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The aim In nondestructive evaluation (NDE) by sound and ultrasound is to
extract material and fracture properties from pulses sent by and received at trans-
ducers. The analysis is usually given either in the time domain or the frequency
domain. The introduction of the slze factor, the wavelength, in the model mechanics
problems In NDE plays the important role of relating the far-fleld measurable quan-
tities such as phase velocities and attenuation to the near-fleld physical situation
such as local geometric dimensions and elastic properties. Thls aspect of the anal-
ysis thus allows "nondestructive" testing methods to be employed for "experimental"
validation of the predictions by the theories (refs. l to 3).

Solution to the elastic wave scattering due to a single embedded Inhomogenelty
Is available by different methods that are appropriate at different frequency
ranges. The methods that offer a solution In an analytic form and are useful for
inhomogeneous media wlth multiple components are the long-wave approximation, the
polarization approach, and the extended method of equivalent inclusion (refs. 4
and 5).

Several averaging schemes or theorems exist In the literature for finding the
dynamic effective modull and mass density. Some efforts concentrate on the average
stress _ and strain _ fields or on the average displacement field _; others use
a variational approach. These theories are appropriate mostly at Raylelgh or long-
wave limits and do not exhibit dispersive effects. Dispersiveness and attenuation
are important in evaluating dynamic material properties.

Thls study dealt first wlth the scatter of elastic waves due to a thin, flat
elllpsoidal inhomogenelty, either penny shaped or elliptical. An average theorem
appropriate for dynamic effective mass density and effective moduli was developed
vla a self-conslstent scheme. Effective material properties of two-.componentmedia
consisting of randomly distributed spheres are given here as a special case.

PRELIMINARIES

Displacement Field due to Presence of Mismatch

The Inhomogeneous media considered In this paper are assumed to consist of a
homogeneous matrix of elastic modull _? and mass density po and a dlstrlbu-
tlon of inhomogenelties with moduli _(¥) and mass density p(r) occupying
regions _r, r = 1,2,.... n (fig. l). The total displacement field u can be
separated Into two parts.

: _(1) _ _(m) (I)

where the superscripts (i) and (m) denote "incident" and "mismatch," respectively.
It Is clear that when no mismatch components (i.e., inhomogeneltles) are present,
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the total displacement field is entirely the same as the incident displacement wave
field. On the other hand, if there is no incident wave field, the only field that
exists is the null field.

Eigenstralns

The eigenstralns _*, which are also termed transformation strains, are
defined as the part of the total strain £ that must be subtracted before the
remaining part can be related to stresses _ through Hooke's law

* e
_rs : _rs - Ors (2)

e -l

_rs = Cjkrs_jk (3)

where C-l are the elastic compliances. The method of equivalent inclusion is a
method that allows the Inhomogeneous media to be replaced by media of homogeneous
matrix effective moduli with distributed transformation strains in the regions
originally occupied by Inhomogeneities; hence

0 in Q
* 0

Ors : , (4)
Ors in _r' r = 1,2,.., n

For the two problems to be equivalent, the transformation strains must give rise to

a field that is exactly the same as the "mismatch" field _(m). This leads to
equivalence conditions that ensure that identical field quantities at any given
point will be obtained in the two problemst (ref. 4):

ACj .(m) *(1)(_) u_l_(r) in _ (5)krsUr,s(r) + Cjkrs_rs = -ACjkrs

*(2)(_) = _AO 2u_i)(F) in _ (6)Ap2u m)(_) . Cjkrs_rs,k

Two types of transformation strains, or elgenstralns, arise in elastodynamlc

situations due to the mismatch in elastic modull a_ and mass density Ap. It is
often convenient and useful to define associated quantities such as

*(1) (7)mjk = CjkrsCrs

*(2)
_j = CjkrsCrs,k (8)

where mjk and xj are moment density tensor and equivalent force or
elgenforce, respectively.

