
NASA Contractor Report 178075

FAULT-FREE VALIDATION OF A FAULT-TOLERANT
MULTIPROCESSOR: BASELINE EXPERIMENTS AND
WORKLOAD IMPLEMENTATION

Frank Feather, Daniel Siewiorek, and
Zary Segall

CARNEGIE-MELLON UNIVERSITY
Pittsburgh, Pennsylvania

Grant NAGl-190
April 1986

NI\5/\
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

NASA-CR- II~Of5

NASA-CR-178075
19860014806

LANGLEY RESEH~(CH CENTEh
LIBRARY, NASA

~·:/.r,1PTON, VIRGIN!A

3 1176013150967

Table of Contents
Abstract
1. Introduction
2. Background

2.1. Guidelines to Experiments
2.2. Proposed Methodology
2.3. Definition of PerCormance
2.4. The FTMP and Experimentation Environment
2.5. Previews oC Experiments

3. Interrupts
3.1. Mechanisms
3.2. Interrupts, System Validation, and PerCormance
3.3. Interrupts on FTMP
3.4. Experimental Results

4. Workload
4.1. Definition
4.2. Advantages oC A Synthetic Workload
4.3. Motivations
4.4. A Realtime Workload Model
4.5. Implementation oC the Synthetic Workload on FTMP

4.5.1. User Interfaces
4.5.2. Implementation: FTMP Tasks and Workload Considerations
4.5.3. Calibration

5. Future Work
6. Conclusion
Appendix A. Test oC Select RDjWRT Primitives
Appendix B. Example oC Workload Use
Appendix C. Installation Notes
Appendix D. FTMP Tasks

1
2
3
3
3
4
6

12
14
14
15
16
17
20
20
20
22
22
24
24
28
29
36
37
38
39

, 48

50

ii

List of Figures
Figure 2-11 Performance Evaluation Matrix
Figure 2-21 Software Appearance of FTMP (virtual machine)
Figure 2-81 Task Control Block Structure
Figure 2-41 Frame Structure
Figure 2-01 FTMP Support Environment
Figure 2-6: Steps to Creating a Program
Figure 8-1: Summary of FTMP's Interrupts
Figure 4-11 General scheme of performance comparisons among n systems (Ferrari 78]
Figure 4-2: Representation of a Synthetic Workload Task
Figure 4-8: Workload Model [Clune 84]
Figure 4-4: FTMP Synthetic Workload Environment
Figure 4-6: Task Switching Overhead
Figure 4-th Task Startup Overhead
Figure 4-'1: Baseline Experiment: Task Switching Overhead
Figure 4-81 Workload Experiment: Task Switching Overhead
Figure 4-G: Baseline Experiment: Task Startup Time
Figure 4-10: Workload Experiment: Task Startup Time
Figure 4-11: Baseline Experiment Task (AED)
Figure 4-121 Synthetic Workload Task (AED)
Figure B-1: Dlustration of Workload Tasks
Figure B-2: Running the FTMP Workload

5
7
9

10
11
12
18
21
23
25
27
30
30
31
31
32
33
34
35
40
41

iii

List of Tables
Table 0-1: Files for Running the Synthetic Workload
Table D-l: FTMP Files Cor the Synthetic Workload

49
50

1

Abstract
In the future, aircraft employing active control technology must use highly reliable multiprocessors in

order to achieve flight safety. Such computers must be experimentally validated before they are

deployed. This project outlines a methodology for doing fault-free validation of reliable multiprocessors.

The methodology begins with baseline experiments, which test single phenomenon. As experiments

progress, tools for performance testing are developed.

This report presents the results of interrupt baseline experiments performed on the Fault-Tolerant

Multiprocessor (FTMP) at NASA-Langley's AffiLAB. Interrupt-causing exception conditions were tested,

and several were found to have unimplemented interrupt handling software while one had an

unimplemented interrupt vector. A synthetic workload model for realtime multiprocessors is then

developed as an application level performance analysis tool. Details of the workload implementation and

calibration are presented. Both the experimental methodology and the synthetic workload model are

general enough to be applicable to reliable multiprocessors besides FTMP.

