid 

saturation enthalpy, the stream is subcooled, and CHECK returns an indication 
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that no vapor is present (i.e. x = 0). If the input enthalpy is greater than 

the liquid saturation enthalpy, the proportion of fuel in the liquid and vapor 

phases is determined by: 

h = hn tel-x) + h t(x) 
~,sa v,sa 

or rearranging, 
x - (h - h)/(h - h ) 

- Q sat Q sat v sat , , , (20) 

Since the flow equations were developed for an incompressible fluid, 

there may be significant error if the fraction of vapor is much greater than 

zero. 

3.4 Descriptions of Functions 

Several thermodynamic quantities in the form of partial derivatives are 

required in the two-phase calculations in SCAVAG. While Fluids Pack directly 

calculates some partial derivatives such as DPDT (which is used in determining 

~), other partial derivatives must be calculated using an iterative approxima-

tion. The approximation is written so that thermodynamic properties from 

Fluids Pack may be utilized. 

FUNCTIONS DVDPV and DVDPL 

FUNCTION DVDPV and FUNCTION DVDPL calculate the partial derivative of 

specific volume with respect to pressure for saturated vapor and liquid re-

spectively. The pressure is the required parameter in the function statement. 
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These partial derivatives are required by Eq. (10) for the two-phase integra­

tion. The partial derivative is approximated by the equation: 

(

0 ) ~sat(P + ~P) - ~sat(P - ~P) 
o~ sat = 2~P (21) 

The values for the specific volume at saturation conditions are the inverse of 

the density computed by Fluids Pack at the same temperature and pressure. The 

pressure increment ~P is initially set at 0.05 atm (0.005 MPa) and decreased 

until the partial derivative changes insignificantly. 

FUNCTIONS DUDPV and DUDPL 

FUNCTION DUDPV and FUNCTION DUDPL, given the pressure as an input, deter-

mine the partial derivative of internal energy with respect to pressure for 

saturated vapor and liquid, respectively, as required by Equation (lIb). The 

partial derivative is approximated in a similar manner to DVDPV and DVDPL by: 

(
ou\ = usat (P + ~P) - usat (P - ~P) 

oP~at 2~P 
(22) 

The internal energy, usat ' is calculated using enthalpy values from Fluids 

Pack at the saturation temperature and pressure and the (First Law) energy 

relationship as given by: 

u = h - (P~) 

or (23) 
u = h - (Pip) 

Again, ~P is initially 0.05 atm (0.005 MPa) and decreased until the desired 

accuracy is obtained. 
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FUNCTION DTDP 

This function determines the partial derivative of temperature with 

respect to pressure for the saturated fluid (liquid and vapor). The partial 

derivative is approximated by the expression 

(~~) (24) 

Pressure is required as an input for the function and is subsequently used in 

the Fluids Pack function FINDTV to obtain the saturated temperature. The 

temperature is found at a pressure that is a small increment above and below 

the input. The increment, ~P, is decreased from an initial value of 0.05 atm 

(0.005 MPa) until the convergence criterium is met. 

FUNCTION ALPHAL 

The temperature equation in SUPPLY contains the term for the liquid phase 

bulk expansivity, aQ, which is defined as (7): 

aQ = - ~(~)p (25) 

FUNCTION ALPHAL calculates this value by approximating the partial derivative 

in an iterative manner. This approximation is given by: 

(£.e\ = eiT+~T) - p(T-~T) 
aT~ 2~T 

(26) 

A temperature increment ~T is used to find values of the density at tempera-

tures slightly above or below the liquid temperature. The temperature incre-

ment ~T is initially set at 0.05 K and decreased until the partial derivative 

changes insignificantly from one iteration to the next. 

24 



FUNCTIONS FLO, FRICT, PUMPFLO, and PEFF 

The functions used to calculate the transfer flowrate are dependent on 

the pressure in the receiver tank and are themselves interdependent. These 

functions are used to calculate the flowrate of propellant between the supply 

and receiver tanks. FLO and PUMPFLO are accessed from SCAVAG and COOL. FRICT 

is used in FLO and PUMPFLO, and PEFF is used in PUMPFLO only. A description 

of each follows. 

FUNCTION FLO 

FUNCTION FLO calculates the flowrate between tanks for a given pressure 

drop. This function is used to initialize the flowrate, and the value it 

provides is an input for FUNCTION PUMPFLO. SCAVAG passes the receiver tank 

pressure through the function statement. 

The flowrate between the tanks is related to the pressure drop in the 

system. The overall pressure drop can be stated as the sum of the individual 

pressure drops as follows: 

where (dm2) is the functional dependence, not the multiplier. The overall 

pressure drop is the difference between the pressures in ET and receiver tank. 

The pressure drop in the meter is five percent of the overall pressure drop. 

The remaining terms in Eq. (27) are functions of the flowrate. The pressure 

drop through the main transfer line and the cooldown line are given by: 

(28) 
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and 

LlPcool (29) 

(For the derivation of C, see Appendix D.) 

The pressure drop in the cool down nozzles can be expressed as 

(30) 

When Eq. (27) is solved for the flowrate dm by substituting into it Eq. (28) -

(30), the following expression is obtained: 

(31) 

where Ci ~ Cmain , Ccool ' or Cnozzle refers to the right hand side of the 

individual equations without the flowrate term. 

Since the Fanning friction factors in Eq. (28) and (29) also are 

functions of the flowrate, an iterative procedure is used to calculate f . maln 

and fcool ' The friction factors are initially set to 0.005 and used to 

compute the flowrate. The flowrate is used as the input parameter to FUNCTIO 

FRICT, which computes new values for the friction factors. The new values fo 

fmain and fcool are used to recalculate the flowrate. This continues until 

the friction factors change by less than 0.1 percent. 

After the receiver tank has been chilled to allow two phases of the 

propellant to be present, the nozzle constant, Cd' and the length of the cool 

down piping, Lcoo1 ' are set to zero. The contribution of the cooldown line 

and nozzles to Eq. (27) and (31) is negated. This simulates the switching of 

a three-way valve to the closed position in the cooldown line. 
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FUNCTION FRICT 

FUNCTION FRICT calculates the Fanning friction factor corresponding to 

flow through a pipe. Input variables are the flowrate, temperature, density, 

and pipe diameter. 

The Fanning friction factor is related to the Reynolds number and pipe 

diameter. While a variety of functions are available [8], the following 

relationship was chosen: 

f ::: -4 1 (0/0 _ 5.02 1 (0/0 + 14.5)) -2 
0910 3.7 N

Re 
0910 3.7 N

Re 
(32) 

The pipe roughness ° is assumed to be 0.00015 ft (0.004572 cm), the value for 

commercial steel pipe [6]. The Reynolds number is calculated from the equa-

tion: 

or 

N ::: 4(dm)M 
Re rrOJ.l (33) 

The viscosity as a function of pressure and temperature for hydrogen 

cannot be calculated with the Fluids Pack thermophysical properties computer 

programs. However, since relatively small changes in hydrogen viscosity do 

not significantly change the friction factor, an average viscosity is used. 

This value is 1.8 x 10-4 g/(cm·s) [3] and produces less than 0.5% error in the 

friction factor. 
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FUNCTION PUMPFLO 

FUNCTION PUMPFLO calculates the flowrate between the ET and receiver tank 

and accounts for the use of a pump in the transfer. The overall pressure drop 

can be expressed as 

See the previous discussion in the section on FUNCTION FLO for descriptions of 

the terms ~Psystem' ~Pline' ~Pmeter' and ~Pcool' The term ~Ppump is a 

function of the inverse flowrate, l/dm, and is given by 

~P = bp P n 
pump dm (35) 

The effect of ~Ppump is opposite that of the other terms in Eq. (34); hence, 

the opposite sign. 

An initial guess for the flowrate is used to calculate the theoretical 

pressure drop or rise. The flowrate dm is iterated by using a modified Newton 

method [9J which is found to be stable for this application: 

(36) 

The iteration ceases when calculated and actual pressure drops differ by less 

than 0.01%. 
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FUNCTION PEFF 

The pump efficiency is calculated for an input of the flowrate from FUNC-

TION PUMPFLO. Two different sizes of pumps are used to transfer the LOX and 

LH2 propellant. A linear least squares fit of data for the pump efficiency 

versus flowrate [10,11] ;s used to provide a five-coefficient, fourth order 

equation for each pump. 

The equation for the pump efficiency for LHz is: 

~ ::: 0.39213 + 0.096620(dm) + 2.7793 x 10-5(dm)z 

- 8.1723 x 10-8(dm)3 + 2.5008 x 10-II(dm)4. 

The equation for the pump efficiency for LOX is: 
-3 2 

~ ::: 0.32031 + 0.48261(dm) - 1.6223 x 10 (dm) 

+ 3.9836 x 10-6 (dm)3 - 4.8853 x 10-9 (dm)4. 

FUNCTION TH 

(37a) 

(37b) 

SUBROUTINE COOL uses FUNCTION TH to calculate a value for the heat of 

expulsion for the vapor phase calculations. This thermodynamic value is de-

fined as: 

e ::: \) (oh) 
a\) P (38a) 

or 

(38b) 

The Fluids Pack subroutines DPDD and DPPT are used to find the partial deriva-

tives in the numerator and denominator, respectively, and Fluids Pack 

functions are used for the specific heat and density. 

29 



FUNCTION CWALL 

FUNCTION CWALL returns the heat capacity of the receiver tank wall at a 

particular temperature. It is assumed that the oxygen tank is constructed 

using Inconel X-750* and the hydrogen tank is constructed using aluminum. The 

heat capacity-temperature data for these materials are of the form: 

(39) 

The constants C1, C2 and C3 were determined by taking heat capacity­

temperature data and applying a least-squares technique to the above equation. 

These values are shown in Table 5. The data used are found in Appendix C 

[12,13]. 

Table 5. Tank Wall Heat Capacity Constants 

Inconel Aluminum 

C1 6.482 7.293 

C2 -106.3 -121.9 

C3 329.1 347.9 

3.5 Program Termination 

SUBROUTINE PFAIL is the normal route for program termination. ENTRY DONE 

is used when the supply tank is empty, i.e., when all the propellant has been 

*Such identification does not imply recommendation or endorsement by the 

National Bureau of Standards. 
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transferred. ENTRY FULL is used when the receiver tank is full. This condi­

tion occurs if the receiver tank volume is too small, if the quantity of 

propellant is increased with the tank volume remaining the same, or if the 

mass balance on the fluid in tank is wrong. The main entry PFAIL is used to 

indicate a high backpressure condition. This can happen when the receiver 

tank pressure is greater than the supply tank pressure and a pump is not used, 

or when the flowrate is very small. The program will terminate if there is 

improper venting, i.e., when there is a measured flow through the vent, but 

the receiver tank pressure is less than the set vent pressure. 

ENTRY PDATA in SUBROUTINE PFAIL is used when a programmed stop is 

executed. This exit is used in several locations in the main program and cool 

down subroutine, and it is also used by functions DVDPV, DVDPL, DUDPL, DTDP, 

ALPHAL, FLO, and PUMPFLO and subroutine SUPPLY. The COMMON parameter DUMP 

normally has a value of zero until a cause for termination is reached in one 

of the previously listed program sections. DUMP is reset to a value of 1.0. 

When the condition for termination occurs in a function, the program flow is 

returned to either SCAVAG or COOL. The run continues to the end of the present 

integration loop, when the parameter DUMP is evaluated. If DUMP equals 1.0, 

ENTRY PDATA is called, and the output files are replaced prior to termination. 

Several subprograms use convergence criteria to obtain specific thermo­

dynamic conditions. SUBROUTINE COOL checks for the condition when the density 

in the tank is greater than the saturation density, i.e. both liquid and 

vapor are present in the tank, and the calculations return to the main 

program. If two phases are not obtained within the array size limit, the 

program prints an error message and stops. 

Functions DVDPV, DVDPL, DUDPV, DUDPL, DTDP, and ALPHAL use derivative 

approximations that depend on the change in thermodynamic properties about a 

small interval. The first five functions listed above evaluate the specific 
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volume, internal energy, or temperature about a small pressure interval, while 

ALPHAL evaluates the density about a small temperature interval. In all 

cases, the program will terminate should the convergence of the properties 

about the specified interval not be reached within 100 iterations. The 

message, IIKOUNT exceeds 100,11 noting the particular function, will be printed. 

FUNCTION FLO uses the Fanning friction factor calculated in FUNCTION 

FRICT as its convergence criterion. The flowrate found in FLO is an input for 

FRICT, which in turn determines the friction factor used in the flowrate 

calculation. The convergence of the successive values should occur within 100 

iterations, or the message, IIKOUNT exceeds 100 for FLO,II is printed on program 

termination. 

FUNCTION PUMPFLO checks the convergence of the actual pressure difference 

between the tanks and the calculated pressure drop through the piping using a 

pump. If the convergence between the twc does not happen within 100 itera­

tions, a message is printed and the program is stopped. 

The supply tank thermodynamics are checked for errors in calculation or 

intolerable operating conditions in SUBROUTINE SUPPLY. When the calculated 

liquid enthalpy is significantly different from the enthalpy found in Fluids 

Pack, the program terminates with the message, IIENTHALPY DISPARITY,II and 

prints the two values in disagreement. If the quality of the fluid is greater 

than one part in one million, there exists the possibility for cavitation. 

The program terminates with this condition and an error message, "ET LIQ 

BOl LING. STOP TRANSFER. II 

3.6 Programming Information 

A brief description will be given foy' a typical run of the program. The 

information provided in this section is based on procedures used with the CDC 
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Cyber 750 Computer System and the NOS Version 1 operating system on location 

at NBS in Boulder. The program is written in FORTRAN IV. These procedures 

should be transferable to the computer system at NASA-JSC with minor 

modifications. See Appendix G for program listings. 

File Manipulation 

All computer programs, data, and control procedures for running PROGRAM 

SCAVAG are stored in files. At NBS, SCAVAG is stored in filename COMBO; the 

input data are stored in filenames DATAIN or FUEL; output data are located in 

filenames PSDATA and PSOUT; and the control procedure is stored in filename 

SUBCOM. 

Before running PROGRAM SCAVAG, the operator must prepare the control 

procedure and the input files. The control procedure that NBS has used, 

SUBCOM, retrieves COMBO, DATAIN, and BOXB (containing Fluids Pack) from 

permanent storage and places them into a local or usable state. SUBCOM 

compiles COMBO and, if the compilation is free of errors, loads and executes 

the compiled version. 

The operator enters the following command on a time-sharing terminal to 

run the program: 

SUBMIT, SUBCOM 

This statement is a batch command which means the operator cannot interact, 

alter, or stop the execution of the program or job. To determine when the 

program has stopped, the operator can check the status of the job, or a file 

named DAYF. This file is created by SUBCOM to record the real time sequence 

of control procedures performed by the computer during program execution. 
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The program operator must determine which propellant and values for the 

initialized parameters are to be used. If LOX is the desired propellant, the 

namelist FUEL must be modified to the following form: 

$FUEL 
NGAS=2, 

$ 

If LH2 is chosen, FUEL should have either of the following forms: 

or 

$FUEL 
$ 

$FUEL 
NGAS=l, 

$ 

Namelist FUEL is contained in a file named FUEL. No decimal point is used 

since NGAS is an integer. 

To change values for the initialized variables, similar steps are used 

with namelist NAME. NAME is contained in a file called DATAIN. Any number of 

changes can be made for the parameters listed in Table 1. For instance, to 

change the initial supply tank temperature and pressure, the quantity of 

propellant to be transferred, the pump power, and the length of straight pipe 

for the LH2 system, one would alter NAME to the following form: 

$NAME 

$ 

TET = -400. , 
PET = 25. , 
TOTAL = 5000. , 
POWER = 2. , 
LENGTH = 100. , 

Since all the chosen variables are real, the values must have decimal points. 

All values are entered in English units. If no changes are desired, NAME must 

have the following form: 

$NAME 
$ 
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The program statement defines TAPE5 and TAPE7 for use during the program. 

SUBCOM, which directs the sequence of operating steps for running the program, 

sets TAPE5 equal to filename OATAIN, or namelist NAME, and TAPE7 equal to 

filename FUEL, or namelist FUEL. These files must exist in order to run the 

program. 

Output 

The output from program SCAVAG is directed to two locations. While SCAVAG 

is running, the graphic display data is written to TAPE8 and stored in filename 

PSOATA. When SCAVAG terminates, the termination message and initialized par­

ameters are written to TAPE6 and stored in filename PSOUT. See Table 6 for 

sample output for LH2 . The operator can access PSOUT at a later point for 

further evaluation. 

Two FORTRAN programs utilize the data in PSOATA to produce plots des­

cribing the transfer. The first program is called PLOT. At NBS PLOT is 

attached to the job by the control procedure SUBCOM and run after SCAVAG has 

terminated. The plots that are drawn use the computer systems mathematics 

library (called STARPAC at NBS in Boulder) and are written to TAPE6, following 

the output described above. The entire contents of TAPE6 are stored in PSOUT. 

(Further explanation is given in Appendix F.) 

The second program which uses PSDATA is called DEMO. The graphics pack­

age called DISSPLA (15) is utilized to produce plots which are more refined 

than those generated through PLOT. (Additional details about DEMO can be 

found in Appendix F.) The plots are directed to one of three output devices 

by selecting the appropriate CALL statement in DEMO. For the computer system 

at NBS CALL HP7221 accesses a multiple pen plotter; CALL TK4010(960) accesses 
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Table 6. Sample Output for Hydrogen 

Supply tank initial conditions: 

Pressure 
Temperature 
Hydrogen Mass 
Heat Leak 

Receiver tank initial conditions: 

Pressure 
Temperature 
Vent Pressure 
Tank Volume 
Tank Wall Mass 
Heat Leak 

Transfer Parameters: 

Pipe Diameter 
Length of Straight Pipe 

10 Elbow(s) 
o Gate Valve(s) 
2 Globe Valve(s) 
o Angle Valve(s) 
o Butterfly Valve(s) 
1 Flow Meter (s) 

Heat Leak Into Piping 
Pump Power 

Cool-Down Parameters: 

Length of Piping 
Number of Nozzles 
Nozzle Diameter 
Header Diameter 

Cool-Down Time 

32.000 psia 
-425.000 F 
3098.00 Pounds 

90000.000 Btu/hr 

18.000 psia 
-290.000 F 

30.000 psia 
780.000 Cubic Feet 
975.000 Pounds 

0.000 Btu/hr 

5.000 Inches 
70.000 Feet 

50400.000 Btu/hr 
0.0 HP 

20.000 Feet 
6 
0.500 Inches 
2.000 Inches 

0.1754 minutes 

(0.221 MPa) 
(19.1 K) 
(1405.2 kg) 
(26376.3 W) 

(0.124 MPa) 
(94.1 K) 
(0.207 MPa) 
(22086.5 kg) 
(442.2 kg) 
(0.0 W) 

(12.7 cm) 
(21. 34 m) 

(14770.7 W) 
(0.0 W) 

(6.10 m) 

(1. 3x10-2m) 
(5.1x10-2m) 

At 2.344 minutes from start of propellant transfer the supply tank is empty. 