tThe conditions (eqs. (5) and (6)) are similar to those of Willis (1980)
and those of Mura, Proc. Int. Conf. on Mechanical Behavior of Materials, 5, Society
of Materials Science, Japan, 12-18 (1972).
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Volume Average and Tlme Average

The volume average and time average of a field quantity, say F(i,t), are
denoted by using brackets <>V and <>T, respectively, and are defined as

<F(!,t)> : _IF(_,t)dV (9)

1 /-
<F(!,t)> = TJ m(i,t)dT (lO)

where V and T are volume and time period, respectively, and v is velocity
field.

Volume Integrals of Ellipsoid Associated wlth Inhomogeneous
Helmholtz Equation

Volume integrals of an ellipsoid associated with the integration of the
Inhomogeneous Helmholtz equation are used in this work. The inhomogeneous scalar
Helmholtz equation takes the form

v2@ + k2@ = -4xy(!) (II)

where y(£) is the source distribution or density function and v2 and k
are the Laplacian and wave number, respectively. A particular solution to
equation (ll) is

@(£) = ._ y(£')R -1 exp(ikR)dV', R = IL - £'1 (12)

in which (4_R) -1 exp(IkR) is the steady-state scalar wave Green's function and
Q is the region where the source is distributed. The source distribution function
y(£) can be expanded in basic functions or polynomial form, depending on the geom-
etry of the volumetric region Q. For an elllpsoidal region, the choice of using
a polynomial expansion separates this work from other theories of elastic wave
scattering:

Y(£') = (x')k(Y')P(z')_ (13)

in which k, _, and v are integers and k is either longitudinal or transverse
wave number.

For elastic wave scattering in an isotropic elastic matrix, two types of
volume integrals and their derivatives must be evaluated: The _-integrals are
given by

_(£) = .f_ R-I exp(l_R)dV' (14a)

*k(£) = _ x_R-l exp(i_RldV' (14b)

_kE...s(£) = f_ x'x'kE'"x_ R-l_ exp(i_R)dV' (14c)
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a
: aXp _(r) (15a)

B

_k,p(r) = aXp _k(r) (15b)

2 2 2
where 2 = _ /Vi : p_ /(_ + 2p). The other type, the c-Integrals, are
obtained by repl_clng : with B in equations (12) and (13), where
B2 = p_2/(_). Details of the integration are given in reference 6. In this
work, only the limiting values at r _ 0 and r _ = are of interest.

ISOLATED, FLAT ELLIPSOIDAL INCLUSION

Formulation

Consider the physical problem of an isolated Inhomogenelty embedded in an
infinite elastic solid that is subjected to a plane tlme-harmonlc incident wave
field as depicted in figure I. Replacing the Inhomogenelty with the same material

as that of the surrounding medium, with modull Cjkrs and mass density p, and
including in this region a distribution of elgenstralns and elgenforces, the
physical problem is now replaced by the equivalent inclusion problem.

The total field is now obtained as the superposltion of the incident field and
the field induced by the presence of the mismatches in modull and in mass density

*(I) *
written in terms of elgenstralns cij and elgenforces _j

F = F(i) . F(m) (16)

where _ denotes either the displacement field uj, the strain field clj, or
the stress field olj.

For uniform distributions of elgenstralns and elgenforces, the fields can be
obtained as

(m) * *(1)S r'
(r') : -_jSjm(_') (17)um _ - CjkrsCrs jm,k ,(- )

: L m,n + n,mj/2

: C (m) (19)pqmnCmn

where a comma denotes partial differentiation and

Sjm(K) = _gjm(K - K')dV' (20)

in which _gjm i is the spatial part of the steady-state elastic wave Green's func-tion and s the region occupied by the Inhomogenelty. The integrals Sjm
and their derivatives must be evaluated for the regions _ > _' and _ < L'
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(ref. 6). The solutlon form represented In equatlons (14) to (18) gives the flelds
Inside and outside an isolated Inhomogenelty of arbitrary shape.

