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1. Introduction

Crucial digital systems can fail because of faults in either software or

hardware. A great deal of research in hardware design has yielded computer

architectures of potentially very high reliability such as SIFT [WEN 78] and

FTMP [HOP 78]. In addition, distributed systems (incorporating fail-stop

processors [SCH 83a]) can provide graceful degradation and safe operation

even when individual computers fail or are physically damaged.

The state of the art in software development is not as advanced.

Current production methods do not yield software with the required

reliability for crucial systems, and advanced methods of formal verification

[GRI 81] and synthesis [PAR 83] are not able to deal with software of the

required size and complexity.

Fault tolerance [RAN 75] has been proposed as a technique to allow

software to cope with its own faults in a manner reminiscent of the

techniques employed in hardware fault tolerance. It is expected that this

will provide external performance which will have the required reliability.

The absence of a formal theoretical basis for developing fault-tolerant

software has lead to an empirical approach. First generation experiments [KEL

83] [SCO 83a] have provided a proof-of-concept and have shown the

feasibility of several fault-tolerant software policies, but these experiments

have not yet demonstrated conclusive reliability increases under controlled

experimental conditions. Even if reliability improvement had been

demonstrated there is no data available showing the size of the improvement
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nor any data showing that the resulting reliability is sufficient for crucial

applications.

The purpose of the work performed under this grant is to begin to

obtain information about the efficacy of fault-tolerant software by conducting

a large-scale controlled experiment. The work performed under the current

grant reporting period is the planning of the experiment, the preparation of

the subject programs, and the definition of a testing procedure for the

programs produced during the experiment.

The experiment is being conducted jointly by NASA, four universities,

and the Research Triangle Institute. The participating universities are North

Carolina State University, the University of California at Los Angles, the

University of Illinois at Urbana-Champaign and the University of Virginia.

There were several motivations for the use of multiple universities in the

experiment. First, it was expected that the diversity in programmer

background thus obtained would help avoid correlated errors in the modules

produced. Second, the experiment required more qualified programmers than

can be recruited from a single institution. Additional benefits arose from the

fact that the participants, individually and through previous cooperative

endeavors represented most of the previous fault tolerant software

experimentation that has been performed in the United States.

By the use of a suitably large set of components, produced in an

environment which was carefully controlled to maximize the reliability of

each component, we hope to achieve results which are both statistically
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significant and relevant to applications such as avionics requiring extremely

high reliability. Our goal is to determine the effects of fault-tolerant

software on reliability, while controlling or eliminating the effects due to

other factors.

In section 2 of this report we review the technical background for the

experiment, and in section 3 we describe the refined experiment that has

resulted from planning discussions. Section 4 reviews the specific activities at

the University of Virginia. Appendix 1 contains the application form used

at the University of Virginia in the hiring of students, and Appendix 2

contains the software development protocols proposed during the grant

reporting period for the experiment. This document was prepared in

cooperation with Dr John Kelly of the University of California at Los

Angeles and was a document for discussion only. It is not intended for

general dissemination and was the basis for the documented protocol supplied

to the various universities by RTI.

Appendix 3 is a proposal for the evaluation of the programs developed

in this experiment. It contains input from the various sources identified on

its face page, but the development of the document was coordinated and the

document was compiled at the University of Virginia.
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2. Background

Two different approaches to the tolerance of software faults can be

distinguished. They are the simplex and the multiplex approaches. In the

simplex approach various checking procedures are incorporated into the

software and provide run-time detection of certain faults [CRI 82]. In the

multiplex approach two or more non-identical software modules (versions)

are provided that perform the same task.

The sequential implementation of the multiplex scheme is exemplified by

the Recovery Block (RB) method [RAN 75], [AND 81]. An acceptance test is

performed on the results of the first version; the next version is executed

only if the test fails.

The concurrent implementation of the multiplex scheme is employed by

the N-version programming method [AVC 77], [CHA 78]. All versions of

the software are executed concurrently, and a decision algorithm is applied to

the results to determine a consensus. A hybrid scheme incorporating both

was proposed by Scott et al. [SCO 83b]

The need for design fault-tolerance in software led to the initiation of a

research effort at UCLA in 1975 [AVI 75]. Its goal was to study the

feasibility of adapting to software design fault-tolerance the technique of N-

fold Modular Redundancy (NMR) with majority voting that was effective in

the tolerance of physical faults. The approach was called "N-Version

Programming" (NVP) and the first experimental study of its feasibility

was completed in 1978 [CHA 78]. A second approach, already under
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investigation at the University of Newcastle in England in 1973, was the

Recovery Block (RB) technique, in which alternate software routines are

organized in a manner similar to the dynamic redundancy (standby sparing)

technique in hardware [RAN 75]. The prime objective is to perform run-time

software design fault detection by an acceptance test and to implement

recovery by taking an alternate path of execution. This technique is also

being continuously investigated at several locations. Some comparisons of RB

with NVP have been made in [CHA 78], [GAA 80]. A reliability model was

proposed by Scott [SCO 84b] and a validation of these models was reported

in [SCO 84a]. Several related research activities have been reported more

recently, among them [VOG 76], [KIR 76], [LOR 77], [GMV 79], [AND 83],

[CRI 82], [CAR 83] are especially relevant.