At this time the, receiver tank is at -422.89 OF (20.3 K), 16.23 psia (0.112 
MPa), and contains 3098.00 pounds (1405.2 kg). 

During the simulation 0.00 pounds (0.0 kg) were vented. 

Supply tank is at -424.9907 OF (19.1 K), 31.55 psia (0.218 MPa). 
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a graphics terminal; CALL FR80(O.O) accesses microfilm. 

program DEMO is separate from running SCAVAG and PLOT. 

program DEMO are found in Appendix G. 
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4. RESULTS AND DISCUSSION 

The feasibility of low-g propellant transfer is analyzed parametrically 

with the computer model. Particular emphasis is placed on the thermodynamic 

changes to the system caused by varying the temperature, pressure, or heat 

leak at any point. The principal parameter in this investigation is the 

overall time of transfer, since the transfer is to take place during a mated 

coast period after MEeO. Other parameters of interest in the design of such a 

system are the pump size and piping requirements. 

Nozzles are used during the cool down of the receiver tank to induce a 

flowrate of propellant lower than the flowrate during the main part of the 

transfer. The sizes of the associated piping and nozzles, which are simply 

small orifices situated around the header, have been parametrically determined 

to accomplish a low flowrate without causing an excessive pressure 

drop. This specification holds except in those cases where the transition 

from the main piping to the cool down piping is great. (Further explanation is 

provided later.) When two phases occur in the tank, the nozzles are shut off; 

the transfer via the main line resumes for the remainder of the simulation. 

Because the transfer can require a pump, the liquid from the ET must be 

subcooled to prevent cavitation. This is most notably the case for LOX which 

has insufficient ullage pressure to accomplish a complete pressurized 

transfer. Single-phase flow from the supply tank also requires sufficient 

thrust to settle the liquid against the outlet port. We assume such a thrust 

for the purposes of this modelling effort. 

When the program is run with the default parameters, the time required to 

complete the transfer of either propellant is relatively short. Transfer of 

LOX with a moderately sized booster pump takes 1.94 minutes; pressurized 

transfer of LH2 requires 2.34 minutes. If the MECO mated coast period is 
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scheduled to continue to 20 minutes, the scavenging of both cyrogenic 

propellants can be completed in less than 12 percent of the alloted time. The final 

system conditions are shown in Table 7. Plots of the transfer are found in 

Appendix G. 

Table 7. Final Conditions Using Default Values 

Time of Transfer, min 

Receiver Tank 
Temperature, of (K) 
Pressure, psia (MPa) 
Mass in Tank, lb (kg) 
Mass Vented, lb (kg) 

Supply Tank 
Temperature, of (K) 
Pressure, psia (MPa) 

1.936 

-312.35 
6.72 

6270. 
O. 

(81. 69) 
(0.046) 
(2846.6) 

-314.9998 (80.22) 
19.88 (0.137) 

4.1 Heat Leaks to the System 

2.344 

-422.89 
16.23 

3098. 
O. 

(20.28) 
(0.112) 
(1405.2) 

-424.9907 (19.12) 
31.55 (0.217) 

The conditions in the ET are governed by two opposing influences: outflow 

and heat leak. In the absence of heat leak, outflow gives an adiabatic expan-

sion of the vapor and a resulting decay in temperature. In the absence of 

outflow, heat leak gives an increase in temperature and pressure. Figures 4 

and 5 show the expected results of varying the amount of heat to the ET. 

Figure 4 shows that a large rate of heat flow into the LOX ET must be present 

for a significant change in the system parameters to occur. 
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The value at which this occurs is on the order of 106 Btu/hr (2.9 x 105 W). 

The pressures in both tanks undergo rapid increases, while the temperatures 

show slight increases. 

The changes in temperature and pressure that the LH2 system experiences 

are less abrupt than those of the LOX system. They do show the same trends, 

however. As the heat leak to the ET is increased, the pressures and 

temperatures show gradual increases. 

As the heat leak to the transfer piping is increased, the final 

conditions in the receiver tanks for both propellants show a corresponding 

rise greater than the results for a heat leak to the ET. The results are 

presented in Figure 5. Venting occurs for LOX when the heat input is 

increased to 5 x 106 Btu/hr (1.5 x 106 W); approximately 28% of the propellant 

is vented. The LOX temperature of -284.29 of (97.28 K) at the vent pressure 

is located at the liquid-vapor boundary. The pressure history for this 

transfer is shown in Figure 6. 

Similar observations can be stated for the case of LH 2 . When the heat 

leak to the transfer piping is increased to 106 Btu/hr (2.9 x 105 W), a small 

amount of fuel is vented. This occurs at the end of the transfer, as the 

fluid reaches the liquid-vapor boundary. 

Conditions in the ET do not vary with an increased heat leak to the 

piping. This is due to the flow of cryogen from the tank which directs any 

potential effects to the receiver tank. The overall time of transfer 

increases linearly for both LOX and LH2 . The time required to transfer LOX 

remains quite brief, but the transfer requires an additional minute when 

5 x 105 Btu/hr (1.5 x 105 W) leaks into the LH2 piping. 

The effect of heat leak into the receiver tank is similar to that into 

the transfer piping. For LH2 the transfer time is increased by nearly a 

minute for a heat rate of 4 x 105 Btu/hr (1.2 x 105 W). Increasing the heat 
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6 5 leak to the receiver tank at the rate of 10 Btu/hr (2.9 x 10 W) causes LH2 

to vent. The transfer time for LOX rises smoothly with increased heat input; 

an additional minute is required to transfer' LOX at a heat leak of 1.2 x 106 

Btu/hr (3.5 x 105 W). Also, venting takes place at this rate of heat 

addition. These results are shown in Figure 7. 

4.2 Receiver Tank Temperature 

Since the temperature for the LOX receiver tank is unspecified in the 

study by Brux and Stefan [1], the effects of several temperatures were 

examined in this study. The results are shown in Figure 8. It can be assumed 

that the receiver tank will receive some soakback heat leak from the 

insulation as well as radiation prior to MECO. Thus, temperatures higher than 

cryogenic are realistic and allow examination of the chilldown process. A 

wide range of initial temperatures neither significantly alters the time 

required to transfer the oxygen nor the final receiver tank temperature. The 

coolest temperature input of -100 of (199.7 K) would require the vessel to be 

prechilled on the ground. For temperatures above 120° F (321.8 K) a small 

amount of venting (less than 1 percent) takes place at the beginning of transfer. 

This rapid increase of the RT pressure to the vent pressure is shown in Figure 

9. 

The study by Brux and Stefan [lJ recommends that the LH2 receiver tank be 

prechilled to -290 OF (94.1 K) to prevent venting during the transfer after 

MECO. They state that at higher temperatures, a large amount of venting would 

be required to achieve chilldown of the receiver tank. We find that only 

minor venting at the start of the transfer takes place when given an initial 

temperature between -250° F (116.3 K) and -50 OF (227.4 K). For all cases, 

the overall time of transfer is less than 2.80 minutes. 
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4.3 ET Temperature 

Since the previous study [lJ indicates the ET fluid is subcooled, the 

default initial temperatures in this study were between the melting line and 

the liquid-vapor boundary [3,4,5J. Increasing the ET initial temperatures 

cause longer transfer times, while additional cooling accomplishes the 

transfer faster. As the melting line temperature of either propellant is 

approached, failure of the Fluids Pack [2J routine occurs. When the 

temperature reaches the vapor-liquid boundary, the simulation stops due to 

vapor induced cavitation. Because the transfer of LH2 is pressure induced, 

the transfer times are significantly affected by warmer ET temperatures. 

Additional cooling time is required before the switch to the transfer mode 

through the main piping. 

4.4 Pipe Size and Pump Requirement 

When the values for line size and pump power suggested by Brux and Stefan 

[1] are used in the model, the time required to transfer the nominal quantity 

of either propellant is less than 3 minutes. Because the mated coast period 

after MEeO probably will be somewhat longer than this, transfer times of 

approximately 8 minutes or less appear reasonable. Such transfer times are 

obtained with a number of cases where the transfer pipe diameter or the pump 

size is changed. Figure 10 illustrates these changes. 

If the LOX default pump size remains unchanged at 4 HP (2982.8 W) while 

the line size is reduced to 2 inches (5.1 em), the transfer time is slightly 

less than 7 minutes. When the pump size is reduced by half, the transfer time 

is less than 4 minutes for a 3-inch (7.6 em) diameter pipe. Line sizes of 
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approximately 1 inch (2.5 cm) appear to restrict the flow too much and cause 

venting in the receiver tank and extremely long transfer times. A 6-inch 

(15.2 cm) line size promotes a fast transfer of the remaining LOX propellant, 

but it also is heavy; no further study of this line size was done. Since the 

smaller line sizes would be lighter, easier to design around the existing 

equipment, and less costly, reducing the line size from the default value of 4 

inches (10.1 cm) to 3 inches (7.6 cm) is a reasonable exchange for the in­

crease in transfer time. A pump size of 2 HP (14914.4 W) would not tax the 

energy requirements in the system. 

Similar results are seen for LH2 scavenging. A reasonable transfer time 

of slightly more than 7 minutes is obtained when a 3-inch (7.6 cm) line size 

is used without pump assist. However, there appears to be too much flow re­

sistance in smaller line sizes, even with the assistance of a pump. Hence, 

longer transfer times are seen for these cases, even when a large pump is 

used. When a 2 HP (14914.4 W) pump is used with 3-inch (7.6 cm) piping, the 

time is reduced to slightly less than 6.5 minutes. Reducing the line size to 

3 or 4 inches (7.6 or 10.1 cm) and pressurized transfer of LH2 is an optimum 

combination for the system. 

4.5 Limitations 

Accuracy for the results is limited by the size of the time step used in 

program. When a very small step is used, the amount of computer time required 

is large and consequently quite costly. Thus, the time steps used in the 

previously discussed analyses are large enough to allow speedy computation, 

yet small enough to yield reasonable accuracy. When the time step is reduced 

by a factor of seven in SUBROUTINE COOL and by a factor of thirteen 
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in SCAVAG, the total time required to transfer LOX propellant changes by less 

than 1.5 percent. However, the computer time required for this run increases by a 

factor of 80. 

5. SUMMARY 

We have developed a computer model to investigate the scavenging of cryo­

genic propellant from the ET to shuttle mounted receiver tanks in the cargo 

bay. Based on the requirement that sufficient thrust exists to settle the 

liquid in the ET, the model predicts the successful transfer of liquid oxygen 

and hydrogen in short periods of time, typically less than 2.5 minutes for 

both LOX and LH2 using the default parameters in the program. A parametric 

analysis was performed to evaluate the effects of heat fluxes to various 

system components, prechilling the receiver tank, and line and pump size 

variations. 

Moderate to large heat fluxes affect the pressurized transfer of LH2 more 

than the pump-assisted transfer of oxygen. Heat leaks to the ET increase the 

pressure, and thus speed up the transfer of LH2. Heat leaks to the piping or 

receiver tank slow down the transfer of both propellants due to additional 

receiver tank chilling demands, and cause venting at sufficiently high fluxes. 

Prechilling the receiver tank for LH2 is a critical requirement. The 

LH2 receiver tank must be approximately -290 of (94.1 K) in order to transfer 

the fluid without venting. The LOX receiver tank can be close to 300 of 

(421.9 K) without the significant venting of fluid. 

Line and pump size selection are dependent on the time allowed, the 

piping design constraints and energy demands of the transfer system. 
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Pump-assisted transfer in the LOX scavenging is needed, and by using a 2 HP 

(1491.4 W) pump and a 3-inch pipe diameter, a relatively lightweight, fast 

system can be used. Liquid hydrogen can be transferred by pressure difference 

in a 3-inch line. The smaller line and pump sizes allow the transfer to be 

completed in less than 8 minutes. 
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APPENDIX A 

Derivation of single-phase receiver tank equations: 

First Law 

Mass Balance dm = dm1 + dm2 
By applying the mass balance to the system and assuming h = h2' the first law 

may be expressed as: 

mdu + udm = dQtotal + h1dm1 - h(dm1 - dm) 

dQ h1dm1 h(dm1- dm) udm d - total u - +--- -m m m m 

du =~Qtotal dm1 + dmPv + - (h - h) m m 1 m (A.I) 

Because we wish to find temperature as a function of mass flow we next 

expand duo The total differential energy equation with respect to temperature 

and density is given by 

~u = (:~) dT + P (~~)T ~ 
P 

du = C dT _ v (au) Qe.. 
v au T P 

By using the thermodynamic relationship 

du = Tds - Pdv 

we can obtain 
v (au) = Tv (as) _ Pv . av T av T 

The definitions for Cv and the GrUneisen parameter $ are 

C = T(a5\ 
vaT) 

v 

$ = ~(~~t 
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and the chain rule gives 

,,(au) = $TC 
a" T " 

P 
p 

Equation (2) then becomes 

du = C dT - ($TC _~) dm 
" v p m 

Combining Equations (1) and (3) and solving for dT yields: 

C dT - (mTC ~) dm = dQtotal + dm1 (h _ h) + dm p" 
" ~" - p m m m 1 m 

or 

(A.3) 

(A.4) 

The heat flux is the sum of the heat leak through the tank and the heat 

in the wall of the tank, 

dQtotal = dQ + dQw 

Substituting these expressions into the temperature equation yields the 

following expression: 

Upon rearrangement the following relationship is obtained: 

$Tdm + (hI -h)dm1/C" + dQ/C" ( 3) dT = v v A.5, 
m + mwCPw/C" 

We next wish to find pressure as a function of mass flow. The total 

differential energy equation with respect to pressure and density is given by 

du =(1) p(au) dP + p(au) ~~ . 
p ap p ap P p 
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The first term on the right-hand side contains the GrUneisen parameter 

which is also defined as 

<p::: l(ap) . p au 
p 

The second term on the right-hand side may be expressed with the heat of 

expulsion 

e ::: - p (oh) 
op P 

and by using the definition of enthalpy to give 

p(au) ::: p(a~\ + f . ap P apJ p p 

The differential energy equation may then be written as 

du ::: L dP - (0 - f) ~. p<p p p 

Combining Equations (A.I) and (A.6) and solving for dP when dml ::: dm 

yields the following expression: 

(A.6) 

(A. 7) 

When dml is not equal to dm, there is flow through the vent. Thus, dP := 0 and 

dm ::: [(h - hl)dml - dQ + mwCwdT] (A.9,5) 
e 
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Appendix 8 

Derivation of two-phase receiver tank equations: 

First Law 

Since there ;s no work done, the first law may be expressed as: 

Continuity 

Constant volume 

Solving for dmQ 

dmQ 

Let 

d" = ( a,,) dp 
sat op sat 

The equation for the differential mass of the liquid in the tank is: 

dm ::: - - dm - - m ,- + m - dP "v 1 [ (a" ) (0") ] 
Q "Q v "Q Q ap Q v ap" 

(B.2,7) 

(8.3.9) 

(B.4) 

Substituting Equation (8.4) into Equation (B.2) produces the following expres-

sion: 
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Solving for the differential mass of the vapor: 

(8.5) 

Substituting Equation (8.5) into Equation (8.4), we obtain the following 

equation for dm.£, 

_ -(v/vQ)(dm1 + dm2) - ~ [mQ (~)Q + mv(~)v] dP . 
dm.£, - (1 - "vi".£,) 

Combining Equations (8.1), (8.5) and (8.6), we obtain 

m - dP + m - dP - u -( au) (au) "v 
.£, a P .£, " ap " '£'''.£, 

dm1 + dm2 
(1 - "vi".£,) 

dm1 + dm2 
(1 - "Vi,,!) 

(8.6,10) 

(8.7) 

We can solve Equation (B.7) for the differential pressure when there is no 

venting: 

dP = 
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where 

(B.9,llb) 

When there is venting, the pressure is constant. Since dP = 0, the following 

equation is obtained when Equation (B.7) is solved: 

Finally, an expression for the differential mass through the vent is obtained: 

dm = 2 
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Appendix 0 

Conversion factor calculation 

The conversion factor C for Equation (26) may be derived as follows: 

where 

Therefore, 

32C = 

_ 6P prr2 05 
32 C - fL(dm)2M 

6P = atm 

p = gmol/~ 
o = em 

L = m 

M = g/gmol 

(atm)(gmol/Jl)(cm5) (1m )5 ( 1 Jl )2 (1 kg m2) 
(m)(gmol/s)2(g/gmol) 100 em \0.001 m3 J 52 

(
1000 9)(101.325 J) 

x 1 kg \ 1 Jl atm 

32C = 3 158 (atm)(s2)( cm5) 
• (m)(Jl) (g) 
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Appendix E 

Derivation of the supply tank equations: 

First Law 

dU = dQ - dW + Lh.m. 
1 1 

The first law can be written for both phases, and when the mass of vapor is 

held constant we have the following expression: 

vapor phase 

Since 

then dh - v dP = du + Pdvv v v v 

Upon sUbstitution and rearrangement, the vapor phase enthalpy equation becomes: 

dQ 
dh = -Y... + v dP 

v mv v 
(E.I, 13a) 

For the liquid the first law may be expressed as 

By using the previous substitution and rearrangement, the liquid phase enthalpy 

equation can be written as 

(E. 2, 13b) 

Volume 

Since the ET volume is constant the following expression is used: 
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Upon rearrangement, 

(E.3) 

The total derivative for volume with respect to pressure and enthalpy is 

expressed as 

(E. 4) 

We recall the definition for the heat of expulsion e and sUbstitute it for the 

first term in the total volume 'derivative as follows: 

_ (ah) _ (ah\ e - -p ap p - v av) p 

(av) v ah p dh ; 8 dh . 