Far-Field Scattered Quantities

Let the incident displacement field be longitudinal and of frequency _ and

amplitude Uo:

u_i) = Uoqj exp(l_xikI - i_t) (21)

where 12 = -l and qj is the unit vector in the normal direction of the plane
tlme-harmonlc incident wave and ki is wave vector. For a linear isotropic
medium, the spatial part of the free-space Green's function is well known. Substi-

tuting gjm(r - r') in equations (18) and (20) and using the limiting concept

lim a3e_ = Aj constants (22)
a3_O

*(I)
llm a3_lj = Bij constants (23)

a3_O

the scattered displacement u_S)(r,t) from a thin, elliptical flat crack can
easily be obtained as

um(s)(_r,t) um(m)(r,t)_

(_al)3uo - (_al)3Uo
r-_

= [(CGm exp l_r)/_r + (DHm exp IBr)]Sr exp(-l_t) (24)

where

[ • .]Gm = -(a2/al) -_mStjA]+ (I - 2_2/82)ItmBjj+ 2(_2/f_2)_m_k_jBkj (25)

[ * 2* 2_m_k_j * ]Hm = (a2/al) -(B/_)3(Stmltj- amj)Aj - 2(8/_) StkBkm+ 2(8/_) Bkj

C = [Jo(are) + J2(_re)]/3 = sln _re/(ere)3 - cos ere/(ere)2
(26)

D : [Jo(Sre)+ J2(Bre)]/3 = sin 8re/(Bre)3 - cos Bre/(i3re)2

2 2 2 a3 0re = al_I, =

in which m,J,k = 1,2,3 and (al,a2), _m, _, and B denote the semiaxes of the
flat ellipsoid, direction cosines of scattered displacements, longitudinal wave
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number, and shear wave number, respectively. Also, A*j and B_k are the reduced

nondlmenslonal forms of Aj and Bjk, respectively, aeflned a_ follows:

A_ = Aj/(ap_2Uo), ap = p' - p (27)

Bjk = -Bjk/(i_Uo) (28)

Expressions for the differential cross section dP(_)/d_ and the total
cross section P(_) can be obtained as (ref. 5):

(:IP(_) _L(B,¢) + (_/B)J(B,¢) (29)d_ =

p(_) = _[,L(e,¢) + (_IB)J(e,¢)]d_ (30)

where d_ is the differential element of solid angle and

_2_L(B,¢) : (_al)6[CGm][CGm ] (31)

_2J(e,¢) = (_al)6[DHm][DHm] (32)

in which the overbars denote complex conjugates. The constants AT and B_k
must be evaluated from the equivalence conditions (eqs. (5) and (6)) with the use
of the limiting concepts in equations (21) and (22) and of the integration method
developed in reference 6.

Determination of A_ and Bjk

In equations (21) to (25) the scattered displacement field is given in terms
of the "reduced' forms of the elgenforces and elgenstralns (i.e., A_ and B_k).
These constants must in turn be determined from the equivalence conditions. By
writing the incident wave field in a Taylor series, the governing simultaneous

algebraic equations can be easily obtained. Since flj[O] and Fml [0] vanish
automatically, these governing equations become uncoupled and lead t_ a three-by-

three system for A_ and a slx-by-slx system for B_k. For a linear elastic
medium, they are

Ap_2Uofjs[O]A_ + As : -qs (33)

{aX6stDmmjj[O] + 2a_Dstjk[O]}B_k + (kSstB_m + 2_Bst)

= -(ak6stqmqm + 2a_qsqt) (34)

where the subscripts s,t,m,J,k = 1,2,3 denote sum from l to 3 and

4_#Jfjs(£) = -B2¢6js + _,mj - ¢,mj (35)
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4_2DstJk(r) = 2"(_,stJk + ¢,stjk) - "(32(¢,jt6ks. ¢,Js6kt) - }-=2_,m_6Jk (36)

in which

A).= -).. A, = -., Ap = -p

The ¢- and _-Integrals and their derivatives are evaluated by the method

suggested in reference 6. Retaining terms up to =aI or BaI of the fourth
order, the constants are obtained as

