```
(NASA-CR-176612) a LABORATORY INVESTIGATION
N86-2.3436
of the variability of Cloud geflected
RADIGNCE FIELDS Final Technical Report
(Colorado State Univ.) 72 P. EC A04/MF A01 Unclas
                                    CSCL 20F G3/74 05745
```

FINAL TECHNICAL REPORT
FOR
NASA Grant NAG5-387
entitled

A Laboratory Investigation of the Variability of Cloud Reflected Radiance Fields

Principal Investigator:	Thomas B. McKee
Co-Investigator:	Stephen K. Cox

Department of Atmospheric Science Colorado State University

Fort Collins, Colorado 80523

FINAL TECHNICAL REPORT

TABLE OF CONTENTS

Page
1.0 Design and construction of a laboratory apparatus (CFOS) to simulate the interaction of cloud fields with visible radiation 1
A. The Source 1
B. The Cloud Field Assembly 4
C. Sensor Array 5
D. Data Display/Collection Station 5
2.0 Verification of CFOS by comparing experimental results from it with calculations performed with a Monte Carlo radiative transfer model. 7
A. Selection of Suitable Materials for Cloud Simulation 7
B. The Optical Depth of Simulated Clouds 10
C. Retrieval of Basic Finite Cloud Features 11
3.0 Development of a Software Library to Process, Reduce and Display CFOS Data for use in Research Studies 14
Introduction 14
Part I 15
A. Laboratory Procedures 15
B. Section 1 15

1. Source Alignment 15
C. Section 2 17
2. Calibration 17
3. A Typical Data Collection Session 19
Part II 20
References 23
4.0 Groge 24,33 rerrored

$$
\because \dot{y} y=
$$

5.0 Publications and Reports38
6.0 Statement on Inventions 39
APPENDIX - Data Reduction and Analysis Programs for the Cloud Field Optical Simulator 40

FINAL TECHNICAL REPORT
During the term of support by NASA of this research program, we have successfully developed a new approach to determining the radiative properties of complex cloud fields. This innovative research began as a unique, untried concept and has matured into a verified, useful technique. The accomplishments of this research are highlighted below. Following the highlights are brief explanations of each accomplishment.

Accomplishments:

- Design and construction of a laboratory apparatus (CFOS) to simulate the interaction of cloud fields with visible radiation.
- Verification of CFOS by comparing experimental results from it with calculations performed with a Monte Carlo radiative transfer model.
o Development of a software library to process, reduce and display CFOS data for use in research studies.
o Utilization of CFOS to study the reflected radiance patterns from simulated cloud fields.
1.0 Design and construction of a laboratory apparatus (CFOS) to simulate the interaction of cloud fields with visible radiation.

The CFOS apparatus is designed to measure the simulated reflection of shortwave radiation by optically thick clouds. The CFOS basically consists of a light source, a target cloud field, an array of radiation detectors and a data display/collection system. Fig. 1 shows a schematic of the CFOS which is housed in a 10 mX 10 m dark room at the Department of Atmospheric Science at Colorado State University. Each of the components which comprise the CFOS has been selected or designed to simulate as closely as possible the actual interaction of visible solar radiation with real clouds and to perform measurements on the simulation analogous to the real world case. Each aspect of the CFOS is described below along the rationale used in selecting various options in the components design.

A. The Source

In simulating the interaction between the visible solar irradiance and clouds it is desirable to duplicate as closely as possible three characteristics of the natural source. First, the source should possess, to the extent possible, a visible spectrum of a 5700 K blackbody radiator. Second, the beam irradiance should be uniform across the area of the cloud field, and third, the beam should be parallel. Because the cost of constructing a solar simulator approaching the above description would have been prohibitive, efforts were focused on achieving the latter two characteristics for the following reasons. First, theoretically, the spectral distribution of the incident radiation is important only in relation to the microphysical properties of the cloud; i.e. scattering

Detail of Detector
Configuration

Detal of Lamp
Configuration

Light Source Consists
of 5 G.E. 240 PAR56WFL Lamps

Figure 1. A schematic drawing of the Cloud Field Optical Simulator (CFOS) designed to simulate the interaction of visible solar radiation with optically thick clouds.
properties at a wavelength λ are determined only as a function of the ratio λ / r, and where r is the radius of the droplet. Since simulated clouds used in the CFOS are not composed of droplets (much less the specific droplet distributions measured in real clouds) and in view of the considerations given above, achieving the proper spectral response was given a lower priority and emphasis was given to designing a source which fulfilled the remaining criteria. Maintaining the proper spatial characteristics of the beam, as specified in the second and third criteria listed above, assures that the effects of cloud geometry are accurately taken into account. Doing so, even at the expense of achieving less than optimum spectral characteristics, is consistent with recent findings concerning the importance of cloud geometry. To these ends it was found that an array of low voltage display lamps provided illumination with the best spatial uniformity over the target cloud field. The low voltage design of the lamps allows small filament assemblies to be precisely placed at the focal points of accurately molded reflectors. The result is a smooth illumination curve which decreases slowly (7% in the first 4°) as a function of the angle from the beam axis of each lamp. Use of an array of overlapping beams, each aimed at a different section of the cloud field, results in an irradiance uniform to within $\pm 3 \%$ of the mean value in the plane of the cloud field. The source was placed behind a circular aperture 0.5 m in diameter to shield the cloud field from stray light and to constrain the beam to within 3° of its axis, thus assuring nearly parallel light. The beam is reflected by a large plane mirror in order to allow enough distance (20 m) for the nearly parallel beam to diverge to a cross section sufficient to illuminate the entire target area ($-3 \mathrm{~m}^{2}$). Although the source output is reasonably constant in time, it is monitored by a wide field-of-view detector near the cloud field so that the effects due to even small variations may be accounted for in the analysis.

B. The cloud field assembly

The target cloud field assembly consists of the simulated clouds and the hardware necessary to support and orient the clouds with respect to the incoming radiation and the detectors. The assembly is contained in a separate 4 mX 4 mX 4 m black box in the laboratory room. The types of materials used to construct the simulated clouds are discussed in Sections 3a-c. As shown in Fig. 1, the target cloud field is mounted in a circular area -2 m in diameter. The incoming radiation enters through a large aperture in one face of the box. The target cloud field is oriented in a vertical plane and has two rotational degrees of freedom. The first of these allows rotation about the vertical axis of the cloud field and simulates changing solar zenith angle. The second_rotation is about a horizontal axis through the center of and perpendicular to the plane of the cloud field which allows simulation of a change in solar azimuth angle. Each of these rotations is driven by a separate motor and may be controlled at the data display station. The rotations are monitored to the nearest degree through the use of optical encoders and associated logic circuitry. Any sun-cloud geometry of interest may be easily simulated in the CFOS as a result of this design.

C. Sensor array

In order to examine the relationship between the summative and component properties of radiation reflected from the simulated clouds it is necessary to sample the radiation field from a number of angular viewing coordinates. The placement of the CFOS sensors with respect to the cloud field may be seen in Fig. 1. Fifteen sensors are mounted on a semi-circular ring whose ends are attached to the cloud field apparatus at points above and below the cloud field on its vertical diameter which serves as an axis of rotation for the ring. The sensors are spaced at increments of 10° of arc along the ring, beginning at the center of the ring and proceeding toward its ends. This sensor configuration permits a density of angular sampling of the reflected radiation which is more than adequate to establish the relationships between the desired quantities.

Each sensor consists of a high-quality silicon photodiode with a built-in high-gain operational amplifier circuit. The diodes are mounted in small cylindrical enclosures each of which contains a spectral filter and two circular diaphragms. The diaphragms limit the field of view of each photodiode to 7.5° half-angle. The relative spectral responses of the detectors with and without the optical filters are shown in Fig. 2. The filtered spectral response corresponds closely to that of the human eye. Thus, features visually observed should be evident also in the measurements. The fleld of view of the detectors is such that the center detector resolves a circular area 0.5 m in diameter when viewing the cloud field at the nadir. By using the relationships between the optical and geometric properties of simulated and real clouds (see Sections 3a-c) it is possible to associate the CFOS sensor configuration with that of a real world sensor 100 km above the earth's surface with a nadir ground resolution of 25 km .

D. Data display/collection station

One of the advantages of a laboratory investigation of the radiative properties of clouds lies in the ability to observe an unchanging cloud field from a variety of angular coordinates. This feature is fully appreciated by observing the changes in the various detector voltages as the "sun-cloud-sensor" geometry changes. The output of each sensor including the source monitor may be read from digital voltmeters at the data display/collection station. An array of light-emitting diode bar graph displays indicates the voltage outputs of all 15 diodes simultaneously, giving an instantaneous sample of the radiance patterns. The simulated solar zenith and azimuth angles and the angle of rotation of the detector ring are controlled from and monitored at the display station.

In order to examine the structure of the radiance patterns and to detect changes in the field or image as the clouds' geometric properties are changed it is necessary to assemble all measurements into a single representation of the reflected radiance pattern. This is accomplished in two stages by the CFOS. First, the data are recorded using an Apple II microcomputer as a smart data collection device. Various parameters such as sampling rates and the numbers of measurements included in average readings may be programmed into the data collection process. Second, the data from the floppy diskette in the Apple II are transferred

Figure 2. The relative spectral responses of the detectors used in the CFOS with and without optical filters.

Figure 3. A comparison of the relafive radiances reflected into the principal plane by cotton-simulated clouds (measured by the CFOS) to those calculated using a Monte Carlo model for water clouds. Comparisons are shown for solar zenith angles of 60° and 0°. (Only one of the symmetric branches is shown in the 0° case). Note that the uncertainty in observed and modeled relative radiances are a function of the observation zenith angle. The error brackets shown are maximum values typical at $\mu=0.55$. Uncertainties near $\mu=1.0$ are about half these maximum values and are indicated by the error bars.
to an Apple III microcomputer where is relatively simple; measurements azimuth angle coordinate system sensitivities, effects caused by variations in the source are removed, the reflected radiances are integrated over the lower hemisphere to obtain a flux density, and various graphical displays are generated. The total time of the processing of the data is -15 min . Thus, experiments may be repeated for slight perturbations in the cloud field geometry and changes in the radiance field may be appreciated within a short time. Also, data and displays from the radiance patterns may be saved on diskette files for later viewing and comparison.

The CFOS apparatus described above should provide insight into the composition of wide field of view satellite measurements and images. It offers an interactive setting in which cloudy scenes may be created, observed visually, and whose relative radiance fields may be measured quantitatively. The next section describes the verification of the CFOS and in doing so furthers the appreciation of the similitude between the CFOS and the real world.
2.0 Verification of CFOS by comparing experimental results from it with calculations performed with a Monte Carlo radiative transfer model.

The previous sections have described a laboratory device designed to measure the simulated radiative properties of clouds of a realistic shape. In the sections which follow the properties of the simulated clouds and the relationship of their scattering properties to those of simulated water clouds are discussed. The verification of the CFOS is based not on analogies between the microphysical properties of real and simulated clouds, but rather on comparisons of observable radiative properties.

A. Selection of suitable materials for cloud simulation

The validity of measurements obtained from the CFOS depends, almost entirely, on the measurable radiative properties of the simulated clouds. Several materials were examined in a search for one which adequately simulates the visible reflective properties of optically thick clouds. The criteria which were examined in the selection process were first, the behavior of the radiances reflected into the principal plane by a horizontally semi-infinite cloud, and second, the visual appearance of the simulated clouds and cloud fields. Based on these criteria, two materials emerged as superior to all others tested; they are surgical quality sterilized cotton and decorative billet (DB) styrofoam which is marketed by Dow Chemical under product code $\# 81568$.

It should be emphasized that the manner in which light interacts on the microphysical scale with the materials selected may differ considerably from the classical picture of independent Mie scattering in a spherical polydispersion. For example, the surgical cotton used in the experiments consists of long fibers of mainly cellulose from 10 to $25 \mu \mathrm{~m}$ in diameter. The mean index of refraction of cellulose is 1.55 in the mid-visible. The DB styrofoam is a polystyrene extrusion. It contains no pigments or other suspensions and has a mean cell dimension of 1.9 mm . The index of refraction of polystyrene is $1.59-1.60$ in the visible.

Figure 4. As in Fig. 3, but for styrofoam-simulated clouds.

Figure 5. Photographs of a styrofoam-simulated cloud system. The bottom photograph is an enlargement of the first showing the detail of the area between the simulated cumulonimbus clouds.

Polystyrene is a transparent plastic. The white appearance of styrofoam results from multiple reflections of the incident light from the many facets which surround the individual cells. Thus, it would be difficult to draw an analogy between the local scattering process in water clouds and the multiple reflection process in styrofoam. Moreover, recent studies have shown that cloud shape may dominate microphysical scattering as the most important factor affecting the radiance pattern. Also, it is doubtful that any material which closely duplicates the scattering process in water clouds would possess an extinction coefficient great enough to permit simulation of optically thick clouds in a laboratory setting. The goal of the CFOS experiment is to determine if it is possible to simulate the observable properties of optically thick clouds of a realistic shape and not necessarily to duplicate the exact scattering process on the microphysical scale. Thus the determination of which materials are best qualified as simulation materials is based on comparison of observable optical properties of the simulation materials with those predicted by radiative transfer models of real water clouds. Such comparisons have been made for "horizontally infinite" and cubic finite cloud shapes.

Figures 3 and 4 show comparisons between the radiances reflected into the principal plane by horizontally infinite cotton and styrofoam simulated clouds compared with theoretical curves derived from a Monte Carlo radiative transfer calculation. The model was run for a C. 1 (Deirmendjian, 1969) droplet distribution with an absorption for a wavelength of $0.7 \mu \mathrm{~m}$ and for solar zenith angles with cosines of $\mu_{0}=1.0$ and $\mu_{0}=0.5$. The radiances have been normalized to the value at the zenith and are displayed as a function of the cosine of the zenith angle (μ) and the relative azimuth angle ϕ into which they are reflected. Scattering into the forward direction ($0^{\circ} \leqq \phi \leqq 15^{\circ}$) is depicted in the right halves of the figures and backscatter ($165^{\circ} \leqq \phi \leqq 180^{\circ}$) is indicated in the left halves. The materials are almost equivalent in satisfying the first criterion. The styrofoam-simulated clouds display a slightly more realistic behavior in the backscatter direction.

Both materials do well in simulating the visual appearance of real clouds. Fig. 5 shows photographs of styrofoam-simulated clouds of a realistic shape. If we add a third criterion, the ease of working with the materials, styrofoam is preferable for the following reasons. First, styrofoam is rigid and will maintain a constant ratio of geometric to optical depth, and the shape of simulated clouds will be retained regardless of orientation. Second, the simulated styrofoam clouds are easily placed and maneuvered in a cloud field and may be categorized and stored for use in other cloud scenes. Finally styrofoam clouds are easily made into regular shapes i.e., cubes, cylinders, spheres, etc., so that their radiation properties may be compared with theory.

B. The optical depth of simulated clouds

In order to relate the reflective properties of simulated clouds to real water clouds it is necessary to have an accurate estimate of the optical depth of the simulated clouds. One means of doing so is based on the bulk radiative properties of a 'horizontally-infinite' sheet of the cloud material at 0° zenith. Specifically, theory predicts that the ratio of the spectral reflectance R_{λ} to the spectral transmittance T_{λ} of a semi-infinite cloud over a non-rêflecting surface is nearly a linear
function of optical depth (see, e.g., Coakley and Chylek, 1975; Stephens, 1978). Fig. 6 shows a plot of the ratio of R / T generated from the parameterization of Stephens (1978) for water clouds in the visible portion of the spectrum. The solid curve shown in the figure is the result of a linear regression of the form $R / T=\tau(\ln \tau+8.307) / 153.149$, which is nearly linear for $10<\tau<200$. Also shown is the ratio (R, T,) calculated using an Eddington model for various microphysical distributions and a few results of the $R_{\lambda} / T_{\lambda}$ ratio from Monte Carlo calculations. The nearly linear dependence between R / T and τ, the visible optical depth, is apparent.

An equivalent visible optical depth (τ) may be assigned to the CFOS cloud material by measurement of the ratio of R / T for a sheet of the material with a large ratio of horizontal to vertical dimension. Once $\tau_{\text {e }}$ is established for a large slab of styrofoam several clouds may be "sculptured" from the slab while maintaining in each the vertical dimension of the original slab. The procedure requires an additional stop in the case of cotton since the vertical structure of the original "slab" (surgical cotton is available in 12 " X 60 " sheets) cannot be maintained while forming clouds of a realistic shape. However, it was found that the mass of the material in a vertical column of unit cross section is also related to the ratio of the R / T in a nearly linear manner (see Fig. 7). Thus, for a cloud simulated from surgical cotton on approximate visible optical depth may be assigned by weighing the cloud and measuring its cross-sectional area to determine the area mass density, then using the R/T line as a transfer function to obtain τ_{e}.

C. Retrieval of basic finite cloud features

A crucial test of the CFOS is the ability to measure the reflected radiances of finite clouds. Figs. 8 and 9 show comparisons between radiances reflected into the principal plane by finite clouds as measured on the CFOS and the same quantities predicted by the theoretical Monte Carlo model described in McKee and Cox (1976). The radiances in each case have been normalized by the radiance measured or calculated at the zenith. The CFOS profiles have been retrieved from measurements over a field of simulated (styrofoam) cubic clouds cut from a slab of material whose R / T ratio corresponded to an equivalent vertical optical depth $\tau_{e}=76$. The simulation clouds were placed at the centers of adjacent squares of sides 5 w , where w is the dimension of the finite cubic cloud. This arrangement resulted in a true fractional cloud cover $f=0.04$. The cloud rows were aligned along two mutually perpendicular axes, one of which formed the line of intersection of the principal plane with the surface. Figs. 8 and 9 show measured retrievals. The first (applicable only for observation of the cloud field in the direction of the cloud rows) assumes that as the observation zenith angle (θ) increases, the solid angle of the observed cloud field relative to the underlying surface increases by a factor of $1+\tan \theta$, resulting in a modified fractional cloud cover f' given by

$$
f^{\prime}= \begin{cases}f(1+\tan \theta), & \theta<\theta_{\max } \\ f_{\max }=\mathrm{f}\left(1+\tan \theta_{\max }\right), & \theta>\theta_{\max }\end{cases}
$$

In the above, $\mathrm{F}_{\text {max }}$ is the fractional cloud cover derived as the tops and sides of the cubic clouds maximally obscure the inter-cloud spacing. Note, in the present case, for observations taken in the principal plane

Figure 6. The ratio of reflectance to transmittance for horizontally infinite clouds plotted as a function of optical depth in the visible region of the spectrum for a solar zenith angle of 0°. Values of the ratio from the Eddington and Monte Carlo models are valid at $0.7 \mu \mathrm{~m}$, values from Stephens (1978) are representative in the visible ($\lambda \leq 0.75 \mu \mathrm{~m}$).

Figure 7. The ratio of reflectance to transmittance for cotton simulated "horizontally infinite" clouds plotted as a function of the area mass density of the material which is used as a transfer function to obtain the equivalent optical depth of simulated clouds.

Figure 8. A comparison between calculated and simulated radiances reflected From finite cubic clouds into the principal plane for a solar zenith angle of 0° using styrofoam as the cloud simulation material. (Only one of the symmetric btanches is shown for the modeled results.) Note that the uncertainty in observed and modeled relative radiances are a function of the observation zenith angle. The error brackets shown are maximum values typical at $\mu=0.55$. Uncertainties near $\mu=1.0$ are about half these maximum values and are indicated by the error bars.