To elucidate the thermodynamic nature of the second partial derivative, 

the following thermodynamic identity is used: 

The term( :~)h can be expressed in terms of e 

(av) ( av) (av) v (ah) 
ap h ; - ah P aP v ; - 8 ap v· 

The definition for the GrUneisen parameter can be used with the first law to 

eliminate the remaining partial derivative. The Gruneisen parameter is: 

tV; !(ap) = v(ap) p au au 
p v 

By writing the first law in terms of derivatives with respect to pressure at 

constant volume, we can make the following sUbstitutions: 
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(a h) =' au) + ap ,ap " 
" " 

The second term in Equation (E.4) can be expressed as: 

( a,,) = _ ~ ("($ + 1)) 
ap h e $ . 

Equation (E.4) can now be expressed by the following relationship 

(E. 5) 

We can substitute Equation (E.5) into (E.3) to obtain the following 

relationship: 

(E. 6) 

By solving Equations (E.1), (E.2), and (E.3) simultaneously, a relation-

ship for the ET pressure is found: 

dP = (E.7,14) 

An expression for the temperature of the liquid can be obtained by using 

the liquid enthalpy equation (E.2) and the! total enthalpy derivative. 
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The total enthalpy derivative with respect to temperature and pressure is 

given by: 

dh = (oh) dP + (oh) dT. 
oP T oT P 

(E. 8) 

The second partial derivative in Equation (E.8) is the definition of the con-

stant pressure heat capacity Cpo The first partial can be expressed as [14J 

The definition for the bulk thermal expansivity ~ of a fluid is given by [7J 

~ = _ I(£e) = I (0") 
p oT P "oT P . 

The partial derivative may be expressed as 

(oh) =" (1 - ~) 
oP T 

By substituting for the partial derivatives as discussed, Equation (E.8) may 

be written as follows for the ET liquid phase 

By substituting Equation (E.2) for dhQ in the previous equation and 

solving for dT, the temperature equation is given by the relationship 

(E. 9 ,15) 
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Appendix F 

Plotting routines 

The data which describe the transfer of fluid are stored in file PSDATA 

(see printout of file in Appendix C). These data are used in two plotting 

programs called PROGRAM PLOT and PROGRAM DEMO. Both programs are written in 

FORTRAN IV and are fully described below. The data file is described first. 

FILE PSDATA/TAPE8 

The first four lines of the file are data points for identifying and 

initializing the plots for either PROGRAM PLOT or DEMO. The first line of 

data contains four identifying parameters -- the transfer line size, pump 

size, and the initial receiver tank temperature and pressure. The second line 

contains the alphanumeric name of the propellant, HYDROGEN or OXYGEN. The 

total number of data lines, N, is written on the third line. Finally, the 

fourth line holds the lower and upper limits for each of the plots to be 

drawn. The order of these pairs of values is the time, receiver tank 

temperature and pressure, the flowrate, the mass of vapor, mass of liquid, 

total mass of fluid transferred, the quality of fluid in the ET, and the 

quality of fluid entering the receiver tank. 

Following these lines are the N lines of data. Each entry holds the data 

describing the transfer for each increment of time. The values in each line 

are the elapsed time, the receiver tank temperature, receiver tank pressure, 

the flowrate, the mass of vapor, liquid, and total mass of propellant 

transferred, the ET fluid quality, and the quality of fluid entering the 

receiver tank. 
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PROGRAM PLOT 

The NBS computer system in Boulder has a mathematics library called 

STAR PAC from which subroutines may be called to perform assigned tasks. For 

program PLOT the SUBROUTINE PPC is used to produce four plots and is accessed 

by the statement CALL PPC(Al, A2, A3, A4, AS, A6, A7, A8, A9, AlO). Each 

parameter is described as follows: 

Al Array containing the value to be plotted on the vertical axis. 

A2 Array containing the values for the elapsed time during the 

transfer to be plotted on the horizontal axis. 

A3 The number of lines of data to be read. 

A4,AS,A6 Parameters describing whether the plot is to be logarithmic, 

the size of the plot is to be altered, or the plot is to be 

reprinted. All are set equal to zero. 

A7,A8 

A9,AlO 

Lower and upper values for the vertical axis. 

Lower and upper values for the horizontal (time) axis. 

PLOT first assigns single array dimension sizes for the time, tempera­

ture, pressure, flowrate, mass of vapor, and mass of liquid. Second, the 

first four lines of data are read into appropriate variable names. Following 

these assignments the data points are read into the dimension arrays. 

The first call to PPC enables a plot to be drawn of the receiver tank 

temperature as a function of time. The second call to PPC is for a plot of 

the receiver tank pressure as a function of time. The third call plots the 

mass of propellant in the vapor phase as a function of time. The fourth call 

to PPC produces a plot of the mass of liquid phase propellant as a function of 

time. Each plot has an appropriate heading. There are 10 vertical and hori­

zontal axis divisions for each plot. 

When batch control procedure SUBCOM is used, the plots are located after 

the output from program SCAVAG and all output subsequently are written to 
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TAPE6 and PSOUT. Should the operator choose to have the output separated, two 

other batch control procedures are used. First, SCAVAG is run with NOPLOT, in 

the same manner as has been described in the main text for SUBCOM. Output is 

written to TAPE6/PSOUT and PSDATA as before!. To generate the plots for the 

transfer with program PLOT, control procedure LIBPLOT is used. Output is 

directed to TAPE6 and stored in filename TRACE. (See Appendix G for the pro­

gram, data, control procedure listings, and sample plots.) 

PROGRAM DEMO 

The DISSPLA graphics package [15] is available at NBS in Boulder and at 

NASA-JSC. Since it produces high quality plots and is quite versatile, 

DISSPlA was chosen for graphic display of some of the results of this study. 

It is used by program DEMO to produce seven plots. Two plots, each allowed 

half of a standard page, are placed on the first three pages, and the re­

maining plot is located on the upper half of the fourth page. 

DEMO assigns dimension sizes and variable names in a manner very similar 

to that of program PLOT. However, additional arrays and variable names are 

required for the parameters used in the DISSPLA subroutine calls. After the 

lower and upper bounds for each of the plots are read from PSDATA, DEMO calcu­

lates the division size for the axes of each plot. After the data points are 

read into their respective arrays, the program is fully initiated and proceeds 

with a succession of DISSPLA subroutine calls which set up and plot the curves. 

A full description of each subroutine can be found in the DISSPLA userls 

manual. (The program listing and sample plots are located in Appendix G.) 

Several items are unique to program DEMO. Whereas PLOT reads the first 

line of data into four dummy variables, DEMO uses these data as identifiers 

located in the corner of the first plot. The name of the propellant is not 

used in PLOT, but in DEMO it is used in the heading for each page. In 
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addition to the four plots which are generated by both PLOT and DEMO, DEMO 

also plots the total mass of propellant transferred, the flowrate into the 

receiver tank, and the percent of vapor and liquid phases in the receiver 

tank, as a function of time. 

DEMO is run interactively by the operator. Instead of storing the output 

in files which are accessed at a later time (i.e., batch operation, SCAVAG 

with control procedures SUBCOM or NOPLOT, and PLOT with control procedures 

SUBCOM or LIBPLOT), output is generated immediately at the terminal or other 

output device. To run DEMO at NBS, the operator types in at the terminal 

GET, DEMO 
DEMO 

or BEGIN, DEMO, DEMO 

The first line instructs the computer system to retrieve program DEMO from 

storage and place it in the local mode and ready for use. When DEMO is typed, 

the procedure for running the program is activated. The alternative command 

identically performs both statements. The procedure is located in the 'Iines 

prior to the program statement and uses a sequence of control statements 

similar to those contained in the batch control procedures SUBCOM, NOPLOT, or 

LIBPLOT. 

Output is generated at the terminal screen when the appropriate call is 

made and graphics capabilities are available. Other output options are a 

multiple pen plotter or microfilm. The first page, or two plots, are dr'awn 

automatically. The operator types 

COPYBR, Z 

to have each subsequent page drawn at the terminal or the pen plotter. All 

plots are automatically drawn on microfilm. 
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Appendix G 

Program listings and sample plots 
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PROPELLANT SCAVENGING PROGRAM-COMBO 

PROGRAM SCAVAG(INPUT,TAPE5,TAPE6,TAPE7,CUTPUT-TAPE6,TAPE8) 
e THIS PROGRAM SIMULATES THE FILLING OF A RECEIVER TANK IN LOW G 
C USING A SUPPLY/E~TERNAL TANK. 
e 

COMMON/PARAM/ MW,MWALL,O,VOL,OPIPE,OET,TOTAl,PVENT 
COMMON/SUB/ FLOW1,FLOWZ,PRESS,TEHP,TIHE,HET 
cnHMON/FLOW/ DIAM,OET,TET,PET,LENGTH,PMETER 
COMMON/NOZZlE/CDIAM,NOZOIA,HEAOIA,NNOZ,COHST,CDLENG 
COMMON/PUMP/ POWER,EFF 
COMMON/PLOT/ NPLOT,x,Y1,Y2,Y3,Y~,Y5,Y6,Y7,Y8 
COMMON/PROP/NGAS 
COMMON/ETANK/ETlIO,ETVAP,VET,ETO 
CCHHON/PROB/OUMP 
REAL MVAP,MlIO,MW,MWALl,LENGTH,NOZDIA 
REAL X(600),Y1(600),YZ(600),Y3(600),Y4(600),Y5(600),Y6(600) 

+ ,Y7(600),YB(600) 
C 
C THE NAMELIST "NAME" CONTAINS ALL PARAMFTERS THAT CAN BE VARIED 
C FROM DEFAULT VALUES. 
C 

C 

NA~ElIST/NAME/PET,TET,OET,TOTAl,DIAM,NEL8QW,NANGlE,NGATE, 
+ NGLOBE,N8UTT,LENGTH,HETER,OPIPE,POWER,VOL,MWALL,TEMP,PRESS, 
+ PVE~T,Q,CDLENG,HEAOIA,NN~Z,NOZDIA,VET,CONST 

C NGAS. 1 FOR HYDROGEN AND Z FOR OXYGEN CHANGE IN NAMElIST "FUEL" 

C 

C 

C 
C 

NAMFLIST/FUEL/NGAS 

NGAS • 1 

REAO(7,FUEL) 

C INITIALIZE FLUID PROPERTIES WITH FLUIDS PACK SUBROUTINE. 

C 

IF(NGAS.EO.2)GO TO 1 
CALL DATA P HZ 

C INITIALIZE MOLECULAR WEIGHT 
C 

C 
C SET DEFAULT VALUES FOR THE SIMULATION. 
C 
C INPUT PARA~ETERS FOR SUpDLY TANK' 
C PET. TANK PRESSURE, PSIA 
C TET • TANK TE~PERATURE, DEG. F 
C OET • ~EAT FlU~ INTO SUPPLY TANK, BTU/~R 
C TOTAL • TOTAL PROPELLANT IN SUPPLY TANK, POUNDS 
C VET • TA~K VOLUME, CUBIC FEET 
C 

C 

PET. 32. 
TET • -~Z5. 
OET • 90000. 
TOTAL • 30Q8. 
veT. 53518. 

C INPUT PARAMETERS FOR PIPING BETWEEN TANKS. 
C OI.~ • PIPE DIA"ETER, INCHES 
C NEleow • NUMBER OF RIGHT-ANGLE ELBOWS 
C NGATE • NU~BfR OF GATE VALVES 
C NGLOBE • NUMBER OF GLOBE VALVES 
C NANGLE • NUMBER OF ANGLE VALVES 
C NeUTT • NUMBER OF BUTTERFLY VALVES 
C .lENGTH • LENGTH OF STRAIGHT PIPE, FEET 
C METER • NUMBER OF FLOW METERS 
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CCPIPE • HEAT FLUX INTD PIPE, B1U/HR 
C POWF.R • PUMP POWER, HP 
C 

c 

DIAI1 • 5. 
NELBOW • 10 
NGATF. • 0 
~H08E • 2 
NANGLE • 0 
NBUTT • 0 
LENGTH • 70. 
METER • 1 
OPIPE • 50400. 
POWER • O. 

C INPUT PARA~ETE.S FOR REceIVER TANK' 
C VOL • TANK VOlU~E, CUBIC FEET 
C ~WALL • TANK WALL MASS, POUNDS 
C TEMP. INITIAL RECEIVE~ TANK TEMPERATURE, OEG F 
C PRESS • INITIAL RECEIVER P~ESSURe, PSIA 
C PVEIiT • RELIEF VALVE VENT PRESSURE, PSIA 
C C • ~EAT FLUX INTO TANK, 8TU/HR 
C 

C 

VOL • 180. 
~WALL. 915. 
TF"1P • -zqO. 
PICESS • 18. 
PVE"IT • 30. 
o • o. 

C INPUT PARAMETERS FOR FLOW SIMULATION AND COOL-DOWN PIPINGI 
C COL ENG • LENGTH OF COLL-DDWN PIPING + HEADE~ 
C NNO! • NUMBER OF NOZZLES 
C N07DIA. DIAMETER OF ORIFICE/NOZZLE,FEET 
C HEADIA. DIA"1ETER OF HEADER ANO COOL-DOWN PIPING, INCHES 
C C~NST. 1/0RIFICE CONSTANT. ORIFICE CONSTANT. 0.61 
C 

C 

C 

COLEN!; • 20. 
NNOZ • 6 
CONCiT • 1.639 
NOIDIA • 0., 
HEAOIA • 2.0 

GO TO Z 

1 CALL DATA 02 

Mii • 31.99R8 
PET. 20. 
TET • -315. 
OfT • O. 
VET • 19186. 
TOTAL • 6270. 
DIAM • 4. 
NELBOII • 20 
NGlTE • 0 
NGL08E • 2 
NANGLE • 1 
NBUTT • 0 
LE~GTH • 100. 
"ETE~ • 1 
OPIPE • 104400. 
POWER • ~. 

VPL • 300. 
MliAll • 350. 
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e 
C 

TEMP • 60. 
PPESS • 1. 
PVENT • 30. 
o • o. 
eDlE~G • 20. 
NNOZ • 6 
erNST • 1.b3q 
NPlOIA • 0.25 
~EAOIA • 1.0 

2 CONTINUE 

C READ IN VALUES OF SI~ULATION PARAMETERS T~AT ARE TO BE DIFFERENT 
C fROM THE DEFAULT VALUES. 

REAOC5,NAME' 
C 
C WRITE SOME SIMULATJON PARA~ETERS TO BE WRITTEN ON DISSPLA PLOTS 
C FOR SIMULATION IDENTIFICATION. 
C 

WRITECB,.) DIAM,POWER,TEMP,PRESS 
C 
C WRITE ~IHULATION PARA~ETERS ON OUTPUT. 

IF(NGAS.EO.Z'GO T~ 4449 
WPITEC6,~400) 