An experiment to test the fundamental assumption of independence of

versions in an N-version system has been conducted jointly by the

University of Virginia and the University of California at Irvine. Multi-

version software as an approach to fault-tolerant software relies upon

independently produced versions failing independently where specification

faults are not the cause. The experiment attempts to determine the validity

of this assumption using a rigorous statistical approach. No attempt at

quantitative assessment of reliability improvement was included.

Twenty-seven versions of a program were prepared by graduate students

at the two institutions from a common specification. Extensive efforts were

made to ensure that individual students did not cooperate or exchange

information about their program designs during the development phase. The
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3. Refined Experiment

Our primary original goal for this experiment was to determine whether

the application of fault tolerance to software increases its reliability if the cost

of production is the same as for an equivalent non-fault-tolerant version derived

from the same requirements specification. The italicized phrase is important and

was the key to the significance of the original experiment.

The problem is that if costs of production are ignored, any piece of

software can probably be made arbitrarily reliable. Equivalently, if costs are

deliberately forced to be very low, any piece of software can certainly be

made arbitrarily unreliable. The reason that reliability can always be

increased is that exhaustive testing can verify a program and, given enough

resources, one can exhaustively test many programs. Similarly, given no cost

control, one could hire armies of mathematicians to verify that a program

complies with its requirements specification. There are methods for applying

verification to simple real-time systems, and if one works hard enough, even

floating point arithmetic can be verified. Although these are pathological

cases, they illustrate the point that cost is an important factor, and, that

unless costs are matched, nothing meaningful can be said about measured

comparative reliability. A lot could be said about absolute reliability but that

was not the concern of the experiment. We want to know how to build a

system given a fixed budget to achieve the best reliability, and we want to

know whether we should employ fault tolerance under those circumstances

or not.
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During the planning meetings for the experiment, there was some

discussion about the possibility of software developed according to a

particular methodology reaching some asymptotic reliability level and being

unable to surpass it. This is very speculative. There does not seem to be

any evidence to suggest that this effect occurs. Even if it does, it would be

very difficult to prove. The reason the participants in this experiment

discussed it is the possibility that some technique, say fault tolerance for

example, might allow development of software with reliability above the

asymptotic reliability cutoff for non-fault-tolerant methods. If this were the

case, there would be a real purpose in evaluating fault tolerance with no

attention to cost, but there does not seem to such evidence.

Thus the original goal, and the null hypothesis to be tested in a

statistical test of significance was:

Given a fixed development cost, a fault tolerant software system is more re-
liable than a non-fault-tolerant software system built from the same require-
ments specification.

An additional original goal was to produce components that could be

combined in various ways to produce different fault-tolerant software

configurations, such as N-version or Recovery Block systems, whose

performance could be determined by extensive testing.

Even with these ambitious goals, this would have been a preliminary

experiment in that many potential variables (such as programming language

used) would have been held fixed to remove variability that could influence

the reliability of resulting systems.

- 8 -



The problem with these goals is the limited scale of the experiment. To

test the various hypotheses, it would be necessary to have many more

samples of both fault-tolerant and non-fault-tolerant versions than can be

achieved. Various development scenarios were considered in an effort to see

how many versions could be produced within the budget. There was some

discussion of the possibility of overlapping the two development scenarios by

producing the N-version systems first and then testing the individual versions

at greater expense to produce a set of non-fault-tolerant versions. Given the

hypothesis stated above however, it was agreed that this experiment must be

performed in such a way that the significance test is totally fair.

Consequently, it was agreed that it is essential that fault-tolerant and non-

fault-tolerant development be absolutely independent.

In discussions with the technical monitor, it was agreed that a less

ambitious experiment would be useful and feasible with the funds available.

The goal of the experiment was modified, therefore, to produce as many

versions of a single program as possible and to perform experiments on these

programs to test the independence of their faults and the reliability that

might be achieved if they are combined into N-version systems. There will

be no attempt to produce components to allow comparison of the N-version

and Recovery Block strategies, and there will be no attempt to compare

fault-tolerant and non-fault-tolerant versions.
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4. Activities At UVa

During the grant reporting period, the activities at the University of

Virginia have been oriented to preparation for the experiment and the

construction of the subject programs. Numerous planning meetings have been

attended at the University of Illinois, the Research Triangle Institute, NASA

Langley Research Center, and NASA Headquarters in Washington D.C.

Various documents have been prepared for discussion by the participants

in the experiment. The most important documents are the development

protocol which is reproduced in this report as Appendix 2, and the proposed

test plan that is included in this report as appendix 3.

The need to hire graduate students with the highest abilities dictated

that the hiring process begin as early as possible. Consequently, an

application form was developed at the University of Virginia and the

availability of positions for the summer of 1985 advertised. This process

was successful and commitments were received from the various students

who eventually participated in the experiment at the University of Virginia.

During the summer of 1985, ten graduate students were hired as

research assistants and organized into five groups of two. Following the

detailed protocol supplied by RTI, these groups prepared programs according

to the requirements specification that was also supplied by RTI. The five

programs produced were subjected to an acceptance procedure and finally

delivered to the coordinator of the experiment at RTI.
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Appendix 1

Programmer Application Form
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NASA Software Reliability Project

Programmer Application Form

(1) Name

(2) Please list undergraduate degree topic(s), GPA, and school awarding the

degree(s):

(3) Please list the graduate courses you have taken (with grade) or will

take in the spring semester:
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(4) With what programming languages do you feel you are fluent? For

each, give an assessment of your skill as you perceive it using a

numerical scale where T represents novice and '5' represents expert.