A_ : -qj/{Uo_2 Apfj[O] + I}. no sum on J (37)

fj[O] : (fll[O]. f22[0], f33[0]) (38)

{B_} : [blj]-I [cj],i,J = 1,2,3 (39)

{B_j} : -qlqj/[l + _(¢I[0] + @j[O])], no sum on i.J

i _ J; i,j = 1,2,3; _ = I/4_ (40)

where in equation (37) B_ = B_l, B_ = B_2, B_ = B'33,and

cj : (a). + 2A,) + qj . J = 1.2.3 (41a)

bll : (k + 2,) . ).C_.jj[O] + 2(). . 2,)_@.ii[0] + 2,C_.II[0] (41b)

b12 : x + ).C_.jj[O] + 2,C_.II[0 ] + 2_).@.22[0 ] (41c)

b13 = k + ).C_.jj[O] + 2,C_.II[0 ] + 2)._¢.33[0 ] (41d)

b21 : }. + ).C_.jj[O] + 2_C_.22[0 ] + 2_).¢.ii[0 ] (41e)

b22 : (). + 2,) + ).C_.jj[O] + 2,C_.22[0 ] + 2_(). + 2,)¢.22[0 ] (41f)

b23 = }. + )._.jj[O] + 2,_.22[0] + 2_).¢.33[0] (41g)

b31 = k + }.C_.jj[O] + 2gC_.33[0 ] . 2)._¢.iI[0 ] (41h)

b32 : ). . XC_.jj[O] + 2,C_.33[0 ] + 2)._¢.22[0 ] (411)

b33 : (}. + 2,) . ).C_.jj[O] + 2,C_.33[0] + 2_¢.33(). + 2,)[0] (41j)

Note that blj # bjl. In equation (38). ¢I : @II[0]. ¢2 : ¢22[0]. and
@3 = @33[0]- "The ]_- and @-functions are given as

4_p3fjs[O] = -82¢[0]_js . _.js[O] - ¢.js[O] (42)

B20[0] = _ala2_211o- [(f_al)2/16]Ii + I(8/3)gI (43)

¢.i_[0] = - kI_a;a2B4)/12] I 1
(44)
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o22<0[<<a20,)/12],i <,,>
@,33[0] = 0 (46)

in which

fO _ _ F(e,k) 2__ (.4-/)Io = A(_) : aI

II : f0 (a_ _'d_ 2 FE(O,k_, k '21L<' 7] <'"

I2= fO (ag illdill 2 F, <.>+ : g L ,2 ,2 ]
e e

F = 2 1/2' E = 1 - k2 sin 2 1/2d_ (50)
1 - k sln2(_

( 22) 2 _.k 2 22and as a3 _ O, e _ _/2, k2 _ 1 - a2/aI and k' = (I ) _ a2/al, if

aI > a2. If a3 _ 0 and aI = a2, we have Io = _/aI and Il = 12 = _/2aI.
The _-functlons are obtained by replacing (3 wlth _ In the @-functions
(fig. 2).

Numerical Calculations and Graphical Displays

It is clear from equations (37) to (40) that the uniformly distributed elgen-

strains and elgenforces In their reduced forms, BIj and Aj, respectively, depend
only on the characteristics of the incident wave f_eld and the geometric factors of
the Inhomogenelty for a given materlal system. It is observed from equations (37)

to (41) that BI and BI_ as functions of dimensionless wave number _aI or _a2
would exhibit large peak _alues at certain incident wave frequencies when bl_ _ O.
The values of these critical frequencies depend only on the matrix elastic moaull,
the crack dimensions, and the measurement dlrectlon. For a given aspect ratio a2/al
and a measurement direction, the difference In frequencies at subsequent peak values
Is proportional to al, the largest dimension of the inclusion.