4400 FORMATIIH1,*HYDROGEN TRANSFER., 
GO TO 4499 

~~~9 WRITEC6,4450' 
4450 FOR~AT(lHl,*OXYGEN TRANSFER.) 

C 

C 

4499 WRITEC6,4500' PET,TET,TOTAl,QET 
4500 FOR~ATClHl,*SUPPLY TANK INITIAL CONOITIONSt.,,5X,*PRESSURE • • 

+ ,FlO.3,. PSIA.,,5X,*TEMPERATURE • *,FIO.3,* F.,,5X, 
+ *MASS •• ,FlO.2,. POUNDS*/,~X,*HEAT LEAK • *, 
+ Fl~.3,* BTU/~R*' 
WRITFC6,~600) PRESS,TE~P,PVE~T,VOL,~WAll,Q 

4600 FOR~ATC. RECEIVER TANK INITIAL CONDITIONSI*I,5X, 
+ *PRESSURE • *,FlO.3,* PSIA*,,5X,*TEMPERATURE • *,FIO.3, 
+ • F*/,5X,*VENT PRESSURE • *,FIO.3,* PSIA*/,5X, 
+ .TANK VOLUME •• ,FIO.3,* CUBIC FEET.,,5X, 
+ *TA~K WALL MASS • .,FIO.3,. POUNDS*I,5X,*HEAT LEAK • *, 
+ FIZ.3,* 8TU/HR*) 

WRITE(6,4700' DIAH,lENGTH,NELBOW,NGATE,NGLOBE,NANGLE,NBUTT, 
+ METER,OPIPE,POWER 

4700 FOR~AT(* TRANSFER PARAMETERSI*I,5X,*PIPE DIAMETER • ., 
+ F~.3,* INCHES*/,5X,*LENGTH OF STRAIGHT PIPE • *,F8.3, 
+ * FEET*/,5X,I3,* EL80WCS'*/,5X,I3,* GATE VALVECS'.',5X,I3, 
+ • GL08E VALVE(S)*/,5X,I3,* ANGLE VALVECS,.,,5X,I3, 
+ * BUTTERFLY VALVECS,./,5X,I3,* FLOW METER(S'*I"X, 
+ *HEAT LEAK INTO PIPING • .,FIZ.3,. BTU/HR*/,5X, 
+ *PU~P POWER • *,F5.1,* HP.) 
WRITE(6,4800)CDlENG,NNOZ,NOZOIA,~EAOIA 

4800 FORMATC* COOL-DOWN PARA~ETERSI*,,5X,*LENGTH OF PIPING • * 
1,F8.3,* FEET./,5X,*NU~BER OF NOZZLES • .,I~, 
1/,5X,*NOZZLE DIAMETER • *,F8.4,* INCHES., 
1/5X,*YEADER DIA~ETER • *,F8.~,* I~CHES*' 

C CALCULATE EOUIVALENT LENGTH OF PIPING. 
C 

C 

LENGTH. LENGTH + FLOATCNELBOW).C2.5Z738.DIA~+.414286) 
+ + FLOAT(NGATE,.C.57083*DIAM-.0125,+FLOAT(NGLOBE). 
+ C3S.0595*OIAM+.I0714)+CFLOATCNANGLE)+FlOAT(NBUTT)/8.). 
+ 114.345Z.0IAM-1.17857' 

C CONVERT ALL PARAMETERS AND VARIABLES FROM ENGLISH UNITS INTO 
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e 51 UNITS. PRESSURE - ATM, TE~PERATURE - DEGREES KELVIN, HEAT LEAKS -
C JOULES/SEC, MASS - GRAM-MOLES, prDE DIAMETER - eM, PIPE 
C LENGTH - METERS, PUMP POWER - JOULEs/sec, VOLUME - LITERS, 
C TIME - SEC. 
C 

e 
C 

PET. PET/14.696 
TET • (TET+460.)*5./9. 
oeT • OET*1054.35/3600. 
veT. VET*ZB.317 
TOTAL • TOTAL*454.,MW 
OIA~ • DIAM*Z.~4 

LENGTH • LENGTH * .3048 
P~ETER • FLOAT(METfR)/14.696 
QPIPE • OPIPE*1054.35/3600. 
POWER • POWER*746. 
VOL. VOL*Z8.317 
~WALL • MWALl*4~3.'9 
TEMP • (TEMP+460.'.5./9. 
PRESS. PRESS/14.696 
PVENT • PVE~T/14.696 
Q • 0*1054.35/3600. 
COLE~G • eDLENG*O.3048 
CDIA~ • HEADIA*Z.54 

e IN!TIALIZe T4E FLuro PRO~ERTIES 

C 
e 
e 

C 
C 

OET • FINO O(PET,TET) 
HET • ENTHAL(PET,DET,TET) 

FRACT • TOTAL/VET/OET 

TETSAT • FINOTV(PETJ 
ETVAP • FINDD(PET,TETSAT+l.E-3)*VET*(1.-FRACT) 

e OBTAIN QUALITY OF SUPPLY TANK FLUID 
C 

CALL CHECK(HET,PET,TET,ETO) 
e 
C INITIALIZE TIME 
C 

T!~E • o. 
C 
C INITIALIZE COOL-DOWN NOlZLE PRESSURE DROP 
C 
e INITIALIZE FLOWRATE. THE FLOW IS DUE TO PRESSURE DROP BETWEEN THE TANKS 
e 

FGUES5 • FLO(PRESS) 
FLOWl • PUMPFLO(PRESS,FGUESS) 

e 
C INITIALIZE VENT FLOWRATE 
C 

FLOWZ • O. 
C 
e INITIALIZE TOTAL AMOUNT OF MlTERIAL VENTED AND AMOUNT OF VAPOR 
C PPESENT IN THE RECEIVER TANK. 
C 

c 
XVENT • O. 
~VAP • o. 

C INITIALIZE COUNTER FOR OUTPUT TO GO TO PLOTTING ROUTINE. 
C 

NPLOT • 0 
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c 
C I~ITIALIZE VE~T FLAG TO I~ryICATE T~AT THE RECFIVER TANK VENT 
C IS CLOSED. 
C 

NVFNT • 0 
C 
C INITIALIZE PQDGRA~MEO STOP PAR4METER 
C 

c 
c 

Ol'MP • O. 

C CALL SURROUTINE THAT MCDELS T~E CJOl-D~W" OF THE ~ECEIVER TANK UNTIL 
e TVO PHASES ARE PRESENT IN TYE RECF!V~Q TANK. 
e 

e 

CALL COOL(MVAP,XVENT,OPRESS) 
NPRT • 0 

C CALCULATE THE ENTHALPY a~ TYE FLUID E~TERING THE RECEIVER TANK 
C ANP CYECK T~E OUALITY OF T~E FLUID. 
C 

e 

~) • HET+OPIPE/FLC~l + PO~~R/FLOWl 
CALL CHECK(Hl,PPFSS,TEMP,TA~~O) 

C SET THE TIME STEP FOR THE SI~UlATION. NCTEI OTIME. 2~OO./FlOW1 
C FOR L4! AND 3nO./FLOWl F~R l8X ON NASA-JSC COMPUTER 
C 

DTIME • VOL/FlOW1/~OO. 
IF(NGAS .EO. ?)DTI~E • DTIME/2. 
IF(NGA$ .EO. l)OTIME • DTIME*Z. 
OTIN~ • DTIME*50. 

C. DTIME • DTIME/3.14159 
C INITIALT7E THE AMOUNT OF l!OUIO PRESENT IN THE RECEIVER TANK. 
e 
C 
C 

C 

MlIO .. (I. 

OLIO. FINry D(PPESS+l.~-3,TENP) 

DVAP • FIND D(PPESS-l.E-5,TENP) 

e lO~P FO~ T~O-PHASE SI~ULATIO~. 

c 

I .. (\ 
1000 CO-.TI'WE 

I • 1+1 

C OPTAJN VAPOR AND LIOUID ENTHALPY (J/GMOL)AN" INTERNAL ENER~Y (J/GMOl) 
·c 

HVAP .. ENTYAL(PPESS-l.E-~,DVAP,TEMP) 

HLTO .. ENTHAL(P~FSS+l.E-5,~LIO,TEMP) 

UVAP .. HVAP-PPfSS*101.327/0VAP 
UlIO • ~l!O-PRE~S.101.327/DlIQ 

C CALCULATE FUNCTION FOR DELTA p. 
C' 

C 

FP • MLtO.«l.-DLIC/~VAP).DUOPL(PRESS)+CLIQ*DVOPL(PRESS) 
+ • (LfV A P -" LI 0) ) + ,. V AP. ( Cl • - D L I ~ I D V A P ) * DUD P V ( P PES S ) 
+ +~LIO*DVOPV(PRESS)·(UVAP-ULIC) 

FPP • FP+MWAlL*CWALl(TE~P).DTDP(PRESS). 

+ (l.-DLIO/DVAP) 
DElTAT .. DTDP(PPES~).DPRESS 

C CAlrULATF nElTA P 
C 

OPR~<;~ .. «HI-I!VAP+')lIO/I)VAo.(UlIQ-Hl»).~lr}Wl+(O)* 

+ ('.-~lIO/DVAP»)/FPP 
32 C(1NTINUE 
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• 

c 
C CALCULATE NEW PRESSURE AND 08TAIN NEW TEMPERATURE. 
C 

C 

PRESS • PRESS + OPRESS*DTI~e 
TE~P • FIWDTVCPRESS) 

C RECALCULATE THE FLOWRATE 
FL • FLOW1*MW*.13216 
FLOW • FLOW1 
FLOW1 • PU"PFLO(PRESS,FLOW) 
FL • FLOW1*MW*.13216 

17 CONTI~UE 
C CHECK FOR RELIEF VALVE OPENING 
C 

FLOW2 • O. 
179 CONTI~UE 

IF (PRESS+DPRESS*DTI~E .LT. PVENT*.999) GO TO 15 
IF (~VENT .EO. 0 .AND. PRESS+DPPESS*OTIME .LT. PVE~T*1.002) 

+ GO TO 15 
C CALCULATE THE VENT FLOWRATE 

FLOW2 • (O*C1.-DlIQ/DVAP)-(UVAP-H1-DLIO/DVAP*CULIO-Hl» 
+ *FLOW1)/(DLIO/DVAP*CHVAP-HLIO» 

C 
C CHECK TO SEE IF THE SYSTEM IS VENTING PRCPERLY. 
C 

C 

IF (FLOW2 oLT. 0.) GO Tn 40 
GO TO 14 

40 DPRESS B O. 
PRES~ • PVENT 

C SET FLAG TO INDICATE THAT THE RECEIVER TANK IS VENTING AND 
C CALCULATE TOTAL MOLES VENTED. 
C 

C 

C 

NVENT • 2 
XVENT • XVENT-FLOWZ*DTIME 
G~ TO 15 

14 FLOW2· O. 
NVEHT • 0 

15 CONTINUE 

C CALCULATE NEW VAPOR AHD LIQUID DENSITIES 
C 

DLION • FIND O(PRESS+1.E-2,rEMP) 
DVAP • FINO D(PRESS-1.E-5,TfMP) 
IFCDLIO/DLIQN .GT. 10.)G~ TO 231 
OLIC • DLION 

231 
C 

CONTINUE 

C 
C 

C 

C 

CALCULATE CHANGE IN LIOUID M~LES AND ACTUAL NUMBER OF MOLES 
IN LIOUID AND VAPOR PHASES A1 T • TI~E. 

OMLIO • -DLIQ/DVAP*CFLOW1+FLOW2)/C1.-DLIC/DVAP)-DLIO* 
+ (MLIO*DVDPLCPRESS)+MVAP*OVOPVCPRESS»*OPRESSI 
+ (l.-DLIO/DVAP) 

MLIO • HLIO+DMLIQ*DTIHE 

HVAP • (VOL-MLIO/OlIQ)*OVAP 

C CHECK TO SEE IF THE RECEIVER TANK IS FULL OR OVERFLOWING 
IFCMLIO+~VAP+XVENT .LT. 0.Q5*TOTAL)GO TO 4~ 

46 IF(~lIQ+~VAP+XVENT .lE. TOTAL)GO TO 48 
47 ~LIO· "LIO-O~LIQ.DTI~E 

MVAP • (VOL-MLIQ/DlIO)*DVAP 
48 DTIME1. CTOTAL-(XVENT+HLIO+MVAP»/OMLIO 
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C 

IF(OTIMf .IT. OTIMF.l)GO TO ~5 
49 MLIO. "LIO+DMLIO.DTI~El 

MVAP • (VOL-MLIO/DLIO).DVAP 
~8 IF (MVAP .GT. 0.) GO TO 35 

C CALL THE SUBROUTINE TO STOP THE PROGRAM. 
C 

C 

NPLOT • NPLOT + 1 
X(NPLOT) • TIME/60. 
Yl(NPLOT) • TEMP.9./5.-4bO. 
YZ(NPLOT) • PRESS.14.696 
Y3(NPLOT) • FLOWl.MW •• 13216 
Y4(NPLOT) • MVAP*MW/45~. 

Y5(NPLOT) • "LIO.~~/454. 
Y6(NPLOT' • Y4(NPLOT,+Y5(NPLOTJ 
Y7(NPLOT) • ETO 
Y8(NPLOT) • TANKO 
CALL FULL(MLIO,XVENT) 

C CHECK TO SEE IF ALL THE FLUID HAS 8EE~ TRANSFERRED. 
C CALL SUBROUTINE TO STOP PROGRAM. 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 
C 

C 
C 
C 
C 
C 

35 NPLOT. NPLOT + 1 

45 

X(NPLOT) • TIME/60. 
Yl(NOLOT) • TEMP*9./5.-460. 
Y2(NPLOT) • PRESS.14.696 
Y3(NPLOT) • FLO~1.MW*.13216 

Y4(NPLOT) • MVAP*MW/454. 
Y5(NPLOT' • MLrO*~W/454. 
Y6(NPLOT) • Y5(NPL~T) + Y4(NPLOT) 
Y7(NPLOT) • ETO 
Y8(NPLOT) • TANKO 
CALL DONF(MLIO+~VAP,XVENT) 

UPDATE THE SUPPLY TANK PROPERTIES. 

ETLIO • TOTAL-MLIO-MVAP-XVENT 
CALL CHECK(HET,PfT,TET,ETO) 
CALL SUPPlY(DTIME) 
CALL CHECK(HET,PET,TET,ETO) 

INCRE~ENT THE TIME 

TIME • TIME + DTIME 

CHECK TO SEE IF FLrW HAS STOPPED DUE TO RECEIVER TANK BACK PRESSURE 
IN THE ABSENCE OF A PUMP. 

IF (PRESS .GE. PET .AND. POWER .LT •• 05)GO TO 63 

CHECK THE FLOWR4TE TO SEE IF BACK PRESSURE FROM THE RECEIVER HAS 
STOPPED FLOW IN THE PRESECE OF A PUMP. 

IF U8SCFLOWl) .LT •• 1) GO TO 63 
GCl TO 73 

63 CONTINUE 
NPLOT • NPLOT + 1 
X(NPLOT, • TIME/bO. 
Yl(N OlOT) • TEMP.9./5.-460. 
Y2(NPLOT) • PRESS*14.696 
Y3(NPlOT) • FlOWl*MW*.13216 
Y4(N PlOT) • MVAP.MW/4~4. 

Y5(NPLOT) • MLIO.MW/454. 
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C 

Y6CNPlOT) • Y~CNPlOT)+Y5(NPlOT' 
Y7CNPLOT) • ETO 
YBCNPlOT) • TANKO 
CAll PFAIlCHVAP+HlIO,XVENT) 

C CALCULATE THE ENTHALPY OF FLUID E~TERING RECEIVER TA~K AND OBTAIN 
C ITS QUALITY. 
C 

C 

73 CONTI~UE 
HI • HET+QPIPE/FlOWl + PowER/FlOWl 
CALL CHECK(Hl,PRESS,TEMP,TANKQ) 

IF(DUMP .NE. 1.)GO TO 585 
NPLOT • NPlOT + 1 
XCNPlOT) • TI~E/60. 
Yl(NPlOT) • TEHP.Q./5.-~60. 
Y2(NPlOT) • PRESS.l~.6q6 
Y3(NPlOT) • FlOWl~~W •• l~2l6 
Y~(NPl~T) • HVAP*~W/~5~. 

Y5CMPlOT) • "lIQ*M~/~5~. 
Y6CNPLOT) • Y~CNPLOT'+Y5C~PlOT) 
Y7CNPlOT) • ETO 
YB(NPlOT) • TANKO 
CAll POATACMVAP+MlIQ,XVfNT) 

585 CONTINUE 
C 
C WRITE RESULTS EVERY CHOSEN TI~E INCREMENT. 
C 

C 
C 

C 

NPQT • NPRT + 1 
IF C~P~T .NE. 1) GO TO 20 
NPRT • 0 
NPLOT • NPLOT + 1 
X(NPlOT) • TIME/bO. 
Y1(NPlOT) • TEMP.9./5.-460. 
Y2(NPlOT) • PRESS.l~.696 
Y3CNPlOT) • FLOW1.MW •• 13216 
Y4(NPlOT) • MVAP.MW/~~~. 

Y~(NPlOT) • HlIO.MW/454. 
Y6(NPLOT) • Y4(NPLOT)+Y5(NPlOT) 
Y7CNPLOT) • ETQ 
Ye(NPlOT) • TANKO 

20 IF(NPlOT .lE. 600) GO TO 1000 
WRIT~(6,153) 

153 FOR~AT(/,. ARRAY lEWGTH EXCEEDED.) 
CAll PDATACHVAP+MLIO,XVENT) 
END 

C ••••••••••• ••• •••••• ••• ••••• ··*··~···· .• ··**········· .................... . 
C 

SU8R~UTINE COOlCM,XVENT,DPRESS) 
C 
C THIS SUBROUTINE TAKES THE SIHUlATION FRO~ TIME ZERO UNTIL 
C TWO PHASES ARE PRESENT IN THE RECEIVER TANK. 
C 

COMMON/FLOW/ DIAM,DET,TET,PET,LENGTH,PMETER 
COMMON/PARA"/ MW,~~All,O,VOl,QPIPE,OET,TOTAl,PVENT 
COMMON/SUB I FLOW1,FlOW2,PRESS,T,TIME,HET 
caMMON/NOlZLE/CDIA",NOZOIA,HEAOIA,NN~Z,CONST,CDlEHG 
COM~ON/PUMP/ POWER,EFF 
COMMON/PLOTI NPLOT,X,Yl,Y2,Y3,Y~,Y5,Y6,Y1,Y8 
COMMON/ETANK/ETLIO,ETVAP,VET,ETO 
CO~"ON/PRoe/DU~p 
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c 

COMMON/PROP/NGAS 
CO""ON/NEG/IJK 
REAL X(600),Yl(600),YZC600),Y3(600),y~e600"Y5(600),Y6C600) 

+ ,Y7(600),Y8C600) 
REAL "W,~WAlL,",LENGTH,COLfNG,NOZOIA 

C INITIALIZE PRINTOUT COUNTER, VENT FLAG AND SI~ULATION LOOP COUNTER. 
C 

c 

IJK • 2 
NPRT • 0 
NVENT • 0 
KOUHT • 0 
~ • 0 

C INITIALIZE FLOWRATE BETWEEN TANKS, PUMP EFFICIENCY AND DENSITY OF VAPO 
C IN RECEIVER TANK. 
e 

e 
EFF • PEFF(FlOWl) 
DENS. FINO O(PRESS,T) 

e CALCULATE THE CHANGE IN VAPOR HOLES. 
OM • FLOWl+FLOW2 
OTI~E • VDL/FLOWl/800. 
IF(NGAS.EQ.Z)OTIHE·OTIME/Z. 

C. OTIME • OTIME/7. 
C 
C LOOP FOR SIMULATION 
C 

10 K~UNT • KOUNT + 1 
C 
C CALCULATE GRUENSIAN PARAMETER AND THE ENTHALPY OF FLUID ENTERING RECEI 
C TANK AND CHECK ITS QUALITY. 
C 

C 

CAll PPHI(DENS,T,PHII) 
GPU • PHIl 
HI • HET+QPIPE/FlOWl + PO~E~/FLOWI 
CAll CHECKCHl,PRESS,T,TANKQ) 

C OBTAI~ ENTHALPY OF VAPOR IN RECEIVER TANK eJ/GMOl), HEAT CAPACITY AT 
C CONSTANT VOLUME CJ/GMOl/DEG K). 
e 

c 