Figure 9., As in Fig. 8, but for a solar zenith angle of 60°.
(parallel to the row directions), $f_{\max }=0.20$ and $\theta_{\max }=76^{\circ}$, which is larger than the zenith angle of any of the observations depicted below, so that the first line in the equation above applies. The second treatment utilized the exact geometry of the cloud field and the CFOS detectors, counted the clouds in the field of view, and calculated the total solid angle subtended by the clouds and their shadows. In this interpretaiton the radiance measurement (N) is given as

$$
\mathrm{N}=\mathrm{N}_{\text {cld }} \cdot \Omega_{\text {cld }}+\mathrm{N}_{\text {cir }} \cdot \Omega_{\text {cir }}+0 \cdot \Omega_{\text {sdw }}
$$

where the subscripts cld, clr, and sdw represent cloud, clear and shadow, respectively, and Ω is the fractional solid angle subtended by each target component. It was assumed that there was no radiance contribution from the shadow regions. The clear measurements were made of the surface on which the clouds were mounted in the absence of the clouds. The albedo of the surface was 0.02 . The second treatment resulted in a "noisier" curve because a single cloud was either considered completely within or exterior to the field of view. Nevertheless, smoothed versions of the curves are in good agreement. The apparent disagreement between the curves for the 0° solar zenith case at large observation zenith angles is principally from two factors. First, the styrofoam material is least faithful in its reproduction of the reflected radiance of real clouds at the larger observation angles as evidenced in the comparisons for horizontally infinite clouds in Fig. 4. Second, in the Monte Carlo model, for a 0° solar zenith angle, there is no radiation incident on the vertical side walls of the cubic clouds. However, in the laboratory, the incident radiation is not parallel in the strictest sense. Thus, over the extended cloud field, some incident radiation falls on the vertical walls of some of the simulated clouds. This results in relatively brighter side walls in the simulated case which contribute greatly to the radiance field at larger observation zeniths.

It should be noted that the retrieval of the finite cloud reflected radiances described above represents a rigorous test of the CFOS concept. The low surface albedo (0.02) combined with the extremely small fractional cloud cover (0.04) resulted in reflected radiances at the lowest bound of the domain for which the CFOS was designed. Larger clouds, smaller cloud spacing and more realistic simulated surfaces will all tend to increase the radiance signal. In addition, the above experiment represents the retrieval radiances reflected from only part of the scene. Measurements of total scene radiances are of a more stable nature.
3.0 Development of a software library to process, reduce and display CFOS data for use in research studies.

Introduction

This manual was written in order to provide a transfer of established methodology used in the operation of the Cloud Field Optical Simulator (CFOS) to interested users of the device. Throughout this document it is assumed that the reader is familiar with the basic design and purpose of the CFOS. If this is not the case the reader is referred to a publication Davis, Cox and McKee (1983), which will provide sufficient backround
information and which may be found in Appendix A. This manual is divided into two parts. Part one is a description of the methodology of data collection. In part one the reader will find a discussion of alignment of the CFOS, calibration of the sensors, and the normal procedure which has been developed to collect meaningful data. Part two is a discussion of data processing. The main thrust of part two focuses on how to proceed from the raw data to an array of bi-directional reflectance data. This, of course, is not the only product for which the CFOS was designed but the basic methods are demonstrated in obtaining this type of data. Part two necessarily discusses some of the application software which has been written for the CFOS although additional software exists for particular tasks. All the software is listed in Appendix B along with a brief statement of its purpose. Finally, it must be noted that all of procedures associated with the CFOS have been in a constant state of flux. CFOS itself has always been in part the object of the ongoing research effort. Thus, especially in using the applications software, some user familiarity with the code must be established. CFOS is not now, nor in all probability will ever become a black-box laboratory device.

I. PAR'T I

A. Laboratory procedures

Part I is divided into two sections. Section one presents suggestions, advice and procedures to ensure that the basic laboratory device is aligned for data collection. Certain care must be taken before any data is collected especially if there has been a significant down period or if it is discovered that the device has been moved or altered as may happen for instance if items not related to CFOS have been moved in or out of the basement annex. Section two discusses the calibration and method of data collection which has been found to provide the best results to date. It should be stressed at the outset that calibration should be considered part of the data collection process since it has been found that the calibration coefficients are not constants. In all of part one it is assumed that the reader has been briefed on the proper way to power up the laboratory and on the functions of the various controls accessed at the data display station.
B. Section 1

1. Source alignment

The source may need to be realigned periodically because of the reasons mentioned above. The source alignment consists of adjustment of the relative position and orientation of the light source itself and the mirror and establishing the zero degree position of the cloud field ring all of which are interdependent. An iterative procedure has been developed which seems to work reasonably well; however, it is somewhat time consuming. One begins by ensuring that the normal to the cloud field ring is pointing in the approximate direction of the light source. Then by adjusting the position of the array of lamps so that its lateral positioning behind the aperture appears symmetric when viewed by an observer standing on either side of the cloud field ring. In other words, if you can see all the lamps except for part of one of the lower lamps

When standing on one side of the cloud fleld ring, then if you move to the other side of the ring you should be able to see all of the lamps except for a similar portion of the other lower lamp. The position and orientation of the mirror may also need adjustment in order to accomplish this. It may take a few to several adjustments obtain the desired symmetric alignment.

Next, the true zero zenith angle must be set. To do so it is first necessary to establish the center of the cloud field with respect to the direction of the incoming beam. An aluminium bar has been constructed for this purpose. It is fitted with cylindrical feet on each end which may be inserted into the holes in the cloud field ring. A small hole has been drilled in the middle of the bar through which the source light may pass to form a small image of the lamp source on the cloud field backround. The image marks the center of the cloud field with respect to the incoming beam. Next, an alignment photodiode which is mounted in a circular magnetic support is placed on the cloudfield backround at the center point. The photodiode is connected to an operational amplifier circuit and thus requires a supply votage of $+/-15$ volts. The output of the device may be read using a digital voltmeter. By examining the output of the device for changes in the simulated solar zenith angle about the initial orientation, one may establish the center of the response pattern. This point marks the true zero of the solar zenith angle regardless of the reading on the data display panel meter. The zero readout may be reset once the optical zero is established. It should be pointed out that near the zero of the solar zenith angle there will be little change in the output of the device due to the nature of the cosine response. Thus one would be well advised to look for symmetric points at larger angles about the zero in solar zenith.
After the optical zero zenith angle is established the next step in the general alignment procedure is to check the spatial homogeneity of the incident irradiance field. The magnetically held diode may be used to check the homogeneity of the incident radiance field. By moving the device about to different positions on the cloud field and comparing the output voltage at the various points homogeneity may be established. If the incident pattern is not homogeneous then the orientations of the individual lamps must be must be adjusted relative to each other. This may be a time consuming process depending on how non-homogeneous the field is and on how large the region is where homogeneity is desired. It is convenient to employ a second digital voltmeter to monitor the output of the test diode. The second dvm should be placed near the lamp source so that it can be read at the source. Then while adjusting the individual lamps with the test diode placed in a region of particularly high or low irradiance the effect of the re-aiming of the individual lamp may be monitored. The dvm located near the interior of the CFOS is convenient to monitor changes in the test diode output as the diode is moved about on the cloud field. Two items should be noted while checking the homogeneity of the incident beam. First, the test diode circuit outputs a dark current voltage which must be subtracted from the readings before establishing the relative magnitude of the incident irradiance. Second, the reorientation of the individual lamps changes to some extent the optical zero zenith angle. If in the process of smoothing the incident light one upsets the optical zero the preceding step should be repeated.

The next item in this section concerns the cleanliness of the glass surfaces in the CFOS. The large mirror will need cleaning from time to
time and the frequency of the cleaning will be obvious. Also, the photodiode glass covers and the glass optical filters housed within each collimating can should be cleaned periodically, especially after significant down time. When, this is done the individual diodes invariably become misaligned and uncalibrated. Recalibration will be covered in section 2 of part 1 . To re-align each diode a simple flashlight device has been construced which may be mounted over the exterior of each diode can and which projects a small spot of light toward the center of the cloud field backround. The device is powered by any 4.5 volt d.c. source. It is helpful to mount a white piece of paper or cardboard at the center of the cloud backround and to turn off the main lights since the projected spot of light is rather dim. The center of the cloud field may be established on the white reflector as explained above using the large aluminium bar. In this manner each diode's field of view may be centered at the center of the cloud field after the giass surfaces have been cleaned.
The final item to be discussed in this section concerns the alignment of the detector arc. This is one of the simplest of the procedures. The optical zero of the detector ring is established at the position where the shadow of the detector ring falls on the center of the cloud field. Actually, there are five shadows since there are five lamps, but it is fairly oovious where one should place the detector arc zero point. The readout may be reset to zero at this point if desired but this is not necessary if the offset is programmed into the software.
C. Section 2

This section presents a discussion of procedures used more on a daily basis or even more often to ensure quality data. These methods pertain to the actual process of collecting the data and maintaining calibration. It is easiest to begin with the data collection device--the Apple II plus computer and the data logging program. After turning the computer on, with the disk labeled "cfos prodos" inserted, the logging program is initiated by typing "run calib." This program will prompt the user to insert a properly formatted data disk and to select the number of data scans to be included in each measurement. In an actual data collection session 30 data scans have usually been used. However, for merely observing the diode outputs a smaller number is more convenient. The program then displays the output of each of the diodes and the relevant angle settings. Nothing else will happen until the user presses a "control p" which initiates a write to the disk at the end of the current scanning sequence. Data may be taken in this manner for as many different geometries as desired. When it is desired to end the recording session the user must press the "escape" key which will terminate the file. This is the basic way used to collect the data. Small adjustments to the basic process and specific cautions will be found below as they pertain to collection of bi-directional reflectance data, calibration etc.

1. Calibration

In all the applications for which CFOS was constructed only the relative sensitivities need be determined. Even so, it has been found that constant checks must be made on the diode relative sensitivities since they may change significantly even with the temperature excursions
induced by the heating system in the basement annex. Thus what follows may seem like overkill, but it has been found that only by continually updating the sensitivities can one expect to obtain results valid to within a few percent.

Each diode circuit has a very high amplification factor which causes a significant dark current signal. It is mainly this compontent of the signal which is temperature sensitive. In order to "predict" the magnitude of the dark current signal, (which is impossible to monitor in an experiment with light incident on the diodes), a separate diode circuit identical to the others has been masked off so that no light may enter the diode can. Note that it is important to ensure that the back of the collimator can is also masked off since it has been observed that sufficient light may enter the can from the backside and cause erroneous results. The purpose of this diode is to put out only a dark current signal which will respond to temperature changes and which may be used to infer the behavior of the dark current signals in the remaining diodes. Simple linear regression has been found to provide predictions of the required dark current signals which are highly correlated to the actual measured valued. (Correlation coefficients greater than 0.99 are not uncommon.) The regression relations should be re-calculated periodically using the following procedure.

It is desirable to collect the regression data over a period of time when the temperature extremes in the CFOS laboratory are similar to those encountered during the data collection session. Thus it may be desirable to collect the data over the weekend before a series of measurements will be made or if the outside ambient temperature has changed drastically to collect a new set overnight. By modifying the data logging program slightly the system may be placed in a continuous logging mode and serveral hundred scans may be recorded from which the regression data may be generated.

The modification consists of inserting the line,
"1516 GOSUB 600"
Depending on the amount of time the program is left to record data, a very large may be generated. The software which processes this data is described in Part II. During the time these data are being collected it is necessary that the curtains on CFOS remain closed and is would be preferable if the main overhead lighting remain off.
Once the regression data have been collected the relative sensitivities may be determined. These numbers also change and must be continually updated. In fact, below in the description of a typical data collection session note that a calibration update is performed before each scene measurement. To obtain the relative calibration coefficients an isotropic reflector is used. It has been found that ordinary polyurethane foam provides a surface which is nearly istropic out to observation angles of nearly 60 degrees when illuminated at normal incidence. It is convenient to use magnets to mount the foam on the cloud field backround since it must be mounted and removed frequently. With the foam in place the reflected signal from all the lamps is too large for the highly sensitive detectors. In order to circumvent this problem a separate power supply has been connected only to the center lamp of the light source. A circuit breaker is provided to ensure that the output of this power supply may be
isolated at all times from the AC supply which normally operates the source.

Thus using only the center lamp one may collect data and record it on a disk file which may be analyzed to obtain the relative sensitivities. It is advisable to set the detector arc angle at about 10 to 15 degrees in order to displace the shadow it casts as far as possible from the center of the foam. The software to produce the diode sensitivities is descibed in Part II.

2. A typical data collection session

To begin a typical data collection session it is assumed that the regression data have been collected and that the relative sensitivities are known fairly well. What is described here is a procedure which when followed will produce data with standard deviations of a few percent of their respective mean values.

Although dark current data have already been collected best results will be obtained if this information is updated prior to each experiment. To do so the CFOS curtains are closed and a data file is written with all lights orf. This file need consist of only 10 to 20 records each containing 30 or so scans. While this data is being collected the lights should remain off and none of the motor controls should be activated since the motors and switches may introduce noise into the diode signals. End the file with the usual escape sequence.
Next leaving the main $A C$ power off the center lamp of the source array is activated by powering up the separate DC supply. The circuit breaker switch at the lamp source must also be turned on. Open the curtains and mount the calibration foam so that it is as much in the center of the cloud field support as possible. Offset the detector arc angle to about 15 degrees so that the shadow will not be in the field of the detectors. Write a file of about 10 scans to establish current calibration coefficients. End the file with the escape sequence.

Now the system is ready for data collection. Turn off the center lamp supply and open the circuit breaker. Turn on the main lamp switch. It is best to let the source lamps heat up as their output will fall considerably in the first 5 minutes or so. Variation in source strength is accounted for in the data reduction software but a constant source is best. Remove the foam calibration reflector and mount the cloud field target. It is easiest if the cloud field is premounted on a separate backround so that it may be rapidly mounted and removed. Normally bi-directional reflectance data is collected by scanning the detector arc through plus and minus 60 degrees with the cloud field set at the desired zenith angle. It is best to confine the total target to within about 9 inches of the center in order to avoid errors intoduced by changes in the solid angle subtended by cloud elements as the detectors are rotated. So beginning with the detector arc offset at 60 degrees from the center, on a new data file, record a data scan. Then proceed every 10 degrees in detector arc across the reflectance field. The data record which is being averaged while the arc is moved should be not be recorded since moving the arc will introduce noise into the data. Only the next record during which no arc movement has occurred should be recorded. After some practice it is possible to move the arc while the computer is writing to disk in which case the next record may be used. If, after the "control p" sequence has been entered, it is desired to inhibit the write to disk, press any key on the Apple II keyboard and the current record will not be
written to disk. This happens occasionally if doors are opened or in some cases people may need to walk across the path of the incident beam. These records should be discarded. It often happens that moving the arc will cause some change in the zenith angle setting in which case the zenith angle should be adjusted to the desired value. When all the data have been collected for a particular scene the file should be ended with the escape sequence. For best results the same scene should be repeated as many as four times to assure the quality of the data. (This should yield results with standard deviations of less than 2% of the mean values.) Each time the experiment is repeated the dark current and sensitivities should be redone as explained above.

At the end of the session the curtains should be closed, the computer turned of f and the lamps should be turned off. However, the power to the main control panel should be left on. It has been found that the stability of the entire system is highest if the amplifier circuits are constantly powered up. The data disk should be removed and saved for processing, which is the subject of Part II below.
II. PART II

In part two the software which has been developed for the processing of bi-direcional reflectance data is described. Additional software exists and is listed in Appendix B. Only a mention of the particular use of this latter software will be given since it is unlikely that a new user will have need for these routines without some modification. As mentioned in the introduction, it is assumed that the user will become familiar with the software. Many will require some user interaction. All of the programs which are discussed below are found on the Davong system hard disk under volume prefix lareal or .H1 or on the CFOS software backup diskette included with this manual.

We begin by assuming the user has completed a session in the CFOS laboratory and has written a data disk containing a file for establishing the dark current regression coefficients, one for updating the coefficients, a file containing relative calibration data and one or more files containing data for analysis of bi-directional reflectance data. All of the files written by the Apple II in the CFOS laboratory have a file name of the type D.mmddyy. hhmm, where mm is the two digit designator of the month, dd designates the day of the month yy the year, hh the hour on a 24 hour clock and mm the minute when the file was written. For example, the last dark current regression data recorded is listed on the first page of the Appendix B as D .082484 .1348.

The first task is to run the regression program which will establish the initial regression coefficients between the masked diode and the remaining detectors. Run the program called "CFOSREG". It will prompt you for the name of the file containing the regression data. It expects to find the file on device. d 2 . After the file name is input the reqression coefficients will be calculated and written to a file on the Davong system hard disk called "/areal/cfos.cal/coeff". As the data is processed the values of the slope, intercept and regression coefficients will be written to the screen. If the file contains a large amount of data the processing may take several minutes to a half hour. Once the regression coefficients have been calculated it is a good idea to transfer the raw data file to the hard disk for temporary storage in case the file
containing the coefficients is lost as has been done with the file d. 082484.1348.

The program above is utilized only occasionally after a new regression is needed for whatever reason. More often the file "/areal/cfos.cal/coeff" will already exist on the hard disk and these coefficients will need to be updated. This is the task of the program called "/areal/cfos.cal/cfosdark" using the data collected just prior to the relative sensitivity measurement described in Part I. This program also prompts for the name of the data input file which it expects to find on device .d2. The program uses the regression coefficients in "/areal/cfos.cal/coeff" and simply updates the offset coefficients which it then writes to a file called "/areal/cfos.cal/adjust". This procedure is normally repeated for each new bi-directional reflectance data set prior to running the relative calibration program described next.

Now the program "/areal/cfos.cal/cfossens" is run to process the relative sensitivity measurements. The user is asked for the name of the data file which it expects to find on device d 2 after which the contents of "/areal/cfos.cal/cfoscoeff" and "/areal/cfos.cal/adjust" are used along with the current data file to establish sensitivities relative to diode \#8. These values are written to a file "/areal/cfos.cal/sensiv".

The preliminaries out of the way it is now possible to process meaningful bi-directional reflectance data. This is the task of the program "/areal/cfos.bdr/cfosbdr" which expects to find the raw data in the subdirectory "/areal/cfos.back/". If several bi-directional reflectance files have been collected it is convenient to use the filer to transfer these files to the hard disk prior to the data processing session. The present routine uses the data in the files "/area1/cfos.cal/coeff", "/area1/cfos.cal/adjust", and "/areal/cfos.cal/sensiv" along with the present raw data to establish the normalized bi-directional data set. Normally the regime of detector arc angles is limited to $+/-60$ degrees in these data. The program terminates by writing to a file in the subdirectory "/area1/cfos.bdr/" concatenated with the current raw data file name. The bi-directional field, the number of detector arc angle scans, the normalizing flux density and the minimum and maximum of the field are also written to the file for later use.

This completes the main processing for bi-directional reflectance data. However, now that the field has been established it is fairly common to continue the process further to obtain a denser interpolated field which may be plotted or used for error analysis, for example. So continuing along the data processing chain of events one may run the program "/areal/cfos.interp/cfosinterp" which performs a weighted interpolation on the normalized bi-directional reflectance data. The weighting is based on the inverse of the angular distance between the point at which the interpolation is desired and a neighborhood around this point which may be changed to include all of the normalized data points or just a surrounding few. The running time is highly dependent on the number of points used in the interpolation. The program prompts for the number of nadir and azimuthal points at which interpolated results are desired as well as the input data file name. This latter file name should be the concatenated portion of the normalized data which was written by "/areal/cfos.bdr/cfosbdr" to the subdirectory "/areal/cfos.bdr/". This is of course just the "d.mmddyy.hhmm" designator of the original raw data. The product of this program is an interpolated field which is written to a file under the subdirectory
"/areal/cfos.plot/" concatenated with the "d.mmddyy.hhmm" designator of the original data.

