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A new VLSI design of a pipeline Reed-Solomon decoder is presented. The transform
decoding technique used in a previous design is replaced by a time domain algorithm.
A new architecture that implements such an algorithm permuts efficient pipeline pro-
cessing with minimum circuitry. A systolic array is also developed to perform erasure
corrections in the new design. A modified form of Euclid’s algorithm is implemented
by a new architecture that maintains the throughput rate with less circuitry. Such
improvements result in both enhanced capability and a significant reduction in silicon
area, therefore making it possible to build a pipeline {31,15) RS decoder on a single

VLSI chip

I. Introduction

Recently Brent and Kung (Ref. 1) suggested a systolic
array architecture to compute the greatest common divisor
(gcd) of two polynomials. Based on this 1dea a VLSI design of
a pipeline Reed-Solomon decoder was developed (Ref. 2). The
syndrome computation of this decoder for a 4-bit (15,9) RS
code was implemented on a chip (Ref. 3).

In the design of the chip for the above-mentioned decoder,
three major problems arose:

(1) While the architecture for syndrome computation took
(N = I) cells for an (V, 1) RS code, it required N 1denti-
cal cells to. implement the inverse transform in the
architecture suggested in Ref.2. As a consequence
for a long code such as the (255,223) RS code, the
inverse transform circuit would need 2355 cells and be
quite large.

(2) The basic cell of the systolic array needed to perform
a modified form of Euclid’s algorithm occupied con-
siderable silicon area, approximately 60 times the size
of a syndrome computing cell. Since the decoding
algorithm in Ref. 2 required (V - 1) of such cells, the
entire systolic array needed much more silicon area
than desired.

(3) Erasure corrections became necessary and were not
included in the ongmnal design. Hence the decoder
required several modifications of the original architec-
ture design 1n Ref. 2,

To reduce the large circuit area required by the inverse
transform operation it was decided to modify the onginal
transform decoding algorithm. Also after considering the need
for erasure correction, 1t was found that the decoding algo-

nthm given in Ref. 4 could accommodate both requirements.
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In this algorithm the errata magnitudes are calculated in
the time domain and a Chien search is used to find the error
locations. The architecture of the new algorithm 1s designed
to operate sequentially in a pipeline, thereby enabling the
circuit. size to grow with the error correcting capability (N - 1)
instead of the code length V.

The systolic array designed originally for the modified
form of Euclid’s algorithm could process polynomials con-
tinuously (Ref. 2). However, in real-time RS decoding, there 1s
a need to compute only one syndrome polynomial for each
recewved codeword. If one takes advantage of this by a better
utilization of multiplexing, the required pipeline throughput
rate can be maintained by the use of fewer basic cells.

In this article, an improved VLSI architecture over that in
Ref. 2 1s developed utilizing the above observations. A systolic
array is also designed for the needed polynomal expansion
used 1n the erasure polynomial computation. These new modi-
fications result in both an enhanced capability and a signifi-
cant reduction 1n silicon area without any loss in the pipeline
throughput rate.

Il. The Decoder Architecture

Let N = 2™ - 1 the length of the (V, I) RS code over
GF(2™) with design distance d. Suppose that ¢ errors and
s erasures occur, and s + 2t <d - 1. The decoding procedure 1n
Ref. 4 1s summarized as follows

Let X be an error location or an erasure location and
A = {X|X, is an erasure location}, A = {X;|X, 1s an error
location}. Let Y, be the corresponding errata magnitude and
r= (ro, ry, ..., Iy_;)be the receved vector.

Step 1 Compute the syndrome polynomial

S@) = Z SZ*
k=1

where

for1 €k<d-1
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Step 2. Compute the erasure locator polynomial

r@ = [l e-x @)

XieA

from A.

Step 3. Multiply S(Z) and A(Z) to obtain the Forney syn-
drome polynomial

T@2) = S)A2) 3)

Srep 4. Compute the errata evaluator polynomial A4(Z)
and the error locator polynomual A(Z) from T(Z) = [A(2)]/
A(2)] by the modified Euclid’s algorithm.