H • ENTHALCPRESS,OENS,T) 
CVAP • CV(DENS,T) 

C CALCULATE CHANGE IN VAPOR DENSITY AND RECEIVER TANK TEMPERATURE 
C WIT~ RESPECT TO TIME. 
C 

DDENS • DM*OTIME/VOl 
DT.CGRU*T*DM+C(HI-H'*FLOW1+Q)/CVAP)/CDENS*VOL+MWALL*CWALLeT)/CVAP) 

+ *OTIME 
e 
e CALCULATE HEAT ABSORBED ~Y TANK WALL, HEAT OF EXPULSION A~O CHANGE 
C OF RECEIVER TANK PRESSURE WITH RESPECT TO TIME. 
C 

C 

OWALL • -MWALL*CWALLCT,*DT/OTIME 
THETA. THCDENS,T) 
OPRESS·GRU*(THETA*DH+(HI-H,*FLOW1+O+QWALL).OTIME 

+ IYOL/IOl.3Z7 

e CAlrULATE NEW RECEIVER TANK DENSITY, TEMPERATURE AND PRESSURE, AND 
e INCREM.ENT THE SIMULATION TIME. 
C 

DENS • DENS + DDENS 
T • T + DT 
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TIME • TIME + OTI~E 
P~ESS • PRESS + DPRESS 

C RECALCULATE T~E FLOWRATE 
FLOW • FLOWl 
FLOWl • PUMPFLO(PRESS,FLOW) 
FL • FLOW1*"W*.13?16 

11 CONTINUE 
C 

FLOW2 • O. 
C CHECK TO SEE IF THE RELIEF VALVE HAS OPENED. 
C 

IF (PRESS .LT. PVENT*.999) GO TO 25 
IF (NVENT .EO. 0 .AND. PRESS .LT. PVENT*l.002) GO TO 25 

C 
C CALCULATE THE CHANGE OF MOLES IN RECEIVER TANK WITH VENTING. 
C 

O~ • «H-Hl)*FLOW1-Q-OWALL)/T~ETA 
C 
C CHECK TO SEE IF THE SYSTEM IS VENTING PROPERLY. 
C 

C 

C 

C 
C 
C 
C 

C 

C 
C 
C 

C 
C 
C 

IF «OM-FLOWl) .LT. 0.) GO TO 30 
IF(PRESS .LT. PVE~T.l.002)GQ TO 25 

WRITE (6,250) 
250 FOR~AT(lH ,*THE SYSTEM IS NOT VENTING PROPERLY,*, 

+ • CONTACT A PROGRAMMER.) 
NPLOT • NPLOT + 1 
X(NPLOT) • TIME/60. 
Yl(NPLOT) a T.9./5.-~~O. 
Y2(NPLOT) • PRESS*l~.696 
Y~(NPLOT) • FLOWl*MW*.132l6 
Y4(NPLOT) • M.MW/45~. 

Y~(NPLOT) • O. 
Y6(~PLOT' • Y4(NPLOT)+Y5(~PLOT) 
Y70l PLOn • ETO 
V8(NOLOT) • TANKO 
CALL POATA(M,XVENT) 

30 OPRESS • O. 

B 

26 

0\6 
0\7 
0\8 

0\9 

PRESS • PVENT 
FLOWl • OM-FLOWl 

SET FLAG TO S~OW THE RECEIVER TANK IS VENTING AND CALCULATE TOTAL 
AMOUNT VENTEO. 

NVJ:NT • 2 
XVENT • XVENT-FLOWZ*OTIME 
GI:' TO 26 
CONTINUE 

OM • FLOW1+FLOWZ 

CALCULATE NEW NUMBER OF MOLES PRESENT IN RECEIVER TANK. 

CHECK TO SEE IF ALL FLUID HAS BEEN TRANSFERRED. 

IF(M+XVENT .LT. O.95*TOTAL)GO TO 45 
IF(M+XVENT .LE. TOTAL)GO TO .8 
M • M-DM*OTIME 
OTIMEl • (TOTAL-(XVENT+"»/O~ 
IF(OTIME .IT. OTIMEl)GO TO 0\5 
M • M+OM*OTIMEl 
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CAll DOHE(H,XVENT, 
C 

45 CAll CHECK(HET,PET,TET,ETO, 
C 
C UPDATE THE SUPPLY TANK PROPERTIES. 
C 

C 

ETlIO • TOTAL-M-~VENT 
CAll SUPPlY(DTIME' 

C IF BAC~ PRESSURE FRO~ RECEIVER TANK IN THE ABSENCE OF A PUMP STOPS 
C FLOW, CALL SUBROUTINE TO STOP PROGRAM. 
C 

IF (PRESS .GT. PET .AND. POWER .IT •• 05,GO TO 33 
c 
C IF FLOW HAS STOPPED IN T~E PRESENCE OF A PUMP DUE TO BACK PRESSURE 
t FROM THE RECEIVER, CAll A SUBRQUTINE TO STOP pqOGRAM. 

C 

IF (ABS(FLOWl' .LT •• 1' GO TO 33 
GO TO 23 

33 CONTINUE 
NPLOT • NPlOT + 1 
X(NPLOT) • TIME/60. 
Yl(MPLOT) • T*9./5.-460. 
YZ(NPLOT) • PRESS*14.696 
Y3(NPLOT) • FLOWl*MW*.13Z16 
Y4(NPLOT) • M*MW/454. 
YS(NPLOT) • O. 
Y6(NPlOT) • Y4(NPLOT)+Y5(NPLOT) 
Y7(NPlOT) • ETa 
Y8(NPlOT) • TANKO 
CALL PFAIL(M,XVENT' 

23 CONTI~UE 
IF(DUMP .NE. 1.,GO TO 485 
NPlOT • NPLOT + 1 
X(~PlOT) • TIME/60. 
Yl(NPlOT' • T*9./5.-460. 
Y2(NPLOT) • PRESS*14.696 
Y3(HPlOT) • FLowl*MW*.13216 
Y4(N PlOT) • M.MW/454. 
Y~'NPLOT) • o. 
Y6(NPlOT) • Y4(HPlOT)+Y5(NPL1T) 
Y7(N DlOT) • ETa 
Y8(NPLOT) • TANKO 
CALL PDATAC~,XVENT) 

485 CONTINUE 
NPRT • NPRT + 1 

C WRITE SIMULATION VALUES INTO PLOT ARRAYS EVERY CHOSEN ITERATION. 
C 

C 

IF (NPRT .NE. 5) GO TO 35 
NPRT • 0 
K • 0 
NPLOT • NPLOT + 1 
X(NPLOT) • TIME/60. 
Yl(NPLOT) • T.9./5.-460. 
Y2(NPlOT) • PRESS*14.696 
Y3(NPlOT) • FlOWl*MW*.13216 
Y4(NPlOT) • M*MW/454. 
Y5(NPlOT) • o. 
Y~(NPLOT) • Y4(NPlOT) 
Y7(NPlOT) • ETQ 
Y8(NPlOT) • TANKa 

C IF RECEIVER TANK TEMPERATURE IS GREATER THAN CRITICAL TEMPERATURE, 
t DON'T BOTHER C~ECKING FOR TWO PHASES IN RECEIVER TANK. 
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c 

c 

IF(NGAS.EO.Z) GO TO 19 
35 IF (T .GE. ~O., GO TO ZO 

GO TO 36 
19 IF(T.GE.151.,GO TO ZO 

C OBTAI~ SATURATION TEMPERATURE AT RECEIVER TANK PRESSURE, USE THIS TO 
C GET SATURATIO~ DENSITY} CO~PARE SIMULATION AN~ SATURATION DENSITIES 
C TO DETERMINE WHETHER OR NOT ANY LIQUID IS PRESENT IN THE RECEIVER TAN' 
C 

C 

36 TSAT. FIND TV(PRESS) 
TTPRES • PRESS-l.E-5 
DSAT • FINO D(TTPRES,TSAT' 
DCALC • "/VOL 
IF (T .IT. TSAT, T • TSAT 
IF (OCAlC .lE. DSAT) GO TO 20 

C IF TW~ PHASES ARE PRESENT, BACK UP ONE ITERATION AND RETURN TO THE 
C MAIN PROGRA~. SHUT OFF COOL-DOWN NOZZLES, RECALCULATE FLOWRATE. 
C 

c 

c 

c 

~ • M - DM.OTI~E 

DENS • DENS-DDENS 
TIME • TIME-OTIME 
PPESS • PRESS-DPRESS 
T • FINO TV(PRESS) 

CONST • O. 
CDLENG • O. 
IJK • 1 
Fr.UESS • FlOWI * 5. 
IF(NGAS .EO. Z,FGUESS • FGUESS*4. 
FlOWl • PUMPFlO(PRESS,FGUESS) 

TIM. TIME/60. 
WRITE(6,58,TIM,KOUNT 

58 FORMAT(/,. COOlOOWN TIME • .,FIZ.~,. KCUHT •• ,16) 
RETURN 

20 IF(NPLOT .lE. 600)GO TO 10 
WRITE(6,151) 

151 FORMATe. ARRAY LENGTH EXCEEDED.) 
CAll PDATA(M,XVENT) 
END 

c····· .. · ... · .. ····· ... ·.· ......... ·.·· .. · ..... · .. · ...................... . 
C 

C 
C SUBROUTINE TO CALCULATE T~E GRUENSIAN PARAMETER (PHIl) AS A 
C FUNCTION OF DENSITY (G~OL/L) AND TEMPERATURE (DEG K). 
C 

c 

o • DO 
T • TT 
CAll DPDT(DT,D,T) 
CAP. CV(D,T) 
PHIl • DT/O/CAP.10I.325 
RETURN 
END 

c·····.··.·.·.·· ....... ·.·.···.·.···.···.·.· ... ··.·.·· ................... . c 
FUNCTION THCDENS,TEMP) 

c 
C CALCULATE THE HEAT OF EXPULSION (J/GMOL) AS A FUNCTION OF 
C DENSITY (GMDl/l) AND TEMPERATURE (DEG K). 
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C 

C 

CALL DPDT(DT,DENS,TEMP) 
CALL DPDDfDD,DENS,TEMP) 
TH • CP(DENS,TEMP).DENS.DD/DT 
RETU~N 
END 

C •••••••••••• • •••• • ••••• • •••••• • •••• • ••••• • •••• •• ••••••••••••••••••••••••• ~ 
C 

C 

c 

FUNCTION OVDPV(PRESS) 

COMMON/PROS/DUMP 

C CALCULATE THE PA~TIAL DERIVATIVE OF SPECIFIC VOLUME WITH RESPECT TO 
C PRESSURE FOR A SATURATED VAPOR. 
C 

c 

PVAP • PRESS-l.E-5 
TEMP. FINDTV(PRESS) 
V • 1./FINO D(PVAP,TEMP) 

C SET AN INITIAL DELTA P 
C 

C 

DP •• 05 
IF((PRESS-DP) .LT. I.E-4)DP • DP/2. 
KOUNT • 0 

25 TEMP • FINO TV(PRESS-DP) 
VLOW • 1./FIND D(PVAP-DP,TEHP) 
TEMP. FIND TV(P~ESS+DP) 
VHIGH • 1./FIND D(PVAP+DP,TEMP) 
DVDPV • (V~IGH-VLnWI/DP'2. 

C SEE IF THE DERIVATIVE WILL CHANGE BY MAKING DELTA P SMALLER 
C 

C 

IF (A8S«VHIGH-2 •• V+VLOW)/(VHIGH-V) .LT. I.E-3) RETURN 
KOUNT • KOUNT + 1 

C IF THE SOLUTION HAS NOT CONVERGED, MAKE CELTA P SMALLER. 
C 

DP • DP /2. 
c 
C IF THE DERIVATIVE HAS NOT CONVERGED IN 100 ITERATIONS, WRITE AN 
C ERROR ~ESSAGE (THIS FUNCTION USUALLY CONVERGES WITHIN 2-3 ITERATIONS)· 
C 

C 

IF (KOUNT .LE. 100) GO TO 25 
WRITE(6,125) 

125 FORMAT(lH ,.KOUNT EXCEEDS 100 FOR DVDPV. STOP PROGRAM.) 
DUMP • 1. 
RETURN 
END 

C·········· .. ··· ... ··········.·····.··· ... ··.··.····.· .................... . C 

C 

c 

FUNCTION DVDPL(PRESS) 

COMMON/PROS/DUMP 

C CALCULATE THE PARTIAL DERIVATIVE OF SPECIFIC VOLUME WITH RESPECT TO 
C PRESSURE FOR SATURATED LIQUID. INPUT IS PRESSURE (ATM), OUTPUT 
C DVDPL (L/GHOL/ATM) 
C 

PLIC • PRESS+l.E-5 
Tf"P • FINO TV(PRESS) 
V • 1./FIND D(PLIO,TEMP) 
DP • .05 
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C 

IF«P~ESS-DP) .LT. 1.E-4)DP • DP/2. 
KOUNT • 0 

25 TEMP • FIND TV(PRESS-DP) 
VLOW • 1./FIND D(PlIO-DP,TE~P) 
TE~P • FINO TV(PRESS+DP) 
VHIGH • I./FIND D(PLIO+DP,TEMPI 
OVDPL • (VHIGH-VLOW1/DP/2. 

C SEE IF THE PARTIAL DERIVATIVE HAS CONVERGED. 
C 

C 

IF (A8S(V~IGH-2 •• V+VlOW)'(VHIGH-V)) .lE. 1.E-3) RETURN 
KOUNT • KOUNT+ 1 

C IF THE SOLUTION HAS NOT CONVERGED, MAK~ DELTA P SMALLER. 
C 

DP • OP / 2. 
c 
C THE OE~IVATIVE SHOULD CONVERGE IN 100 ITERATIONS (USUALLY, 
C 2-3 ITERATIONS ARE SUFFICIENT). 
C 

C 

IF (KOUHT .lE. 100) GO TO 25 
~RITE(6,IZ5) 

125 FORMAT(1H ,*KOUNT EXCEEDS 100 FOR DVDPl. STOP PROGRA~*) 
DU"P-. 1. 
RFTURN 
END 

c********** •• *.****************·*********************************.********~ 
C 

C 

C 

FUNCTION DUDPV(PRESS» 

CO~~aN/PROB/DUMP 

C CALCULATE THE PARTIAL DERIVATIVE OF INTERNAL ENERGY WITH RESPECT 
C TO PRESSURE FOR A SATURATED VAPOR. INPUT IS PRESSURE (ATM). 
C 

TEMP. FINDTV(PRESS) 
DENS. FINO D(PRESS-l.E-5,TEMP) 

c 
C SINCE !NTE~NAl ENERGY IS NOT RI:TURNED BY THE THER~ODYNAMIC PROPERTIES 
C PAC~AGE, U • H - PV 
C 

C 

U • ENTHAl(PRESS-l.E-5,DENS,TI:MP)-PRESS*101.327/DENS 
DP • .05 
IF«(PRESS-DP) .IT. 1.E-4)OP • DP/2. 
KOUNT • 0 

2S TEMP • FINDTV(PRESS-DP) 
DENS. FIND D(PRESS-OP-1.E-S,TfMP) 
UlOW • ENT~AL(PRESS-DP-l.E-5,DENS,TEMP)-(PRESS-DP)*101.327/DENS 
TE~P • FINDTV(PRESS+DP) 
DENS. FINO D(PRESS+DP-l.E-5,TEMP) 
U~IG~ • ENT~Al(PRESS+DP-1.E-5,OENS,TEMP)-(PRESS+DP'*101.3Z7/DENS 
DUDPV • (UHIGH-Ul~W)/DP/Z. 

C SEE IF THE DERIVATIVE HAS CONVERGED. 
C 

C 

IF(A8S«(UHIGH-2.*U+UlOW)/(UHIGH-U,'.LT. 1.E-3) RETURN 
KOUNT • KOUNT + 1 

C IF THE SOLUTION HAS NOT CONVERGED, MAKE OElTA P SMALLER. 
t 

DP • DP /2. 
IF (KOUNT .LE. 100) GO TO 25 
WRTTE(6,125) 
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C 

125 FOR"AT(l~ ,.KOUNT EXCEEDS 100 FOR DUDPV. STOP PROGRAM.) 
DUMP • 1. 
RETURN 
END 

C····················································· .................... . C 

C 

C 

FUNCTION DUOPL(PRESS) 

COMMON/PROB/DUMP 

C CALCULATE THE PARTIAL DERIVATIVE OF I~TERNAl ENERGY WITH RESPECT TO 
C PRESSU~E FOR SATURATED LIOUID. INPUT IS PRESSURE (AT~), PARTIAL 
C DERIVATVE OUTPUT (J/G~OL/ATM). 

C 

c 

TEMP • FINDTV(PRESS) 
DENS • FIND D(PRESS+l.E-5,TE~P) 
U • E~THAL(PRESS+l.E-5,DENS,TE"P)-PRESS.101.327/DENS 
DP • • 05 
IF((PRESS-DP) .LT.l.E-4)DP • DP/Z. 
KOUNT • 0 

25 TEMP • FINDTV(PRESS-DP) 
DENS • FIND O(PPESS-DP+l.E-S,TEMP) 
UlOW • ENTHAL(P~ESS-DP+1.E-5,DENS,TEMP)-(PRESS-DP).101.327/DENS 
TEMP • FINDTV(PPESS+DP) 
DENS • FINO D(PRESS+DP+1.E-5,TEMP) 
UHIGH • ENTHAL(PRESS+DP+l.E-',DENS,TEHP)-(PRESS+DP).101.327/DENS 
DUDPL • (UHIGH-ULOW)/DP/2. 

C CHECK ACCURACY OF PARTIAL DERIVATIVE. 
C 

C 

IF(AeS((UHIGH-2 •• U+ULOW)/(UHIGH-U».LT. 1.E-3) RETURN 
KOU~T • KOUNT + 1 

C IF THE SOLUTION HAS NOT CONVERGED, MAKE DELTA P SMALLE~. 
C 

DP • DP /2. 
C 
C CHECK TO SEE IF THE SOLUTION IS CONVERGING (CONVERGENCE USUALLY 
C OCCURS IN 2-3 ITF.RATIONS). 
C 

C 

IF (KOUNT .LE. 100) GO TO 25 
WRITE(6,lZ5) 

125 F~~M4T(lH ,.KOUNT EXCEEDS 100 FOR DUDPL. STOP PROGRAM.) 
DUMP • 1. 
RETU~N 

END 

C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ' 
C 

FUNCTION DTDP(PRESS) 
C CALCULATE THE PARTIAL DERIVATIVE OF TEMPERTURE WITH 
C RESPECT TO PRESS FOR A SATURATED LIOUID 
C 

c 

C 

COHHON/PR09/DUMP 

TEMP. FINDTV(PRESS) 
DP • 0.05 
IF(PRESS-DP .LT. I.E-4)DP·DP/2. 
K~UNT • 0 

Z, THIG~. FINOTY(P~ESS+DP) 
TlOW • FINDTV(PRESS-DP) 
DTDP • (THIGH-TlOW)/DP/2. 
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C CHECK CONVERGENCE 
C 

C 

IF(ABS«THIGH-Z •• TEMP+TlOW)/(THIGH-TE~P» .lE. I.E-3) 
+ RETURN 
KOU~T • KOUNT+1 

C REOUCE OP 
C 

C 
C 

OP • OP/Z. 

IF (KOUNT .lE. 100) GO TO 25 
WRITE(6,lZ5) 

125 FORMAT(IH ,.KOUNT EXCEEDS 100 FOR DTDP. STOP PROGRAM.' 
DUMP • 1. 