One final product of this line of processing is a polar plot of the bi-directional reflectance data. Such a plot is the product of a program "/areal/cfos.plot/cfosplot". This program utilizes the HP 7470 A plotter to produce the drawing. The input data set is the product of the previous interpolation program and is requested by the program. Another use of the interpolated field is variance estimation. It is desirable from time to time to analyze the variance in the bi-directional reflectance data for the same scene measured several times or the variance among sets of data for slightly different scenes. This type of analysis is the object of the program "/areal/cfosste" which prompts for first the number of interpolated data fields and then the name of each one. Again, it is assumed that the interpolated fields are to be found in under the subdirectory "/areal/cfos.plot/" with concatenations of the raw data file names to be input by the user. The program presently assumes that 144 interpolated data points are available for each scene in a 12 by 12 array over the azimuth and nadir regime. The poduct is the standard error at each grid point and an average standard error for all grid points. This program was used to establish the basic precision of the bi-directional reflectance analysis which has been outlined in this manual.

This completes the description of the software needed to obtain bi-directional reflectance information. There are several other programs listed in Appendix B. What follows is a very brief description of the remaining software.
"/areal/cfos.cal/cfoscal" was the predecessor to the current sensitivity procedure. It assumed the dark current coefficients were constants and were entered in DATA statements within the program.
"/areal/cfos/cldareadist" is a simple algorithm which implements a cloud field statistical model given by Planck.
"/areal/cfos/clddist1" is a simple algorithm which implements the cloud field distribution program by Hozumi.
"/areal/cfos/cfosmovie" was used to provide a "movie" type graphical display of bi-directional reflectance fields. The input files to this program were previously generated fotofiles and are assumed to exist on device .h1.
"/areal/cfos/cfosfin" was used to produce graphical displays on the monitor and a pricipal plane graph on the silentype of bi-directional reflectance patterns for finite cloud fields.
"/areal/cfos/cfosback" was originally used experimentally to adjust for the backround reflectance pattern but was not found to be useful.
"/areal/cfos/cfosoff" was used to analyze the effect of displacing a single cloud or a small field clouds from the center of the CFOS cloud field support.

```
"/area1/plot.pack/myplot", "/area1/plot.pack/myplot1", and "/areal/plot.pack/hp.text" were prototype plotting routines from which the cfos plotting routines were patterned.
"/area1/plot.pack/rectterp" and "/areal/plot.pack/recplot" are routines analagous to their cfosinterp and cfos.plot counterparts(described above) and were used originally to interpolate and plot the radiance patterns exiting modeled and measured finite cubic clouds.
```


References

Coakley, J. A., and P. Chy'lek, 1975: The two stream approximation in radiative transfer: Including the angle of the incident radiation. J . Atmos. Sci., 32, 409-418.

Davis, J. M., S. K. Cox, and T. B. McKee, 1983: Design and verification of a cloud field optical simulator. J. Appl. Meteor., 22, 947-958.

Deirmendjian, D., 1969: Electromagnetic Scattering on Spherical Poly-dispersions. Elsevier, 290 pp.

Stephens, G. L., 1978: Radiation profiles in extended water clouds. II: Parameterization schemes. J. Atmos. Sci., 35, 2123-2132.

List of Figure Legends

Figure 1. A photograph of the radiance pattern from an optically thick cubic cloud under normal irradiation as simulated in the CFOS.

Figure 2. Contours of relative radiance (measured) exiting the side of a simulated cubic cloud irradiated at normal incidence.

Figure 3 . Contours of relative radiance (calculated) exiting the side of a modeled cubic cloud irradiated at normal incidence.

PRECEDING PAGE BLANK NOT FILMED

$$
24-33
$$

ORIGINAL PAGE IS OF POOR QUALTTY

Figure 1

Figure 2

Figure 3

5.0 Publications and Reports

McKee, T. B., J. M. Davis, and S. K. Cox. Design and Verification of a Cloud Field Optical Simulator. Published in Preprint of the Fourth Conference on Atmospheric Radiation, Toronto, Ontario, Canada, June 16-18, 1981.

Davis, J. M., S. K. Cox, and T. B. McKee, 1983: Design and verification of a cloud field optical simulator. J. Appl. Meteor., 22, 947-958.

Davis, J. M., S. K. Cox, and T. B. Mckee. The role of finite clouds in scenes scharacterized by forward scattering bi-directional reflectances. International Radiation Symposium '84, August 21-29, 1984.

Davis, J. M. and S. K. Cox, 1986: Additional confirmation of the validity of laboratory simulation of cloud radiances. Accepted for publication in J. Climate and Appl. Meteor., February, 1986.

6.0. Statement on Inventions

There were no patentable inventions made during the performance of this work.

APPENDIX

Data Reduction and Analysis

Programs for the Cloud Field Optical Simulator
10

```
FEM FFRGGRAM CFRS
```

FEM FFRGGRAM CFRS
FFINT" CFOS CALIEFIATION FF:OGFAM"
FFINT" CFOS CALIEFIATION FF:OGFAM"
DIM A⿻三人(15)
DIM A⿻三人(15)
DIM VALUE (500,20)
DIM VALUE (500,20)
DIM DC(19)
DIM DC(19)
DIM SLOF(15),OFFS(15),SENS(15)
DIM SLOF(15),OFFS(15),SENS(15)
DATA -6Jこ.57,66,195,-357,-240,-5工,-59,21,-1,-84, -221,-192,-182,307
DATA -6Jこ.57,66,195,-357,-240,-5工,-59,21,-1,-84, -221,-192,-182,307
DATA 1. 5758,0.811,0.829,0.694,1.486,1.049,1.149,0.78,.85.0.89,1.05,1.13,1
DATA 1. 5758,0.811,0.829,0.694,1.486,1.049,1.149,0.78,.85.0.89,1.05,1.13,1
.215,1.041,0.597
.215,1.041,0.597
FOFi f:=1 TO 15
FOFi f:=1 TO 15
FEAD OFFS(f)
FEAD OFFS(f)
NEXT F.
NEXT F.
FOF k=1 TO 15
FOF k=1 TO 15
FEAD SLOF(t.)
FEAD SLOF(t.)
NEXT r.
NEXT r.
DTFD=こ.14159/190.
DTFD=こ.14159/190.
OFEN\#1 AS INFUUT,".D2/D.091784.1247"
OFEN\#1 AS INFUUT,".D2/D.091784.1247"
T末="TEST.DAFF:"
T末="TEST.DAFF:"
Gま=""
Gま=""
INFUT\#1,1;ED
INFUT\#1,1;ED
NS=VAL(E\#)
NS=VAL(E\#)
FFIINT NS
FFIINT NS
FOF K=1 TO NS
FOF K=1 TO NS
日ま=""
日ま=""
INFUT\#\#1,ド+1;E韦
INFUT\#\#1,ド+1;E韦
FOS1=1
FOS1=1
FOR I=1 TO 2O
FOR I=1 TO 2O
SFACE=FOS1
SFACE=FOS1
FOSN=INSTF(EF," ",SFACE)
FOSN=INSTF(EF," ",SFACE)
NOC=FOSZ-FOS1
NOC=FOSZ-FOS1
VALUE (1.,J) = VAL (MIDF(B丰,FOS1,NOC))
VALUE (1.,J) = VAL (MIDF(B丰,FOS1,NOC))
FOS1=FOS2+1
FOS1=FOS2+1
FFRINT VALUE(F゙,JJ)
FFRINT VALUE(F゙,JJ)
NEXT J
NEXT J
NEXT F,
NEXT F,
FOF: K=1 TD NS
FOF: K=1 TD NS
FOF: J=1 TO 15
FOF: J=1 TO 15
SENS (J)=SENS (J) + (VAL (K:,J)*SLOF (J)+GFFS (J))/NS
SENS (J)=SENS (J) + (VAL (K:,J)*SLOF (J)+GFFS (J))/NS
NEXT J
NEXT J
NEXT K:
NEXT K:
FOF
FOF
SENS (J)=SENS (J)/SENS (8)
SENS (J)=SENS (J)/SENS (8)
NEXT \&:
NEXT \&:
OFEN\#4 AS DUTFUT,".SILENTYFE"
OFEN\#4 AS DUTFUT,".SILENTYFE"
OUTFUT\#4
OUTFUT\#4
FOR F.=1 TO 15
FOR F.=1 TO 15
FFINT SENS(F:)
FFINT SENS(F:)
NEXT F:
NEXT F:
END

```
    END
```

```
FEM FFROGFAM CFOS
FFINT" CFOS DAFKK: CUFRENT UFDATE FFOGGAAM"
DIM A$(15),VALUE (100,20)
DIM SL[F(15), OFFS(15)
FFINT"INFUT FILE NAME DF DAFK, CUFFENT UFDATE FUN"
INFUTT DE
    OFEN#1 AS INFUT,"/AFEA1/CFOS.CAL/CREFF"
    FOF J=1 TO 15
            FEAD# 1, J;SLOF(J),OFFS(J)
            NEXT J
    OFEN#工 AS INFUT,".Dユノ"+D$
    E本=""
    INFUT#2,1;NS
    NS=NS-2
    FFINT NS
    FOF F=1 TO NS
        Eま=""
        INFUT#2,K゙+1;E#
        FOS1=1
        FOF J=1 TO 20
            SFACE=FOS1
            FOSI=INSTF(E#," ",SFACE)
            NOC=FOS2-FOS1
            VALUE (K:,J)=VAL (MID.क (E韦,FOS1,NDC))
            FOS1=FOS2+1
            FFINT VRLUE (k,J)
            NEXT J
        NEXT K
    FOFi J=1 TG 15
        DIFF=0
        FOF: K=1 TO NS
            DIFF=DIFF+{VALUE (K,16)*SLOF(J)+OFFS(J)-VALUE (K,J))/NS
            NEXT K゙
    OFFS (J)=OFFS(J)-DIFF
    FRIMT DIFF
    NEXTT J
    OFEN#S AS DUTFUT,"/AFEA1/CFQS.CAL/ADJUST"
    FOF J=1 TO 15
        WFITE#S,J;OFFS(J)
        NEXT J
    CLOSE
    END
```

FEM FREOGFAM CFOS
FFINT" CFOS DAFK: CLIFIRECT OFFSET FFROGFAM"
DIM AE (15)
DIM Value (650,20)
DIM SLDF (15), OFFS(15)
FFINT"INFUT THE NAME OF THE DATA INFUTT FILE"
INFUT D:
DTFD=天. $14159 / 180$.
OFEN\#1 AS INFUT,"/.DZ/"+Dま
Bま=""
INFUT\#1, 1; EF
DTFD=5.14159/180.
MS=VAL (E丰)
FFIINT NS
FOK K゙=1 TO NS
E本="い
INFUT\#1, ド+1; E
FOS1=1
FOF: J=1 TO 20
SFACE =FOSI
FOSN=INSTR (E末," ", SFAACE)
NOC=FOS2-FOS1

FOS1=FCSI+1
FFIINT VALUE ($k, \mathrm{~J}$)
NEXT I
NEXT F:
FOR $\quad 3=1$ TO 15
$\mathrm{N}=0$
$5 X=0$
$S Y=0$
$5 \times X=0$
$5 Y Y=0$
SXY=0
FOF Ki=1 TO NS
$N=N+1$
$X=$ VALUE ($\because, 16$)
$Y=$ VALLIE (K, J)
$5 X Y=5 X Y+X * Y$
$5 X=S X+X$
$5 Y=5 Y+Y$
$5 X X=5 X X+X * X$
$S Y Y=S Y Y+Y * Y$
NEXT :
BETA $1=(N * 5 X Y-5 X * 5 Y) /(N * 5 X X-5 X * 5 X)$
EETAO=SY/N-EETA1*SX/N
FFRIMT EETA1, EETAO
$F=(N * S X Y-S X * S Y) / 50 F((N * S X X-S X * S X) *(N * S Y Y-S Y * S Y))$
FRINT F'
SLOF $(J)=$ EETA 1
OFFS $(J)=$ EETAO
NEXT J
OFEN\# = AS QUTFUT,"/AFEA1/CFOS.CAL/CDEFF"
FOF $J=1$ TO 15
WFITE\#J, J: SLOF (J), GFFS(J)
NEXT J
CLOSE
END

FEM FFIGGFAM CFOS
FFINT＂CFOS CALIEFIATON FFIGGFAMM＂
DIM A志（15），VALUE（100，こ0）
DIM SLOF（15），QFFS（15），COFFS（15），SENS（15）
FFIINT＂INFUT FILE NAME OF DAFK：CUFFENT CALIEFIATON RUN＂
INFUT DF
OFEN\＃ 1 AS INFUT，＂／AFEA1／CFDS．CAL／COEFF＂
FOF $J=1$ TO 15
FEAD\＃1，J：SLOF（J），OFFS（J）
NEXT J
OFEN\＃AS INFUT，＂／AFEA1／CFOS．CAL／ADJUST＂
FOR $J=1$ TO 15
FEAD\＃こ，J；COFFS（J）
NEXT J
FFIINT＂CLFFENT DAFKK CUFFENT DFFSET UFDATE VALUES＂
FOF J＝1 TO 15
FFiINT COFFS（J）
NEXT J
CLOSE\＃2
OFEN\＃2 AS INFUT，＂．Dコ／＂＋D
E車＝＂＂
INFUT\＃2，1：NS
NS＝NS－2
FFIINT NS
FOR $k=1$ TO NS
Eま＝＂い
INFUT\＃こ，K +1 ：E $=$
FOS $1=1$
FOF $\quad J=1$ TO 20
SFACE $=F O S 1$
FOSA＝INSTR（E $⿻=$
NOC＝FOSA－FOS1

FRS1＝FQS2＋1
FFINT VALUE（K゙，J）
NEXT J
NEXT K
FOR $J=1$ TO 15
$\operatorname{SENS}(J)=0$ ，
FOR ド $=1$ TO NS
$\operatorname{SENS}(J)=\operatorname{SENS}(J)+(\operatorname{VALUE}(K, J)-\operatorname{VALUE}(K, 16) * S L O F(J)-\operatorname{COFFS}(J)) / N S$ NEXT \because ：
FFIINT SENS（J）
NEXT J
FOF $J=1$ TO 7
SENS（J）$=$ SENS（ J ）／SENS（ 8 ）
SENS $(J+8)=\operatorname{SENS}(J+8) /$ SENS（ B ）
NEXT J
$\operatorname{SENS}(8)=1$
OFEN\＃S AS OUTFUT，＂／AFEEA1／CFOS．CAL／SENSIV＂
FOR J＝1 TO 15
WFIITE\＃S，J：SENS（J）
NEXT J
CLOSE
OFEN\＃ 1 AS DUTFUT，＂．SILENTYFE＂
FOR $J=1$ TO 15
FRIINT\＃1SENS（J）
NEXT J

CLOSE

END

```
FFIINT＂ENTEF THE TOTAL CLQUD CQVEF＂
INFUT ST
FFINT＂ENTEF THE CHI FAFFAMETEF＂
INFUT CHI
FFINT＂ENTEF THE DIAMETEF LIMITS DI AND Dユ＂
INFUT D1，D2
FFIINT＂ENTEF THE EXFONENT ALFHA＂
INFUT ALFHA
D \(1 A=D 1 * A L F H A\)
\(D 工 A=D こ * A L F H A\)
\(A=-(S T /(2 * C H I) *(E X F(-D \Sigma A) *(D コ A \cdots 2+2 * D 2 A+2)-E X F(-D 1 A) *(D 1 A \cdots 2+2 * D 1 A+2)))\)
FFINT D1，DI，A
END
```

FEM CLOUD DISTFIEUTION FFROGFAM A LA HQZUMI
DIM D(50), N(50), A(50), V(50)
OFEN\# 1 AS OUTFLIT.".FRINTER"
FOR M=5 TO 95 STEF 10
$A=124 * E X F(-4.7 * M * .01)$
$E=4.5 * E X F(-\Xi .5 * M * .01)$
ASUM=0
FOR $I=1$ TO 2O
D $1=1 * 0.50-0.50$
$D=I * 0.50$
$N(I)=A / E *(E X F(-E * D 1)-E X F(-E * D 2)) * 40$
DB1=D1*E
DEこ=DこれE
$A(I)=$. $14159 * A /(4 * E \cdot \Xi) *(E X F(-D E 1) *(D E 1 * D E 1+2 * D B 1+2)-E X F(-D E 2) *(D E 2$
$\mathrm{B2}+2 * \mathrm{DB}+2 \mathrm{C}) / 100$
ASUM=ASUM+A(I)
FFIINT\#1M, D1, DI, N(I), A(I)
NEXT I
FRIINT\#1ASUM: FFINT\#1:FFINT\#1
NEXT M
END

```
1500 DFEN##2,".GFIAFIX"
1510 INVOFE".DI/EGRAF.INV"
152O FEFFORFM INITGFAFIX
15=0 FEEFFGFM GFIAFIXMDDE (%1,%1)
1540 FEFFOGMM FILLFOFT
1550 FEFFOFM GLOAD.".H1/FOAM. GODEGGFAF"
15S0 FEFFFOFM GFAF IXON
1570 FEFFDFM GFAFIXMODE (%1,%2)
1580 FEFFDOFM GLOAD.".H1/FOAM.SODEGGRAF"
1590 FEFFFIFM GFAFIXON
1600 FEFFDFM GFAFIXMODE (%1,%1)
1605 FEFFFOFM INITGFAFIX
1610 FEFFOFM GLOAD.".H1/FOAM.ODEGGFAF"
1620 FEFFFOFIM GFAFIXON
1625 FOF: K=1 TO 1000:FEFFOFM GFAFIXON:NEXT K:
16=0 FEFFFOFM GFAFIXMODE(%1,%2)
1640 FEFFOFM GLOAD.".H1/FOAM.GODEGFLOT"
1650 FEFFFOFM GRAFIXON
1660 FEFFFOFM GFAFIXMODE (%1,%2)
1670 FEFFOFM GLDAD.".H1/FOAM.ZODEGFLDT"
1680 FEFFFOFM GFAFIXON
1690 FEFFFOFIM GFiAF IXMODE (%1,%1)
1700 FEFFOFM GLOAD.".H1/FOAM. ODEGFLDT"
1710 FEFIFOFM GFAAFIXON
17IO FOF: :==1 TO 1OOO:FEFFOFM GFAFIXON:NEXT K
1730 GOTO 1540
1740 END
```

10

FEM FFROGFIAM CFOS
FFINT＂

CFOS DATA FEDUCTION FFOGFAM＂

FFINT：FFINT：FFINT＂THE DIODE SENSITIVITIES USED IN THIS FROGFIAM AFE＂
DIM DIANG（15），SENS（15），DC（19），NADANG（5OO），FAZANG（SOO），VOLT（SOO）
DIM DID（19），ANG（ 3$)$ ，NF（ 56 ），NFN（ 26 ），MEAS（5OO，I）
DIM AF（15）
DATA $20,30,40,50,00,70,80,70,100,110,120,130,140,150,160$
DATA $1 ., 1.06, .88, .94, .84, .95,1.18, .79, .74,1.03, .86, .98, .98,1.06,1.04$ DATA $1598,125,477,852,427,57=314,358,195,652,185,503,7 \Xi, 220,287,25,3$