For each, give the length in lines of the longest program you have

successfully written in that language.
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(5) Have you ever been employed as a programmer? If so please summarize

your experience:

(6) Please write a brief statement (200 words or less) giving your views on

why software is not as reliable as we would like it to be (continue on

another sheet if you need to).
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Appendix 2

Proposed Development Process
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THE SOFTWARE DEVELOPMENT PROCESS

AND ASSOCIATED PROTOCOLS

FOR THE REDUNDANT SOFTWARE EXPERIMENT

John Knight and John Kelly

March, 1985.
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1. General

This is a working paper on the topics of the title. "We will try

to present reasonably complete and detailed proposals although, of

necessity, they may change and are intended to act as the focal point

for discussion at the next meeting of the research group. By

development methodologfi. we mean the software development

methodology employed by the programmers during the software

development process. By development protocol we mean the mechanics

of getting the software developed; the tools used, and how we ensure

the things we want get done on time.

In a sense, the development process does not matter a great deal.

Whatever results are achieved by this experiment, they will be

conditional on the development process. Thus any development process

would, in principle, be satisfactory. However, if the results are to be

believed and regarded as useful by industry, we should adopt a

development approach that resembles as closely as possible the methods

used by industry. In this experiment, our potential number of

versions is already very low and so we had better ensure that every

version we pay for is acceptable for analysis.

Protocol on the other hand is crucial. If the development protocol

fails in some way, for example we cannot guarantee that we have
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preserved independence during development or versions are not

completed on time, the entire experiment will have been, fiasted.

The development process is influenced by the students'

backgrounds. Can we require that they have all had specific course

work? Can we assume they all understand major topics such as

abstract data types or structured design? Probably not, and even if

we could, there would be other technologies that we would like to

use but which are insufficiently known. Differing educational

backgrounds is an awkward problem. The solution discussed

informally at various meetings is threefold:

(1) Provide each student with a copy of a standard text (Fairley's has

been suggested) and require that they read it at the beginning of

the experiment.

(2) Run an intense one or two day training seminar at the beginning

of the project.

(3) Stop worrying about the problem and assume diverse ability

contributes to design diversity.

We are spared the requirements analysis and the preparation of

the requirements specification stages of software development since the

programmers will be supplied with requirements specification
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documents. Also, we assume there will be no post-delivery

enhancement or fault correction so there will be no need to consider

the phase euphemistically known as "maintenance". Thus, we suggest

that development needs to include design, code development, and

validation only.

We assume programmers will be working in groups of two in the

development phase. We, as a group, have not resolved the issues

relating to the development of the voters or assembly of the NMR

systems. This is part of the analysis but in practice voters are

needed. Perhaps they ought to be developed by the programmers even

if we choose to throw them away. For the purposes of discussion,

we propose the methodology outlined in the next section and the

protocol outlined in the section three.

2. Sof tware Development Methodology

2.1. Background And Development Logging

We need to know who our programmers are. They should fill in

a questionnaire detailing their backgrounds. We need to know exactly

what is being done when. We propose, therefore, that we require a

log be maintained in which each work period is documented. In

addition, any logging that can be done automatically should be done.

We need to work on that with a Unix wizard.
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2.2. Specifications

The experimenters will provide a complete high-level external

specification. This will be written in PDL to provide a structured

English-like notation. All input and output will be defined through a

set of parameters that the program version will use.

At all stages, questions about the specifications will be submitted

by electronic mail, reviewed by the experimenters, and responded to

by electronic mail (see protocol below). The determination that a

question reveals a flaw in the specifications will cause a change to be

broadcast to all programmers at all sites. All questions and all

responses will be logged.

2.3. Design

We propose using ad hoc design using information hiding and

abstract types only. The design will be documented in a form yet to

be specified and be delivered on a specified date. A design

walkthrough will be required involving only the development team

and a report to be produced of the results of the walkthrough. This,

and in fact all other walkthroughs, will be attended by the

experimenter and/or an aide but with silent participation.
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The first deliverable item will be a design document. The content

will be a diagram showing the abstract data types and abstraction

layers that the team intends to use, a listing including the major data

types and variables that the program will use, expressed in Pascal

VAR and TYPE parts, the headers of all the procedures that the

program will use including the specification on all the parameters, and

a comment explaining the procedures purpose. This document will be

due on a date yet to be specified.

2.4. Code Development

Code development will be done in Pascal using coding standards

provided by the experimenters. The code will be developed up to

system compilation only, i.e. there will be no "random" executions of

the entire program. Unit testing will be performed on the individual

parts as they are written. Code walkthrough will be required

involving only the development team and a silent observer, and a

report will be produced of the results of the walkthrough.

The program will be developed in a strict top-down fashion in

which each layer of the abstraction will be implemented and tested as

a unit using stubs for the incomplete lower layers. The second

deliverable will be a series of compiled programs representing the

results of the top down development at each abstraction layer.

Testing of each layer will be by a small number of ad hoc tests that
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the team deems suitable. The team will be responsible for developing

the necessary test drivers. These tests will be aimed at removing the

major flaws in the layer only.