RETURN 
END 

C·· •• ·····*.·.*·********·*****·*·****···· ••• ·*······** ••• * •••• *.*********.* 
C 

FUNCTION CWAll(TEMP) 
C 
C CALCULATE THE HEAT CAPACITY OF THE TA~K WAll (J/G/DEG K) 
C AS A FU~CTION OF TEMPERATURE (OEG K). WALL MATERIAL IS ALUMINUM 
C FOR LHZ AND INCONEL FOR LOX. 
C 

C 

COMMON/PROP/NGAS 
IF(NGAS.EQ.2, GO TO 1 
CWAlL • EXP(7.29296-1Z1.qlZ/TEMP+3~1.91e/(TEMP.*Z»/1000. 
GO T~ 2 

1 CWALl. EXP(6.~8Z-106.3/TEMP+3Z1.9/(TEMP**Z»/1000. 
2 RETURN 

END 

C.·*.·****************.·*************·****.***********.* ••• ***.********* •• * 
C 

FUNCTION FLO(PRESSI 
C 
C CALCULATE THE PUMPLESS FLOWRATE (GHOL/SEC) AS A FUNCTION OF 
C SUPPLY AND RECEIVEV TANK P~ESSURES (ATM). FOR THIS FUNCTION, THE 
C SUPPLY TANK PRESSURE MUST BE GREATER THAN THE RECEIVER TANK PRESSURE. 
C 

C 

COMMON/FLOWI DXAM,DET,TET,PET,LENGTH,PMETER 
CaMMON/NOZIlE/CDIAM,NOIDIA,HEADIA,NNOl,CONST,CDLENG 
COMMON/PARAMI MW,MWALl,O,VOl,QPIPE,OET,TOTAL,PVENT 

COMMON/PROB/OUMP 
REAL LENGTH,MW,MWALl,NOZDIA 
PI • 3.1~159 

C INITIALIZE THE FRICTION FACTOR, 
C 

C 

FLINE • 0.005 
FCDDl • 0.005 
PMETER • (PET-PRESS).0.05 
KOUNT • 0 

C CALCULATE FLOW~ATE, OBTAIN A NEW FANNING FRICTION FACTOR, THEN 
C ~E-CAlCUlATE THE FlO~RATE. THIS CONTINUES UNTIL THE F~ICTION 
C FACTOR CHANGES SIGNIFICANTLY 
C 

3' CONTINUE 
C 
C CALCULATE CONSTANTS FOR INDIVIDUAL PRESSURE O~OPS 

C 
C MAIN T~ANSFER LINE 
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C 
ClI~E • (3.1S815.MW.lENGTH)/(DET.PI •• Z.DIAM •• 5) 

C 
C COOL DOWN LINE 
C 

ceOOl • (3.15815.MW*CDlENG)/(DET*PI*.Z.CDIAM**', 
c 
C COOlDOWN NOZZLES 
C 

C 

A • CONST * 6.716ZE-Z I (NOlDIA.*Z) 
R • 1.941E-3 • MW I DET 
C • 1. - ((NOZDIA/~EADIA) •• 4) 
CNOl • ((A •• 2) • 8 * C ) I FLOAT(NNOl) • 4.725£-4 

C CALCULATE FlOWRATE 
C 

FLO • SQRT((PET-PRESS-PMETER)/(CLINE*FLINE+CCOOl.FC~OL+CNOZ" 
c 
C CALCULATE NEW FRICTION FACTORS 
C 

C 

FLNEW • FRICT(FlO,TET,DET,DIAM) 
FCNEW • FRICTCFlO,TET,OET,COIAM, 

C CONVERGENCE CHECK 
C 

IFfA9S(FlNEW-FlINE'/FlINE.lT.O.Ol.ANO.ABS(FCNEW-FCOOL'IFCOOl 
+ .IT.D.Ol'GO TO eo 

GO TO 81 
eo CONTINUE 

C. WRITE(6,11,FlINE,FCOOl 
77 FOR~AT(. FLINE • *,EI2.5,* FeOOl • .,E12.5' 

R fTURN 
81 C (INTI NUE 

C ITERATE 
C 

C 

FLINE • FLNEW 
FcnOL • FC~EW 
KOUl'IT • KOUNT+1 
IF(KDUNT .IT. lOO'GO TO 35 
W P IT E (t)ll 00 ) 

100 FOR~AT(IH ,*KOUNT EXCEEDS 100 FOR FLO. STOP PROGRAM.' 
101 OUl4p. 1. 

RETURN 
END 

C •• *··· •• ••• •• ·*···.··.·.·.·* •• •• •• ·.*·.*.**.* ••••••• *.**.* ••• * •• **.* ••••• ~ 
C 

FUNCTION FRICT(FlO,T,D,DIAM, 
c 
C CALCULATE THE FRICTION FACTOR AS A FUNCTION OF PIPE ROUGHNESS AND 
C REYNOLDS NUMBER. 
C 

C 

CO"~ON/PARAMI MW,M~ALL,Q,VOL,OPIPE,QET,TOTAL,PVENT 
CrJ'1MON/PROP/NGAS 

ItfAL ,",W,MWALL 
PI • 3.14159 

e CALCULATE THE DIMENSIONLESS REYNOLOS NUMPER 
C 

e 

IF(NGAS.EO.Z) GO TO 1 
REv. 4.*FlO*MW/(1.8367E-4.0IAM.PI' 
GO TO 2 

1 REY· 4 •• FlO.MW/(VISC(D,T)*1.E-6*DIAM*PI) 
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C THF PIPE ROUGHNESS IS ASSU~EO TO BE 0.00015 I~CHFS 
C 

c 

2 EPSILON· .00015.30.48 
FRICT • (-4 •• AlOG10(EPSILO~/DIAM/3.7-5.02/RFY.ALOG10(EPSIlON 

+ IOIAM/3.7 + 14.5/REY") •• (-2) 
RETURN 
END 

e ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• , 
c 

SU9ROUTINE CHECK(H1IPRESS,TE~P,OUAL) 
C 
t CHECK THE OUALITY OF A STREAM OR TANK GIVE~ ENTHALPY (J/GMOl" 
C PRESSURE (ATM, AND TEMPERATURE (OEG K). 
C 

C 

TSAT • FIND TV(PRESS) 
OSAT • FINO O(PRFSS+1.E-5,TSAT) 
HCAle • ENTHAL(PRESS+l.E-5,OSAT,TSAT' 
IF (HCAlC .IT. H1' GO TO 10 

C IF ACTUAL ENTHALPY IS LESS THAN LIOUID SATURATION ENTHALPY, THE 
C lIQUID IS SUBCOOLEO AND THERE IS NO VAPOR PRESENT (QUAL • 0). 
e 

C 

~UAL • O. 
RFTURN 

10 OVAP • FIND D(PRESS-l.E-5,TSAT~ 
HV'P • FNTHAL(PRESS-l.E-5,OVAPgTSAT) 

C CALCULATE THE QUALITY USING ACTUAL, LIQUID AND VAPOR ENTHAlPIES. 
C 

c 

OUAL .100 •• (HCALC-Hl)/(HCALC-HVAP) 
RETURN 
END 

c ••••• • •• •••••••• •••••••••• •• •• • ••• •••••••• •• • •• •••••• •••••••••••••••••••••• c 
C 
C CALCULATE THE FlOWRATE RETWEE~ TA~~S (GHOl/SEC) IN THE PRESENCE OF 
C A PUMP (J/S'. THIS ROUTINE REOUIRES AN INITIAL GUESS FOR THE 
C FLOWRATE. 
C 

C 

COMMON/FLOW/ OIAM,DET,TET,PET,lEHGTH,PMfTER 
COMMON/NOZZLE/CDIAM,NOZOIA,HEAOIA,NNOZ,CONST,COLENG 
C~~HON/PARA~/ MW,MWALl,O,VOL,OPIPE,QET,TOTAl,PVENT 
COMMON/PUMPI POWER,EFF 
COM"ON/PRO~/OUHP 

CO"HO~/NEG/IJK 
REAL MW,~VALL,LENGTH,NOZDIA 
KOUNT • 0 
DP • PET-PRESS 
PHETER • DP.O.O' 
PI • 3.1~159 

25 EFF • PEFFCPFL01) 

C CALCULATE A THEORETICAL PRESSURE DROP (OR RISE' BETWEEN TANKS. 
C 
C NOZZLE PRESSURE DROP 
C 

C 

A • CONST • 6.7162E-2 I (NOZOIA •• Z' 
~ • 1.941E-3 • MW I DET 
C • 1. - «NOZOIA/HEADIA) •• ~' 
DPNOl • «PFL01 •• 2) ~ (A •• 2) * 8 • C, / FLOAT(NNOZ' • 4.725E-4 
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C COOLDOWN LINE 
C 

FCOOl • FRICT(PFL01,TET,OET,COIAH, 
OPCOOL-(PFL01**Z,*(3.15815*MW*CDLENG*FCCOL,/(DET*PZ**2*COIA".*" 

C 
C MAIN TRANSFER LINE 
C 

FLINE • FRICT(PFLOl,TET,DET,DIAM, 
OPLINE • (PFlOl*.Z)*(3.15815*~W*LENGTH*FLINE)/CDE1*PI**2.DIA~.*" 

C 
C PUMP 
C 

c 
~ CALCULATE PRESSURE DROP 
C 

DPCALCI • + PHETER + OPNOZ + DPCOOL + DPLINE - DPPUHP 
c 
C I~CREMENT FOR INTE~ATZON 
C 

KOUNT • KOUNT + 1 
IF (~QUNT .GT. 1) GO TO 10 
PFLO • PFLOt 
PFLOl • PFLOt*1.' 
DPCALC • OPCALCl 
GO TO 2~ 

c 
C CALCULATE A NEW FLr.WR~TE USING A QUASI-NEWTON ~ETHOD. 
C 
C NOMENCLATURE I 
C PUMPFLO - FLOWR~TE (GM~L/S' AT N+l ITERATIO~ 
C PFLOI - FLOWARATE AT N ITERATION 
C PFLO - FLOWATE AT N-l ITERATION 
C DPCAlCl - CALCULATED PRESSU~E DROP (ATM, AT N ITERATION 
C DPCAlC - CALCULATED PRESSURE DROP AT N-l ITERATION 
C OP - ACTUAL PRESSURE DROP (OR RISE) BETWEEN TANKS. 
C 

10 PUMPFLO • PFL01-(DP-DPCALC1'*(PFLOI-PFLO)/(DPCALC-DPCALCl) 
C 
C CHECK TO SEE IF THE THEO~eTICAL AND ACTUAL TANK PRESSURE 
C DIFFERENCES ARE WITHIN 0.01~ OF EACH OTHER. 
C 
C 
C CONVERGENCE CHECK 
C 

IF(ABS«(DPCALCI-DP"DP) .LT. 1.E-4' GO TO 180 
GO TO 170 

180 CONTINUE 
160 CONTINUE 

RETURN 
170 CONTINUE 

C 
C ITERATE THE FLOWRATf., CALCULATE PRESSURE DROP. 
C 

C 

DPCALC • DPCALCl 
PFLO - PFLOI 
PFLOl • PUHPFLO 

IF (~OUNT .LT. 100) GO TO 25 
WPJTE(6,100' 

100 FORMAT(lH ,.KOU~T EWCfEDS 100 FOR PU~PFlO. STOP PROGRAM.) 
DU~P - 1. 
RETUR~ 
END 
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C 
C.* ••• ** ••••• * ••••••••••••••••••••••• * ••• * ••• **.**********.***.* •• **** ••• **., 
C 

FUNCTION PEFF(FLOW1) 
C 
C CALCULATE PUMP EFFICIENCY OF A CENTAUR PUMP 
C 

c 

CO~MON/FlOWI DIAM,DET,TET,PET,LENGTH,PMFTER 
COMMON/PROP/NGAS 

REAL LENGTH 

C CHANGE UNITS ON FLOWRATE FROM GMOL/S TO GALLONS/MIN. 
e 

GPM • FLOW1*15.8502/DET 
C 
C CALCULATE PUMP EFFICIENCY 
C 

c 

IFCNGAS.EQ.Z, GO TO 1 
PEFF·C.39Z13+.0966Z·GPH+Z.1797E-5*(GPM**2'-

• 8.1723E-8·CGPM •• 3)+Z.500SE-ll*(GPM ••• ')/lOO. 
GO TO 2 

1 PEFF. C.32031 •• ~8Z61.GPM-l.6223E-3*(GPM •• 2'+ 
+ 3.q836E-6*(GPM**3)-~.8853E-9*(GPM*·~)'/lOO. 

Z CONTINUE 
RETUR~ 
END 

c··**·.***·**· •• ·****.**·.*******· •• •••• •••••• * ••• *.*·.*********.******* •• ** 
C 

SUBROUTINE PFAIL(M,XVENT' 
c 
C THIS SUBROUTINE FINISH~S OFF THE PROGRAM. PFAIl IS USED WHEN 
e FLOW aETWEE~ TANKS STOPS DUE TO BACK PRESSURE FROM THE RECEIVER 
C TANK. 
e 

C 

COMMON/SUB/ FLOW1,FLOW2,PRESS,TEMP,TIME,HET 
COMMON/PARA"' MW,MWAlL,O,VOL,OPIPE,OET,TOTAL,PVENT 
COMMON/FLOWI DIAM,DET,TET,PET,LENGTH,PMETER 
COMMON/PLOTI NPLOT,X,Yl,Y2,Y3,y~,Y5,Y6,Y7,Y8 
COMMON/PROP/NGAS 

DIMENSION OPLOT(18l 
REAL XC600',Yl(600J,Y2(600',Y3(600J,Y~(600),Y5(600',Y6(600) 

+ ,Y7(600),YS(600) 
REAL M,MW,MWALL,LENGTH 

C CONVERT TIME FROM SECONDS TO MINUTES, PRESSURE FROM 4T~ TO PSI, 
C TEMPERATURE FROM DeG K TO DEG F AND QUANTITY FROM GMOL TO LB. 
C 

C 

XTIME • TIME/bO. 
XPRESS • PRESS*1~.696 
PET • PET*14.696 
XTEMP • TEMP.q./5.-460. 
TET • TET*9./5.-460. 
X~ • M.MW/~54. 

XOUT • XVENT*MW/~5~. 

C WRITE A MESSAGE STATING W~Y THE SIMULATION STOPPED AND WHAT THE 
C CONDITIONS WERE AT THAT TI~E. 
C 

WRITE(6,100) XTIME,XTEMP,XPRESS,XM,XOUT 
100 FnR"~T(II* AT *,F7.3,* "I~UTES FROM START OF PROPELLANT* 

+ ,* TRANSFER*I,* FLOW HAS STOPPED DUE TO BAC~ PRESSURE FROM* 
+,* THE RECEIVER TANK •• ,II,*AT THIS TIME THE RECEIVER TANK*, 
+ * IS AT .,F7.2,* DEG F, *,F7oZ,* PSIA*I, 
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+ • A~D CONTAINS .,Fl0.2,. POUNDS ., 
+ II,. OURING THE SIMULATION .,F8.2,. POUNDS WERE VENTE~.) 

c 
WRITElb,101)TET,PET 

101 FOR~AT(/. SUPPLY TANK IS AT .F9.4,. OEG F, .F7.2,. PSIA.) 
C SKIP OVER OTKER MESSAGES AND GO TO INITIALlZATION Of PLOT DATA 
C AND PARAMETERS. 
C 

C 

GO T~ 10 
E~TRY FULL 

C THIS ENTRY IS USED WHEN THE ~ECEIVER TAN~ IS FULL OF LIOUID. 
t 
C CONVERT TIME, TEMPERATURE, PRESSURE AND QUANTITY IN RECEIVER TANK TO 
t ENGLISH UNITS. 
t 

C 

IF(M .LT. TOTAL .AND. XVENT .EO. O.)M • TOTAL 
IFCM+XVENT .NE. TOTAL)M • TOTAL-XVENT 
XTIMf • TIME/bO. 
XTEMP • TEMP.q./5.-4bO. 
TfT • TET*9./5.-460. 
XPRESS • PRESS*14.b96 
PET • PET*14.696 
XM • ~.MW/454. 
XOUT • XVENT*MW/454. 

C WRITE OUT A MESSAGE STATING WHY THE SIMULATION STOPPED AND WHAT THE 
C CONDITIONS WERE AT THAT Tr~E. 
C 

t 

WRITE(6,110) XTIME,XTEMP,XPRESS,XM,XOUT 
110 FORMAT(II,. AT *,F7.l,* MINUTES FROM START OF PROPELLANT., 

+ • T~ANSFEP,*". THE RECEIVER TANK IS FULL.*II,* AT THIS TIME * 
+ *THE RECEIVER TANK IS AT .,F7.Z,. OEG F, *,F7.Z,. PSIA,." 
+ * AND CONTAINS .,FI0.Z,*POUNDS*, 
+ 11,* DURING THE SIMULATION .,Fe.2,. POUNDS WERE VENTEO., 

WRITE(6,111,TET,PET 
111 FORMAT(/. SUPPLY TANK IS AT .F9.4,. DEG F, *F7.2,. PSIA.' 

C SKIP OVER UNWANTED MESSAGE. 
C 

C 

GO TO 10 
ENTRY OONE 

C THIS ENTRY IS USED WHEN THE SUPPLY TAN~ IS E~PTY. 

C 
IF(M .LT. TaTAL ,AND. XVENT .EQ. O.'M • TOTAL 
IF(M+XVENT .NE. TOTAL)M • TOTAL-XVENT 

C CONVFRT TO ENGLISH UNITS. 
C 

C 

XTI"E • TIME/60. 
XTEMP • TEMP*9./5.-460. 
TET • TET.9./5.-460. 
XPRESS • PRESS*14.696 
PET • PET.14.696 
XM • M.MW/4'4. 
YOUT • XVENT.MW'~5~. 

C WRITE A~ APPROPRIATE MESSAGE AND STOPPING CONDITIONS. 
C 

WRITE(b,lZ0' XTIME,XTE"P,XPRESS,XM,XOUT 
120 FOR~AT(/,* AT *,F7.3,. MINUTES FROM START OFPROPELLANT*, 

+ * TRANSFER.',. THE SUPPLY TANK IS E~PTy.,I,. AT THIS TIME THE* 
+ • RECEIVER TANK IS AT .,F7.Z,* OfG F, .,F7.Z,. PSIA,." 
+ * A~O CONTAINS .,FI0.Z,.POU~DS., 
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c 

+ 1,* DURING THE SI~ULATIO~ *,F8.2, 
+ * POUNDS WERE VENTED*, 

WRITE(6,lZl,TET,PfT 
121 FOR~AT(/* SUPPLY TA~~ IS AT *F9.4,* DEG F, *F7.2,* PSI'*) 

C IDE~TIFY THE PROPELLANT FOR THE PLOTTING ROUTINE. 
C 

c 
GO TO 10 
ENTRY PDATA 

C THIS ENTRY IS USED WHEN A PROGRAMMED STOP IS EXECUTED 
C 
C CONVERT TO ENGLISH UNITS 
C 

c 

XTIME • TIME/60. 
XPRESS • PRESS*14.696 
PET • PET*1't.696 
XTEMP • TEMP*9./5.-460. 
TfT • TET*9./5.-460. 
X'" • "'.'U0454. 
XOUT • XVENT*"W/454. 

C WRITE A MESSAGE STATING THE CONDITIONS WHEN PROGRAM IS STOPPED 
C 

C 

C 

C 
C 
C 

C 

WRITE(6,140,XTIME,XTEMP,XPRESS,XM,XQUT 
140 FORMAT(II,* AT .,F7.3,* MINUTES FROM START OF PROPELLANT., 