FOR I＝1 TO 15
FEAD DIANG（I） NEXT I
FOF I＝1 TO 15
FEAD SENS（I） NEXT I
FFiINT＂DIQDE NUMEEF DIDDE ANGLE DIODE SENSITIVITY＂
$N F=8$
FOR I＝1 TO 15
FFINT USING 170：I，DIANG（I）．SENS（I）
IMAGE 10X，こ\＃，14X，ड\＃，16X，1\＃．2\＃ NEXT I
DTFD＝玉．14159；180．
FEM DEFINE AFCCOS FUNCTION
DEF FN ACOS $(X)=A T N(S O F(1-X * X) / X)$
$L=0$
AVZEN＝0
OFEN\＃ 1 AS INFUT，＂．D2／EACK．Z6O＂
T丰＝＂FOAM＂
FOF LL＝1 TO こ
E $\ddagger="!$
FOF $I=1$ TO 15
GET\＃1；A事（I）
IF $A 末(I)=C H F \$(1 \Xi)$ THEN 2BO
IF $A 末(I)=C H F=(10)$ THEN 340
IF $A 末(I)=C H F F(\Xi 2)$ THEN 340
NEXT I
FOR $K=1$ TO I
$\mathrm{E}=\mathrm{F}=\mathrm{E} F+\mathrm{A} \ddagger$（ F ）
NEXT に
$N S=V A L$（ $\left.\mathrm{E}_{\mathrm{F}}^{\mathrm{F}}\right)$
FFIINT NS
FOR ド＝1 TO NS
E丰＝＂い
FOR $J=1$ TO 18
Eま＝＂＂
FOF I＝1 TO 15
GET井1；A末（I）
IF $A=(I)=C H F(13)$ THEN 450
IF $A \neq(I)=C H F=(\Xi 2)$ THEN 500
IF $A(I)=C H R=(10)$ THEN 500
NEXT I
FOF $M=1$ TO I
$\mathrm{E}=\mathrm{F}=\mathrm{B}=+\mathrm{A} \ddagger$（M）
NEXT M
$\mathrm{DID}(J)=$ VAL（E E ）
$\operatorname{DID}(J)=(D I D(J)-D C(J)) / 1000$ ．
IF $K=1$ THEN FEF＝DID（18）
NEXT J
FOF：$J=1$ TO Ξ
$\mathrm{B} \ddagger=\square "$

5
590
600
610
6등
620
640
650
660
665
670
680
690
695
700
705
710
720
750
740
750
760
770
775
776
780
790
800
811
812
815
820
8.0
$8: 5$
840
841
842
$84:$
844
845
850
860
900
810
920
9こ0
940
950
960
970
980
950
1000
1010
1020
10.70

1100
1120
11.0

1140
1150
1160
1200
1210
1200
GET\#1: 守丰 (I)
IF $A=(I)=$ CHFi三 (13) THEN 580 A-9
IF $A(I)=C H F=(\Omega 2)$ THEN SミO
IF $A F(I)=C H F E(10)$ THEN 6SO
NEXT I
FOR $M=1$ TO I
$E \phi=E D+A 末(M)$
NEXT M
$\operatorname{ANG}(J)=\operatorname{VAL}(E=)$
NEXT J
FOF $I=1$ TD 15
ALF'HA=ANG(2)-ANG(1)
$X=S I N(D I A N G(I) * D T R D) * C O S$ (ALFHA*DTFD)
$N A D=F N$ ACOS (X)
$L=L+1$
NADANG (L) =NAD
COMF $=($ DIANG $(I)-90) * D T F D$
$D E N=(S I N(N A D A N G(L)) * S I N(A L F H A * D T F D))$
IF DEN=0. THEN 750
$X=(\operatorname{COS}(C O M F)-\operatorname{COS}(N A D A N G(L)) * \operatorname{COS}(A L F H A * D T R D)) / D E N$
IF DEN=0. THEN $X=.00001$
IF DIANG (I) 49 . THEN $X=-x$
IF NADANG (L) $\therefore .000001$ THEN 775:ELSE $X=1.0$
IF $x: 1$. THEN $x=1$.
IF $x \cdot-1$. THEN $x=-1$.
FAZANG $(L)=F N$ ACOS (X)
IF ALFHA. O. THEN FAZANG (L) =FAZANG (L) + $180 * D T F D$
IF FAZANG(L) \because. THEN FAZANG (L) = ZGO. *DTFD + FAAZANG (L)
MEAS (L,LL)=DIO (I)/SENS (I)*FEF/DIO(18)
VOLT (L) =MEAS (L, 2) -MEAS (L, 1)
FFINT L, NADANG (L)/DTFD,FAZANG(L)/DTRD,VDLT(L)
NEXT I
FFIINT: FFINT
AVZEN=AVZEN+FNG(1)/NS
NEXT 1 .
CLOSE\#1
IF LL=2 THEN 850
QFEN\# 1 AS INFUT, ", DZ/FINGO. ZGOCUEE"
$L=O: A \cup Z E N=O$.
NEXT LL
NMEAS=L
GOSUE 1200
FEM SUEFRUTINE INTEFF
DELTA $=30 *$ DTRD
SUMF=0.: SUMW=0.
FOF: $I=1$ TO NMEAS
$Z=N A D A N G(I): A=F A Z A N G(I)$
IF AES (Z-ZINT) \therefore DELTA THEN 1040
IF AES (A-AINT) DDELTA THEN 1040
THETA $=\operatorname{COS}(Z) * C O S(Z I N T)+S I N(Z) * S I N(Z I N T) * C O S(A-A I N T)$
IF THETA. 0 . THEN $1000: E L S E 1000$
THETA = FN ACOS (THETA)
GOSUB 1100
SUMW=SUMW+W
SUMF =SUMF + W*VOLT (I)
NEXT I
FEM SUERDUT INE WEIGHT
$W G H T=1 . E+O 6$
IF THETA. OOOI THEN 1140:ELSE 1150
$W=$ WGHT : FETURN
WGHT = DEL TA/THETA
W=WGHT: FETUFN
REM SUEFIOUTINE MAX——————————MIN
MAX=0
$M T N=100$
IF NAGFNG: I \quad OOADTED THEN 1260
IF UOLT (I) MAX THEN MAX=VOLT (I)
IF VOLT (I) MIN THEN MIN=VOLT (I)
NEXT I
FFINT MIN,MAX
REM SUEFOUT INE INTEGFATE FADIANCES
SUM=O. : TOTNUM=0
FOF $J=1$ TO $\because S$
ORAMNAL PRGE IS
DE POOR QUALTTY
$\operatorname{NF}(J)=0: \operatorname{NFN}(J)=0$
NEXT J
NINC=90*DTFD/こ6.
FOF $I=1$ TO NMEAS
$J=I N T$ (NADANG (I)/NINC) +1
$N F i(J)=N F i(J)+V O L T(I)$
NF:N (J) $=\mathrm{NFN}(J)+1$
NEXT I
FOF $I=1$ TO 36
IF NFN (I) $=0$ THEN 1595
ANG $=(2 * I-1) / 2 * N I N C$
SUM=SUM+NF (I)/NFN(I)*COS (ANG)*SIN (ANG) *NINC
TOTNUM=TOTNUM+NFN (I)
NINC=90.*DTFD/ $\because 6$: GOTD 1400
NINC=NINC+NINC
NEXT I
FLUXUF=~1415G*2*SUM
FRINT FLUXUF'
STOF
OFEN\#S AS OUTFUT, ". SILENTYFE"
OUTFUT\#S
FOF $1=8$ TO 375 STEF 15
VOLT $(f)=($ MEAS $(k, 2)-M E A S(K, 1) *(1-F *(1+T A N(N A D A N G(k:))))) / F ;(1+T A N(N A D A N$
G(ト)))

NEXT F:
FFIINT: FFIINT
END
DFEN\#2, ". GFAFIX"
INUOFE". D1/EGFAF. INV"
FEFFOFIM INITGFAFIX
FEFFORIM GFAF I XMODE $(\% 1, \% 1)$
FEFFOFN FILLFOFT
FAD=60
GOSUB 1880
FEFFOFM FENCOLOR (\%15)
NFOINTS $=72$
FEFFOFM GFAF IXON
FOF $\kappa=1$ TO 3
$X 1=f^{*} \cdot O * D T F D$
$\mathrm{F}=\mathrm{Fi} A \mathrm{D} * S I N\left(\mathrm{X}_{1}\right)$
FEFFGFM MOVETO ($\%(F * 140 / 192 * 2+140), \% 96)$
FOF $I=1$ TO 365 STEF 5
$X=F i * \operatorname{COS}(I * D T F D) * 140 / 192+70: X=2 * X$
$Y=F * S I N(I * D T F D) * 192 / 140+96$
FEFFOFM LINETO ($\% x, \% Y$)
NEXT I
NEXT F:
ANGINC $=\vec{O}$ ODTFD
FEFFOFIM MOVETO $(\% 140, \% 96)$
FOF $I=1$ TO 12
ANG=ANGINC*I
$X=$ FiAD $* \operatorname{COS}(A N G) * 140 / 192+70: X=2 * X$
$\mathrm{Y}=\mathrm{FAD} * S I N(\mathrm{ANG}) * 192 / 140+96$
FEFFFDFM LINETO $(\% x, \% Y)$
FEFFOFM MOVETO ($\% 140, \%$, 16)
NIEVT T
1870 F•RINT\＃コ；＂ごロ＂
1875 GOTO 5000
1880 FEFFFOFM GFAFIXON
1885

 FEFFFOFM INITGRAFIX
 I110 XFANGE＝NADAND（B）＋NADANG
3120

 XFIANGE = XFAANGE/DTFID
 ± 19

 \(X F A N G E=I N T((X F A N G E / 2+10) / 10)\)
 \(J=0\)
 $\therefore 190$ FNF $T=$ TH $\operatorname{TNG}-1) * 1 \sigma_{+}+F$ GTFF $1 F$
FEFFDFM MOVETO (\%ニ-0, \%78)
FEFFDFM MOYETO
FFTNT\#~: "180"
FEFFOFM MOVETO (\%10, \%188)
FFINT\#2 LISING 18O4;AVZEN
IMAGE " $Z="$ "\#\#。
FEFFFRFM MOVETO ($\% 180, \% 188)$
FFINT\#2 USING 1910 ; FLUXUF
IMAGE "F=", \#.\#\#
FEFFOFM MOVETO ($\% 10, \% 8$)
FRINT\#工 USING 1816:MIN
IMAGE "MIN=", \#.\#
F'EFFOFM MOVETO (\%180, \%8)
FFINT\#2 USING 1822;MAX
IMAGE "MAX=", \#, \#
FEFFOFM MOVETO (\%126, \%188)
FRINT井二: "qO"
FEFFOFM MOUETD ($\% .30, \% 98)$
FRINT\#2; "O"
FEFFOFM XFFOFTION(\%O)
COLINC= (MAX-MIN)/10.
FOR $\mathrm{F}=1$ TO NMEAS
IF NADANG (K:) $\mathbf{O O}$ ODTFD THEN 2OE5
$\mathrm{F}=-\mathrm{FAAD}+5 \mathrm{IN}$ (NADANG(F:))
$X=F * \operatorname{COS}(F A Z A N G(k:)) * 140 / 192+70: X=X * 2$
$\times 5= \pm * \operatorname{COS}$ (NADANG (K)) $+1: \times 5=\times 5 * 2$
$Y=F * S I N(F A Z A N G(E)) * 192 / 140+96$
$Y S=6 * \operatorname{COS}(N A D A N G(K))+\Xi$
COLOF: $=$ INT (COLOF:
FEFFOFM FILLCOLOR(\%COLOR)
$F=X+X S$
$L=x-x S$
$T=Y+Y S$
$E=Y-Y S$
FEFFFOFM VIEWPOFT $(\% L, \% R, \% \mathrm{~B}, \% \mathrm{~T})$
FEFFDFIM FILLFORT
NEXT K:
FEFFGRM INITGFAFIX
FETUFIN
END
FiEM SUEFOUTINE FFINCIFAL FLANE FADIANCE GFAFH
MAX=0. $:$ MIN=100.
FOF $I=8$ TO (NS-1) * $15+8$ STEF 15
IF VOLT (I) : MAX THEN MAX=VOLT (I)
IF VOLT (I) <MIN THEN MIN=VOLT (I)
NEXT I
FRIINT MAX,MIN
FEM SET XSCALE AND XINC
XFANGE = NADANG (8) + NADANG $((N S-1) * 15+8)$
$X I N C=40$
FEM SET YSCALE AND YINC
$M I D=I N T((N S+1) / 2)$
FOF $I=3$ TO (NS-1)*15+8 STEF 15
IF NADANG (I) $\because 8 * D T F D$ THEN NOFM $=V O L T(I)$
NEXT I
IF COLJNC=0. THEN COLOR=10:ELSE COLOF: $=$ (VOLT (K) -MIN)/COLINC
FEM FIND THE MAX AND MIN VOLT IN THE FRINCIPAL FLANE

NF(J)='JGL (I) 'NOKM
NEXT I
MAX = MAX/NGRM:MIN=MIN/NOFM A-12.
FEM SET YFRANGE AND YinC
YINC $=15$
YFANGE=MAX-MIN
FEFFFOFM GFAFIXMODE ($\%$, $\%$)
FERFORM GFAF IXON
FEFFOFM FILLFORT
FEFFOFM MOVETO (\% $280, \% 30)$
FEFFOFM MOVEREL (\%-亏, \%
FEFFORM MOVETO $(\% 280, \% 30)$
FEFFORM MOVEFEL $(\%, \%-10)$
ANG=0
FFINT\#2ANG
FOF $\mathrm{K}=-1$ TO 1 STEF 2
FOF $\mathrm{I}=1$ TO XFANGE $X F=200+h * I * 40: Y F=30$ FEFFORM MOVETO ($\%$ XR-1, $\%$ YF+ +3) FRINT\#2:"I" FEFFRFM MOVETO (\%XF, \%YR) FERFORM MOVEREL $(\%-3, \%-10)$ $A N G=I * 10$ FFINT\#2: ANG NEXT I
NEXT r .
LL=F8O-XFANGE*40
LF=2SO+XRANGE*4O
FEFFOFM MOVETO (\%LL, $\%$ RO)
FEFFFORM LINETO ($\%$ LR, $\%$ O)
FEFFFOFM MOVETO (\% $280, \%$)
FOR $\quad \mathrm{I}=1$ TO $=$
$X F=280: Y F=30+J * 50$
FEFFDRM MDUETD (\%XF-3, \%YF+2)
FFINT\#2:"一"
FEFFDFM MOVETO ($\%$ XR, \%YR)
PEFFGRM MOVEFEL $(\% 10, \%)$
FRINT\#2; J
NEXT J
FEFFORM MOVETO ($\%$ XR, \%YR)
FEFFFDFM LINETO $(\% 280, \% 30)$
PEFFDRM MOVETO ($\% 280, \% 30)$
$J=0: L=0$
FOF $I=8$ TO(NS-1) * $15+8$ STEF 15
IF VOLT (I) $=0$ THEN 3710
$k=1$
$J=\mathrm{J}+1$
IF RAZANG(I):5*DTRD THEN $K=-1$
$\mathrm{X}=28 \mathrm{O}+\mathrm{f}$. $*$ NADANG (I)/DTFD*4
$Y=N F^{\prime}(J) * E O+50$
FFINT NF: (J), NADANG (I)/DTRD, FAZANG (I)/DTFD, X,Y
$X=\operatorname{INT}(X)$
$Y=I N T(Y)$
IF ABS $(X-509)<E$ THEN 3710
IF $L=0$ THEN FERFORM MOVETO $(\% X, \% Y):$ ELSE FEFFFORM LINETO $(\% X, \% Y)$
$L=L+1$
FEFFFDRM DOTAT (\%X, \%Y)
NEXT I
FEFFORM MOVETO (\%100, \%180)
FRINT\#2 USING 3740 ; T
image "Felative radiances
IN THE FRINCIFAL FLANE FOK ", 1
OA
3750
3760
FEFFFDEM MOVETO (\% $40, \% 170$)
3770
FFINT\#2 USING 3770 :AVZEN
TMARF "GחI AF 7FNITTH ANAI E= ". \#\#. . "DFF"

```
\because7OO, FFINT#N"ANTT-SOLAF SIDE"
S800 FEFFOFIM MOUETO(%400,%10)
#810 FFFINT#こ"SOLAF SIDE"
SENO FEFFOFM NOUETO(%N40,%10)
3@EO FFINT#2"NADIF ANGLE"
I940 END
114.38 VOLT (k)=(MEAS (k,2)-MEAS (F,1)*(1-F*(1+TAN(NADANG(K})))))/(F*(1+TAN(NADAN
G(f:)))
```

10
20
40
45
50
55
56
57
58
60
70
75

FEEM FFROGFIAM CFOS

```
FFINT" CFDS CALIEFiATION FFROGFIAM"
```

DIM DIANG (SO)
DIM DAFF: (500)

DIM AF (15)
DIM VALUE (500, 20)
DIM DC(19)
DIM SENS (10,16)
DATA $20,30,40,50,60,70,80,90,100,110,120,130,140,150,160$
DATA 1.00,.91,1.07,.9日,.99,.96.1.2,1.09.1.03,1.23,.89,1.02,1.10,.88,.96
DIM EDF (5O)
DTFD=こ. 14159/180.
FEM DEFINE AFCOS FUNCTION
DEF FN ACOS $(X)=A T N(S Q F(1-X * X) / X)$
$L=0$
AVZEN=O
OFEN\# 1 AS INFUT, "/AFEA1/CFOS. EACK/D.071684.1244"
T丰="TEST. DAFF゙."
Eも=""
INFUT\#1,1:EF
NS=VAL (E末)
NS=NS-~
FFIINT NS
FOR $r=1$ TONS
Eま="い
INFUT\#1, K゙+1; E
FOS1=1
FOK $J=1$ TO 20
SFACE $=\mathrm{FOS1}$
FOS2=INSTR (E本," ", SFACE)
NOC=FOS2-FOS1
VALUE (K゙, J) =VAL (MID末 (EF, FOSI, NDC))
FOS1=FOS2+1
FFRINT VALUE (k, J)
NEXT J
NEXT ド:
FEEF=VALUE (1, 17)
NS2=NS/2
FOF $\quad \mathrm{J}=1$ TO NS
VALUE (J, 8) =VALUE (J, 8) *FEF/VALUE (J, 17)
DAFK (J) =VALUE $(J, 7) * 0.76165 \Omega+163.5$
NEXT J
$F=.01$
FOR $J=1$ TO NS
DIANG (J) = VALUE (J, 17)
IF DIANG(J) $\because O$. THEN DIANG (J) $=\mathbf{J} 60 .-D I A N G(J)$
FFINT DIANG (J)
NEXT J
FOF $J=1$ TO NS
DIANG (J) $=((\operatorname{DIANG}(J)+\operatorname{VALUE}(J, 18))-\Xi 60) * D T R D$
DIANG (J) =ABS (DIANG (J))
SINE =ABS (SIN (DIANG (J)))
$\operatorname{COSE}=A E S(\operatorname{COG}(D I A N G(J)))$
$\operatorname{DIO}(J)=(\operatorname{VALUE}(J, 8)-\operatorname{DAFF}(J))$
NEXT J
$\operatorname{DID}(7)=(\mathrm{DID}(8)+\mathrm{DID}(6)) / 2$.
FOF $J=1$ TO NS
FFINT DID(J)/DIO(7),DIANG(J)/DTFD
NEXT J
$S L I M=0$.
，
SINE=AES(SIN(DIANG(t.)))
COSE=AES (COS (DIANG (r))) A-15
SUM=SUM+DID(k)*COSE*SINE*10*DTFD*1*こ. 14159
NEXT F .
SDLANG=(1.0-COS(DIANG(1)))*2.0*こ. 14159
OFEN\#工 AS OUTFUT,".SILENTYFE"
OUTFUUT\#こ
FOF $N=1$ TO NS
EDF (ト' $^{\prime}$) $=$ DIO (ド) *こ. $14159 /$ SUM
FRINT EDF (5), COS (DIANG (F:))
NEXT K
END
NMEAS=L
FOFi $:=1$ TO
FOF J=1 TO 18
$\mathrm{DC}(\mathrm{J})=\mathrm{DC}(\mathrm{J})+\operatorname{VALUE}($ (r, J $) / 5$
NEXT J
NEXT K
FOF $\mathrm{k}=1$ TO 19
FFINT CC (k.)
NEXT F
FOR $F:=6$ TO NS
$J=(k-5)-15 *$ INT ((K゙- -5$) / 15)$
IF $J=0$ THEN $J=16$
$I=I N T((N-6) / 15)+1$
$F E F=\cup A L U E(5+I, 1)$
SENS (I, J) = (VALUE (K, J) -DC (J))/FEF*VALUE (I+5, 18)/VALUE (ド, 18)

