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If an ultrasonic signal is introduced into or generated within a struc-
ture, the state of the structure governs its propagation and detection. The
assessment of the state of the structure can be affected by material proper-
ties, geometrical properties, environmental conditions, and measurement condi-
tions. Because of the large number of possible properties and conditions, the
quantitative ultrasonic determination of a specific microstructural or mor-
phological state, independent of all other states, is difficult.

To compiicate matters further, many nondestructive evaluation (NDE) param-
eters can be measured via ultrasonic interrogation as specified frequencies by
using the Fourier transform (e.g., signal amplitude, signal duration, stress
wave factor, and signal strength). Thus a large amount of data can be gener-
ated from a single ultrasonic measurement. Large multivariate data sets are
difficult to decipher; thus, methods of summarizing and extracting relevant
information are necessary.

One potential approach to the quantitative acquisition of discriminatory
information that can isolate a single structural state is pattern recognition.
The pattern recognition characterizations of micromechanical and morphological
materials states via analytical quantitative ultrasonics are outlined in this
paper. The concepts, terminology, and techniques of statistical pattern
recognition are reviewed. Feature extraction and classification and states of
the structure can be determined via a program of ultrasonic data generation.

INTRODUCTION

In acoustic-ultrasonic nondestructive evaluation (NDE), an ultrasonic
stress wave is introduced into, or generated within, the interrogated structure
and detected after it has propagated through the structure. Stress wave pro-
pagation is affected by the micromechanical and morphological materials states
of the medium of propagation. Thus, acoustic-ultrasonic NDE involves the
characterization of the tested structure on the basis of information contained
in the detected stress wave signal.

The state of the structure, which governs stress wave propagation and

detection, can be described by a broad range of properties and conditions,
some of which are

Material properties: elastic modulus, density, attenuation, velocity,...
Geometrical properties: structural dimensions, discontinuities, microstruc-

tural and microstructural defect states, microstruc-
tural characteristic dimensions,...
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Environmental conditions: mechanical loading, structural boundary conditions,
residual stresses, temperature, absorbed
moisture,...

Measurement conditions: Jocation and size of transducers, sensitivity and
frequency response of transducers, couplant, dynamic
characteristics of electronic equipment,...

Even from this incomplete 1iét, it is clear that the quantitative ultrasonic
determination of a specific microstructural or morphological state, independent
of all other states, is difficult.

To complicate matters further, many NDE parameters can be measured from an
ultrasonic interrogation at specified frequencies by using the Fourier trans-
form. A few of these are the maximum signal amplitude, signal duration, stress
wave factor, and signal strength. Thus, a large amount of data can be genera-
ted from a single ultrasonic measurement. Large multivariate data sets are
difficult to decipher; thus, methods of summarizing and extracting relevant
information are necessary. Most often the summarizing and extraction are
accomplished in an ad hoc qualitative manner.

One approach for the quantitative acquisition of discriminatory informa-
tion that can often isolate a single structural state is pattern recognition.
The objective of this study was to outline an approach for pattern recognition
characterizations of micromechanical and morphological materials states via
analytical quantitative ultrasonics. The concepts, terminology, and techniques
of statistical pattern recognition are reviewed.

CLASSIFICATION BY PATTERN RECOGNITION

Determining the state of a sample via NDE by using pattern recognition
techniques consists of three basic steps:

(1) Generating and processing NDE data
(2) Selecting significant features of the data
(3) Determining the sample state from the selected features

These three steps are illustrated in figure 1 as data generation, feature
extraction, and classification, respectively.

DATA GENERATION

Data generation consists of ultrasonic NDE measurements that are expected
to contain information for identifying the micromechanical and morphological
states of a material or structure. Data generation may also involve data
processing. Data processing involves signal conditioning or transformation of
the collected data into various representations; an example of the latter is
the acquisition of the frequency representation of a signal via its Fourier

transform.

The processed data are arranged in an ordered set called a pattern vector
z as (ref. 1) :
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(1)

whose components zy, 23, ..., zyp may contain, for example, the maximum

signal amplitude, signal duration, and signal strength at specified frequencies
evaluated via the Fourier transform. The number of components in the pattern
vector is at the discretion of the researcher. Usually only a few known or
anticipated discriminatory components are retained for pattern recognition
analysis. These are preferentially selected (for subsequent correlation with
structural states) by using the feature selection schemes described in the

next section.