Computational data of elastic wave scattering due to a flat embedded Inhomoge-
nelty in any given Isotroplc material system can be obtained by employing equations
(24) to (26) and (33) to (50). Scattered displacement amplitudes can easily be
obtained for any given aspect ratio. In figures 3 and 4, computational data for the
back-scattered situation are displayed for a tungsten disk in an aluminum matrix

for aspect ratios a2/aI = O.Ol and a2/aI = 0.50. In figures 5 to 8, critical
frequencies were observed in B_j, but no critical frequencies were identified for
A_ (j : 1,2,3). The critical frequencies for CIGml and DIHml are, however,
clearly identified. The position along the _aI axis at which the first critical
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frequency occurred depended on the aspect ratio and matrix elastic modull. A suf-
ficiently small increment in :aI must be used in order not to miss any peak
values. Since the solution form given in equations (24) to (26) and (33) to (50)
is analytic in frequency, this can easily be achieved. Most of the scattered
energy is carried by the transverse components of the scattered displacement (i.e.,

IOHml > ICGml, figs. 3 and 4).

DYNAMIC MODULI AND DAMAGE OF COMPOSITES

Consider the problem of an inhomogeneous medium as illustrated in figure 9,
under a plane tlme-harmonlc incident wave field. The true composite thus occupies
the whole region and possesses effective modull C* and mass density p*. To
determine the effective moduli and mass density, an average strain energy and
kinetic energy were used. The effective properties were found to depend on a
fourth-rank tensor A and a second-rank tensor D. A self-conslstent scheme was
then developed for determining these tensors.

Average Theorem

To determine the effective modull and mass density, the following definitions
were used:

: (52)

= (53)

: (54)

where E, _, v are the stress, strain, and velocity fields, the _ denotes a
tensorlal quantity, and the angular brackets <> denote the volume average of a
field quantity (eq. (9)). The left and the right sides of equations (52) and (54)
can be shown to be equivalent under the so-called Hill's condition (ref. 7), _<E>
= <_£>. From equations (53) and (54), it is clear that the kinetic energy per unit
volume of the effective medium can be made equal to that of the physical medium if,
and only if, a frequency-dependent mass density is defined. This is the same as
requiring, by again using the Hill's conditions <p,v,v> : <pv><v>, the average
linear momentum per unit volume to be the same as the effective linear momentum per
unit volume (eq. (53)). These conditions (eqs. (53) and (54)) are not met if the
static definition of effective mass density is used.

Let fr denote the volume fraction of the rth inclusion material. Then
the volume averages of the stress and velocity fields a and u, respectively, are

n

<_> = _ fr _(r) (55)
r=0

n

<__> : _ f 0 (r) (56)
r=O r-
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where _N(r): c(r)_.(r),(r) : O,l,2,.,.,n and for a tlme-harmonic situation

0 = v = -i_u (57)

Equations (52) and (54) can be rearranged, by using equations (55) and
(56), as

n<_)= C°<_X_? . _E] frC(r)_(r (SB)
r=l

n

o ap(r)z(r)_'_> = P <_>_> + _ fr _> (59)
r=l

Consider now the case where the solution form possesses a linear relation between
the velocity and strain fields in the r th component and the average velocity and
strain fields of the effective medium, that is,

: (6o)

v(r) :D(r)<v> (61)

where _(r) and D(r) are tensors of fourth and second rank that must be
determined with a _ultable scheme. Substituting equations (60) and (61) in

equations (58) and (59) leads to

<_£>= [_+ _ f a_(r)_(r 1r:l r <_><_ (62)

_> : [po + _fr:l r aP(r)_(r)]<_>_> (63)