+ * TRANSFER*I,. A STOP IS REACHED*,II* AT THIS TIME THE* 

141 
10 

190 

11 
191 

12 

+ • RECEIVER TANK IS AT *,F7.2,* DEG F, *,F7.2,* PSIA,*I, 
+ * ANO CONTAINS *,F10.Z,*POUNOS*, 
+ II,. DURING THE SIMULATION *,F8.2, 
+ * POUNOS WERE VENTED*) 

WRITE(6,141'TET,PET 
FDRMAT(II. SUPPLY TANK IS AT *F9.4,* DEG F, *F7.Z,* PSIA*) 
CDNTINUE 
IF(HGAS.EO.2'GO TO 11 

WPITE(8,190) 
FORMATC*HYOROGEN*' 
GO TO 12 
WnTE(8,19U 
FORMATC*OXYGEN*) 
CONTINUE 

WRITE THE NUMBER OF PLOT POINTS FOR USE BY THE PLOT ROUTINE. 

WPITE(S,200) NPLOT 
ZOO FOIHIAT(l3) 

C OPLOTC4' ARE BOUNDS FOR VI, OPlOT(5) AND OPLOT(6) ARE BOUNDS 
C SET LOWER AND UPPER BOU~DARIES FOR PLOTS 
C 

OPLOTU) - o. 
OPLOT(Z) • O. 
DO 708 r-1,It 
IF(TI~E/60 •• lE. 10.)OPLOT(Z) • 10. 
IFCTr~E/60 •• lE. 5.}OPLOT(2} • 5. 
IF (TIME/bO •• GT. OPLOT(Z')OPLOTCZ) • OPLOT(Z) + 50. 

708 CONTINUE 
OPLOT(3) • -500. 
IF(NGAS.EO.Z'QPlOT(3) • -"00. 
OPLOT(4) • o. 
IF(NGAS.EO.2'OPLOT(4) • 100. 
0[1 55 J. 1,3 
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C 

IFCYl(l) .GT. OPLOT(4)) OPLOT(4) • OPLOT(4)+100. 
55 CONTINUE 

OPLOT( 5) - O. 
OPLOT(6) - 50. 
DO 57 I-l,NPLOT 
IF((YZ(I).GT.OPLOTC6)).ANO.CYZ(I).LT.COPLOT(6)+50.)))OPLOT(6) -

+ OPLOTC 6) + 50. 
57 CONTI .. UE 

56 OPLOT(7) • O. 
OPlOT(S) • ZOOo. 
IF(NGAS.EQ.2)OPLOT(S) - 10000. 
o PLOT C 9) - O. 
OPLOT(lO' • Z50. 
TOTAL - TOTAL/454.*~W 
00 1000 1-5000,65000,5000 
IF(TOTAL.LE.FLOAT(I"OPLOT(lO) • FLOAT(I)*O.lO 
IF(TOTAL.LE.FLOATCI')GO TO 1001 

1000 CONTINUE 
1001 CQNTINUE 

o PLOT Cl1l - 0 • 
OPLOT(lZ' • OPLOT(lO'*lO. 
OPLOTCl3' - O. 
OPLOT(14) - OPLOT(lZ) 
OPLOTU5, - O. 
OPLOTCl6' • 100. 
o PLOT n 7) • O. 
OHOTtlS) - 100. 

C WRITE PLOT PARAMETERS FOR PLOTTING ROUTINE. 
C 
C WRITE(6,*)(OPLOTCII),II-1,18) 

WRITE(S,*)(OPLOT(II"II·l,lS' 
C 
C WRITE ARRAYS CO~TAINING SIMULATIO~ VARIA8LES. 
C 
C wRITE(~,Z49)(XCI),YICI),I-1,Z) 
C Z49 FORMATCZF15.5, 

WRITE(S,Z50) (X(I),Yl(I),Y2(I),Y3CI"Y4(I),Y5CI),Y6(I), 
+ Y?(I',YSCI',I-l,NPLOT, 

250 FORMAT(F8.3,TIO,F~.3,TZO,F8.5,T30,F8.Z,T40,F8.l,T50,FS.1,T60,F8.1 
+ ,T70,FS.3,T80,F8.3) 

STOP 
END 

c 
c*************************************************************************' 
C 

SU8ROUTINE SUPPLY(DTIMEI 
COMMON/SUB/ FLOWl,FLOW2,PRESS,TEMP,TIME,HET 
COMMON/FLOW/ DIAM,DET,TET,PET,LENGTH,PMETER 
COMMON/PARAM/ MW,MWALL,Q,VOL,QPIPE,OET,TOTAL,PVENT 
COMMON/PR08/DUMP 
CO~"ON/ETANK/ETLIQ,ETVAP,VET,ETO 

RE~L MW,MWALL,LENGTH 
C THIS SUBROUTINE MONITORS THE PROPERTIES OF T~E SUPPLY TANK. 
C 
C INITIALIZE THE SUBROUTINE 
C 
C ENTHALPY AND HEAT CAPACITY OF LIQUID IN SUPPLY TANK. 
C 

HL - "'ET 
CSUBP • CPCOET,TET) 

C 
C FRACTION OF TAN~ VOLUME OCCUPIED BY LIQUID AND AMOUNT OF 
C HEAT TO EACH PHASE. 
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C 

C 

FP4CT • ETLIO/VET/DET 
DOL • OET.FRAtT 
OOV • OET-OOL 

C SPECIFIC VOLUME OF LIOUID • 
C 

VfTLIQ • 1./DET 
C 
C SATURATION TEMP AT GIVEN PRESSURE, AND THE VAPOR DENSITY. 
C 

TETSAT • FINOTV(PET) 
DETVAP • FINDD(PET,TETSAT+l.E-3' 

C 
C SPECIFIC VOLUME OF VAPOR. 
C 

C 
C 

VETVAP • 1./OETVA? 

C GRUNEISEN PARAMETER FOR VAPOR A~D LIQUID. 
C 

c 

CALL PPHI(DETVAP,TETSAT+l.E-3,PHII' 
GRUVAP • PHIl 
CALL PPHI(DET,TET,PHII, 
GRULIa • PHIl 

C HEAT OF EXPULSION FOP VAPOR AND LIQUID 
C 

C 

THETAV • TH(DETVAP,TETSAT+l.E-3' 
THET4l • TH(DET,TET' 

C CALCULATE THE CHANGE IN THE SUPPLY TANK PRESS ~ITH TIME 
C 

OPET • «-FLOWl+VETVAP/VETLIQ/THETAV*OOV+l./THETAl 
1 *DOl"ETlIO/(VETlIO/THETAlIGRULIQ+ETVAP* 
~ VETVAP*.2/ETLIQ/VETLIQ/THETAV/GRUVAP"I01.3271·0TI~E 

C 
C CALCULATE THE CHANGE IN THE SUPPLY TANK LIOUID TE~PERATURE 
C WITH TIME 
C 

OTET • «DOL/ETlIQ+VETlIC*AlPHAl(PET,TET,DET'*OPET*101.327 
1 'DTIME"CSU~P'*DTI~E 

C 
C CALCULATE T~E CHANGE IN THE SUPPLY TANK LIQUID ENTHALPY WITH 
C TIME 
C 

DHL • (OQL/ETlIO+VETlIO*DPET/DTIME*101.3Z7)*DTIME 
C 
C INCREMENT THE PRESSURE, LIQUID TEMPERATURE AND ENTHALPY 
C 

PET • PET+DPET 
TET • TET+DTET 
Hl • HL+DHl 

C OBTAIN NEW LIOUID DENSITY A~D ENTHALPY FRO~ FLUIOSPACK 
C 08TAIN THE SUPPLY TANK LIQUIO QUALITY 
C 

C 

501 OET. FINOO(PET,TET) 
HET • ENTHAL(PETDOET,TETl 
CALL CHECK(HET,PET,TET,ETO) 

C IF OUALITY IS GREATER THAN lERO, CAVITATION COULD OCCUR. STOP 
C TRA~SFER IMMEDIATELY. 

IF(ETO.lT.l.E-6'GO TO 99 
WPITF(6,2Z5)~TO 
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C 

ZZ5 FORMAT(1HO,*ET LIC BOILING. STOP TRANSFER.,5X,*ETO • *E1Z.5) 
DU~P • 1. 
RETURN 

C COMPARE ~ODEL AND FLUIDSPACK ENTHALPIES. IF THE VALUES ARE WIDELY 
C DISPARATE, THE ET MODEL IS IN ERROR. STOP THE PROGRAM. 
C OTHERWISf USE TME MODEL VALUE. 
C 

99 IF(ASS«HET-HL)/HL) .GT. 0.100)GO TO 100 
HET • HL 
RETURN 

10e WRITE(6,Z55)HET,HL 
25~ FORMAT(lHO,. ENTHALPY DISPARITY. HET •• E12.5,. HL • .E1Z.5) 

C 

C 

DUMP • 1. 
RETURN 
END 

C·*····.*··.*·······.···························*···*· ••••••••••••• * ••• 
C 

C 

C 

FUNCTION ALPHAL(PET,TET,DET' 

COMMO~/PROB/DUMP 

C THIS FUNCTION CALCULATE THE BULK EXPANSIVITY FOR THE LIQUID 
C 
C 
C SET THE TEMPERATURE STEP AND THE LOOP COUNTER 
C 

C 

DT • 0.05 
KOUNT • 0 

C FINO VALUES SLIGHTLY ABOVE AND BELOW THE ACTUAL TEMPERATURE 
C FOR THE DENSITY 
C 

2~ DHI~H. FI~DD(PET,TET-DT) 
DLOW • FINDD(PET,TET+OT, 

C 
C CALCULATE THE BULK EXPANSIVITY 
C 

C 

ALPHAL • -TET/DET*(DHIGH-DLOW'/OT/Z. 
IF(A~S«DHIGH-2 •• DET+DLOW)/(DHIGH-DET)' .LT. 1.E-3'RETURN 
KOUNT • KOUNT + 1 

C IF THE VALUES ARE NOT CONVERGI~G, MAKE THE TEMPERATURE STEP SMALLER 
C 

DT • OT/2. 
IF(KOUNT.LE.l00'GO TO 25 
WRITE(6,125) 

125 FORMATC1Hl,.KOUNT EXCEEDS 100 FOR AlPHAL. STOP PROGRAM.' 
DUMP • 1. 
RETUR~ 
END 
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DEHO 

.PROC,DEMO • 

. * 

.* DEMONSTRATION PROGRAH USING DISSPLA 9.0 • 

. *. 
EVICT,LGO,PLOT. 
FTN,I=PROG,L=FAIL,R=3,PMD. 
IFE,FILE(GRAFING,.NOT.AS),JO. 
GET,GRAFING/UN=GRAF. 
ENDIF ,JO. 
GET,TAPE2=PSDATA. 
BEGIN,DISPLA9,GRAFING. 
RETURN,PROG,LGO. 
REPLACE ,PLOT. 
RENAME,Z=PLOT. 
SKIPR,Z. 
COPYBR,Z,OUTPUT,l. 
REVERT. 
EXIT. 
REVERT,ABORT. 
REPLACE,FAIL • 
• DATA,PROG 

PROGRAM DEHO(INPUT,TAPE2,OUTPUT=/1000.PLOT=/1000) 
REAL DUN ,LMAX 
DIHENSION X( 400) , Yl( 400) , Y2( 400) , Y3( 4(0) ,Y4( 400), YS (400) , 

+ Y6(400),Y7(400),Y8(400) 
DIMENSION XAXIS(4) ,HEAD(3) ,IPKRAY(300) ,11(3) ,L2(3) ,L3(3) ,L4(3) 
DINENSION NAME(2),IPK2(100) 
DATA XAXIS/IOHTIME (MINU,lOHTES)$ ,2*10H 
READ(2,*) DIAM,POWER,TEMP,PRESS 
READ(2,80) NAHE(1),NAME(2) 

80 FORMAT(2A4) 
READ(2,*) N 
READ(2,*) TMl,TH2,TMIN,TMAX,PMIN,PHAX,FHIN,FMAX,VMIN, 

+ VMAX,LMIN,LHAX,DUMl,DUM2,DUM3,DUM4,DUMS,DUM6 
DTIME = (T~Q-TMl)/lO. 
DTEMP = (TMAX-TMIN)/5. 
DPRESS = (PMAX-PMIN)/5. 
DFLOW = (FMAX-FMIN)/5. 
DVAP = (VMAX-VMIN)/5. 
DLIQ = (LMAX-LMIN)/5. 
DO 10 I=I,N 

10 READ(2,*) X(I),Y1(I),Y2(I),Y3(I),Y4(I),Y5(I),Y6(I),Y7(I),Y8(I) 
CALLID( " LOUIE, $" , 100) 

C CALL HP7221 
CALL FR80(0.0) 

C CALL TK4010(120) 
C CALL HWSPEC(4HPLOT,4HFILE) 

CALL NOBRDR 
CALL PHYSOR(1.25,6.) 
CALL AREA2D(6.,4.) 
ENCODE(30,100,HEAD) NAME(1),NAME(2) 
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100 FORMAT(2A4," PROPELLANT TRANSFER$") 
CALL HEADIN(HEAD, 100,1.25,1) 
CALL XNAME(XAXIS,100) 
CALL YNAME("TEMPERATURE (DEG F)$",100) 
CALL YAXANG(O.) 
ENCODE(30,15,L1) DIAM 

15 FORMAT("DIAMETER: ",F4.1," IN.$") 
ENCODE(30,20,L2) POWER 

20 FORMAT("PUHP: ",F4.1," HP$") 
ENCODE(30,25,L3) TEMP 

25 FORMAT("TANK TENP: ",F6.1," DEG F$") 
ENCODE(30,30,L4) PRESS 

30 FORMAT("TANK PRESS: ",F4.1," PSIA$") 
CALL LINES (L1,IPKRAY,1) 
CALL LINES(L2,IPY~Y,2) 
CALL LINES(L3,IPKRAY,3) 
CALL LINES(L4,IPKRAY,4) 
CALL LSTORY(IPKRAY,4,3.5,3.0) 
CALL GRAF(TH1,DTIME,TM2,TNIN,DTEMP,TMAX) 
CALL CURVE(X,Y1,N,0) 
CALL ENDGR(O) 
CALL PHYSOR(1.25,1.) 
CALL AREA2D(6.,4.) 
CALL XNAHE(XAXIS,100) 
CALL YNAHE("PRESSURE (PSIA)$",100) 
CALL YAXANG(O.) 
CALL GRAF(TN1 ,DTIlm, TM2 ,PI1IN ,DPRESS ,PMAX) 
CALL CURVE(X,Y2,N,0) 
CALL ENDGR(O) 
CALL ENDPL(O) 
CALL NOBRDR 
CALL YAXANG(O.) 
CALL PHYSOR(1.25,6.) 
CALL AREA2D(6.,4.) 
CALL HEADIN(HEAD, 100,1.25,2) 
CALL HEADIN("(PAGE 2)$",100,1.,2) 
CALL XNAME(XAXIS,100) 
CALL YNAME("POUNDS IN VAPOR PHASE$",lOO) 
CALL GRAF(TNl,DTIME,TM2,VNIN,DVAP,VMAX) 
CALL CURVE(X,Y4,N,0) 
CALL ENDGR(O) 
CALL YAXANG(O.) 
CALL PHYSOR(1.25,1.) 
CALL AREA2D(6.,4.) 
CALL XNfu~ (XAXIS,100) 
CALL YNAME ("POUNDS IN LIQUID PHASE$", 100) 
CALL GRAF(THI ,DTUm, TM2 ,LNIN ,DLIQ ,LHAX) 
CALL CURVE(X,Y5,N,0) 
CALL ENDGR(O) 
CALL ENDPL(O) 
CALL NOBRDR 
CALL YAXANG(O.) 
CALL PHYSOR(1.25,6.) 
CALL AREA2D(6.,4.) 
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CALL HEADIN(HEAD,100,1.25.2) 
CALL HEADIN(" (PAGE 3)$",100,1.,2) 
CALL XNAME(XAXIS,lOO) 
CALL YNAME( "TOTAL POUNDS TRANSFERRED$", 100) 
CALL GRAF(TMl,DTIME,TM2,LMIN.DLIQ,LMAX) 
CALL CURVE(X,Y6,N,0) 
CALL ENDGR(O) 
CALL YAXANG(O.) 
CALL PHYSOR(1.25,1.) 
CALL AREA2D(6.,4.) 
CALL XNAME (XAXIS,lOO) 
CALL YNAME C"FLOWRATE (POUNDS/MIN)$",lOO) 
CALL GRAFCTMI ,DTIME, THZ ,FHIN .DFLOW,FHAX) 
CALL CURVE(X,Y3,N,0) 
CALL ENDPLCO) 
CALL PHYSOR(1.5,6.) 
CALL AREA2D(6.,4.) 
CALL HEADIN(HEAD,100,1.25.2) 
CALL HEADIN("CPAGE 4)$" ,100,1. ,2) 
CALL XNAHECXAXIS,100) 
CALL YNAMECIH ,1) 
CALL YNONUM 
CALL LINES("SUPPLY$",IPK2,1) 
CALL LINESC"RECEIVER INLET$",IPK2,2) 
CALL GRAFCTMl,DTIME,TM2,-10 •• 120.,110.) 
CALL RLVEC(TNl-.2,0., TMl+. 2,0. ,0) 
CALL RLVEC(TMl-.2,100.,TMl+.2,100.,0) 
Xl = XINVRS(XMESSC"lOO% LIQ. $",100),0.) 
X2 = XINVRS(XMESSC"lOO% VAP. $",100),0.) 
CALL RLl'1ESSC"lOO% LIQ. $",lOO,TMl-.2-Xl,0.) 
CALL RLMESS("lOO% VAP. $" ,100,TMl-.2-X2,100.) 
CALL CURVECX,Y7,N,lO) 
CALL CUkVECX,YB,N,lO) 
CALL LEGElID(IPK2,2,3.,3.) 
CALL ENDPL(O) 
CALL DONEPL 
STOP 
END 
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FPLOT 

PROGRAM PLOT(INPUT,TAPE6,OUTPUT=TAPE6,TAPE8=INPUT) 
REAL TIME(400),TEMP(400),PRESS(400),FLOW1(400),MVAP(400),MLIQ(400) 
REAL LLB, LUB 
READ(8,*) DUM1,DUM2,DUM3,DUM4 
READ (8 ,90) NAME 

90 FORMAT(A10) 
READ(8,100) N 

100 FORMAT(I3) 
READ(8,*) TLB,TUB,TEMPLB,TEMPUB,PLB,PUB,FLB,FUB,VLB,VUB,LLB,LUB, 

+ TOTLB,TOTUB,Q1LB,Q1UB,Q2LB,Q2UB 
DO 10 I = 1,N 

10 READ(8,110) TIME(I),TEMP(I),PRESS(I),FLOW1(I),MVAP(I),MLIQ(I) 
110 FORMAT(F8.3,TIO,F8.3,T20,F8.5,T30,F8.2,T40,F8.1,T50,F8.1) 

ILOG = 0 
ISIZE = 0 
NOUT = 0 
WRITE(6,120) 

120 FORMAT(lH1,*ORBITER TANK TEMPERATURE (DEGREES F) VS.* 
+ ,* TIME (MINUTES)*) 

CALL PPC(TEMP,TIME,N,ILOG,ISIZE,NOUT,TEMPLB,TEMPUB,TLB,TUB) 
WRITE(6,130) 

130 FORMAT(lH1,*TANK PRESSURE (PSIA) VS. TIME (MINUTES)*) 
CALL PPC(PRESS,TIME,N,ILOG,ISIZE,NOUT,PLB,PUB,TLB,TUB) 
WRITE(6,140) 

140 FORMAT(lH1,*FLOWRATE (LB/MIN) VS. TIME (MINUTES)*) 
CALL PPC(FLOW1,TIME,N,ILOG,ISIZE,NOUT,FLB,FUB,TLB,TUB) 
WRITE(6,150) 

150 FORMAT(lH1,*POUNDS IN VAPOR PHASE VS. TIME (MINUTES)*) 
CALL PPC(MVAP,TIME,N,ILOG,ISIZE,NOUT,VLB,VUB,TLB,TUB) 
WRITE(6,160) 

160 FORMAT(lHl,*POUNDS IN LIQUID PHASE VS. TIME (MINUTES)*) 
CALL PPC(MLIQ,TIME,N,ILOG,ISIZE,NOUT,LLB,LUB,TLB,TUB) 
STOP 
END 

99 



PSDATA 

4. 4. 60. 1. 
OXYGEN 
64 
O. 5. -400. 100. O. 50. O. 10000. O. 1000. O. 10000. 00 10000. O. 100. O. 100. 