FEATURE EXTRACTION

A subset of the pattern vector in equation (1) is selected and is called
the feature vector x (refs. 1 and 2)

where n <m (2)

The attractiveness of dimensionality reduction from m to n is in simplifying
the computational efforts necessary for classification.

The feature vector lies in a vector space called the feature space. Each
component of the feature vector forms a dimension of the feature space. Thus,
if the feature vector has n components, the feature space is n-dimensional.

The components of the subset in equation (2) are selected in a very part-
icular way so as to contain the most significant discriminatory components of
the pattern vector. Interpreted graphically, the feature vectors are selected
from the pattern vector such that feature vectors from distinct sample states
(material properties, geometrical properties, environmental conditions, and
measurement cond1t1ons) form distinct clusters in the feature space as illus-
trated in fi ure 2. ﬁure 2 shows a two-dimensional feature space formed by
using the ith and 3jth components of a feature vector (i.e., x4 and
xi, respectively). Ideally, the feature vectors from three distinct sample
s%ates form three distinct nonoverlapping clusters in this feature space.
Those feature vectors of known sample states that are used to define the
clusters are called training samples. A1l feature vectors corresponding to
unknown sample states will be classified by comparing them with the training
samples by using the techniques described in this study.
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A suitable feature vector produces the maximum separation between clusters
(intercluster separation) as measured relative to the cluster size (inter-
cluster dimension). The cluster size is defined by the spread of the feature
vectors within the same sample state. The spread may be defined, for example,
by the covariance of the feature vectors in a cluster.

various distances can be used to measure the intercluster separation. If
the covariances of samples in all clusters are similar and can be represented
by a pooled sample covariance, the Mahalanobis distance 02 can be used
(refs. 2 and 3). The Mahalanobis distance D2 s defined as the square of
the Euclidean distance between the sample cluster centroids (where the centroid
is located at the mean vector of all feature vectors belonging to the cluster)
normalized by an averaged cluster size (e.g., the covariance) (ref. 4). For
example, the Mahalanobis D2 between clusters A and B is (refs. 2 to 4)

s 0 = =T -1
Mahalanobis D™ = (A - B) §pooled

(A - B) (3)
where A is the mean sample feature vector of cluster A, B is the mean
sample feature vector of cluster B, and §poo1ed is the pooled sample
covariance matrix of A and_B. The superscript T denotes matrix trans-
position. Specifically, A, B, and Spooled are defined as (ref. 3)

- 1 NA
A= 'N—- 3 (4)
A=
- 1 NB
,E = ﬁ— -b‘i (5)
B =1
N
] : n =T L = = T
Spooted = N, * N =2 (a; - B)(ay - B)' + D (by ~ BBy - B) (6)
i=1 i=1

where aj and bj are the feature vectors corresponding to clusters A
and B, respectively, and Np and Ng are the numbers of feature vectors
in clusters A and B, respectively.

1f the covariances of the samples in all of the clusters vary signifi-

cantly, the Chernoff distance can be used (ref. 2). The Chernoff distance
between clusters A and B is (ref. 2)

Chernoff distance = % s (1 - s)(A - E)T [(1 -s) S, _ sSg ]"1 (A - B)
11 - s) §, + s34l

1-s S
15,177 1]

+ = 1n

; (7
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where s 1is a real number between zero and unity, Sy is the sample covari-
ance of cluster A, and Sg is the sample covariance of cluster B. Specifi-
cally, Sp and Sg are defined as (ref. 3)

N
1 A . = T

'S'A = NA -1 (Qi - .&)(.a_-] - A) (8)

i=1

Ng
Sy = (bs - B)(by - B)' (9)
% "Ny -1 by ~ B)(by - 8

i=]

When s = 1/2, the Chernoff distance is known as the Bhattacharyya distance
(ref. 2).

The feature vector is selected from the pattern vector by maximizing the
resulting intercluster distance. This can be accomplished analytically
(ref. 1) or by trial and error with a computer search scheme (ref. 2).