Step 5. Multiply A(Z) and A(Z) to get the errata locator

polynomuial
|

PZ) = M2)N(2) 4)

Step 6. Perform Chien search on A(Z) to find the error

location set A
[}

Step 7. Compute the errata magnitudes

| AKD
Y = X P (X,)

for 1 < k <s + t by evaluating A(Z) and P'(Z). Use sets A
and A to direct the additions of Yk to the received vector r.

The pipeline architecture of the RS decoder 1s shown in
Fig. 1. The decoder computes the syndrome polynomial
S(Z) by the transform circuit given in Ref.2. The erasure
information A enters the decoder in the form of a biary
sequence.

The systolic array described in the next section expands
the factors of

re = [l e-x)

XIE/\

into the polynomial Polynomial multiplications are performed
with a circuit descnibed in Ref. 5 A new architecture 1s
developed which implements the modified Euclid’s algorithm
by operating on the product of S(Z) and A(Z) The resulting
error locator polynomal A(Z) 1s then multipled by A(Z),
thereby obtaining the errata locator polynomal P(Z),



The derivative P'(Z) of P(Z) is obtained by dropping the
even terms of P(Z). The errata magmtudes Y, are calculated
then by a field inversion and a number of multiplications
Next the error locations are obtained in the form of a binary
sequence by the use of another polynomal evaluation circuit
which performs the Chien search on A(Z). This sequence of
error locations, together with the input erasure location
binary sequence, directs the addition of Y, to the received
message.

lil. A VLSI Design for Expanding the Erasure
Locator Polynomial

It is reasonable to assume that the erasure location informa-
tion derived from outside the chip, possibly from a convolu-
tional decoder. Let it arrive serially in the form of 1’s and 0°s.
A sumple circuit of the form shown in Fig. 2(a) first converts
this erasure data into a sequence of a*’s and 0’s, where a*¥ € A.

Given a* € A, the computation of the erasure polynomial
demands the expansion of

A@) =[] @-o
k

a“eA
3
= @-dN@Z-d?)...@Z-d 6)
Note that for an arbitrary polynomial Q(Z) that

Q2)(Z-d*) = ZQ(Z) - a* Q(2) 7)

Such an operation 1nvolves polynomial shifts, scalar multi-
plications and additions Thus the multiphcations of (Z - o)
in Eq. (6) can be implemented by the systolic array given in
Fig. 2(b). Since 1t contains zeros as well as o*’s, the input
stream is used to control the updating of the latches 1n each
basic cell. At the end of the arrivals of the erasure locations,
the coefficients of A(Z) are loaded from the latches into
registers and shifted out serally.

IV. A New Architecture to Perform the
Modified Euclidean Algorithm

A systolic array was designed in Ref. 2 to compute the
error locator polynomial by a modified Euclidean algonthm.
The array required 2t cells, twice the number of correctable
errors. It is capable of performing the modified Euclidean
algorithm continuously

In the modified Euclidean algorithm only one syndrome
polynomial 1s computed in the time interval of one code word.
As a consequence, for the original architecture in Ref 2,
a pipeline RS decoder 1s not as efficient as it might be. A
substantial portion of the systolic array 1s always 1dling This
fact makes possible a more efficient design with fewer cells
and no loss in the throughput rate.

For the (%, 7) RS code, the length of the syndrome poly-
nomial 1s V - I. The maximum length of the resultant Forney
syndrome polynomial 1s also &V - /. Imagine now that a single
cell 1s used recursively to perform the successive steps of the
modified Euclidean algonithm instead of pipelining data to the
next cell. Then it would take N - I recursions to complete the
algornithm, where each recursion requires V - I symbol times.
Therefore, using a single cell recursively requires only a total
of (N - I)? symbol time to complete the modified form of
Euclidean algorithm. Since a syndrome polynomial needs to
arrive every N symbol tiumes, only |[(V - I)2/N]| cells are
needed to process successive syndrome polynomials at a full
pipeline throughput rate.