2

1. Introduction
In the 1990's aircraft will employ computers that must run correctly and continuously for the aircraft to

fly. NASA, in its Aircraft Energy Efficiency (ACEE) program requires that the probability of failure in

these computers be less than 10-10 per hour. Meeting such requirements can not be achieved with

standard realtime computers; instead faul~tolerant computers have been developed to meet these

requirements. Two such systems are SIFT (Software Implemented Faul~Tolerance) [Wensley

78J conceived by SRI International and fabricated by Bendix Corporation; and FTMP (Faul~Tolerant

Multiprocessor) [Hopkins 78J, conceived by the Charles Stark Draper Laboratory, Inc. and fabricated by

Collins. Engineering prototypes of these two systems have been delivered to the Avionics Integrated

Research Laboratory (AIRLAB) at NASA's Langley Research Center.

These complex systems, which must meet stringent performance requirements, have to be validated (i.e.

demonstrated to be functionally correct). However, since a probability of failure of 10-10 per hour

translates to one failure per million years of operation, a validation method must be developed to discover

flaws in the design and implementation before such a system is placed into service. Showing a system is

correct can take place at many stages from mathematical models and theorem proving, also called

veri/ication, to experimental testing, called validation. Mathematical models of the system are based on

simplifying· assumptions and can. be used in conjunction with, but not as a substitute for, actual

experimentation. Indeed, many of the errors in a system surface during the experimentation and use of

the system. Bell Telephone [Toy 78J divided the causes of system outages for their fault tolerant

electronic switching systems into several categories. The percentages given for each category represents

fraction of total down time measured in the field attributed to each cause:

• Hardware Reliability: Actual component failures - 20%,

• Software Deficiencies: Software design errors - 15%,

• Recovery Deficiencies: Inability to detect, isolate, and correctly recover from faults - 35%,

• Procedural Errors: Human error on the part of maintenance personnel or office
administrators - 30%.

Faul~Tolerant techniques directly impact the first category. The later three categories are all forms of

design errors. These errors can be reduced by effective system design and validation.

The goal of this research is to develop a methodology for the validation of the faul~free performance of

faul~tolerant avionic multiprocessors. Initially this methodology will be applied to FTMP, although the

approach should be general enQugh to migrate to other faul~tolerant systems like SIFT.

3

2. Background

2.1. Guidelines to Experiments

Over the last decade, Carnegie-Mellon University has devoted over 100 man-years to the design,

construction, and validation of multiprocessor systems. Some of the guidelines developed over the last

decade include:

• The experimental validation methodology is 8uccessively refined as experiments uncover new
information and/or the methodology is applied to new multiprocessor systems.

• Design experiments to validated behavior that is documented as well as uncover behavior that
is not documented.

• Perform experiments in a systematic manner. Since the search is for the unexpected there is
no shortcut to thorough testing.

• Experiments should be repeatable.

• The feasibility of performing various experiments is tempered by what is available in the
experimental environment. More sophisticated experiments may have to be postponed until
the experimental environment is provided with more tools.

• A building block approach should be used wherein one variable is changed at a time so that
causes of unexpected behavior are easy to isolate.

• Testing should take advantage of the abstract levels used in the design of the system.

Using these guidelines, we will develop a generalized methodology for testing multiprocessor systems.

2.2. Proposed Methodology

Showing that a computing system, as designed, will meet its dependability goals is called validation

[NASA 7980]. In 1979, NASA held several workshops to determine system validation procedures. One in

particular [NASA 79b], produced a detailed list of validation categories to evaluate the system in an

orderly manner. A building block approach was chosen so that confidence in the system would be built

up in an incremental manner starting with the understanding and measurement of primitive hardware

and operating system activities. Mter primitive activities are characterized, more complex experiments

are devised to define interactions between primitive activities. This orderly progression insures uniform

coverage and makes it easier to locate the cause of an unexpected phenomenon. Steps in the proposed

methodology included:

1. Initial Checkout and Diagnostics
2. Programmer's Manual Validation
3. Executive Routine Validation
4. Multiprocessor Interconnect Validation
5. Multiprocessor Executive Routine Validation
6. Application Program Validation and Performance Baseline