NEXT K:
END
FOF: $I=1$ TO 4:FOF $J=2$ TO 16:SENS (I,J)=SENS (I,J)/SENS (I, 1):NEXT J:NEXT I
FOF $I=1$ TO $5: F O F J=1$ TO 16:FRINT SENS (I,J):NEXT J:NEXT I
GFEN\#S AS OUTFUT,".SILENTYFE"
OUTFUT\#ふ
FOF J=1 TO 16
FFINT SENS (1, J), SENS $(2, J), \operatorname{SENS}(\Xi, J), \operatorname{SENS}(4, J), \operatorname{SENS}(5, J)$
NEXT J

FEN FFROGNAM CFOS
FFIINT＂CFOS CALIEFATION FROGFAM＂
DIM DIANG（50）
DIM DAFIT．（EOO）
DIM DIO（40），ANG（こ），NF（こ6），NFN（こG）
DIM A末（15）
DIM VALUE（500，20）
DIM DC（19）
DIM $\operatorname{SENS}(10,16)$
DHTA $20,20,40,50,60,70,80,90,100,110,120,130,140,150,160$
DATA 1．00，．71，1．07，．78，．99，．76，1．2，1．09，1．03，1．23，．89．1．02，1．10，．88，．96
DIM EDF（50）
DTFD＝ふ． $14159 / 180$ ．
FEM DEFINE AFCOS FUNCTION
DEF FN $\operatorname{ACOS}(x)=A T N(S Q R(1-X * X) / X)$
$L=0$
AVZEN＝0
ロFEN\＃1 AS INFUT，＂／AFEA1／CFOS．OFF／D．071984．0826＂
T末＝＂TEST．DAFF＂
Eも＝＂い
INFUT\＃ 1,$1 ; \mathrm{E}=$
NS＝VAL（E末）
NS＝NS－2
FFINT NS
FOF K＝1 TO NS
Eまニい＂
INFUT\＃1，K゚＋1；E
FOS1＝1
FOR $J=1$ TO 20
SF＇ACE $=F O S 1$
FOS2＝INSTF（E $=$ ，＂＂，SF＇ACE）
NOC＝FOS2－FOS 1
VALUE（K゙，J）＝VAL（MID末（E末，FOS1，NDC））
FOS1＝FGSA＋1
Fifint VALUE（r，J）
NEXT J
NEXT F ．
REF＝VALUE（1，17）
NS2＝NS／2
FOF：$J=1$ TO NS
$\operatorname{VALUE}(J, 8)=\operatorname{VALUE}(J, B) * F E F / \operatorname{VALUE}(J, 17)$
DAFK（J）＝VALUE（J， 9 ）＊ $0.871844+47.374$
NEXT J
$F=.01$
FOR J＝1 TO NS
DIANG（J）＝VALUE（J，19）
IF DIANG（J）\because G．THEN DIANG $(J)=\Xi 60$. －DIANG (J)
FFINT DIANG（J）
NEXT J
FOF $J=1$ TO NS
DIANG $(J)=((\operatorname{DIANG}(J)+V A L U E(J, 18))-360) * D T R D$.
DIANG（J）＝AES（DIANG（J））
SINE＝ABS（SIN（DIANG（J）））
COSE＝AES（COS（DIANG（J）））
$\operatorname{DICI}(J)=(V A L U E(J, 8)-D A F i t:(J))$
NEXT J
$\operatorname{DID}(7)=(\mathrm{DIO}(6)+\mathrm{DID}(8)) / 2$ ．
FOR J＝1 TO MS
FFINT DIO（J）／DIO（7），DIANG（J）／DTFDD
NEXT J
SI $1 M=n$ ．

755

```
-5, - ..-
    SINE=AES(SIN(DIANG(r.)))
    COSE=ABS(COS(DIANG(k)))
                                    A-17
    SUN=SUM+DIO(t.)*COSE*SINE*10*DTFD*1*\Xi.14159
    NEXT F
    SOLANG=(1.0-COS(DIANG(1)))*2.0*S.14159
    OFEN#工 AS OUTFUT,".SILENTYFEE"
    OUTFUIT#2
    FOR }:=1\mathrm{ TO NS
    EDF(ト)=DID(k)*E.14159/SUM
    FFINT EDF(r),COS(DIANG(r.))
    NEXT F'
    END
    NMEAS=L
    FOF ト:=1 TO S
    FOF: J=1 TD 1B
        DC(J)=DC(J)+VALUE (K゙,J)/5
        NEXT J
    NEXT F
    FOF K:=1 TO 19
    FFINT DC(K.)
    NEXT ド
    FOR F:=6 TO NS
        J= (N:-5)-15*INT ( (K-5)/15)
        IF J=0 THEN J=16
        I=INT ({ド-自)/1S)+1
        FEF=VALUE (5+I,1)
        SENS (I,J)=(VALLIE (F゙,J)-DC (J))/FEF*VALUE (I+5,18)/VALUE (K, 18)
        FFFINT I,J,H,VALUE (K,J),SENS (I,J)
        NEXT F:
        END
        FGF I=1 TO 4:FOF J=2 TO 16:SENS(I,J)=SENS(I,J)/SENS(I,I):NEXT J:NEXT I
        FOR I=1 TO S:FOR J=1 TO 1G:FFINT SENS(I,J):NEXT J:NEXT I
        DFEN#S AS DUTFUT,".SILENTYFE"
        OUTFUTH:S
        FOF: J=1 TO 16
            FFIINT SENS (1,J),SENS (2,J),SENS (3,J),SENS (4,J),SENS (S,J)
            NEXT J
```

FEM FROGFIAM CFOS

```
FFINT" CFOS EI-DIFIECTIONAL FEFLECTANCE FFOGFAMM "
DIM DIANG (15),SENS(15), COFFS (15),NF(50),NFN (50)
DIM DAFF(20,15), DIO(20,17), BDF(20,15),OFFS(15),SLOF(15)
DIF ANG(20, \Xi),NAD(20,15),AZI(20,15)
DATA 20, 50,40,50,60,70,80,70,100,110,120,150,140,150,160
```

FOF $i=1$ TO 15
FEAD DIANG (I)
NEXT I
QFEN\# 1 AS INFUT, "/AFEA1/CFOS. CAL/COEFF"
OFEN\#2 AS INFUT, "/AFEA1/CFOS.CAL/ADJUST"
OFEN\#こ AS JNFUT, "/AFEA1/CFOS.CAL/SENSIV"
FDF $J=1$ TO 15
FEAD\#1, J; SLOF' (J) , OFFS (J)
FEAD\#2, J: CDFFS (J)
READ\#S, J: SENS (J)
OFFS (J) $=$ COFFS (J)
NEXT J
CLOSE
DTFD=さ. 14159/180.
FEM DEFINE AFICOS FUNCTION
DEF FN ACOS $(X)=A T N(S O R(1-X * X) / X)$
FFINT" INFUT DATA FILE NAME "
INFUT D主
DFEN\# 1 AS INFUUT, "/AFEA1/CFOS. EACK/" $/$ D末
E本=""
INFUT\#1, 1; E. ${ }^{\text {B }}$
NS=VAL (E丰)
NG=NS-2
FRINT NS
FIR $k=1$ TO NS
E丰=""

FOS $1=1$
FロF: J=1 TO 17
SFACE $=F O S 1$
FOSZ=INSTF (EF," ",SFACE)
NOC=FOS2-FOS 1

FOS1=FOS2+1
FFINT DID(K, J)
NEXT J
FDF J=18 TO 20
SFACE $=F O S 1$
FOS=INSTR (E束," ",SF'ACE)
NOC=FOS2-FOS1

FOS $1=F \operatorname{COS}+1$
FFiINT ANG (K, J-17)
NEXT J
NEXT Y
$\mathrm{FEF}=\mathrm{DIO}(1,17)$
NSI=NS / 2
FOF: $J=1$ TO NS
FDF $k=1$ TO 15
$\operatorname{DAF} \mathrm{K}^{\prime}(J, \mathfrak{k})=\operatorname{DID}(J, 16) * S L D F(k)+\operatorname{DFFS}(k)$
DID $(J, k)=(D I D(J, k)-D A F i k(J, k)) / S E N S(k:)$
DID(J, ド) $=\operatorname{DIO}(J$, ド) *FEFF/DID $(J, 17)$
NEXT \&
NEXT J
FOK J=1 TO NS
$\operatorname{ANG}(1,2)=-\operatorname{ANB}(1, \because)$
FFIINT ANG (コ, こ)
FOR $1=1$ TO 15
ALFHA=ANG (J, こ)-ANG(J, 1)
$X=S I N(D I A N G(r) * D T F D) * C O S$ (ALFHA*DTFD)
$\operatorname{NAD}(J, k)=F N \operatorname{ACOS}(X)$
COMF $=($ DIANG $(k)-90) * D T F$.
$D E N=(S I N(N A D(I, K ゙)) * S I N(A L F H A * D T F D))$
IF DEN=0. THEN 750
$x=(\operatorname{COS}(C O M F)-\operatorname{COS}(N A D(J, k)) * \operatorname{COS}(A L F H A * D T F D)) / D E N$
IF DEN=0. THEN $X=0.00001$
IF DIANG (k) <90. THEN $x=-x$
IF NAD (J.t) 0.00001 THEN 775:ELSE $X=1.0$
IF $x \cdot 1$. THEN $x=1$.
IF $X \therefore-1$. THEN $X=-1.0$
$\operatorname{AZI}(J, t)=F N$ ACOS (X)
IF ALFHA:O.O THEN AZI $(J, K)=A Z I(J, K ゙)+180 . O * D T F D$
IF $A Z I(J, F)<O$. THEN AZI $(J, K)=\sigma 60.0 * D T F D+A Z I(J, K)$
FFINT J, ド, NAD (J, K) /DTFD, AZI (J, K゙) /DTFD, DID (J, ド)
NEXT ${ }^{\circ}$
NEXT J
SUM=O
TOTNLIM=0
FOF J=1 TO $=6$
$N F(J)=0$
NFN (J) $=0$
NEXT J
NINC=70*DTFD/こ6.
FOF $J=1$ TO 1こ
FQF $r=1$ TO 15
$I=\operatorname{INT}(\operatorname{NAD}(J, K) / N I N C)+1$
$N F(I)=N F i(I)+D I D(J, K ゙)$
$\operatorname{NRN}(I)=N F N(I)+1$
NEXT k.
NEXT J
FOF $\mathrm{I}=1$ TO 36
IF $\operatorname{NFN}(I)=0$ THEN 1070
ANG $=(2 * I-1) / 2 * N I N C$
SUM=SUM+NF (I)/NFN (I) *COS (ANG) *SIN (ANG) *NINC
TOTNUM=TOTNLM + NFN (I)
NINC=90. *DTFD/36.
GOTO 1090
NINC=NINC+NINC
NEXT I
FLUXUF=こ. $14159 * S U M * 2$.
FFINT"UFWARD FLUX DENSITY"FLUXUF
MAX $=0$
$M I N=90$
FOF $J=1$ TO 13
FOR ド: =1 TG15
IF $\operatorname{MAD}(J, k)$ MAX THEN $\operatorname{MAX}=\operatorname{MAD}(J, k:)$
IF $\operatorname{NAD}(J, \ldots) \leqslant M I N \operatorname{THEN} \operatorname{MIN}=\operatorname{NAD}\left(J, \mathrm{~K}^{\prime}\right)$
NEXT ト:
NEXT J
FFINT MIN, MAX
SOLANG=2. O* こ. 14159* (1. -COS (MAX))
FFAACSA=SOLANG/(2.*S. 14159)
FFIINT SOLANG, FFAACSA
FOR $J=1$ TO $1:$

 FOF \begin{tabular}{rl}

$=1$ \& TO 15

\hline
\end{tabular}

 \(\operatorname{EDF}(J, K)=\operatorname{DIO}(J, K) *\). \(14159 / F L U X U F\)

NEXT K:
NEXT J
$m \Delta y=n$

1 －TE $\quad[=1$
12.80

1590
1400
1410
1420
1430
1440
1460
1470
1475
1480
1490
1500
1510
1520
1500
1540
1550
IF EDF: $(J, r$.$) MAX THEN MAX=EDF: (J, k)$
IF EDF (J, f) MIN THEN MIN=EDF ($J, R \cdot$)
NEXT F
NEXT J
FFIINT MIN, MAX
OFEN\# - AS DUTFUT,"/AFEA1/CFOS.EDF/" $+\mathrm{D} \equiv$
WFITE\# 2,1 ; NS, FLUXUF, MIN, MAX
$I=1$
FOR: J=1 TO NS
FOF $r^{\prime}=1$ TO 15
$I=I+1$
WFITE\#こ, I; J, F゙, NAD (J, ド) , AZI (J, K゙) , BDFi (J, ド)
NEXT F
NEXT J
CLOSE
END

HOME
$\times 0=0 \cdot 0: Y 0=0.0: \times 1=0: Y 1=4$
DIM $V(11)$ ，SCALEX（21），SCALEY（21），XNUM（21），YNUM（21）
DIM XG（200），YG（200），EDN（t，12），EDA（2，12）， $\mathrm{ED}(30), \mathrm{NA}(14)$
FOF $I=1 \quad$ TO 10 $F^{\prime} 1 X=1500: F^{\prime} 1 Y=1500$ $X O=0.0: Y O=0,0: X 1=6: Y 1=4$ $X M I N=0: Y M I N=0 .: X M A X=18 O: Y M A X=$ ：$\quad .0$
NDIVX＝12：NDIVY＝5：NF＝14：DIFUN＝1．O：DIFISE＝0．
DTFD＝こ．14159：180
SAW $=.1 * 2.54: 5 A H=.13 * 2.54$
GOSUE 50G
END
FEM INITJALIZE PLOTEF
听EN\＃9，＂．RSコこコ＂

$F=X=F 1 X+(X 1-X O) * 1010: F 2 Y=F 1 Y+(Y 1-Y 0) * 1010$
IF $X 0=X 1$ THEN $F 1 X=500: F 2 X=10000: F 1 Y=600: F 2 Y=7500$

FEM SUBFDUTINE TO SCALE AXISES
FEF $X O, X 1, Y O, Y 1$ DEFINE STAFTING AND ENDING FOINTS IN INCHES
FEM XMIN，XMAX，YMIN，YMAX AFE THE MAX AND MIN VALUE ON AXISES
FEM SCALEX，SCALEY＝SCALED DATA FOF TIC MAFKS
FEM NOIVX，NDIVY＝NUMEEF OF DIVISIONS ON AXISES
DELTAX $=(X 1-X O) / N D I V X$
DELTAY $=(Y 1-Y O) / N D I V Y$
SCALEX $(1)=\times 5:$ SCALEY $(1)=Y O$
FOF ISUB＝1 TO NDIVY：SCALEY（ISUE＋1）＝SCALEY（ISUE）＋DELTAY：NEXT
FOF ISUB＝1 TO NDIVX：SCALEX（ISUE＋1）＝SCALEX（ISUE）＋DELTAX：NEXT

FFINT\＃7：＂SC＂；SCま：＂：＂：RETUFN
FEM SUBFOUTINE TO SET SYMEDL MDDE
SYM1F＝CONV末（W）＋＂，＂＋CONV末（H）
FRINT\＃9；＂SI＂；SYM1末；＂SM＂；SYM末；＂；＂
FETUFN
FEM THIS SUEFRUITINE FLOTS SYMEQL SYMF AT LOCATION X, Y
FEM FD＝O FOF FEN UF：FD＝1 FQF FEN DOWN；LINET＝LINE TYFE（O－4）
FEN LINEL＝LENGTH（FEFEENT OF DIST．EETWEEN FI AND F2）
IF FD＝0 THEN FFIINT\＃9；＂FU；＂；：ELSE FFINT\＃9：＂FD：＂：
IF $F D=0$ GUTD 259
IF LTNEL＝O THEN LINEL $=4$
LT末＝CONVः（LINET）＋＂，＂＋CONV丰（LINEL）
FRINT\＃G：＂LT＂；LT末：＂：＂
SYMA末＝CONUF $(X)+", "+C O N V \equiv(Y): S Y M E F=S Y M 末$
FFIINT\＃7：＂FA＂：SYM2末：＂：＂
FETUFIN
FEM FLOT AXIS
FFiINT\＃9：＂FU：＂
$X O \equiv=\operatorname{CONV}=(X O): Y O 末=\operatorname{CONV}=(Y O): X 1 \ddagger=\operatorname{CONV}(X 1): Y 1==\operatorname{CONV}=(Y 1)$

FRINT\＃9：＂TL1．O，O．O；FA＂；XO丰：＂，＂YO丰：＂：＂
FOF ISUE＝1 TO NDIVX＋1：SCALE $\ddagger=C O N V \neq$（SCALEX（ISUE））
FRINT\＃Q；＂FA＂；SCALE丰：＂，＂YGF：＂；XT：＂：FOF I＝1 TO 100：NEXT I：NEXT ISUE FFINT\＃＇7：＂TLI．O，O．O；FA＂：XO事：＂，＂YO末；＂；＂
FOF：ISUE＝1 TO NDIVY＋1：SCALE＝CONV：（SCALEY（ISUE））
FFINT\＃G：＂FA＂；XOF：＂，＂；SCALEF；＂：YT：＂：FOFi I＝1 TO 1OO：NEXT I：NEXT ISUE FETIFEN

FEEM LICATION IS THE LOWEF LEFT HAND CIFKNEF：
FEF DIFIUN，DIFISE：SET DIFECTION ，1，O FOF HOFIZONTAL A－22 FEM SAW，SFH SET WIDTH AND HEIGHT IN CM．
IF SAU＝0 THEN SAW＝0．1：SAH＝0．15
$A X X F=C O N V F(A X X): A Y Y 末=C O N V F(A Y Y): A X N U M 末=C O N V 末(A X N U M)$
FRINT\＃9：＂SI＂：CONU末（SAW）：＂，＂：CONV末（SAH）：＂；＂

FETUFN
FEM SUEFRUTINE TO FLOT TEXT TXT\＆AT LOCATION TXX，TYY
FEM LOCATION IS THE LDWEF LEFT HAND COFNEF
FEM DIFLIN，DIFISE：SET DIFECTION ．1，O FOF HORIZONTAL
FEM SAW，SAH SET WIDTH AND HEIGHT IN CM．
IF SAW＝0 THEN SAW＝0．1：SAH＝0．15
$T X X=$ CONV年（TXX）：TYY $=$＝CONV丰（TYY）
FFINT\＃：＂SI＂：CONV井（SAW）：＂，＂：CONV丰（SAH）：＂：＂
FRINT\＃9：＂DI＂；CONV末（DIFUUN）；＂，＂；CONV末（DIFISE）；＂：＂：FOF M＝1 TO 999：NEXTM