CLASSIFICATION

A sample of unknown state is classified by determining the most likely
sample state based on its feature vector. This is mathematically represented
by the use of discriminant functions (refs. 1 to 3).

The discriminant function gy s determined from the training samples
such that if x 1is a feature vector corresponding to sample state Kk,

gk(x) > gj(i) for all j # k (10)

Equation (10) can be interpreted as follows: values of discriminant functions
corresponding to all sample states can be evaluated by using a feature vector
from sample state k. Then equation (10) states that the value of the discrim-
inant function corresponding to sample state k is the largest among values

of discriminant functions corresponding to all other sample states.

The discriminant functions illustrated in figure 3 are based on the
feature space represented in figure 2. Figure 3(a) shows discriminant func-
tions gy, g2, and g3 along a line C-C in the feature space shown in
figure 3(b). Within the region dominated by the cluster corresponding to
sample state 1, g7 1is greater than both g, and g3, as required by
equation (10). The points where the discriminant functions corresponding to
sample states #1 and #2 have the same value; that is,

g1(x) = g2(x) (1)

is a point on the so-called decision surface (ref. 1) separating the clusters
corresponding to sample states #1 and #2.

197



Figure 4 illustrates the decision surfaces separating the feature space
into as many regions as there are distinct sample states. The sample whose
feature vector lies within region k should be classified as belonging to
region k. Thus, the feature vector of unknown sample state in figure 4
classifies as belonging to sample state #1. The main task in classification
becomes the determination of discriminant functions or decision surfaces.

There are two approaches: (1) parametric and (2) nonparametric (refs. 1
and 2). Before discussing the methods of evaluating discriminant functions or
decision surfaces, criteria for accessing the performance of the selected
discriminant functions or decision surfaces will be described.

Assessing classification functions. - The ideal discriminant functions or
decision surfaces minimize the sample misclassification rate. A misclassifi-
cation occurs when a sample with sample state k is classified as having a
sample state other than k. (Sometimes it is not simply the misclassification
rate that is important; certain misclassifications are more costly than others.
Thus, it may be the cost of misclassification that should be minimized
(ref. 3).)

One procedure to estimate the misclassification rate is to split the total
training samples into two portions. One portion is used to establish the dis-
criminant functions, and the other portion is used as validation samples to
evaluate the misclassification of the resulting discriminant functions
(ref. 3).

Another procedure to estimate the misclassification rate is called
Lachenbruch's leaving-one-out method (refs. 2 and 3). Specifically, one train-
ing sample is left out in forming the discriminant functions; the left-out
feature vector is ‘then classified with the resulting discriminant functions and
any misclassification is noted. Each training sample is omitted in turn, and
the misclassification rate (or cost of misclassification) is evaluated.

Parametric methods. - If the probability distributions of the samples are
known or can be assumed, parametric methods can be used to evaluate the dis-
criminant functions (ref. 2). Denoting P(k|x) as the conditional probabil-
ity that a feature vector x belongs to sample state k, the discriminant
function can be expressed as

gk(x) = P(k|x) (12)
Thus, for the feature vector x of unknown sample state, if
P(kix) > P(jlx) for all j # k (13)

then x is classified as belonging to sample state k. Equation (13) states
that if the probability of a feature vector belonging to sample state k is
greater than the probabilities of the feature vector belonging to all other
sample states, the feature vector is classified as belonging to sample state
k. -Bayes' theorem is often used to evaluate the probabilities éxpressed in
equation (13).
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In any case, conditional probabilities of the samplies must be known or
must be assumed. Any remaining unknown parameters in the probabilities can be
estimated by minimizing the misclassification rate.

Nonparametric methods. - If the probability distribution of the samples
is not known or cannot be assumed, nonparametric methods must be used to
evaluate discriminant functions or decision surfaces. There are many nonparam-
etric classification schemes (refs. 1 and 2). Among these are the nearest-
neighbor, nearest-centroid, Fisher, and kernel methods.

The nearest-neighbor method (ref. 2) consists of finding that training
sample which 1ies closest to the unclassified feature vector and then classify-
ing the unclassified feature vector to the same sample state as this nearest
neighbor. The decision surface in this method 1ies equidistant between the
boundaries of the clusters.