2.5. Validation

Validation will be performed by testing only, and will be limited

to functional testing.

A test plan and test log will be required. The test plan to be

documented and delivered on a specified date. The test log to be

documented and delivered on a specified date. Test drivers to be

developed for each of the three test phases by the team to assist in

the test process, but again these are to be the only software tools

used in validation.

Once the entire source text is prepared and integrated, the program

will be validated according the test plan. All test executions during

validation must be logged. The completed log is the fourth

deliverable item. The final program is the fifth deliverable item.

2.6. Acceptance Testing

Acceptance testing is our determination of whether the software is

of adequate quality to be used in the experiment. The specification of

the form of the acceptance test is not part of the development

-27-



process. The action to be taken following failure is. Naturally, we

require that the delivered software satisfy the acceptance test at the

end of the development process. In the event of failure, we propose

that the programmer be required to document his actions in his

development log in detail; every design change, every changed line of

code, every recompilation, every re-executed test. We also require

that the programmer keep trying until they have passed the acceptance

test no matter how long it takes.

3. Development Protocol

There are several aspects to be considered in the development

protocol. We am not even sure what all of them are let alone how

they should be resolved. However, here are our suggestions:

(1) Prior to the experiment, all programmers will be given three

presentations during which there will be no questions (seems a

little extreme). Questions will be posed and answered by

electronic mail. The presentations will be on the application,

the goals of the experiment and the associated protocols, and

the software tools and facilities they are to use.

(2) All code development to be on VAX's running UNIX.
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(3) All code to be written in Pascal using PC with the -S option.

Somehow we will have to enforce coding standards. The

standards will be needed more to ensure portability than code

quality.

(4) All documents to be prepared using TROFF.

(5) All communication between the programmers and the

experimenters during the experiment to be by electronic mail

and all communication be logged by the experimenter.

(6) All due dates and all necessary documentation will be provided

at the start of the experiment.

(7) Logs showing the activity of the group members will be turned

in weekly.

(8) Working hours for the programmers will be flexible but at

least forty hours per week of effort is required.

4. Issues To Resolve

Here is a list of issues in the development process and protocol

areas that I feel we need to discuss at the next meeting. Of course,

everybody is encouraged to add to this list as they see fit.
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(1) "What procedures are we going to follow and what rules are

we going to enforce to maintain development independence?

(2) In what form should the documentation we require be

presented? If we determine that there are flaws in a particular

part of the development (for example, a design is inadequate)

should we do anything to correct the situation. In a practical

environment, the programmers would be faced with

management and customer reviews as they went along. Do we

want to try to model this?

(3) What questions do we put in the background questionnaire?

(4) What form should the development log take? How do we

ensure its kept accurately? Do we really care or need it (of

course we do)?

(5) What detailed restrictions on language elements should be

imposed? This is most important if we are going to ensure

portability to many machines for testing.

(6) Should any other software tools should be used, required,

permitted? If so, which other tools?
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(7) What approach should be used in synchronizing events to

ensure all the teams work at roughly the same rate and that

deliverables are available on time?
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1. INTRODUCTION

This research group has generated twenty programs in part one of

this project. Part two, which is described here, is an analysis phase in

which the programs will be studied and research results obtained.

The programs seem to be in more-or-less reasonable shape. The

preliminary results obtained by John Kelly indicate that the programs

might not be good enough for the analyses that is proposed. This second

part may need to incorporate a "maintenance" phase in which the various

programs are passed through a second, more elaborate, acceptance test.

This document outlines the process of the second part of the

experiment. The document is organized as follows. In section 2, the

procedures that will be followed are outlined, and in section 3 the goals

of the experiment are described. Section 4 considers the problem of

determining when a test has been passed, and section 5 discusses types of

testing. Section 6 describes the testing environments that are required,

and section 7 addresses test case selection. Data collection is considered

in section 8, the mechanics of testing in section 9, data storage and

distribution in section 10, performing the tests in section 11, and

analyzing the results in section 12. Finally, a plan of action in the form

of a proposed sequence of events is presented in section 13.



2. PROCEDURES

The testing approach defined in this document is to be viewed as the

phase one analysis of the programs. It is designed to reveal the faults

that we suspect the programs contain, to give quantitative reliability

information, and to achieve the basic goals of the experiment. All the

institutions that participated in the preparation of the programs are

interested in the results of this phase and will receive the raw data as it

is collected if they wish. The results of this phase will be deposited in

AIRLAB for the benefit of the research group as a whole. Phase one is

to be a cooperative effort in which the analyses performed will be jointly

defined and jointly undertaken. Any publications resulting from these

analyses will be joint.

When phase one is complete, the original goals of the experiment will

have been achieved and some useful assessment data for redundant

software will have been produced. More elaborate and diverse analyses

that are not part of the original goals can and should be done on these

programs. This more elaborate analysis will be viewed as phase two

analysis. Different aspects of phase two might be undertaken by

individual researchers as they see fit, and phase two is not the subject of

this document.

For the foreseeable future, the programs and the raw phase-one

results will only be available to members of the research group. This

restriction will protect the research interests of the group.
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3. GOALS OF THE EXPERIMENT

The overall goal of this experiment is to assess the performance of

the multi-version approach to fault-tolerant software. Our concern is

with software for critical avionics (and similar) applications and so

performance here means reliability primarily, although there are other

factors of interest.