FEETUFN
FEM SUEFROUTINE TO CENTEF DIGITS ON X AXIS
NUMDIGIT＝LEN（CONV（AXNUM））
$A X X=A X X-(N U M D I G I T * S A W) / 2 / 2.54$
FETUFN
FEM SUEFRUTINE TD CENTER DIGITS ON Y AXIS
AYY＝AYY－SAH／エ／工．S4：FETUFN
FEM FLLIT A CUFVE OF NF FOINTS IN XG，YG
$X F=(X G(1)-X N L M(5)) * D X: Y F=(Y G(1)-Y N U M(1)) * D Y$
SYM二末＝CONUも（XF＇）＋＂，＂＋CONV末（YF＇）
FFINT\＃タ：＂FU：FG＂；SYM2末：＂；FD：＂
FOF：IFLUT＝2 TO NF
$x^{\prime} F=(X G(I F L O T)-X N U N(E)) * D X: F D F D=1$ TD 2OO：NEXT D
$Y F=(Y G(I F L D T)-Y N U M(1)) * D Y$
SYMミま＝CONVま（XF＂）＋＂，＂＋CONVま（YF＂）
FRINT\＃9：＂FA＂：SYM工疌：＂：＂：NEXT IFLLOT
FFINT\＃9：＂FU：＂
FETUFN
FETUFIN
FEM SUEFOUTINE TD GET EFFOFS ON HF
FFINT\＃9：CHF：（ご）：＂．E：＂
FFINT\＃9：＂OE：＂：INFUT\＃9：EFFDR゙丰：FRINT EFROR：
FETUFN
GOSUB 200
GOSUB 245
FOR $I=1$ TO 11
$X \operatorname{NUM}(I)=(I-1) * 0.10$
NEXT I
FOF $I=2$ TO 10
$X N U M(I+1 O)=1.1-I * .1$ NEXT I
FOF I＝1 TO \quad（
$\operatorname{YNUM}(I)=(I-1) *, 50$ NEXT I
SAW＝．10＊2．54：5AH＝．10＊2．54
AXX＝SCALEX（2）
AYY＝－．15＊2． 54
FOF $\quad \mathrm{J}=1$ TO NDIVX－1
AXNUM $=$ XNUM（I +5 ）
GOSUE 281
FOF：J＝1 TO 10O：NEXT J
GOSUE 26O
$A X X=S C A L E X(I+2)$
NEXT I
$D X=(X 1-X O) /(X N U M(N D I V X+1)-X N U M(1))$
D $X H=D X$
TXT末＝＂COSINE OF THE OBSERVATION ZENITH＂
NUMI FT＝1 FN（TXT末）

GOSUE 285

GOSUE 260

NEXT I

DIFUN $=0$ ．
DIFISE＝1

GOSUE 270 NEXT I

FFINT F ：

NEXT ト：

NEXT F ：
$\mathrm{D} X=5$ ．
GOSUE 287
SYME＝＂X＂
$W=.2: H=.2$ NEXT F：
END

TXX＝1．25
$T Y Y=5$
GOSUB 270
END
$T X X=1.5$
$T Y Y=4.5$

GOSUE 270
END
$T Y Y=4.25$
GOSUE 270
END
$T Y Y=4.0$

```
    O. - CLOUD CUVER"
    1250 GOSUE 270
    1260 END
```

ORIGNAL PAGE IS
OF POOR QUALITY

```
TXX＝－0．35＊2．54
\(D r^{\prime}=(Y 1-Y(\square) /(Y N U M(N D I V Y+1)-Y N U M(1))\)
\(A X X=-. \Omega * 2.54: A Y Y=0\)
FロF：\(I=1\) TD NDIUY +1
AXNUM＝YNUM（I）
FOF J＝1 TO こOO：NEXT J
FOF \(J=1\) TO 2OO：NEXT J
AYY＝SCALEY（I＋1）
TXT末＝＂NDFMALIZED FIADIANCE＂
NUMLET＝LEN（TXTF）
TYY \(=Y 1 / 2\). －NUMLET＊SAW／2／2．54
FOF：\(J=1\) TO BOO：NEXT J
FOFi \(I=1\) TO NDIVX＋1
\(X \operatorname{NUM}(I)=(I-1) * 0.1\)
FOR \(1=1\) TO NF
INFUT ED（K）
FOR \(K=1\) TO NF
FEM FFINT K：INFUT XG（に）
\(Y G(k)=E D(k)\)
FFIINT \(X G(K), Y G(K)\)
FOR \(K=1\) TO NF
\(X=(X G(1:)-X N U M(5)) * D X\) \(Y=(Y G(k)-Y N U M(1)) * D Y\)
FOF \(J=1\) TO 4OO：NEXT J
GOSUK 2ユ5
GOSUB 2－0
TXT：\(=\)＂OCEAN EDF IN THE FRINCIFAL FLANE＂
DIFUN＝1．0：DIFISE＝0：SYMF＝＂＂：GOSUE 225
SAW \(=.075 * 2.54: 5 A H=0.075 * 2.54\)
TXT事＝＂0－COSINE OF THE SOLAF ZENITH \(=0 . "\)
TXT末＝＂X－COSINE OF THE SOLAF ZENITH \(=0.5 "\)
TXT\＆＝＂0－0．2 CLDUD COVEF＂
1260 END
```

HOME
$\times 0=0,0: Y 0=0.0: \times 1=\dot{O}: Y 1=4$
DIM $V(11)$, SCALEX（21），SCALEY（21），XNUM（21），YNUM（21）
DIM XG（200），YG（こOO）， $\operatorname{EDN}(\sigma, 12), \operatorname{GDA}(2,12), \operatorname{GD}(30), N A(14)$
FOF $I=1$ TO 10
$F \perp X=1500: F^{\prime} 1 Y=1500$
$X 0=0.0: Y 0=0.0: X 1=6: Y 1=4$
$X M I N=O: Y M I M=0 .: X M A X=180: Y M A X=Z .0$
NDIVX＝1工：NYDIV＝S：NF＝24：DIFUN＝1．0：DIFISE＝0．
DTFD＝－ $1.1459 / 180$
SAU $=.1 * 2.54: 5 A H=.13 * 2.54$
GOSUE 50O
END
FEM INITIALIZE FLOTEF：
OFEN\＃ 9 ，＂ $\mathrm{FS}=2{ }^{2}$

$F 2 X=F 1 X+(X 1-X 0) * 1010: F 2 Y=F 1 Y+(Y 1-Y 0) * 1010$
IF $X 0=X 1$ THEN F1 $X=500: F 2 X=10000: F 1 Y=600: F 2 Y=7500$

FFIELD $\ddagger=F 1 X \neq+", ~ "+F 1 Y \neq+", ~ "+F 工 X \neq+", ~ "+F 工 Y \neq$
FRINT\＃9：＂IF＂；FFIELD末：＂：＂
FEM SUEFICUTINE TO SCALE AXISES
FEM $X O, X 1, Y G, Y 1$ DEFINE STAFTING AND ENDING FOINTS IN INCHES
FEM XMIN，XMAX，YMIN，YMAX AFE THE MAX AND MIN VALUE ON AXISES
FEM SCALEX，SCALEY＝SCALED DATA FOF TIC MAFi：S
FEM NDIVX，NDIVY＝NUMEEF OF DIVISIDNS ON AXISES
DELTAX $=(x 1-X 0) /$ NDIVX
DELTAY $=(Y 1-Y O) / N D I V Y$
SCALEX $(1)=20:$ SCALEY $(1)=Y O$
FOF ISUE＝1 TO NDIVY：SCALEY（ISUE＋1）＝SCALEY（ISUB）＋DELTAY：NEXT
FOF ISUE＝1 TO NDIVX：SCALEX（ISUE＋1）＝SCALEX（ISUE）＋DELTAX：NEXT
SC $=\operatorname{CONV}=(X 0)+", "+\operatorname{CONV}(X 1)+", "+\operatorname{CONV}(Y 0)+", "+C O N V 末(Y 1)$
FFiINT\＃7：＂SC＂：SC本：＂：＂：RETUFN
FEM SUBFOUTINE TO SET SYMEDL MODE

FRIINT\＃7：＂SI＂；SYM1丰：＂SM＂；SYME：＂；＂
FETUFN
FEM THIS SUEROUTINE FLOTS SYMEDL GYM
FEM FD＝O FOF FEN UF：FD＝ 1 FOF FEN DOWN：LINET＝LINE TYFE（O－4）
FEM LINEL＝LENGTH（FEFCENT OF DIST．EETWEEN FI AND FZ）
IF FD＝0 THEN FFINT\＃9：＂FU：＂：ELSE FFFINT\＃9；＂FD：＂；
IF FD＝0 GOTO ここの
IF LINEL $=0$ THEN LINEL $=4$
LT $\ddagger=$ CONV $=(L I N E T)+", "+C O N V \neq(L I N E L)$
FRINT\＃9：＂LT＂；LTま：＂：＂
SYMZ末＝CONV末 $(X)+", "+C O N V 末(Y): S Y M E 末=S Y M 末$
FFINT\＃9：＂FA＂；SYM2末；＂：＂
FETUFN
FEM FLLOT AXIS
FRINT\＃${ }^{\text {F }}$＂FU：＂

FFiINT\＃9；＂F＇A＂；XO末：＂，＂；YO末；＂；＂；＂FD；F•A＂；X1末；＂，＂；YO末；＂；＂：＂FU；＂

FOFi ISUE＝1 TO NDIVX＋1：SCALE $=$＝CONV $=$（SCALEX（ISUE））
FRINT\＃9；＂FA＂；SCALE末；＂，＂；YO末；＂；XT；＂：FDR I＝1 TO 100：NEXT I：NEXT ISUE
FFiIMT\＃O；＂TLi．O，O．O；FA＂：XO末：＂，＂YO事＂；＂
FOF ISUE＝1 TO NDIVY＋1：SCALE $=$＝CONV末（SCALEY（ISUB））
FFIMT\＃9：＂FA＂；XO末；＂，＂；SCALE末；＂；YT：＂：FOFI＝1 TO 100：NEXT I：NEXT ISUE FETUFN

FEN LICATION IS THE LOWEF LEFT HAND COFNEF：
FEEM SAW，SAH SET WIDTH AND HEIGHT IN CM．
IF SFW $=0$ THEN SAW＝0． $1: 5 A H=0.15$
$A X X \equiv=C O N V \equiv(A X X): A Y Y 末=C O N V \equiv(A Y Y): A X N U M 末=C O N V \neq(A X N U M)$
FFTNT\＃Q：＂SI＂：CONVF（SAW）：＂，＂；CONV末（SAH）；＂；＂

FETUFN
FEM SUEFQUTINE TO FLOT TEXT TXT末 AT LOCATION TXX，TYY
FEM LOCATION IS THE LOWEF LEFT HAND COFNEF：
FEM DIFLIN，DIFISE；SET DIFECTION ． 1,0 FOF HOFIZONTAL
FEM SAW，SAH SET WIDTH AND HEIGHT IN CM．
IF SAW＝O THEN SAW＝0．1：SAH＝0．15
$T X X \equiv=C O N V E(T X X): T Y Y 末=C O N ' V \equiv(T Y Y)$
FFiINT\＃；＂SI＂：CONV事（SAW）；＂，＂；CONV事（SAH）；＂；＂
FF：INT\＃9：＂DI＂；CONV：（DIFUN）：＂，＂：CONV末（DIFISE）：＂：＂：FDF M＝1 TO 999：NEXT M

FETUFN
FEM SUEFIOUTINE TO CENTEF DIGITS ON X AXIS
NUMDIGIT＝LEN（CONV末（AXNUM））
$A X X=A X X-(N U M D I G I T * S A W) / \Sigma / 2.54$
FETUFIN
FEM SUEFGUTINE TO CENTEFI DIGITS DN Y AXIS
AYY＝AYY－SAH／2／2．ㄷ4：RETUFN
FEM FLOT A CUFVE OF NF FOINTS IN XG，YG
$X F=(X G(1)-X N U M(5)) * D X: Y F=(Y G(1)-Y N U M(1)) * D Y$
SYM工立＝CONV末（XF）＋＂，＂＋CONV末（YF＇）
FFINT\＃9：＂FU；FA＂：SYMZF：＂；FD；＂
FOF IFLOT＝こ TO NF
$X F=(X G(I F L Q T)-X N U M(5)) * D X: F O F B=1$ TO 2OO：NEXT D
$Y F=(Y G(I F L D T)-Y N U M(1)) * D Y$
SYMI丰＝CONV本（XF＂）＋＂，＂＋CONV丰（YF＂）
FFINT\＃9：＂FA＂：SYMZ事：＂：＂NEXT IFLOT
FFINT\＃7：＂FU：＂
FETUFN
FETUFIN
FEM SUEFRUTINE TO GET EFFROFS ON HF
FFIINT\＃9；CHF： $5(27) ; "$ E：＂
FFiINT\＃9：＂ロE：＂：INFUT\＃9；ERFDFi末：FFINT EFFIOFi末
FETUFIN
GOSUE 2OO
GOSUE 245
FOF $I=1$ TO 11
XNUM $(I)=(I-1) * O .10$
NEXT I
FOK I＝2 TO $1 \because$
XNUM $(I+10)=1.1-I * .1$
NEXT I
FOF $I=1$ TO 6
YNUM（I）$=(I-1) * .50$
NEXT I
SAW＝．10＊2．54：SAH＝．10＊2．54
$A X X=$ SCALEX（2）
AYY $=-.15 * 2.54$
FQF：$I=1$ TO NDIVX－1
AXNUM $=X N U M(I+5)$
GOSUE 281
FOF：$J=1$ TO $100:$ NEXT J
GOSUE 260
$A X X=S C A L E X(I+2)$
NEXT I
$D X=(X 1-X 0) /(X N U M(N D I V X+1)-X N U M(1))$
680

690

700
TXT丰＝＂COSINE OF THE OESERVATION ZENITH＂
NUMLET＝LEN（TXT丰）
$T X X=\times 1 / 2 .-$ NUMLET＊SAW／2／2．54－0．

```
フコロ
    GOSUE =%O
7工5
7こS AXX=-.2*工.54:AYY=0
    FOF I=1 TO NDIUY+1
        AXNLIM=YNUM(I)
        GOSUE 285
        FOF J=1 TO 2OO:NEXT J
        GOSUE 260
        FOF J=1 TD 2OO:NEXT J
        AYY=SCALEY(I+1)
        NEXT I
    TXT#="NORMALIZED FADIANCE"
    TXX=-0. 55*2.54
    DIFLLN=0.
    DIFISE=1
    NUMILET=LEN(TXTF)
    TYY=Y1/2. -NUMLET*SAW/2/2.54
    FGF J=1 TO 8OO:NEXT J
    GOSUE 270
    FOF: I=1 TD NDIVX+1
        XNUM(I)=(I-1)*O.1
        NEXT I
    FOF N=1 TO NF
        FFINT F:
        FEM INFUT ED(F.)
        NEXT F.
FOF K=1 TO NF
        XG(k゙)=1.+COS((-57.5+5**:)*DTFD)
        YG(R.)=ED(ト)
        FFINT XG(F),YG(k;)
        NEXT K
DX=DX*NDIUX/NF
GUSUE 287
    SYM年="X"
    W=.2:H=.2
    FOF k:=1 TO NF
        X=(XG (f.) -XNUM (5))*DX
        Y=(YG(F:)-YNLMM(1))*DY
        FOF J=1 TO 4OO:NEXT J
        GOSUE 225
        GOSUE 2ご心
        NEXT F:
    END
    TXT&="CFOS EDFi IN THE FFINCIFAL FLANE"
    DIFUN=1.0:DIFISE=0:SYM:="":GOSUB 225
    TXX=1.25
    TYY=5
    GOSUE 276
    END
    TXX=1.5
    TYY=4.5
    SAW=.075*2.54:5AH=0.075*2.54
    TXTक=" COSINE OF SOLAF ZEN = 1.0"
    GOSUE 270
    END
    TYY=4.25
    TXT$="X - CLEAFi SUFFACE"
    GOSUE 270
    TYY=4.O
    TXT未="0 - O.2 CLOUD COVEF""
    END
```

 FEM FFROGFiAM CFOS
 FFIINT" CFOS EI-DIFECTIONAL FEFLECTANCE FLQT FROGRAM"
 DIM \(\operatorname{FiAD}(10,10), \operatorname{FDN}(30,30)\)

DATA 2.5,7.5,12.5,17.5,22.5,27.5, 32.5, $\mathbf{5 7} 5,42.5,47.5,52.5,57.5$
DATA $15,45,75,105,125,165,175,275,255,285,315,345$
FI=J.14159:FOURこ=FI/2
FFIINT"ENTEF THE NUMEEF OF X DATA FOINTS AVAILAELE"
INFUT NFXX
FFIINT"ENTEF THE NUMEEF OF Y DATA FDINTS AVAILAELE"
INFUT NFY
FOR $\mathrm{T}=1$ TQ TO
FOF $1=1$ TO 30
$\operatorname{FiDN}\left(J, K^{\circ}\right)=0$ 。
NEXT K
NEXT J
FFIMT"ENTEF THE NUMEEF OF x INTEFFOLTION FOINTS"
INFUT NX
FOF $J=1$ TO $N X-1$
$N X D(J)=60 / N X * J$
NEXT J
FRINT"ENTEF THE NUMEEF OF Y YTEFFOLATION FOINTS"
INFUT NY
FOF $J=1$ TO $N Y-1$
NYD (J) $=S O / N Y * J$
NEXT J
FFINT"ENTER THE RADIANCE DATA AS X FOS Y FDS FIAD (X,Y)"
FOF J $=1$ TG NFX
FOF $K=1$ TO NFY

NEXT K
NEXT J
GOSUE 1000
FEM SUEFRUUTINE TO CALCULATE WEIGHT
DELTA $=60 / 12$
IF THETA: DELTA GOTD 570
$W G H T=1.0 E+0.6$
IF THETA:O. OOI THEN RETURN
WGHT $=$ DELTA/THETA
FETUFN
WGHT=O.
IF (THETA-DELTA) :=DELTA THEN FEETUFN
WGHT=2. O-THETA/DELTA
FIETUFN
FEM SUBFOUTINE TO INTEFFOLATE IN EDF AFFAY
SUMF = O.
SUMW=0.
FOF $M=1$ TO NF X
FOF: $N=1$ TO NF.Y
$X I=N X F(M, N)$
$Y I=N Y F(M, N)$
THETA $=$ SCF $((X I-X F F M) \cdots 2+(Y I-Y F F M) ` 2)$
- GOSUE 5OO
$W=W G H T$
SLMW=SUMW+W
SUMF = SUMF + W*FAD (M,N)
NEXT N
NEXT M
INTEFFF= .
IF SUMW $=0$. THEN FIETUFN
TNTEFF $=51$ MF /SIMMW

100
FEM GALCulate FAD values at FEglilaf afifiay foints
FOF $J=1$ TO $N X-1$
FOF $1=1$ TO NY-1
$X F F M=N X D(J)$
YFFM $=$ NYD ($1:$)
GOSUE 700
FDN $\left(J, F^{\circ}\right)=$ INTEFF ${ }^{\circ}$
FRINT $\operatorname{FiDN}(J, K:)$
NEXT K
NEXT J
OFEN\#4 AS DUTFUT,"/AFEA1/CFOS.FLOT/"+"STYFO"
MIN $=99999$
MAX $=0$
FOR $J=1$ TO $N X-1$
FOR K゙=1 TO NY-1
IF $\operatorname{FDD}(J, K)$ MIN THEN MIN=FDN (J, K)
IF $\operatorname{RDN}(J, K)$ MAX THEN MAX=FDN $(J, K$.
NEXT K:
NEXT J
FFIINT"MIN AND MAX OF INTEFFFOLATED FIELD ",MIN,MAX
WRITE\#4, 1; NX-1, NY-1, MIN, MAX
$I=1$
FDF $J=1$ TO NX-1
FOF $K=1$ TO $N Y-1$
$I=I+1$
WFITE\# $4, I: N X D(J), N Y D(K), \operatorname{RDN}(J, K$.
FFIINT NXD (J), NYD (K), FDN(J,K)
NEXT F:
NEXT J
Close
END

DTFD=玉. $14159 / 180$.
DIM YM(ご) , Z (こO, こ0)
DATA $0,20,60,90,120,150,180,210,240,270,300,300$
FOF $I=1$ TO 12
NEXT I
NLEV=10
NINCF:=.0S
GOGUE 1000
GUSUE 1600
FEEM INITIALIZE FLDTEF:
听EN\#9, ".FSSさご

$F=X=F 1 X+(X 1-X O) * 1010: F 2 Y=F 1 Y+(Y 1-Y O) * 1010$
IF $X 0=X 1$ THEN $F \cdot 1 X=500: F 2 X=10000: F 1 Y=600: F 2 Y=7500$