The nearest-centroid method (ref. 5) consists of finding the cluster whose
mean feature vector (i.e., centroid) lies closest to the unclassified feature
vector and then classifying the unclassified feature vector to the same sample
state as this cluster. The decision surface in this method 1ies equidistant
between the centroids of the clusters.

Fisher's method consists of assuming a linear discriminant function such
that (refs. 1 and 3)

= oK) (k) (k) (k)

G (X) = Wy Xy Wy Xy o kW T X W (14)
where xy, X2, ..., . Xp are the components of the feature vector x and the
scalar coefficients w(k), w(kz RN w(k) correspond to sample state k. The

1 2 n+1

linear combination of components of the feature vector given in equation (14)
is simple to calculate. For the special case where the covariances of the
samples in all clusters can be assumed to be equal, analytical values for the

scalar coefficients exist (ref. 3). The scalar coefficients w(k) are evalu-
on the basis of the maximum separation between clusters and not the minimiza~
tion of the misclassification rate.

The kernel method (ref. 6) consists of assuming kernel "potential" func-
tions. Individual kernel functions are assumed to be centered at each training

sample. The kernel function can be denoted by K(x, ng)), where §§k) is the

feature vector of the ith training sample defining sample state k. Then the
discriminant function is defined as the superposition over all training samples
of the same sample state k as (ref. 1)

N

ay(®) = i Z:K[x_ x{] (15)

where Ni is the number of training samples of the same sample state k.
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In one-dimensional feature space, equation (15) can be written as
(refs. 1 and 2)

N
gk(x) = Nkhk g KO hk (16)

where K, is the kernel shape, hy 1is the kernel size, X is a position in

the one-dimensional feature space, and xgk) is the position of the ith train-
ing sample defining sample state k.
There are many forms for Ko 1in the literature. For example, the
one-dimensional form of the exponential decay kernel can be written as
X - xgk) X - xgk)
Ko — | =exp - | (17)
k k

The selection of the kernel shape and kernel size can be established by trial
and error through a computer search scheme seeking to minimize the resulting
misclassification rate.

CONCLUSIONS

Ultrasonic nondestructive evaluation (NDE) of structural states has been
considered in this study. Because of the large number of possible properties
and conditions describing the state of the structure and the large number of
ultrasonic NDE parameters that can be considered, pattern recognition tech-
niques have been suggested for identifying structural states from discrimina-
tory information.

An outline has been provided for the pattern recognition characterizations
of micromechanical and morphological materials states via analytical quantita-
tive ultrasonics. The concepts, terminology, and techniques of statistical
pattern recognition have been reviewed.

Determining the state of a sample by NDE with pattern recognition tech-
niques consists of ultrasonic NDE data generation, feature extraction, and
classification. Ultrasonic data generation consists of ultrasonic NDE measure-
ments that are expected to contain information capable of identifying the
micromechanical and morphological states of the material or structure, The
collected data are organized in a pattern vector.

By using samples of known states, called training samples, the significant
discriminatory components of the pattern vector are retained as a feature vec-
tor. The feature vectors are extracted such that training samples of distinct
sample states form distinct clusters in the feature space. Then classification
is achieved by defining discriminant functions or decision surfaces based on
the training samples by using parametric or nonparametric methods. The ideal
classification scheme will minimize the resulting misclassification rate (or
the cost of misclassification).
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Thus, through a program of ultrasonic NDE data generation, feature extrac-
tion, and classification, the most likely materials states corresponding to an
unknown sample can be determined. The pattern recognition techniques discussed
in this study have broad applicability to various NDE procedures if samples of
known states are available.
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Fig. 1 Determination of state of unknown sample
using pattern recognition techniques based
on nondestructive evaluation data generation.
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Fig. 2 Two-dimensional representation of feature space
formed using i-th and j-th components of feature
vectors, 1llustrating separate clusters of feature
vectors X of training samples having distinct
sample states.
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Schematic illustrating (a) discriminant functions
gy (x) along a line C-C in feature space shown in (b).
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Fig. 4 Schematic illustrating decision surfaces separating
feature space into regions corresponding to distinct
sample states, and also illustrating classification
of unknown sample shown as belonging to sample state

#1.
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