Comparing these equations with equations (52) and (54) gives the following
expressions for the dynamic effective modull and mass density:

n

_* = _ + _ f ac(r)A(r) (64)
r=l r _

n

p, : po + _E] fr aP(r)o(r)
r=l

(65)

D(r) : D_;)/3

Note that the tensors A_(r) and D(r) are frequency dependent and replace the
static expressions when frequency a_pproaches zero and when proper care is taken.
The assumption of a general linear dependence between v(r) and <v> (eq. (61)
must be specialized such that the second-rank tensor D-will degenerate into a
scalar. This specialization is automatic for randomly distributed spheres where

Dmj : D6mj, in which D = DII = D22 = D33.

242



t

To determine the explicit form of the tensors A(r) and _(r), the strain
and velocity fields in the rth component are determined by using the method of
equivalent inclusion as presented in the previous section.

Self-Conslstent Scheme for Determining Effective Properties

The tensor fields A(r) and D(r) are of ranks four and two, respectively,
and are functions of wave numbers, geometrlc properties, and effective and inclusion
material properties. Let the average strain and velocity be the same as those
derived from the incident wave field. Then the governing conditions for determining
A(r) and D(r) for the r th inclusion are simply obtained by rewriting the
equivalence conditions for an effective medium with mass density p* and modull
C*:

_(r)[_(1) +_(m)] : C*[£(1)+ _(m)_ £,_] in _r (66)p(r)_2[_(1) _ _(m_ = p,_2[_(,). _(m) in _r (67)

in which the superscripts (m) and (1) denote mismatch and incident, respec-
tively. Sllghtly different approaches for finding effective modull for heterogene-
ous materials that apply to static cases with different constituents and situations
are given in references 7 and 8. The strengths and dynamic responses of composites
have been Investlgated (refs. 9 and I0) and reviewed (refs. II and 12).

Effective Properties of Two-Component Media: Randomly Distributed Spheres

Let the modull, mass density for the matrix! inclusion materlal particles, and
the effective medium by denoted by C_krs, po; Cjkrs, p,; and Cjkrs and p ,
respectively. By using the elastodyn_mlc solution for a single 6111psoldal Inhomo-
genelty, the displacement and strain fields inside an Inhomogenelty are found, when
the average displacements are made equal to the plane tlme-harmonlc incident wave
field:

[_(m)(r)] = D(r)_(i) - _(r)_(i) in _r (68)

[£(m)(r)] : A(r)_(1) - _(r)_(i) in _r (69)

Employing the volume-averaglng process as described by equation (9) and subsi_Itutlng
in equations (58) and (59), the effective properties are easily defined as follows:

l

p* = p + f apO, D = _ Ojj (70)

C* = C + f ACA (71)

where f is the volume fraction of inclusion material. The tensor fields D
r_

and A are

Dm_j= -<fmj(r)_/IfMj[0]./" + 4_(p' - p*)_21 no sum on M,J (72)
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Amnpq = <Fmjk,n(£) . Fnjk,m(£)>SjRpq/2p*_2 (73)

in which the tensors f and F are defined as

4_p_2fmj(£) = -B2@_mj . _'mJ - @'mj

4_o_2Fmlj(£) = _(_2_,m_lj . 2_82@,i_mj _ 2PW,mj + 2_@,mj) (75)

The _- and, by implication, the @-integrals given in equations (14) and
(15), etc., are the volume integrals associated with the Inhomogeneous Helmholtz
equation. They can be carried out for an elllpsoldal region by expanding (exp
ikR)/R In Taylor series expansions with respect to r' for r > r' and wlth
respect to r for r < r'. Here k can be either _ or B. Details are given
in reference 6. This type of expansion for the Integrand is particularly useful in

determining the coefficients of a "polynomial" distribution of _ and

The fourth-rank tensor S3kpq is the connecting tensor between the
elgenstralns and the applied strains, that is,

*(I) = Sj _(a)¢Jk kpq pq
(v6)

Sjkpq : Sjkpq(_, a I, _)

for the case of uniform elgenstralns and elgenforces. In developing these
expressions, the volume average of the @-integrals must be evaluated. Finally,
note that #* and _* are complex, where the real and imaginary parts are
associated with the velocity and attenuation, respectively.