4

7. Simulation of Inaccessible Physical Failures
8. Single Processor Fault Insertion
O. Multiprocessor Fault Insertion

10. Single Processor Executive Failure Response Characterization
11. Multiprocessor System Executive Fault Handling Capabilities
12. Application Program Validation on Multiprocessor
13. Multiple Application Program Validation on Multiprocessor

The first six tasks validate the fault free functionality of the system while the next seven validate fault

handling capabilities. Step 1, initial checkout and diagnostics, is usually done before system delivery,

while Step 2, manual validation, is ongoing throughout the testing process. Part of this project involved

updating and clarifying information in FTMP's manuals [Draper 83a, Draper 83bJ with a user's guide

[Feather 84J. Of the other fault free validation steps, Step 4 is considered hardware validation, Steps 3

and 5 are operating system level validation, and Step 6 is application level validation. This project deals

with fault free performance (Steps 2 through 5), and develops an application level tool called the

8ynthetic workload to address Step 6.

Ideally, hardware and operating system validation should take place in the development stage of the

respective levels. For example, as the operating system is written, a set of validation tests is produced.

Each step of the methodology, like the whole methodology, follows a building block approach. First,

ba8eline experiments are conducted. Baseline experiments measure a single phenomenon while all other

interactions are held constant. These experiments are designed to validate the basic assumptions used in

the mathematical models as well as validate the assumptions made by the application programmers.

Once individual phenomenon have been characterized, more advanced experiments can be conducted

which explore the interaction between basic phenomena.

As stated in the experiment guidelines, the validation procedure is tempered by the available

experimental environment. This implies that at anyone step, more sophisticated experiments may have

to be postponed until the advent of more sophisticated experimental tools. Experiments can proceed in

parallel if tools are available at a higher yet disjoint step. For example, at AJRLAB, fault insertion

eXperiments occur in parallel with fault-free validation and performance experiments.

~.8. Definition of Performance

Validation experiments test system behavior and establish whether the system works correctly. That is,

validation experiments test functional correctness. In addition to establishing behavior, performance can

also be measured. Performance refers to how well a system, assumed to be functionally correct, works.

Validation and performance are not always dichotomous; in some systems, if performance criteria are not

met the system is considered to be incorrect. Therefore, validation experiments are usually accompanied

by performance analysis. For example, testing basic instruction times, besides testing functional

5

correctness of hardware instructions, also can be used to estimate total system throughput in terms of

operations per second.

Performance measurements can be conducted at many levels, starting with the instruction set, working

up to the operating system and then the application level. Three parameters which can be measured at

each level are Throughput, Utilization, and Delay. Figure 2-1 illustrates the system levels and the types

of performance experiments that can take place at each level. In more detail, the performance

measurements are:

• Throughput:

o Instruction Set: Measure the time to access limited resources (e.g. memory, clock) and
execute instructions

o Operating System: Measure the execution times of the operating system primitives and
tasks

o Application Software: Measure the execution times of the different subsections of each
application task

• Utilization:

o Instruction Set: Frequency and percentage of hardware resource used
o Operating System: Frequency of OS primitives use
o Application Software: Measure idle time between tasks

• Delay (and Variation):

o Instruction Set: Variation in the access time of resources; amount of contention for
resources

o Operating System: Variation in execution of primitives due to resource contention
o Application Software: Delay (and variation) between a data write and a data read of

common data

In general, baseline experiments are conducted at the instruction set and operating system levels while

more complex measurements occur at the application level.

Application

Executive
Software

Instruction
Set

1---1
I Display, I Subtask I Idle I Write , I
I Flight Control I Execution I Time 1 Read Delay I
I I Times I 1 & Variation I
1---1
I Scheduler, I as I as Primitives 1 Primitive I
I Message I Primitives I Freq. of 1 Variation, 1
I System I Times I Use 1 Contention 1
1---1
I Instruction, I Instr. & I Resource I Resource I
I Exceptions I Resource I Freq. of I Variation, I
I I Times 1 Use 1 Contention I
1---1

Behavior Throughput Utilization Delay

Figure 2-1: Performance Evaluation Matrix

6

Initially, this project deals with instruction set/executive level baseline experiments (interrupts).