The goals of the experiment dictate the testing that has to be done.

There are four primary objectives for the testing. They are:

(1) To obtain empirical estimates of the reliability of the programs

individually and in various combinations. This data is important in

order to be able to make quantitative estimates of the effects of

multi-version systems on overall reliability.

(2) To determine what faults the programs contain. Clearly the

characteristics of the faults themselves are important. The mistakes

made by the programmers need to be identified and categorized to

allow determination of how they might have been prevented or

located during testing. Tests designed to locate the faults as quickly

and easily as possible need to be performed.

(3) To determine the performance of the programs from the perspective

of the controls' engineer. There are difficulties that might arise in

these programs that the computer scientist might regard as serious

(i.e. a failure) but that the controls' engineer would ignore because it
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is a pathological case. And vice versa. Tests need to be run that

allow the controls' engineer to make a determination of the adequacy

of the programs' performance.

(4) In performing this testing, there is an opportunity to obtain data that

is not obviously required, i.e. ancillary data. It would be foolish not

to collect this data since its inexpensive to get and might be needed,

or at least it might allow interesting related experiments or analyses.

A fundamental issue in performing any testing program is the

evaluation of the results of individual tests on individual programs. The

traditional issue in testing of finding an "oracle" arises. The oracle

problem for these programs is discussed below.

The various goals of this experiment are not equivalent in the tests

that they require. For example, locating the faults is a lot different from

determining the reliability. The testing necessitated by each of the

experiment's goals is also discussed below.

4. TESTING ORACLE

A definition of failure Cor alternatively success) on any given test case

is required. For the different tests that address the various goals of the

experiment, the definition of failure will differ slightly, as discussed

below. However, in general, an individual program will be deemed to

have failed if one of the following occurs:
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(a) The program experiences an execution-time failure such as an attempt

to take a negative square root.

(b) The program enters an infinite loop.

(c) Any of the outputs produced by the program differs from the

"correct" value by more than a predetermined amount (as yet

unspecified). The outputs that will be checked are those listed in the

specification document as required outputs. Intermediate calculations

will not be checked, although they may be recorded.

(d) The program identifies incorrectly that sensors have failed.

Given this definition, it is necessary to be able to categorize the

results of a test according to the definition. This is quite difficult for the

RSDIMU programs individually, and extremely difficult for multi-version

systems built from the RSDIMU programs.

For the individual programs, two different approaches will be used

depending on the circumstances of the particular test. First, the RTI

reverse algorithm will be used to determine the sensor values that would

have generated a randomly-generated acceleration estimate. This approach

will be modified by adding random noise, etc, as necessary.

The second approach is to use the FORTRAN version of the program

prepared by Charles River Analytics (modified as necessary) as a gold

version of the program. For the purposes of preliminary analysis, it can
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be assumed that if a subject program disagrees with the gold program,

the subject program is wrong. In the long run, it is not necessary to

assume that the gold version is perfect, although it is likely to be of

very high quality. Provided the twenty programs are of reasonable

quality, the cause of discrepancies with the gold program can be

determined when they occur.

It will not be possible to operate without a gold program using the

majority value of the program versions as a presumed correct result.

The different outputs generated by groups of programs that John Kelly

observed in his preliminary testing would make it very difficult in general

to decide which of multiple values was to be taken as correct. Indeed,

more than one value may be acceptable in many cases and it would be a

mistake to consider that any program had failed in those circumstances.

For multi-version systems built from the individual programs, a great

deal of information is required for each test case. For each test case, it

is important to know which of the following occurs:

(1) All of the versions produce acceptable outputs.

(2) A sufficient number of the versions produce acceptable outputs that

the system output is acceptable. In this case one or more faults are

being tolerated.

(3) An insufficient number of the versions produce acceptable results and

no output can be produced by the system. In this case the error is
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being detection but faults are not being tolerated. This is still a

useful property of a multi-version system, in fact it is the only goal

of a 2-version system.

(4) A sufficient number of the versions produce apparently acceptable

outputs that the selection procedure produces a system output but

this output is, in fact, wrong and so unacceptable. In this case the

faults are not being tolerated and the error is not being detected.

This is the worst possible situation.

To determine which of the above has occurred for any testcase being

executed by a multi-version system, either a complete vote has to be

performed after all versions have been executed or all the outputs have

to be saved so that voting can be simulated at a later time.

5. TYPES OF TESTING

5.1. Reliability Assessment

Reliability assessment requires data on the performance of the

programs in an operational setting. It might be the case that a program

with a known fault never fails because that fault is never manifested.

Correspondingly, a fault considered relatively obscure might be manifested

for each cycle on a long input sequence because every element of the

sequence causes the fault to manifest itself. These are the factors that
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affect our perception of reliability.

Testing to measure reliability needs to be performed in an

environment that simulates the real operational environment as closely as

possible. This is the only way to get believable reliability data. Charles

River Analytics has a simulator of a Boeing 737 available and it is

proposed that this, combined with a flight scenario simulator, be used to

subject the programs to simulated flight conditions.

Each flight would consist of takeoff, cruise, and landing phases. The

cruise phase, which is usually the longest, would be shortened deliberately

since if a program works correctly during part of the cruise phase it is

likely to work correctly over all of the cruise phase.