FFIELD $\ddagger=F 1 \times \neq+", "+F 1 Y \neq+", "+F 2 X \neq+", "+F=Y \neq$
FFINT\#9;"IF"; FFIELD丰;";"
GOSUE ここG:FETURN
FEM SLEFRGUTINE TG SCALE AXISES
FEM $X O, X 1, Y O, Y 1$ DEFINE STAFTING AND ENDING FOINTS IN INCHES
FEM XMIN, XMAX, YMIN, YMAX AFE THE MAX AND MIN VALLE ON AXISES
FEM SCALEX, SCALEY=SCALED DATA FOF TIC MAFFS
FEM NDIVX, NDIVY=NUMEEF: DF DIVISIONS ON AXISES
DELTAX $=(X 1-X O) / N D I V X$
DELTAY $=(Y 1-Y O) /$ NDIVY
SCALEX $(1)=X 0: \operatorname{SCALEY}(1)=Y 0$
FOF ISUE=1 TO NDIVY:SCALEY\{ISUE+1)=SCALEY (ISUB) +DELTAY: NEXT
FOF ISUE=1 TO MDIVX:SCALEX (ISUB+1)=SCALEX (ISUB) +DELTAX:NEXT

FFFINT\#9:"SC": SC末:":": FETUFN
FEM SUEFOUTINE TO SET SYMEOL MODE
SYM1步=CONVも $(W)+", "+C O N V 末(H)$
FFIINT井タ:"SI": SYM1直; "SM": SYM丰: ": "
FETUFIN
FEM THIS SUBFOUTINE FLOTS SYMEOL SYM: AT LOCATION X, Y
FEM FD=0 FOF FEN UF; FD=1 FOF FEN DOWN; LINET=LINE TYFE (0-4)
FEM LINEL = LENGTH (FEFCCENT OF DIST. BETWEEN F1 AND FZ)
IF FDD=0 THEN FRINT\#7; "FU:": ELSE FFINT\#9: "FD:":
IF $F D=0$ GOTD 2こ?
IF LINEL=O THEN LINEL=4
LT $\ddagger=C O N V \neq(L I N E T)+", "+C O N V \equiv(L I N E L)$
FKINT\#9;"LT"; LTE;":"

FFIINT\#9; "FA"; SYM2末;";"
FETUFN
FEM FLOT AXIS
FFiINT\#马; "FU:"
XO末=CONV末 (XO): YO末=CONV末(YO):X1末=CONV末 (X1):Y1末=CONV末 (Y1)
FFiINT\#G; "FA"; XO末;", "; YO末;";";"FD;FA"; X1末;","; YO末;";";"FU;"

FFINT\#9:"TL1.0,0.0;FA"; XO末:", "YOF:";"
FGFi ISUE=1 TO NDIUX+1:SCALE $\ddagger=C O N U \equiv$ (SCALEX (ISUE))
FFIINT\# 9 ; "FA"; SCALE丰:", "; YOも;"; XT; ": NEXT
FFIINT\#9;"TL1. $0,0.0 ; F A " ; X O 末 ; "$ "YO末;";"
FCIF ISUE=1 TO NDIVY+1:SCALE=CONV $=$ (SCALEY (ISUB))
FFiINT\#今; "FA": XO末;",": SCALE末:":YT:": NEXT
FETUFN
FEM SUEFOIITINE TO FLOT NUMEEF AXNUM AT LOCATION AXX, AYY

$1010 \quad \mathrm{FiX}=1500$
1020

F1Y＝1250
$1030 \quad X 0=0$
$1040 \quad Y 0=0$
$1050 \quad \times 1=6$
$1060 \quad Y_{1}=6$
$1070 \quad 5 A W=0.1 * 2.54$
$1080 \quad \mathrm{SAH}=0.1$ IT 2.54
$1090 \quad C X=3.0$
$1100 \quad \mathrm{CY}=\mathrm{F} .0$
1110 XMIN $=0.0$
$1120 \quad X M A X=6.0$
$1130 \quad$ YMIN $=0.00$
$1140 \quad Y M A Y=6$.
IF SAW＝O THEN SAW＝0．1：SAH＝0． 15

FETUFN

IF SAW＝0 THEN SAW＝0．1：SAH＝0．15
FFIINT\＃タ：＂FU：＂
$T X X \neq C O N U \neq(T X, X): T Y Y 末=C O N V 末(T Y Y)$

FETUFN

NUMDIGIT＝LEN（CONVE（AXNUM））
$A X X=A X x-(N U M D I G I T * S A W) / 2 / 2.54$
FETURN

AYY＝AYY－SAH／ミノこ．54：FETUFN
$X F=X G(O): Y F=Y G(0)$
SYMLキ＝CONVま（XF）＋＂，＂＋CONVま（YF）
FFINT\＃9；＂FU：FA＂：SYM2象：＂FD：＂
FOF IFLOT $=1$ TO NF

$$
X F=X G(I F L D T)
$$

$Y F=Y G(I F L D T)$
SYM2 $=$ CONV $\$(X F)+", "+C O N V F(Y F ")$
FFIIMT\＃5：＂FLI：＂
FETUFN
RETUFN
FEN SUERDUTINE TO GET EFFIDFS ON HF
FKINT\＃
FETUFN

TXTま＝＂＂
SAW＝0．$\overline{1}: S A H=0.1$
DIFUN＝CSIN
IF AES（DIFUN）：O．OI THEN DIFUN＝0．
DIFISE＝SINE
IF ABS（DIFISE）$\because 0.01$ THEN DIRISE＝0
$T X X=X G(k): T Y Y=Y G(k)$ ）
GOSUE 270
FETUFIN
－

FEF OISUN，DIFISE：SET OIFECTIGN ， 1,0 FOF HOFIZONTAL FEM GAU，SAH SET WIDTH AND HEIGHT IN CM．
$A X X \neq=C O N O F(A X X): A Y Y \neq=C O N V F(A Y Y): A X N U M 末=C O N V 末(A X N U M)$
FF：INT\＃7：＂SI＂：CONV丰（SAW）：＂，＂：CONV事（SAH）：＂；＂
FFIINT\＃O：＂FFA＂；AXX末：＂，＂；AYY末：＂；LE＂；AXNUM末；CHF：（こ）
FEM SUEFOUTINE TO FLOT TEXT TXT\＆AT LOCATION TXX，TYY
FEM LOCATION IS THE LOWEF LEFT HAND COFINEFi
FEEN DIFUN，DIFISE：SET DIFECTION • 1,0 FOR HOFIZONTAL
FEEM SAW，SAH SET WIDTH AND HEIGHT IN CM．

FRINT\＃甲；＂SI＂：CONV 5 （SAW）：＂，＂；CONV丰（SAH）；＂；＂
FFIINT\＃9；＂DI＂：CONV本（DIFUN）：＂，＂：CONV \ddagger（DIFISE）：＂：＂

FEM SLIEFOUTINE TO CENTEF DIGITS ON X AXIS

FEM SUEFDUTINE TD CENTEF DIGITS ON Y AXIS
FEM FLOT A CUF＇VE OF NF FOINTS IN XG，YG

FFINT\＃9：＂F＇A＂：SYM工も：＂：FD：＂：NEXT IFLDT

FEM SUEFOUTINE TO FUT AZIMUTH TIC MAFKS

```
1100 W=1
    1170 H=1
    1180 GOSUB 2as
    1200 FEM FLLOT EOUNDAFFY
    1205 XNUM (1)=0):YNUM(1)=0
    120S DX=1:DY=1:NF=5
    1210 XG(1)=-\Omega+CX:YG(1)=ーミ+CY
    12工0 XG(\Omega)=+\Sigma+CX:YG(2)=YG(1)
    12马O XG(ふ)=XG(2):YG(コ)=+\Omega+CY
    1240 XG(4)=XG(1):YG(4)=YG(S)
    1250 XG(5)=XG(1):YG(5)=YG(1)
    1255 FFINT#9:"FU"
    12\sigmaG FOF K=1 TO NF
    1こ70 XF=XG(F.):YF=YG(F)
    1280 SYM2F=CONV年(XF)+","+CONVF(YF)
    1290 FFINT#9:"FA":SYM2$:":FD:FA:"
    1295 NEXT F
    1.900 SAW=. 工5:SAH=.25
    1400 TXT音=" TAU = 60.0"
    1410 TXX=2.25:TYY=CY-2.25
    1415 DIFUN=1.0:DIFISE=0.0
    1420 GOSUB 270
    14こ5 TXTF=" TAU = 0.0"
    1430 TXX=2. こ5:TYY=CY+2.25
    1440 gOSUE =70
    1510 FOF F=1 TO 100:NEXT F
    15.30 FETUFN
    1600 FEM INFUT INTEFFOLATED EDN FIELD
    1610 FRINT"INFUT FILE NAME DF INTEFFOLATED DATA"
    1620 INFUT D#
    1600 OFEN#ユ."/AREA1/CFOS.FLOT/"+D#
    1640 I=1
    1650 FEAD#2, 1:NX,NY,MIN,MAX
    1.55S FFINT NX,NY,MIN,MAX
    1660) FOR J=1 TO NX
    1670 FOR F:=1 TO NY
    1680 I=I+1
    1670
    1700
    1 7 1 0
    1720
    1730
    1800
    1810
    1820
    18?0
    1840
    1850
    1360
    1870
    18S0
    1910
    1920
    1925
    1970
    4900
    4910 DELTAT=4/NYF1
    4920 DELTAF=4/NXF1
    5000 FOFi I=1 TO NYF'1
    SOO1 TO=(I-1)*DELTAT
    500工 T1=TO+DELTAT
    500? FOF J=1 TO NXF1
    5004 FO=(J-1)*DELTAR
    5005 Fi=FO+DELTAF
    Fom4
        FEAD#2,I;NXD(J),NYD (K),RDN(J,K)
        FRINT J,K:,NXD(J),N\YD(K),FDN(J,F)
        NEXT K
    NEXT J
    REM SET UF CONTOUF ARFIAYS
    ZMIN=MIN
    ZMAX=MAX
    FOF: J=1 TD NX
    FOF: r=1 TO NY
        Z(J,})=FDN(J,心)
        NEXT K:
    NEXT J
    NXF=NX:NXF'1=NX-1
    NYF:=NY:NYF1 =NY-1
    FOFi N=1 TO NLEV
        ZLEV(N)=INT (ZMIN*100)/100+N*NINCR
        NEXT N
    GOSUB 4900
    IDUE=0
        H1=7(.7.r)
```

5063.

5007 5010

5011

5012
5013 5014 5015 5016
드익
5018
5019
5020
50こ1
5029

5024
5025
5026
5097
5098
5029
5050
50.1

5032
50ここ

5034
5035

5036
50.37

5080
5082
5093
5095
5096
5090
5100
5200
5250
5300
5 ± 10
5.20

530
5340
$5: 50$
5.60
5.65

5770
$5 \div 80$
5.390

5400
5410
5420
54.0

5440
5450
5450
5470
$\left.5,4 R_{0}\right)$
$H J=Z(J+1, I+1)$
$H A=I(J, I+1)$
FEM IF $I=$ NYF 1 THEN $H==C(J+1,1)$

FEM IF $I=$ NYF＇ 1 THEN $H 4=Z(J, 1)$
FOF $K=1$ TO NLEV
ZLEV＝ZLEV（t）
IF $H 1:=Z L E V$ GOTO EOSJ
IF $\mathrm{H}_{2}=Z \angle L E V$ GOTO 5019
IF HS．＝ZLEV GOTO SO20
IF H4：ZLEV GOTO 5OSO
GOTO 5100
IF Hご ZLEU GOTO 5OZ1：ELEE GOTD 5022
IF H4．ZLEV GOTO SOS1：ELSE GOTO 5OS2
IF H4．ZLEV GUTO SOJS：ELSE GOTO 5Oこ4
IF HA ＇ZLEV GOTD 5OIS：ELSE GOTO 5OE6
IF H2：＝ZLEV GOTD 5O26
IF HS：＝ZLEV GOTD 5O27
IF H4：ZLEV GOTO 5OJ6：ELSE GOTO 50S5
IF Hご ZLEV GOTO SO2B：ELSE GOTO 5029
IF H4：ZLEV GOTO 50ふ7：ELSE GOTD 503．
IF H4：ZLEV GOTO EOS2：ELSE GOTO SO． 1
IF $\mathrm{H} 4:=\mathrm{ZLEV}$ GOTO 5090
$T A=T O+(H 1-Z L E V) /(H 1-H A) * D E L T A T: T E=T 1: F A=F O: F B=F O+(H 4-Z L E V) /(H 4-H 3$ ）＊DELTAF：GOTO 5080
$T A=T O+(H 2-Z L E V) /(H 2-H \Xi) * D E L T A T: T E=T 1: F A=F i: R E=F O)+(H 4-Z L E V) /(H 4-H E$ ）＊DELTAF：GOTO 5080
$T \hat{A}=T O+(H 1-Z L E V) /(H 1-H 4) * D E L T A T: T E=T O+(H 2-Z L E V) /(H 2-H T) * D E L T A T: F A=$ FO： $\mathrm{FB}=\mathrm{Fi} 1:$ GOTD 5OSO
$T A=T O: T E=T O+(H 2-Z L E V) /(H 2-H \Xi) * D E L T A T: F A=F O+(H 1-Z L E V) /(H 1-H 2) * D E L T$ AF： $\mathrm{FB}=\mathrm{Fi} 1:$ IDUE $=G:$ GOTO 5080
IDUE＝1：GDTO 5030
$T A=T O: T E=T 1: F A=F O+(H 1-Z L E V) /(H 1-H 2) * D E L T A F: F B=F O+(H 4-Z L E V) /(H 4-H E$ ）＊DELTAF：GOTO 5O8G
$T A=T O: T E=T O+(H 1-Z L E V) /(H 1-H 4) * D E L T A T: F A=F O+(H 1-Z L E V) /(H 1-H 2) * D E L T$ AF： $\mathrm{FB}=\mathrm{FiO}$ ：IDUE＝0：GOTO 5080
IDUE＝－1：GOTO 5Oこ1
$X A=F A+1: X E=F E+1: Y A=T A+1: Y E=T E+1$

FFINT\＃9：＂FU＂；XA末：＂，＂YA末；＂；FD＂；XE事：＂，＂YE末：＂；FU；＂
IF IDUE＝－1 THEN EOSG
IF IDUE＝1 THEN 5OSZ
NEXT F ：
NEXT J
NEXT I
END
FOF $J=1$ TO NXFi
FDE：$K=1$ TO NYFI
IF $Z(J, K)=Z M I N$ THEN JMIN＝J：KMIN＝K．
IF $Z(J, K ゚)=Z M A X \quad$ THEN JMAX $=J: K M A X=R:$
NEXT ${ }^{\prime}$ ．
NEXT J
FFINT JMIN，KMIN，IMAX，FMAX
DIFUN＝1：DIFISE＝0
FMIN $=(J M I N-1) * D E L T A F i$
FMAX $=($ JMAX -1$) *$ DELTAF：
TMIN $=($ MMIN－1） $\operatorname{HDELTAT}$
TMAX $=($（FMAX－1）＊DELTAT
$X M I N=F M I I N+1$
$X M A X=F$ M $M A X+1$
$Y M I N=T M I N+1$
Y MAX $=$ TMAX +1
TXX＝XMIN：TYY＝YMIN：TXT末＝＂L＂
GOSUB 270
TXX＝XMAX：TYY＝YMAX：TXT末＝＂H＂
Finclife nTロ
EV(\Omega)-ZLEV(1))
5500 GOSUE 270
5540 END

```

    DIM \(F\left(\begin{array}{c}(0), ~ X R U M(12), ~ Y N U M(12) ~\end{array}\right.\)
    DTKD=?.14159/180.

    DATA \(0,20,60,70,120,150,180,210,240,270,300,300\)
    FOF I=1 TO 12
        FEAD AZM(I)
            NEXT I
        NLEV=10
    NINCF \(=.50\)
    GUSUE 1000
    GOSUE 1600
    FEM INITIALIZE FLOTEF
    OFEN\#O, ". FiSコココ"


    \(F=X=F 1 X+(X 1-X 0) * 1010: F^{\prime} 2 Y=F 1 Y+(Y 1-Y O) * 1010\)
    IF \(X 0=X 1\) THEN F \(1 X=500: F O X=10000: F 1 Y=600: F 2 Y=7500\)

    FFIELD \(\ddagger=F 1 \times \neq+", ~ "+F 1 Y \equiv+", ~ "+F \supseteq X 末+", ~ "+F 卫 Y \$\)
    FFINT\#G; "IF";FFIELDま; ";"
    GOSUE 2つG: FIETUFN
    FENT SUEFRLITINE TO SCALE AXISES
    FEM \(X O, X 1, Y G, Y 1\) DEFINE STAFTING AND ENDING FQINTS IN INCHES
    FEM XMIN, XMAX, YMIN, YMAX AFE THE MAX AND MIN VALUE ON AXISES
    FEM SCALEX, SCALEY=SCALED DATA FOF TIC MAFKS
    FEM NDIVX, NDIVY=NUMEEF OF DIVISIONS ON AXISES
    DELTAX \(=(X 1-X O) /\) NDIVX
    DELTAY \(=(Y 1-Y(O) / N D I V Y\)
    SCALEX (1)=X0: SCALEY(1)=YO
    FOF ISUE=1 TO NDIVY:SCALEY (ISUE+1) =SCALEY (ISUE) +DELTAY:NEXT
    FOF ISUE=1 TO NDIVX:SCALEX (ISUE+1)=SCALEX (ISUE) +DELTAX:NEXT
    SC末=CONVF \((X O)+", "+C O N V \equiv(X 1)+", "+C O N V F(Y O)+", "+C O N V F(Y 1)\)
    FRINT\#9: "SC": SC末;":":FETUFN
    FEM SUEFOUTINE TO SET SYMEOL MODE
    SYM1 \(=\) CONV \(=\) ( \(W\) ) \(+", "+\operatorname{CONV}+(H)\)
    FFIINT\#今; "SI": SYMI束:"SM":SYM末:":"
    FETUFiN
    FEM THIS SUEFOUTINE FLUTS SYMEOL SYMF AT LOCATION \(X, Y\)
    FEM FD=0 FOF FEN UF: FD=1 FOR FEN DOWN: LINET=LINE TYFE(0-4)
    FEM LINEL = LENGTH (FEFICENT DF DIST. EETWEEN FI AND F2)
    IF FD=0 THEN FFINT\#9; "FU:";:ELSE FFINT\#9: "FD:";
    IF \(F D=0\) GOTD 259
    IF LINEL=0 THEN LINEL=4
    LT \(\ddagger=\) CONV \(\ddagger\) (LINET) \(+", "+C O N V=(L I N E L)\)
    FFINT\#9:"LT"; LTE:": "
    SYM2ま=CONV末 \((X)+", "+C O N V \neq(Y):\) SYME \(=\) SYM
    FRINT\#タ; "F'A"; SYMスも;";"
    FETUFN
    FEEM FLDT AXIS
    FFiINT\#7: "FU:"

    FFINT\#9; "FA"; XO末;", "; YO末;";";"FD;FA"; X1事:", "; YO末;":": "FU:"

    FFINT\#9: "TL1.O,O.O;FA":XOE;","YO末;":"
    FOF ISLE=1 TO NDIVX+1:SCALE末=CONV末 (SCALEX (ISUE))

    FFINT\#7; "TL1. O.O.O;FA"; XO末;","YO末;";"
    FOF ISUB=1 TO NDIVY+1:SCALE \(\ddagger=C O N V \$\) (SCALEY (ISUE))
        FFINT\#タ; "F゚A"; XOE;","; SCALEF:"; YT;":NEXT
    FIETIINR
```