However, realizing that the most meaningful performance statements come from the application level, an

application level performance tool called the synthetic workload was developed. There are several

advantages to validation at the application level:

1. This is the level at which real programs (i.e. natural workloads) run. Any meaningful
statements about computer performance to the application programmer Dlust be based on
measurements made at this level.

2. Experiments are much easier to design at the application level. The person validating the
system at this level does not need hardware and/or operating system expertise.

Baseline experiments and workload implementation were done on the Fault-Tolerant Multiprocessor

(FTMP). The next section discusses that computer.

2.4. The FTMP and Experimentation Environment

The Fault-Tolerant Multiprocessor (FTMP) has been discussed in several papers and manuals [Draper

83b, Hopkins 78J. This section is a software overview of FTMP from the application programmer's

perspective. The reader is referred to the references mentioned above for more details.

Figure 2-2 illustrates the FTMP system. Each processor in this figure actually consists of three

processors in a fault-tolerant configuration executing in lockstep. This trio of processors is sometimes

referred to as a processor triad or a virtual processor because the application programmer sees it as a

single processor. Likewise, memory is in a triad configuration. The FTMP can consist of one, two or

three processor triads. Each triad has a local memory which is divided into PROM and RAM. The

PROM contains frequently used executive code and is identical in all processors. Each processor's RAM

holds local variables and stack, plus application software paged in from global memory. A bus connects

the triads to global memory, I/O devices, a real-time clock and several latches needed for fault handling.

The triads execute independently of each other when accessing global memory. If a program running on a

processor triad uses a global variable, the program must first move the variable from global to local

memory with a bus service routine. Similarly, the variable is written back to global memory with

another bus service routine.

Work on FTMP is performed by tasks. A task is a single thread of execution that runs by itself. Each

task has a time limit associated with it. If a task does not complete by its allotted time it is aborted and

another task is started. A task can execute on any processor triadl .

lThe only exception is a rate 1 task called ·SCC·, the system configuration control task; this task is systematically run on
different processor triads so it can execute self·tests on each triad. There is a bit in SCC's Task Control Block, set by SCC, that
specifies on which triad the dispatcher,should run SCC.

•

7

Processor Processor Processor
1 2 3 11 1/0 Port 11

8K 8K 8K 8K 8K 8K 11 1/0 Port 2 \PROM RAM PROM RAM PROM RAM

~ 110 Port 31

~ 1/0 Port 41
GLOBAL
MEMORY

HIIO Port sl32K

11 1/0 Port 61
Error

SYSTEM BUS

Latches 11 1/0 Port 7 1
I/O I/O

~ I/O Port 8\Real Time Port Port
Clock 11 10

YI/O Port 91

Figure 2-2: Software Appearance of FTMP (virtual machine)

8

In a realtime system a task is run at regular intervals which define the task's iteration rate. Not all

tasks need to run at the same iteration rate. For example, the task that updates the display terminal

does not have to be executed nearly as often as the task that monitors and adjusts the plane's airspeed.

Tasks are grouped by common iteration rate, called rate groups, and are run within /rame8. A frame

defines the execution interval length. The execution interval length is one over the iteration rate of tasks

grouped in the frame. In the time allotted by the frame, the working triads must execute all the tasks

defined for the frame's iteration rate. Task control blocks, which contain all the information necessary to

run a task, are in a linked list resident in global memory. Individual triads access this global list to select

a task to run. When FTMP is in a multiple triad configuration, some tasks will execute in parallel.

When there are no more tasks left in a particular iteration rate group to execute, a triad will either

become idle or start executing tasks from a lower iteration rate group. Figure 2-3 is an example of a task

control block structure arranged by rate groups (defined below). The control blocks in this figure are

those of the synthetic workload (Section 4).

The FTMP has three iteration rates which define three different frame sizes. There are separate task

control block lists - one for each rate group. The frame sizes are:

• R4, the basic frame size
• R3, equivalent to 2 R4 frames
• RI, equivalent to 4 R3 frames; also called the major frame

Figure 2-4 illustrates the different frames and their execution frequencies.