For the purposes of reliability estimation, a test case will be denned

to be a complete simulated flight. A program will be denned to have

failed for that test case if, at any point during a simulated flight, it

meets the definition of failure given in section 4.

5.2. Fault Location

Fault detection is merely the process of determining that a program

contains a fault. The theory of testing is not sufficiently mature that it

dictates the process to be followed. The literature contains a lot of

papers on testing and there is quite a folklore surrounding testing.

However, many of the papers are theoretical and propose approaches that
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cannot be vised. For example, domain testing [l] is a nice idea but is only

defined for programs that do not rise arrays and have only linear

predicates. Loops complicate things too. Other more formal methods

have been proposed by several people in the research group but most of

these other methods require a very sophisticated tool to be built. For

example, branch testing requires the monitoring of branches in the

program. The group does not have access to tools to perform this

monitoring on all of the equipment that might be used for testing.

A method is required that can be applied with the available tools,

that is applicable to the subject programs, and that requires almost no

human intervention. The first requirement eliminates most of the more

sophisticated methods and the last requirement eliminates even functional

testing, stress testing, and the like.

Random testing could be used exclusively to locate the faults. This

approach has the advantage that it does not require much effort in

building the environment nor in operating it. There is also the marginal

advantage that the software to do this kind of thing exists already at

RTI and UCLA. The disadvantage is that it takes a lot of computer

time and it might not locate the faults very easily, perhaps not at all.

However, well-structured random testing seems to be the best choice at

this point. A recent paper [2] suggests that random testing might be

quite satisfactory.
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There are certain dimensions of the input space that are sufficiently

narrow that exhaustive testing can be used in those dimensions. For

example, there are not a large number of sensor failure combinations and

so all possible combinations can be tested quite easily. For the purposes

of discussion, these inputs will be referred to as limited-input quantities.

More sophisticated testing could be part of the phase two analysis.

For the purposes of fault location, a test case will be denned to be a

single execution of a program, i.e. calibration followed by processing of a

single set of data. A program will be denned to have failed for that

test case if, during that execution, it meets the definition of failure given

in section 4.

5.3. Control Performance Assessment

This is different from reliability assessment and fault location. What

is required is data on the performance of the programs in an operational

environment but where the data of interest is the functional performance

of the programs. It might be the case that a program appears to be

operating correctly when viewed by a computer scientist but the controls'

engineer may perceive some weakness in its operation. This weakness is

most likely to be in some numeric aspect of the problem.
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5.4. Ancillary Data

The ancillary data items that seems to be needed, and the reasons for

needing them are:

(1) The floating point outputs of the programs. These are needed for all

the other goals but they can be used to study the distribution of the

numbers, to do experiments with various forms of voters, to analyze

numerical accuracy (or lack thereof), etc.

(2) The execution time for each test for each program. One of the

concerns with N-version programming is the possibility of holding up

fast versions while slow versions complete. This has to be detected

and distinguished from versions that have died entirely. Capturing

the execution times of these programs would give unique empirical

data on the problem of diverse execution times.

(3) The statements executed in each program on each test. There is

little-to-no data on how much of a program is used during

production executions. This would be very valuable information to

have and it can be gathered (albeit with some difficulty) as the tests

are run for the other major goals.
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6. TESTING ENVIRONMENTS

Two separate test environments are required. The first will be

designed to perform testing according to some of the established practices

in the literature, particularly random testing, and it will be designed to

do fault location. This environment will operate by selecting random

quantities from those input space dimensions that are large and, as far as

possible, testing all possible combinations of the limited-input quantities.

The design of this environment will be such that very little reliability

performance data on the programs will be produced, but extensive

empirical measurements of failure probability will be obtained. The

environment will operate in a largely unattended manner provided there

are no catastrophic failures of the control software. It will operate on

many computers in parallel in order to reduce the elapsed time required

to obtain large numbers of test cases.

The second environment will be a simulated production environment.

It will be designed to perform tests that simulate the inputs that the

programs might receive when operating on a commercial air transport.

The environment will also foster stress testing where stress is derived

from the application domain, such as very high noise, various

combinations of sensor failures, extreme values of vehicle acceleration or

movement, etc. Long duration tests of the programs under the

operational conditions provided by this environment will provide

reliability data.
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The second environment will also be vised by the controls' engineers

to get the performance data that they need. They could subject the

programs to any scenario that interests them and get information on the

corresponding controls' performance of the programs.

Clearly there is some overlap in the needs of these two

environments. There will be quite a lot of shared software, and each

will produce extensive amounts of output that will have to be captured

on tape.

7. TEST CASE SELECTION

The actual test cases to be used are determined by the major goals

of the experiment. The fourth goal (ancillary data) does not require any

test cases of its own since all the ancillary data will be collected as part

of the main testing process. Thus only the first two goals need be

considered in selecting test cases.

7.1. Reliability Assessment

One characteristic of these programs is that they perform calibration

and then process a single set of sensor values. This is not typical but

was done to remove the history element from the definition of a test

case. In retrospect, this was a mistake in that, as discussed above, to do

any meaningful reliability assessment, the programs must be subjected to
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a realistic operational environment.

For reliability assessment, realistic operation will have to be

simulated by either modifying the programs (probably not permitted) to

allow one calibration to be followed by multiple samples, or supply the

programs with identical calibration data for each sample. The latter

assumes there are no faults that will manifest themselves by subtle

interactions among these many redundant calibrations.