Example: Spherical Inclusion Materials

Let the spherical inclusion materials of radlus a be randomly distributed
over the whole volume of the matrix. If the matrix and the Inhomogeneltles are
Isotroplc, the effective medium Is also Isotroplc. It is easy to show that

l -<f33(E)> 1Dmj = _mj f33[0] + 4_(p' - #,) 2 = _mjO (77)

and

Sjkpq : Skjpq : Sjkqp = Spqjk

SIll1 : S2222 = $3333 : C1
(78)

$2323 : S1313 = S1212 : C3

SI122 : SI133 = S2233 : C2
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where

<.. ..Cl = Cl + C2 - 2GC + CIC2 - 2

C2 _ lG - C2 l + CIC2 - 2

c3° t2F122,1[°1 + "*/("' -

C2 = GFIII,I[O ] + (G + I)F122,1[0] + H

C1 = FIII,I[O ] . 2GF122,1[0 ] - F

F E -(_* + 2_*)/G

6 = (X' - X*)I[(_' -_*) + 2(W' - _*)]

H = k*/G

Following the theory developed in the previous sections, the effective modull
and mass density are found to be

#* : p + f ApD (79)

X* = X + flAX(All11 + 2AI122) . 2 A_AII22] (80)

_* = _ + f A_(AI212 + A1221 ) (81)

: K + f[(Allll + 2Al122)aX + (2/3)(3Ai122 . Al212 + A1221)a,]
K* (82)

Clearly, the velocities are dispersive. At frequencies above the Raylelgh limit,
thls phenomenon is pronounced. From figures lO to 12, the bulk modull, shear
modull, and longitudinal velocities are shown as functions of the volume concentra-
tion of spherical inclusion materials for aluminum spheres in germanium for differ-
ent dimensionless wave numbers ca. For a given fixed concentration, the modull

K* and _* and the velocities vL and vT are increased as the dimensionless
wave number :a is increased. The dispersiveness of effective shear modulus Is
minimal and that of effective bulk modulus is more pronounced (figs. 12 and 13).

As an example of detecting localized damage by void nucleation, let all small
voids be locally nucleated within a localized small region _ of radius R
(fig. 14). The effective modull Of this composite can therefore be obtained from
equations (64) and (65). If void nucleation outside the region _ can be ignored,
the scattering of the composite sphere can easily be obtained. By using the com-
puter program developed in reference 17 for that of a single spherical inclusion,
the scattering cross section for a composite sphere consisting of small voids in
titanium is displayed as a function of dimensionless wave number for different con-
centrations of voids (fig. 15). As the volume fraction of voids inside _ is
changed, the effective properties #*, x*, and _* are also changed. Hence, the
attenuation effect is pronounced as the concentration of voids is increased. The
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scattering cross section, which is essentially proportional to the attenuation
(ref. l) increases with increasing concentration fr. It appears that these
curves can be used to locate and calibrate porosity in a structural component.

CONCLUDINGREMARKS

The velocity and attenuation of ultrasonic waves in two-phase media were
studied by using a self-conslstent averaging scheme. The effective medium had to
possess the same strain and kinetic energy as the physical medium. The concept of
volume averaging for physical quantities was employed. The solution depended on
the scattering of a single Inhomogenelty. The theory is general and can be applied
to any multlcomponent material system. Since the scattering of an elllpsoldal
Inhomogenelty is known, the average theorem presented in this report can be used to
study the velocity and attenuation of distributed inhomogeneltles of shapes such as
disks and short fibers. The orientation of these Inhomogeneltles as well as their
sizes, as in the spherical geometry, will necessarily induce anlsotropy in the
effective medium. The scheme developed herein was not compared with test data.
The use of a self-conslstent scheme in determining static material properties for
composites has been explored (ref. 13).