Figure 3 shows the new alternate architecture design. The
input multiplexer directs the syndrome polynomials to differ-
ent cells. Each processor cell 1s almost identical to the cell
presented in Ref. 2, except that 1t is used to process data
recursively.

The primary difference in the new cell structure from the
architecture of the previous cell (Ref.2) 1s presented as
follows: Since division is avoided in the modified form of
Euchd’s algorithm, a scalar factor appears at the output
Although such a scale factor, call 1t K, is irrelevant to the
problem of finding roots of the error locator polynomial
A(Z), 1t must be removed from the errata evaluator polynomial
A(Z). In order to effectively utilize the processor cell given
in Ref. 2, the factor K which appears at the output of each
cell 1s calculated independently of the cell computation This
1s accomplished by using a multiplier, operating recurswely,
to accumulate the product of all the nonzero leading coeffi-
cients of the divisor polynomials. An inverse computation
circuit and a multiplier after the demultiplexer is used to
remove the unwanted scalar K from KA4(Z). This computa-
tional process 1s illustrated 1n Fig. 3

The architecture of the new basic cell 1s given in Fig 4.
Compared with the previous systolic array design (Ref 2),
the present scheme for multiplexing the recursive cell compu-
tations significantly reduces the number of cells and as a
consequence the number of circuits Table 1 shows that the
cell reduction 1s greater for high rate codes.
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V. A Polynomial Evaluation Pipeline

Polynomials are evaluated not only in the Chien search
process, but also when the errata magnitudes are computed.
In RS decoding, one needs to evaluate

S+r-1
A@) = Z
1]

A‘Z' ®)

1

forZ=ak and0<k<N-1gwvenAd,,0<i<s+r-1 Note
that Eq (8) has a form which 1s identical to the syndrome
computation Eq (1).

However, in Eq. (8) the polynomial is shorter than in
Eq. (1). Also since N> s + ¢t - 1, Eq. (8) is evaluated over a
wider range than Eq. (1) is computed. These two differences
make it inefficient to implement Eq. (8) 1n a manner similar to
that used for syndrome computations. A better method is to
evaluate A;(a’)* sequentially for each k at cell i. This is illus-
trated in Fig. 5. The polynomial coefficient A, 1s multiplied by
al at the initialization of cell {. From then on a feedback loop
computes the quantities 4,(af)* for k=1,2,3, ..., N-1.
The summation shown at the bottom of the figure 1s imple-
mented quite simply since all quantities are binary.

VI. Conclusion

An mmproved VLSl architecture of a pipeline Reed-Solomon
decoder 1s presented herein Compared with the previous
design n Ref 2, this architecture not only now corrects
erasures, 1t 1s simpler, more regular, smaller in chip area and
operates equally as fast. It 1s estimated that the polynomal
expansion circuit and the polynomial multiplication circuit
need approximately the same number of transistors as the
syndrome computing pipeline. On the other hand, each
polynomial evaluation circuit takes about half the number of
transistors. Finally, each cell in the modified form of Euclid’s
algonithm circuit requires approximately the same chip area
as the syndrome circuit.

Based on a previous nMOS chip fabrication of the syn-
drome pipehine (Ref. 3) and the design of the basic cell of the
modified form of Euclid’s algorithm (Ref. 6), it 1s estimated
that a (15,9) RS decoder chip would require about 29 thou-
sand transistors. A (31,15) RS decoder would require about
88 thousand transistors. Considering the presently existing
VLSI technology, a ligh throughput 5-bit (31,15) RS decoder
could be implemented readily on a single VLSI chip. Of course
such a chip would have a possible immediate application to
JTIDS (for Joint Tactical Information Distribution System
of DoD).
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Table 1. The comparison of the number of cells required in the
modified Euclid’s algorithm computation

Multiplexing on

RS Code Full Systolic Array Recursive Calls
(15,9 6 3
(31,15) 16 9

(255,223) 32 5
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Fig. 2. A systolic array to expand a polynomial
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Fig. 4. The structure of a recursive cell that performs the modified Euclid’s algorithm
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