Once the calibration issue gets resolved, large numbers of simulated

"flights" will be executed with these programs doing the acceleration

estimates. Each flight scenario will be repeated with each of the limited-

input variables varied over its entire range, and with a selection of

different calibration data sets.

7.2. Fault Location

For fault location, all the non-limited-input quantities will be varied

over their entire range, and the limited-input quantities will take on all

possible values. Thus, for example, the accelerometer outputs, the

number of operational sensors, the noise characteristics, and so on will be

varied over their entire ranges. This approach will generate unrealistic

conditions in that the inputs might not describe events that could take

place in an aircraft. However, since the purpose is fault location, it is

reasonable to expect the programs to perform as required in the

specifications. Any failures produced by processing unrealistic inputs will
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reveal faults that may or may not be important to realistic operation.

They need to be found in any case.

The test scenario will then be that each limited-input quantity will

be set to an appropriate value and then some large number of tests will

be run with that setting. Non-limited-input quantities will be generated

at random from within the denned range and with an agreed-upon

distribution of values. This process will then be repeated for each

combination of the limited-input quantities.

8. DATA COLLECTION

The data items produced will be similar for both environments,

although for the simulated production environment a single calibration

and a long series of sensor values will be processed for each test case.

The potential data output for a simulated flight test is therefore huge.

Also, for the simulated flight tests, it will be necessary to associate the

physical states of interest with each test case. This will have to be done

separately.

Clearly for the input, only the random number seed used to generate

the input values for the non-limited-input quantities and the values of

the limited-input quantities need be recorded. Except for the few

limited-input quantities, the actual data can always be reconstructed from

the seed if needs be. The outputs that are collected will be limited by

available storage space. Storing all the outputs, execution times, etc
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would be preferred but this is not practical. However, some complete

sets of output data will be collected to allow a reduced form of the

analysis that needs the entire output, such as timing analysis. For a

single random test, the complete output dataset would consist of:

(1) The values of all the outputs defined in the specifications; namely

LINOFFSET, LINNOISE, SYSSTATUS, LINFAILOUT, LINOUT,

BESTEST, CHANEST, CHANFACE, DISMODE, DISUPPER, and

DISLOWER.

(2) The statement execution counts.

(3) The execution time for the testcase.

Recording of both the complete input and output values requires

several hundred bytes per program per test case. However, note that

since all the input quantities are generated by the driver, they can be

reconstructed from the seed and needn't be stored. For all twenty

programs, the amount of data to be stored if we assume that inputs can

be reconstructed from the seed will be approximately 5,356 bytes per test

case. The computation of this estimate is shown in figure 1.

If we add execution traces, we need to add 27,200 bytes (one 8-bit

integer for each executable line in the programs). This adds 27,200 bytes

to each case and reduces the number that may be stored by a factor of

about six. It is, therefore, probably unrealistic to keep execution traces

for any but a few representative cases.
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OUTPUT VARIABLES

VARIABLE NAME DESCRIPTION

LINNOFFSET
LINNOISE
SYSTATUS
LINFAILOU
LINOUT
BESTEST

CHANEST
CHANFACE
DISMODE
DISUPPER
DISLOWER

array [1..8] of real
array [1..8] of boolean
boolean
array [1..8] of boolean
array [1..8] of real
RECORD consisting of:

status - enumerated type
acceleration - array [1..3] of real

array [1..4] of BESTEST-type records
array [1..4] of 0..6
16-bit integer
array [1..3] of 16-bit integer
array [1..3] of 16-bit integer

# BITS

512
8

8
512

TOTAL

This corresponds to 267 8-bit bytes.
For 20 programs this is a total of 5,340 bytes for output.

** Total bytes are computed assuming that SYSTATUS,
BESTEST.status, AND the last 4 bits of CHANEST
are encoded into seven bits and stored in one byte.

INPUT VALUES
Random number seed, real

EXECUTION STATS
Execution time, real

**

2 **
192
778

12 **
16
48
48

2,135

64

64

128

Total data per test case is - 5,356 bytes.

Figure 1 - Data Storage Required

We can get approximately 100 MB per tape at 6250 bpi, so we can

store 100,000,000 / 5,356 cases per tape or 18,670. Ten tapes is a
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reasonable number to purchase and store so about 186,700 tests seems

like a feasible number to record completely and make available for

analysis.

More than 100,000 tests will have to be run. A goal of several

million is reasonable. For the test cases in which all of the outputs are

not recorded, the stored outputs will be limited to success or failure, and

the type of failure. Clearly, in this case absence of outputs can be used

to indicate success in the recorded results so only the failure cases need

be recorded. The cause of the failure (execution-time failure,

disagreement with an output, etc) can be coded very compactly.

Similarly, the values of the limited-input variables do not need to be

recorded for every test case, merely when they change. Thus for each

test, all that needs to be recorded is the random number seed used

together with the result from each program in coded form, and these

quantities only need to be recorded when one of the programs fails for

any particular case. If at least one program fails on 10% of the tests,

and the results of a test can be coded in one byte, the results of about

50,000,000 tests can be recorded on a single tape reel (very rough

estimate).

It is probably unrealistic to record anything except success or failure

for the simulated flight tests since they will produce so much output.