.001 48.699 2.75189 3398.11 3.1 0.0 3.1 0.000 8.601 

.002 37.590 4.42648 3398.11 6.2 0.0 6.2 0.000 5.954 

.003 26.672 6.02568 3398.11 9.3 0.0 9.3 0.000 4.107 

.004 15.938 7.55134 3398.11 12.4 0.0 12.4 0.000 2.671 

.005 5.384 9.00520 3398.11 15.5 0.0 15.5 0.000 1.493 

.005 -4.998 10.38895 3398.11 18.6 0.0 18.6 0.000 .494 

.006 -15.211 11.70422 3398.11 21.7 0.0 21.7 0.000 0.000 

.007 -25.260 12.95254 3398.11 24.8 0.0 24.8 0.000 0.000 

.008 -35.151 14.13541 3398.11 27.9 0.0 27.9 0.000 0.000 

.009 -44.889 15.25425 3398.11 31.0 0.0 31.0 0.000 0.000 

.010 -54.477 16.31042 3398.11 34.1 0.0 34.1 0.000 0.000 

.011 -63.921 17 .30522 3398.11 37.2 0.0 37.2 0.000 0.000 

.012 -73.224 18.23991 3398.11 40.3 0.0 40.3 0.000 0.000 

.013 -82.391 19.11569 3398.11 43.4 0.0 43.4 0.000 0.000 

.014 -91.425 19.93369 3398.11 46.5 0.0 46.5 0.000 0.000 

.015 -100.331 20.69502 3398.11 49.6 0.0 49.6 0.000 0.000 

.016 -109.113 21.40072 3398.11 52.8 0.0 52.8 0.000 0.000 

.016 -117.773 22.05177 3398.11 55.9 0.0 55.9 0.000 0.000 

.017 -126.316 22.649l3 3398.11 59.0 0.0 59.0 0.000 0.000 

.018 -134.745 23.19370 3398.11 62.1 0.0 62.1 0.000 0.000 

.019 -143.064 23.68633 3398.11 65.2 0.0 65.2 0.000 0.000 

.020 -151.276 24.12782 3398.11 68.3 0.0 68.3 0.000 0.000 

.021 -159.383 24.51894 3398.11 71.4 0.0 71.4 0.000 0.000 

.022 -167.390 24.86040 3398.11 74.5 0.0 74.5 0.000 0.000 

.023 -175.299 25.15287 3398.11 77 .6 0.0 77 .6 0.000 0.000 

.024 -183.114 25.39698 3398.11 80.7 0.0 80.7 0.000 0.000 

.025 -190.836 25.59330 3398.11 83.8 0.0 83.8 0.000 0.000 

.026 -198.469 25.74237 3398.11 86.9 0.0 86.9 0.000 0.000 

.026 -206.015 25.84467 3398.11 90.0 0.0 90.0 0.000 0.000 

.027 -213.476 25.90064 3398.11 93.1 0.0 93.1 0.000 0.000 

.028 -220.856 25.91069 3398.11 96.2 0.0 96.2 0.000 0.000 

.029 -228.155 25.87516 3398.11 99.3 0.0 99.3 0.000 0.000 

.030 -235.376 25.79435 3398.11 102.4 0.0 102.4 0.000 0.000 

.031 -242.520 25.66852 3398.11 105.5 0.0 105.5 0.000 0.000 

.032 -249.589 25.49788 3398.11 108.6 0.0 108.6 0.000 0.000 

.033 -256.583 25.28260 3398.11 111.7 0.0 111.7 0.000 0.000 

.034 -263.502 25.02281 3398.ll 114.8 0.0 114.8 0.000 0.000 

.035 -270.347 24.71859 3398.ll 117.9 0.0 117.9 0.000 0.000 

.036 -277 .115 24.37000 3398.11 121.0 0.0 121.0 0.000 0.000 

.037 -283.805 23.97707 3398.11 124.1 0.0 124.1 0.000 0.000 

.037 -290.413 23.53982 3398.11 127.2 0.0 127.2 0.000 0.000 

.038 -295.604 23.06581 3398.ll 130.3 0.0 130.3 0.000 0.000 

.145 -291.025 21.25714 2628.10 116.0 293.3 409.3 0.000 0.000 

.253 -292.181 19.97737 2628.10 108.0 583.2 691.3 0.000 0.000 

.360 -293.033 19.07144 2628.10 102.1 871.1 973.2 0.000 0.000 

.467 -293.684 18.40162 2628.10 97.4 1157.8 1255.2 0.000 0.000 

.575 -294.195 17.88860 2628.10 93.5 1443.6 1537.1 0.000 0.000 
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.682 -294.606 17.48423 2628.10 90.3 1728.8 1819.0 0.000 0.000 

.789 -294.942 17.15792 2628.10 87.4 2013.5 2101.0 0.000 0.000 

.896 -295.223 16.88937 2628,,10 84.9 2298.0 2382.9 0.000 0.000 
1.004 -295.461 16.66470 2628, :0 82.6 2582.2 2664.8 0.000 0.000 
1.111 -295.664 16.47408 2628.10 80.5 2866.3 2946.8 0.000 0.000 
1. 218 -295.840 16.31039 2628.10 78.5 3150.1 3228.7 0.000 0.000 
1.325 -295.994 16.16835 2628.10 76.7 3433.9 3510.6 0.000 0.000 
1. 433 ..:296.130 16.04397 2628.10 74.9 3717.6 3792.5 0.000 0.000 
1. 540 -296.251 15.93416 2628.10 73.3 4001.2 4074.5 0.000 0.000 
1.647 -296.358 15.83652 2628.10 71.7 4284.7 4356.4 0.000 0.000 
1.755 -296.455 15.74914 2628.10 70.1 4568.2 4638.3 0.000 0.000 
1.862 -296.543 15.67050 2628.10 68.6 4851.6 4920.3 0.000 0.000 
1.969 -296.622 15.59936 2628.10 67.2 5135.0 5202.2 0.000 0.000 
2.076 -296.694 15.53469 2628.10 65.7 5418.4 5484.1 0.000 0.000 
2.184 -296.761 15.47565 2628.10 64.3 5701.7 5766.0 0.000 0.000 
2.291 -296.822 15.42154 2628.10 63.0 5985.0 6048.0 0.000 0.000 
2.355 -296.867 15.38141 2628.10 61.9 6211.6 6273.5 0.000 0.000 
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NOPLOT 

IJOB 
INOSEQ 
COMBO (T500) 
IREAD,ACCOUNT 
HEADING. OLOUIE 
GET,COMBO,BOXB,TAPE5=DATAIN,TAPE7=FUEL. 
FTN,I=COMBO,OPT=2,L=TRACE,R=3,PMD. 
LDSET{PRESET=ZERO) 
LOAD,BOXB. 
LGO. 
SKIP,PASS. 
EXIT. 
REWIND, TRACE. 
COPYEI,TRACE,TAPE6. 
ENDIF,PASS. 
REWIND,TAPE8. 
COPYEI,TAPE8,PSDATA. 
REPLACE,PSDATA. 
DAYFILE,TAPE6. 
REWIND,TAPE6. 
COPYEI,TAPE6,PSOUT. 
REPLACE,TAPE6,PSOUT. 
DAYFILE ,DAYF • 
REPLACE,DAYF. 
IEOI 

102 



/JOB 
/NOSEQ 
FPLOT(TSOO) 
/READ,ACCOUNT 
GET,PSDATA,FPLOT. 
ATTACH,STAR4/UN=CAMLIB,NA. 
LIBRARY,STAR4. 
FTN,I=FPLOT,B=B,L=O,R=3. 
LOAD,B. 
EXECUTE""PSDATA. 
/READ,SPY 

/JOB 
/NOSEQ 
COMBO(TSOO) 
/READ,ACCOUNT 

LIBPLOT 

SUBCOM 

HEADING. OLOUIE 
GET,COMBO,BOXB,TAPES=DATAIN,TAPE7=FUEL. 
FTN,I=COMBO,OPT=2,L=TRACE,R=3,PMD. 
LDSET(PRESET=ZERO) 
LOAD,BOXB. 
LGO. 
SKIP,PASS. 
EXIT. 
REWIND, TRACE. 
COPYEI,TRACE,TAPE6. 
ENDIF,PASS. 
REWIND,TAPE8. 
COPYEI,TAPE8,PSDATA. 
REPLACE,PSDATA. 
REWIND, TAPE8 • 
ATTACH,STAR4/UN=CAMLIB,NA. 
LIBRARY,STAR4. 
GET,FPLOT. 
FIN,I=PLOT,B=B,L=LIST,R=3. 
LOAD,B. 
EXECUTE, ,TAPE8 • 
SKIP ,OK. 
EXIT. 
REWIND,LIST. 
COPYEI,LIST,TAPE6. 
ENDIF,OK. 
DAYFILE, TAPE6 • 
REWIND, TAPE6 • 
COPYEI,TAPE6,PSOUT. 
REPLACE,TAPE6,PSOUT. 
DAYFILE,DAYF. 
REPLACE ,DAYF. 
/EOI 
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$NAME 
QPIPE = 1000000., 

$ 

$FUEL 
NGAS=2, 

$ 

DATAIN 

FUEL 
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Oxygen Default Parameters 

Supply tank initial conditions: 

Pressure = 
Temperature ::: 
Oxygen Mass ::: 
Heat Leak = 

Receiver tank initial conditions: 

Pressure = 
Temperature = 
Vent Pressure = 
Tank Volume ::: 
Tank Wall Mass = 
Heat Leak = 

Transfer Parameters: 

Pipe Diameter = 
Length of Straight Pipe ::: 

20 Elbow(s) 
o Gate Valve(s) 
2 Globe Valve(s) 
1 Angle Valve(s) 
o Butterfly Valve(s) 
1 Flow Meter (s) 

Heat Leak Into Piping = 
Pump Power = 
Cool-Down Time = 

Cool-Down Parameters: 

Length of Piping ::: 
Header Diameter = 
Nozzle Diameter = 
Number of Nozzles = 

20.000 psia 
-315.000 F 
6270.00 Pounds 
0.000 Btu/hr 

1.000 psia 
60.000 F 
30.000 psia 
300.000 Cubic Feet 
350.000 Pounds 
0.000 Btu/hr 

4.000 Inches 
100.000 Feet 

104400.000 Btu/hr 
4.0 HP 
1. 000 Mi nutes 

20.000 Feet 
0.5000 Inches 
0.1250 Inches 
6 

At 1.92 minutes from start of propellant transfer the supply tank is empty. 

At this time the, receiver tank is at -310.17 Deg F, 6.65 psia, and contains 
6270.00 pounds of oxygen. 

During the simulation 0.00 pounds were vented. 
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OXYGEN PROPELLANT TRANSFER * 

loo.Ol 
DIAMETER: 4.0 IN. 
PUMP: 4.0 HP 

0.0 TANK TEMP: 60.0 DEG P 
,...." TANK PRESS: 1.0 PSIA u... 
CE) 
w 
0 -100.0 '-" 

w 
a::: 

-
2000°1 

::; 
£-t 
cr: 
a::: w 
a.. 
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-30000~ w 
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I 
I 

-400.0 f I I I --r-- 1 I - I --~ I --........, 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

TIME {MINUTES} 
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I 

40.0 
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30.0 a... 
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a::::: 
:::::> 
(f) 20.0 (f) 
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-
0.0 I I ---,----" I I I I r ---, 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 
TIME (MINUTES) 

* Computer generated plots. 
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OXYGEN PROPELLANT TRANSFER 
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1 
100"1. YAP. r 
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I 

OXYGEN PROPELLANT TRANSFER 
(PAGE 4) 

LEGEND 
o - SUPPLY 
o - RECE I VER INLET 

1001. LIQ. ____ --B-----EEl 

1 1 I 1 1 I' I 1--" 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

TIME (MINUTES) 
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HYDROGEN PROPELLANT TRANSFER 

0.0 

DIAMETER: 5.0 IN. 
PUMP: 0.0 HP 

-100.0 TANK TEMP: -290.0 DEG P 
,.....,. TANK PRESS: 18.0 PSIA w... 
C£) 
w 
0 -200.0 ........ 

w 
0::: 
:::::> 
f-; 
a: -300.0 0::: 
w 
0... 
~ 
W 
f-; 

-400.0 

-500.0 - i r I I I I 1--' 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

so.o 

40.0 

~ 30'0~ 
w 
a::: 
:::::> 
?B 20.0 
w a::: ! 
CL 

10.01 

0.0 I I 
0.0 0.5 

TIME (tlINUTES) 

. ·....,--'---rl--··'-r-·--r-----·.....--,-j - .............. _..,.., ----r-I ---, 
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

TIME {MINUTES} 
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NOMENCLATURE 

The units used in the computer model and del~ivation of equations are given 
first and are followed by 51 units, which are enclosed in parentheses. 

D 

dm 

f 

F(P) 

h 

L 

LlPCooldown 

LlPmeter 

Q 

Qtotal 

T 

brake horsepower for a pump, HP, (W) 

conversion factor used in Equations (28) and (29) 

constants used in Equation (17) 

constant used in Equation (30) 

constants used in Equation (39) 

constant pressure heat capacity, Btu/(lb·°F), (J/(gmol·K)) 

constant volume heat capaci~{, Btu/(lb·oF), (J/(gmol'K)) 

constant pressure heat capacity of receiver tank wall, 
Btu/(lb:oF), (J/(gmol·K)) 

pipe diameter, inches, (cm) 

differential mass or flowrat(~ of fluid, lb/min, (gmol/s) 

Fanning friction function factor, dimensionless 

term defined in Equation (lIb) 

specific enthalpy, Btu/lb, (,J/gmol) 

pipe length, ft, (m) 

equivalent length of a pipefitting, ft, (m) 

molecular weight, lb/mol, (g/gmol) 

tank wall mass, lb, (g) 

prope 11 ant quantity, 1 b, (mo'l es) 

Reynolds number, dimensionless 

pressure, atm, (MPa) 

pressure drop between supply and receiver tanks, atm, (MPa) 

pressure drop in the cool down piping, atm, (MPa) 

pressure drop across flowmeter, atm, (MPa) 

heat flux in the receiver tank, Btu/hr, (W) 

total heat flux in the system, Btu/hr, (W) 

temperature, of, (K) 
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u 

u 

" 
w 

x 

x 

j.I 

p 

Subscripts 

v 

1 

2 

cool 

i 

main 

o 

RT 

s 

sat 

w 

total internal energy, Btu, (J) 

specific internal energy, Btu/lb, (J/gmol) 

bulk velocity, ft/s, (m/s) 

tank volume, cu.ft, (Q) 

specific volume, cu.ft/lb, (Q/gmol) 

work, Btu/hr, (J/s) 

quality of fluid, dimensionless 

dummy variable used in Equation (15) 

bulk thermal expansivity, -~ (~1' dimensionless 

pipe roughness, ft, (m) 

pump efficiency, dimensionless 

heat of expulsion, -p(;~1, Btu/lb, (J/gmol) 

viscosity, lb/(ft·s), (gmol/(m's)) 

density, lb/ft3 , (gmol/Q) 

GrOne; sen parameter, ~(~~)p = g(oT) 
T op s , dimensionless 

liquid 

vapor 

main fill line into receiver tank 

receiver tank vent line 

cool down piping 

either stream 1 or 2 

main transfer piping 

orifice in cooldown piping 

receiver tank 

supply tank 

saturated conditions 

tank wall 
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