工官
O
202
シダロ
264
1070 SAW=0.1*2.54
1080 SAH=0.13*2.54
1090 CX=3.0
1100 CY=5.0
1110 XMIN=0.0
1120 XMAX=6.0
1-%

```
\begin{tabular}{|c|c|c|}
\hline 1150 & GOSLE ご心 & \\
\hline 1100 & \(\omega=1\) & A－36 \\
\hline 1170 & \(H=1\) & A 36 \\
\hline 1180 & GOSUE 225 & \\
\hline 1200 & FEM FLOT EOUNDAFY & \\
\hline 1205 & \(X N U M(1)=0\) ：YNLM（1）\(=0\) & \\
\hline 1206 & \(D X=1: D Y=1: N F=S S 0\) & \\
\hline 1210 & FOF I＝1 TO & \\
\hline 12 O & \(\mathrm{R}(\mathrm{I})=\mathrm{I} * 0.45\) & \\
\hline 12ら0） & FOF \(\%=0\) TO 560 STEF 5 & \\
\hline 1235 &  & \\
\hline 1240 & \(X G(k)=F \cdot(I) * C S I N+C X\) & \\
\hline 1250 & \(Y G(t)=F i(I) * S I N E+C Y\) & \\
\hline 1265 &  & \\
\hline 1270 & \(X F^{\prime}=X G(1):. Y F=Y G\left(L^{\prime}\right)\) & \\
\hline 1280 &  & \\
\hline 1290 &  & \\
\hline 1300 & FOF \(F=1\) TG12 & \\
\hline 1こ10 & IF \(\leqslant=A Z M(F)\) THEN GOSUE 400 & \\
\hline 1－15 & NEXT F－ & \\
\hline 130 & NEXT K． & \\
\hline 13.40 & NEXT I & \\
\hline 1.50 & \(\mathrm{I}=\) S & \\
\hline 1200 & FOF K＝0 TO 30 STEF 30 & \\
\hline \(1 \pm 90\) & SAW＝．工5： \(5 \mathrm{AH}=.25\) & \\
\hline 1400 & TXTま＝＂＂＋CONV末（k） & \\
\hline 1410 & DIFUN＝COS（ \(* *\) DTFD \()\) & \\
\hline 1415 & IF AES（DIFUN）＜0．O1 THEN DIFUN＝0． & \\
\hline 1420 &  & \\
\hline 1425 & IF AES（DIFISE）O．O1 THEN DIFISE＝0． & \\
\hline 14.30 & \(T X X=F(6) * \operatorname{CDS}(1 * * D T F D)+C X\) & \\
\hline 1440 & TYY \(=\mathrm{F}(6) * S I N(K * D T F D)+C Y\) & \\
\hline 1450 & IF \(\because \therefore=90\) THEN 1500 & \\
\hline 1455 & IF \(\because \therefore=270\) THEN 1500 & \\
\hline 1460 & DIFISE＝－DIFISE & \\
\hline 1470 & DIFLIN＝－DIFUN & \\
\hline 1480 & \(T X X=T X X+\) F＊SAW＊CDS（F゙＊DTFD） & \\
\hline 1470 & TYY \(=\) TYY＋こ＊SAH＊SIN（F゙＊DTFD） & \\
\hline 1500 & FFINT F ，TXX，TYY，DIFUN，DIRISE：GDSUE 270 & \\
\hline 1510 & FOF：\(F=1\) TO 100：NEXT \(F\) & \\
\hline 1520 & NEXT＋ & \\
\hline 1530 & FEETLIFN & \\
\hline 1600 & FEM INFUT INTEFFOLATED EDN FIELD & \\
\hline 1610 & FFINT＂INFUT FILE NAME OF INTEFFOLATED DATA＂ & \\
\hline 1620 & INFUT D⿻三丨⿻口一 & \\
\hline 16.30 & OFEN\＃2，＂／AFEA1／CFOS．FLDT／＂＋D⿻三丨⿻⿳一一𠃌丨女口 & \\
\hline 1640 & \(\mathrm{I}=1\) & \\
\hline 1650 & FEAD\＃2，1：NNAD，NAZM，FLUXUF，MIN，MAX & \\
\hline 1655 & FFIINT NHAD，NAZM，FLUXUF，MIN，MAX & \\
\hline 1660 & FOF \(J=1\) TO NNAD & \\
\hline 1670 & FOF \(F=1\) TO NAZM & \\
\hline 1690 & \(\mathrm{I}=\mathrm{I}+1\) & \\
\hline 1650 & FiEAD\＃ 2 ，I；NA（J），AZ（K）， \(\operatorname{CDN}(J, k)\) & \\
\hline 1700 & FFINT J， \(\mathrm{F}^{*}, N A(J), A Z(K), \operatorname{BDN}(J, K)\) & \\
\hline 1710 & NEXT F ： & \\
\hline 1720 & NEXT J & \\
\hline 17.0 & REM SET LIF CONTOUF AFFAAYS & \\
\hline 1900 & ZMIN＝MIN & \\
\hline 1810 & ZMAX \(=\) MAX & \\
\hline 1820 & FOF \(J=1\) TO NMAD & \\
\hline 18.0 & FOF \(1=1\) TO NAZM & \\
\hline 1840 & \(Z(J, F)=\operatorname{BDN}(J, K)\) & \\
\hline 1850 & NEXT ト & \\
\hline 1860 & NEXT J & \\
\hline 1870 & NFASD＝NTJAD：NFW \(11=\) NFAD -1 & \\
\hline
\end{tabular}

1910 FOF \(N=1\) TO NLEV
150
19 도
\(19: 0\)
4800
4710
4020
5000
5001
5002
\(500=\)
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
500
5021
5022
5025
\(50=4\)
\(50=5\)
5026
5027
5020
5027
\(50: 0\)
5031

ぽこ
EOJ3
\(50-4\)
\(50 \leq 5\)

5036
50.7

5080
5082
\(508=\)
5085
5086
5090
5100
520
5250
500
\(5: 10\)
5ごロ
\(5=0\)
    IDUE=0
    DELTAT=-. 14157/(NTM1)*2
    DELTAF=Fi(6)/(NFM1)
    FOF \(I=1\) TO NTMI
    \(T 0=(I-1) * D E L T A T\)
    \(T 1=T O+D E L T A T\)
    FOF: J=1 TO NFM1
        \(\mathrm{F}^{0} 0=(\mathrm{J}-1) *\) DELTAF
        \(F i=F i O+D E L T A F i\)
        \(H 1=Z(J, I)\)
        Hこ= \(\mathrm{Z}(\mathrm{J}+1, I)\)
        \(H J=Z(J+1, I+1)\)
        \(H A=Z(J, I+1)\)
        \(F O R \quad \vdash=1\) TO NLEV
            ZLEV=ZLEV ( \(k\) )
            GOTD 5100
            CY
            NEXT \(~+\)
        NEXT J
    NEXT I
END
FOF \(J=1\) TD NNAD
    FQFi \(ト=1\) TO NAZM
        IF I=NTM1 THEN \(H S=Z(J+1,1)\)
        IF \(I=N T M 1\) THEN \(H 4=Z(J, 1)\)
            IF \(H 1:=Z L E V\) GOTO EOZS
            IF HI. = LLEV GOTO 5O19
            IF \(H^{-}=Z L E V\) GOTO 5020
            IF H 4 : ZLEV GOTO 50 SO
            IF Hت•ZLEV GOTO 5Oこ1:ELSE GOTO 5O22
            IF H4:ZLEV GOTO SOJ1:ELSE GOTO 5OS2
            IF H4: ZLEV GOTO SOI: ELSE GOTO EOS4
            IF H4 ZLEV GOTD 5OSE:ELSE GOTD 5OSb
            IF \(\mathrm{H}=:=\mathrm{ZLEV}\) GOTO 5026
            IF \(\mathrm{H}_{\because} \because=Z L E V\) GOTO SO27
            IF H4:ZLEV GOTO 5OJ́:ELSE GOTD 5OS5
            IF Hぶ ZLEV GOTO SO2日:ELSE GOTO 5O29
            IF H4:ZLEV GOTO 5OJ7:ELSE GOTO SOSS
            IF H4'ZLEV GOTO SOS2:ELSE GOTO SOZ1
            IF \(\mathrm{H} 4,=\mathrm{ZLEV}\) GOTO 5050
            \(T A=T G+(H 1-Z L E V) /(H 1-H 4) * D E L T A T: T E=T 1: F A=F O: F B=F i O+(H 4-Z L E V) /(H 4-H E\)
            ) *DELTAF: GOTD 5OBO
            \(T A=T O+\left(H_{2}^{-}-Z L E V\right) /\left(H 2-H_{-}^{-}\right) * D E L T A T: T E=T 1: F A=F(1: F E=F O+(H 4-Z L E V) /(H 4-H: Z\)
            ) *DELTAF: GOTO 5OBO
            \(T A=T O+(H 1-Z L E V) /(H 1-H 4) * D E L T A T: T E=T O+(H 2-Z L E V) /(H 2-H \Xi) * D E L T A T: F A=\)
            \(F O: R E=F 1: G O 705080\)
            \(T A=T O: T E=T O+(H 2-Z L E V) /(H 2-H \Xi) * D E L T A T: F A=F O+(H 1-Z L E V) /(H 1-H Z) * D E L T\)
            AF: \(\mathrm{FB}=\mathrm{F}: 1:\) IDUE \(=0:\) GOTO 50 SO
            IDUE=1:GOTO SOSO
            \(T A=T O: T B=T 1: F A=F(O)+(H 1-Z L E V) /(H 1-H 2) * D E L T A F: F E=F O+(H 4-Z L E V) /(H 4-H \Xi\)
            ) *DELTAF: GOTD 508O
            \(T A=T O: T E=T O+(H 1-Z L E V) /(H 1-H 4) * D E L T A T: R A=F O+(H 1-Z L E V) /(H 1-H 2) * D E L T\)
            AFi: \(\mathrm{FB}=\mathrm{FiO}: \operatorname{IDUE}=0:\) GOTD 5080
            IDUE=-1:GOTO 5O』1
            \(X A=F A * C O S(T A)+C X: X E=F E * C O S(T E)+C X: Y A=F A * S I N(T A)+C Y: Y E=F E * S I N(T E)+\)
                \(X A \equiv=C O N V \equiv(X A): X E 末=C O N V \equiv(X B): Y A \equiv=C O N V \neq(Y A): Y E 末=C O N V \equiv\) (YE)
                FFINT\#9; "FU"; XA末;", "YA末:";FD"; XE末;", "YE束;";FU;"
            IF IDUE=-1 THEN 5OSO
            IF IDUE=1 THEN 5OEZ
        IF \(Z\left(J, R^{\prime}\right)=Z M I N\) THEN JMIN=J: \(\operatorname{RH} M I N=K\)
            IF \(Z\left(J, F^{\prime}\right)=Z M A X \quad\) THEN JMAX \(=J:\) RMAX \(=K^{\circ}\)

550
    54EO TXX=XMIN:TYY=YMIN:TXTF="L"
5400 GOSUB 270
\(5470 \quad T X X=X M A X: T Y Y=Y M A X: T X T 末=" H "\)
5480 GOSUB 270
5490 END
\(5500 \quad T X X=0.30\)
5510 TYY=-. 50
\(\begin{array}{lll}55 \Omega O & T X T 末=" L="+C O N V 末(Z M I N)+" \quad H="+C O N V 末(Z M A X)+" \quad \text { INTEFVAL }="+C O N V F(Z L \\ & E V(Z)-Z L E V(1))\end{array}\)
    5530 GQSUE 270
5540 END
        NEXT I
        FFINT JMIN, FMIN, JMAX, FMAX
        DIRUN=1: DIFISE=O
        A-38
        FMMIN \(=(J M I N-1) * D E L T A F:\)
        FMAX \(=(\) JMAX -1\() *\) DELTAF

FEM FFROGFAM LFAS
FFINT＂CFOS EI－DIFECTIONAL FEFLECTANCE INTEFF．FROGRAM＂
DIM EDF（15，15），EDN（30，30），NAN（30），AZIN（30）
DIM NAD（1J，15），AZI（15，15）
DATA ․ 5，7．5，12．5，17．5．2コ．5，27．5，32．5，37．5，42．5，47．5，52．5，57．5
DATA \(15,45,75,105,135,165,195,225,255,285,315,345\)
FI＝さ．14150：FOURZ＝FI／2
FOF：\(J=1\) TO 30
FOF \(t=1\) TO
\(\operatorname{EDN}(J, k)=0\).
NEXT 1 ．
NEXT J
FFINT＂ENTEF：THE NUMEEF OF NAD INTEFFOLTION FOINTS＂
INFUT NNAAD
FOF \(J=1\) TO NNAD
NAN（J）\(=\) FI／\(=/\) NNAD＊\((J-1)\)
NEXT J
DTFD＝こ．14159／180．
DEF FN ACOS \((x)=\operatorname{ATN}(S D R(1-x * x) / x)\)
DEF FN ACOS \((x)=A T N(S O F(1-x * x) / X)\)
FFIINT＂ENTEF THE NUMEEF OF AZIMUTHAL INTEFFOLATION FOINTS＂
INFUT NAZM
FOF \(J=1\) TO NAZM
\(A Z I N(J)=工 * F I / N A Z M *(J-1)\)
NEXT J
FFINT＂INFUT DATA FILE NAME＂
INFUT DF
OFEN\＃S AS INFUT，＂／AREA \(1 / C F D S . E D F / "+D \neq\)
FEADH＝，1：NS，FLUXUF，MIN，MAX
\(\mathrm{I}=1\)
FOF \(J=1\) TO NS
FOF \(f=1\) TO 15
\(I=I+1\)
FEAD\＃＝，\(I ; J, H, \operatorname{NAD}(J, K), \operatorname{AZI}(J, K), \operatorname{BDF}(J, K)\)
FFINT J，ト，NAD（J，ド）， \(\operatorname{AZI}(J, K ゙), \operatorname{EDF}(J, K)\)
NEXT K
NEXT J
FRINT＂UFWAFD FLUX DENSITY EQUALS＂FLUXUF＂
FFINT＂MIN AND MAX VALUES OF EDR FUNCTION＂，MIN，MAX
GOSUE 1000
FEM SUEFOUTINE TO CALCULATE WEIGHT
DEL－TA＝FI／6．
IF THETA，DELTA EOTD 570
\(W G H T=1 . O E+0 G\)
IF THETA：O．OOI THEN RETUFN
WGHT＝DELTA／THETA
FETUFN
\(W G H T=0\) ．
IF（THETA－DELTA）；＝DELTA THEN RETUFN
WGHT＝2．O－THETA／DELTA
FETUFN
FEF SUEFROUTINE TO INTERFOLATE IN EDF AFFAY
SUMF \(=0\) ．
SUMW＝0．
FOFi M＝JMIN TO JMAX
FOF N＝FMIN TO FMAX
\(Z I=N A D(M, N)\) \(A I=A Z I(M, N)\) THETA \(=\operatorname{COS}(Z I) * C O S(Z F F M)+S I N(Z I) * S I N(Z F F M) * C O S(A I-A F F M)\) IF THETAㅇ．GOTO 840 THETA \(=\) FN ACOS（THETA）
```

En
'810
8こ0
B%
840
850
860
870
880
900
Eug E%O
W=WGHT
SUMW=SLMW+W
SUMF=SUMF+W*ECF(M,N)
NEXT N
NEXT M
INTEFFF=0.
IF SUMW. =0. THEN FETUFN
INTEFFF=SUMF/SUMW
FETUFN
FiEM CALClLLATE EDF vALUES AT FEGULAFi AFFiAY FOINTS
FOF }J=1 TO NNAD
FOF
ZFFM=NAN(J)
AFFM=AZIN(K)
FEM FIND IMIN,JMAX,FMIN,FMAX TO LIMIT REGION OF INTEFFOLATION
SIND=SIN(ZFFIM)*SIN(FI -AFFMM)
COSD=SOF(1-SIND*SIND)*SGN (COS (AFFMM))
COSA=COS (ZFFM)/COSD
IF COSA.=1.0 THEN COSA=1.0
IF COSA}:=-1.0 THEN COSA=-1.0
A= FN ACOS (COSA)
D=ATN(SIND/COSD*SGN(COS (AFFM))) +FOUR2
AINC=INT (A/FI *IG)+7
DINC=INT (D/FI * 18)-1
JMIN=AINC-1
JMAX=AINC+1
|MIN=DINC-1
NMAX=DINC+1
IF JMIN:=1 THEN 12SO
JMIN=SMIN+1
GOTD 1190
IF JMAX:=1马 THEN 1260
IMAX=IMAX-1
GOTO 12こO
IF KMIN = =1 THEN 1290
F.MIN=FMIN+1
GOTO 1260
IF FMMAX:=15 THEN 132O
F.MAX=FKMAX-1
GOTO 1290
GOSUE 700
EDN(J,ド)=INTEFF'
FFIINT EDN(J,K), IMIN,JMAX,KMIN,KMAX
NEXT F:
NEXT J
OFEN\#4 AS OUTFLIT,"/AFEA1/CFOS.FLOT/"+D:\$
MIN=99999
MAX=0
FOF J=1 TO NNAD
FDF }:=1\mathrm{ TO NAZM
IF EDN (J,K)<MIN THEN MIN=BDN (J,K:)
IF EDN(J,F:) \MAX THEN MAX=EDN(J,F゙)
NEXT K:
NEXT J
FFIINT"MIN AND MAX OF INTEFFOLATED FIELD ",MIN,MAX
WFITE\#4, 1; NNAD,NAZM, FLUXUF,MIN,MAX
I=1
FOF J=1 TO NNAD
FOF }1=1\mathrm{ TO NAZM
I=I+1
WFITE\#4,I:NAN(J),AZIN(K:),GDN(J,K.)
FKINT NAN(J),AZIN(*:),EDN(J,k)
NEXT F
NEXT J

```
```

FEM CFOS EI-DIFECTIDNAL FEFLECTANCE STANDAFD EFFROF FROGFAM
DIM N(こ0,12,12),NAN(12),AZIM(12)
DIM NEAF(12,12),NSTD(12,12),SSN(12,12),SNS(12,12)
DIM Dキ(こ0)
FRINT"INFUIT THE NLIMEEF OF INTEFF'OLATED DATA FILES TO USE"
INFUT NUM
FOR I=1 TO NUM
FFINT"INFUT THE DATASET NAME FDF FILE NUMEER",I
INFUT DF(I)
D\$(I)="/AFEA1/CFOS.FLDT/"+Dま(I)
NEXT I
FOFi I=1 TO NLM
OFEN\#工 AS INFUT,D\&(I)
+CUNT=1
FOF J=1 TO 12
FOF k=1 TO 12
R.OUNT=FOUUNT+1
FEAD\#2,1:NNAD,NAZM,FLUXUF,MIN,MAX
FEAD\#Z,N゙OUNT;NAN(J),AZIM(\&゙),N(I,J,K゙)
NEXT F'
NEXT J
CLOSE\#2
NEXT I
FOF J=1 TO 12
FOF ト'=1 TO 12
SSN(J,\&)=0
SNS (J,K)=0
NBAF(\J,N゙)=0
NSTD (J, f:)=0
NEXT F.
NEXT J
FOF: J=1 TO 12
FOR f.=1 TO 12
FOF I=1 TO NUM
SSN(J,F゙)=SSN(J,K`)+N(I,J,K`)*N(I,J,K゙)
SNS(J,K)=SNS (J,K)+N(I,J,K`) NEAF゙(J,K゙)=NEAF((J,K゙)+N(I,J,K`)/NUM
NEXT I
SNS (J, に)=SNS (J,K) *SNS (J,k)
NSTD(J,!:)=SQR((SSN(J,K゙)-SNS (J,F゙)/NUM)/(NUM-1))
MSTD(J,F:)=NSTD (J,K.)/NEAFi(J,K.)
FFINT J,K,NSTD (J,K)*100
NEXT K
NEXT J
AVGEFIF=0
FOF J=1 TO 12
FOR F=1 TO 1:
AVGEFF:=AVGEFFi+NSTD(J,K)*100/144
NEXT ド
NEXT J
FFINT"OVEFALL STANDAFDD EFFRFR FOF EDF"",AVGEFF'
END

```
```