Results for randomly distributed spherical inclusions of radius a are pre-
sented. Effective modull and mass density were found to be dispersive. A simple
model of localized damage was studied. It is well known that porosity is d_rectly
related to the strength of rocks and ceramics. Therefore the theoretical study of
velocity and attenuation in two-phase media may be a viable means for data analysis
in ultrasonic evaluation of dynamic material properties for composite bodies
(ref. 14) and polycrystals (ref. 15). As in determining the static properties of
materials, the problem may be more in the mechanics than in the manufacturing
(ref. 16). Deformation processes such as rolling, sheet metal forming, and drawing
often involve large plastic flow, moisture absorption, and thermal cycling. Resid-
ual stresses and anlsotropy are introduced into the material and limit the amount
of deformation to fracture with a directional dependence. Theoretical development
in acoustoelastlclty appears to be lacking (ref. 18).
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Figure 3. - ICGmlversus c_aI for back-scattered data for tungsten disk in aluminum matrix.

a2/a 1 = l; a 1 = 0.5; _ = 25°; 0 = 30°; qm = -_'m- i
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Figure 4. -'IDHml versus _a I for back-scattered data for tungsten disk in aluminum matrix.

a2/a I = l; a I = 0.5; qb = 25°; 0 = 30°; qm = -_Lm.
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Figure 5. - IA1I versus _a1 for back-scattered data for tungsten disk in aluminum matrix.

a2/aI = I; aI = 1.0; ¢ = 25°; 0 = 30°; qm = -_'m-
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Figure 6. - IBlll versus _aI for back-scattered data For tungsten disk in aluminum matrix.

a2/aI = l; aI = l.O; ¢ = 25°; B = 30°; qm = -_m"
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Figure 7. - IBI31 versus cLaI For back-scattered data for tungsten disk in aluminum matrix.

a2/a I = l; aI = 1.0; @ = 25°; 0 = 30°; qm = -%m.
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Figure B. - IGl_ versus _a I for back-scattered data for tungsten disk in aluminum matrix.
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Figure 9. - Inhomogeneous medium with multicon_ponents.
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Figure II. - Longitudinalwave velocityversusconcentration:aluminumspheresin germanium.

65
O9
D
J

60'
(3

rr" 55 _(.I) /_

co

50 -o(.3)
-- CURRENT",VOLUMEFRACTIONI--
.0, " OJ
"' 45 + 0.2u_
LL x 0.3
W KUSTER

& TOKSOZ: o
40 T I I l

0.( 0.2 0.4 016 0.8 1.0

DIMENSIONLESSWAVENUMBEReA
Figure 12. - Effectiveshearmodulusversuswave number: aluminumspheresin germanium.

253



_- CURRENT, VOLUME FRACTION
(_9
"-" _ 0.1
03 78 + 0.2

__1 x 0.3
KUSTER

a & TOKSOZ_ o
0

2_

" :f
D 75
m

,,,¢_>

LI.I
b_
U_
I._ 68 f J f I

0.2 1.0

DIMENSIONLESS WAVENUMBER aA

Figure 13. - Effective bulk modulus versus wave number: aluminum spheres in germanium.

254



0

Q •

Figure 14. - Sch_tic diagrm of localized d_ge in infinite solid.

255



0.15 F

0 o.io
& 0.20

+ 0.30 /)<
X 1.00

0.12

O

0.09

0.06

0.03

0.00

0.00 0.i0 G.2G 0.30 0.40 0.50
Dimenslon_ess Wavenumber

Figure15.- Scatteringcrosssectionversusdimensionlesswavenumber:distributedvoidswithin
a spherical d_in in titanium_trix, a/R = O.Ol.

256