In all of the above, it is assumed that multi-version systems will be

tested as well as the single program versions. As outlined in section 4,
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this means that the various categories of results for a multi-version

system will have to be recorded, the voting procedure will have to be

defined and implemented ahead of time, and all the votes actually

performed for each test. The only alternative is to execute the programs

individually, record all the outputs, and simulated the voting at a later

time.

9. THE MECHANICS OF TESTING

First of all, testing must be reproducible, and must be reproducible

on different machines. It is essential that a test case that is deemed to

have caused a failure at one site be reproducible at another site. This is

necessary to ensure that raw testing can be performed wherever computer

time is available, but analysis can be performed wherever the researcher

who is interested has his analysis tools. Similarly, testing must be

capable of parallel operation on di/erenf machines. This is necessary to

ensure that all available computers can be used in parallel no matter

what site they are located at.

Since different machines use different floating point formats and

algorithms, reproducibility is unlikely to be achieved exactly but using

the floating point hardware available will come close. A much bigger

problem is the variability in random-number generators. Clearly different

installations will use vastly different generators and so it is essential that

the testing be done by test harnesses that include their own random-

number generators and that these generators be tested on the anticipated
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equipment before any testing begins.

One of the quantities to be recorded in the test cases where all the

outputs of interest are recorded is execution time. This is machine

dependent, and, since relatively few test cases will be providing complete

sets of output, these tests can all be run on the same machine.

Dedix has the facilities to allow the programs to be executed in

parallel and be subjected to various voting scenarios at the points where

votes are to be taken. Assessment of the performance of various voting

algorithms and the behavior of the programs with different voting

algorithms is not a primary goal of this experiment, but, as noted above,

we need to be able to vote as the tests are performed. Dedix is a

desirable facility but it is also important to be able to execute tests at

various sites that do not have Dedix and that do not have equipment

that could run Dedix. Thus, the test harnesses will have to include

specialized voting software that is specific to this project; software that

Dedix provides but that is required at multiple sites.

10. DATA STORAGE AND DISTRIBUTION

As tests are performed, the site performing the tests will report the

status of the testing to the other interested members of the group on a

weekly basis, and transmit the results of the tests on tape to AIRLAB as

they are generated. Tapes will be duplicated at AIRLAB as they become

available and transmitted to the interested members of the group.
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AIRLAB will function as a repository for the results of all the tests and

as coordinator of the testing activities.

11. PERFORMING THE TESTS

Equipment for performing the tests is available at UCLA, UVA, and

CRA. Each of the two forms of tests will be performed at whichever

site has computer facilities available. As an initial allocation of

responsibility, the random testing will be performed at UCLA, and the

flight simulations will be done at UVA and CRA. All sites will try to

get the necessary support software (test harnesses, etc) running.

12. ANALYSIS OF TEST RESULTS

The raw data resulting from the testing process is not itself very

useful. The results need to be processed to obtain the required results.

As outlined in section 3 the first goal is to determine the

quantitative improvement in reliability that would be obtained by using

multi-version software. This can be done by simulating the effect of

running combinations of programs in parallel.
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13. SEQUENCE OF EVENTS

The sequence of events that need to be undertaken as part 2 of this

experiment are:

(1) Determination of the suitability of the subject programs for analysis.

If the programs are as bad as is indicated by the preliminary UCLA

tests, then a recertincation and maintenance phase will need to be

undertaken.

(2) Determination of the limited-input variables and their set of possible

values.

(3) Construction of a random-number generator that is portable. Testing

of this generator on all the computers that might be used in the test

process.

(4) Determining how many random numbers will be needed for each test

case, running the random-number generator through all the random

numbers that will be needed for all the tests to check for cycles, and

recording of the random number that occurs at the beginning of the

sequence that will be used for each set of 5,000 tests. This latter

information will allow any sequence of 5,000 tests to be run on any

machine at any time and for all results to be coordinated. This

process needs to be performed for both the random tests and the

simulated flight tests.
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(5) Construction of a test harness from the original RTI test harness for

performing random testing. This test harness will need to be a

considerable extension of the RTI software given the limited variation

that RTI performed on many parameters as reported by UCLA.

(6) Installation of the CRA 737 simulator and the CRA version of the

program (to be the gold program) on all computers that might be

used for simulated flight testing.

(7) Determination of the set of flight profiles that will be used in the

simulated flight tests.

(8) Implementation of data management software that will allow the

large volumes of data to be catalogued, stored reliably, and simply

distributed to all the interested parties.

(9) Preparation of software to analyze the raw results to produce

meaningful data on reliability improvement.

(10) Evaluation of the testing process by executing the two testing

environments on limited numbers of tests at the various sites.

(11) Evaluation of the data distribution and storage mechanisms by using

them to process the results of the testing evaluations.

(12) Execution of many millions of tests.
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(13) Analysis of the results of the tests.

In all of the above, it will be continually necessary to modify the

approach and so regular meetings and teleconferences will be required. In

addition, regular communication by electronic mail so that all parties are

involved in part 2 of the experiment is essential.

14. CONCLUSION

Two separate testing environments need to be built to perform the

tests to obtain data for each of the four goals. The specific test that are

run in each environment need to be determined in more detail described

here.

This is a working document. Please forward all comments and

changes to John Knight (jck@uvacs) for inclusion in the next version.
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