FTMP handles the multiple rate groups as follows. At the beginning of an R4 frame, one of the triads,

called the re8pon8ible triad, starts the R4 frame for that triad and signals another triad to start its

frame. This second triad in turn signals the third triad, if it exists, to start its R4 frame. Each R4 frame

does not necessarily have the same responsible triad. Every second R4 frame signals the start of an R3

frame and every eight R4 frames starts an RI frame. Once a triad runs out of R4 tasks to execute, the

triad will begin taking tasks from the R3 task list to execute. Likewise, when a triad runs out of R3 tasks

it takes tasks from the Rl task list. Execution of a lower task frame group can be suspended in a triad

by the start of a higher numbered frame group. Suspended tasks are continued once the the triad runs

out of tasks from the higher iteration rate. For example, the beginning of an R4 frame suspends

execution of R3 and Rl tasks until all tasks in the R4 frame finish. The processor triad that finishes the

last R4 task in the R4 frame becomes the responsible triad that starts the next R4 frame.

Several computer systems are involved in creating and running experiments on FTMP as illustrated in

Figure 2-5. The steps to creating an experiment and the systems involve include:

• Create and compile a program task written in a language called Automated Engineering
Design (AED) system which runs on an mM 4381.

9

R4CONTROl R3 CONTROL R1 CONTROL

(SCC's posHlon in tos\(
Jist mey chenge dunng
8xecut Ion)

~

DISPLAY
~

"--
see

~

---- READAll

---- Worlcload.R 11

-
,...-- Workload R12

~

Workload R1 :5-

-- IDLE'

~

IDLE 2
,...--

"""'-
IDLE :5

Work:load.R31

TIMER

Worlcload.R33

Workload.R32

R44 Special
Initial

(Starb Workload)

-- Workload R41

--- Workload.R42
~

- \

..... Workloed.R43
I
I
I•I•_...

Figure 2-3: Task Control Block Structure

10

1
Mojor Fromes

1 1
25 Hz I H / IR4 Frome

Frflme Mflrks

12.5 Hz I /< >/
R3 Frame

3.125 Hzl< Rl Frome ~

Figure 2-4: Frame Structure

• The user must map out where the code goes in memory along with the location of stack, local,
and system variables.

• The user then modifies OS task tables to include the task in FTMP's task structure,
reassembling task tables when finished.

• The experimental task is linked with the rest of the operating system code to create an
absolute load module.

• The load module is downline loaded from the ffiM 4381 to a VAX-ll/750.

• The load module is downline loaded from the VAX-ll/750 to FTMP.

• The FTMP test adapter (CTA) is used to debug the experimental program.

• Once the experimental program is correct, the test adapter is USed to dump a memory image
into a file for later analysis.

Figure 2-6 illustrates the process of creating a program. When the baseline experiments presented in this

paper were run, the experimental loop took up to two hours from the time of compiling a program on the

ffiM 4381 until it is executed on FTMP. The current environment has been updated to simplify the

experimentation steps. The experimenter must have knowledge of several systems including the m1\1

4381, the VAX-ll/750, and FTMP. The experimenter also must be intimately familiar with FTMP's

hardware, operating system, and. task structure.

In order to shorten this experimental loop and improve experimental efficiency, a synthetic workload

..

11

VAX 11/750
IBM 4381

PDP
Emu16tion

I UNIBUS

PROM Progr6mmer I , Test Ad6ptor

1553

- F6ult-- Injector-Seven -FTMP RS232 - F T M P1553 -Dfsp16Y ~ -
Interfaces

Monitor

Figure 2-6: FTMP Support Environment

model for real time avionic systems was proposed [Clune 84]. With an easy to envision model, an

experimenter can be working with the workload after merely a few hours of reading over the model,

getting an overview of FTMP and learning VAX/VMS commands; the mM 4381 is eliminated from the
experimental loop.

12

AEO
Program

Task

CAPS-6
Assembly

Relqcotobl

Object

Modules

as Modules

FTMP

VAX

Figure 2-8: Steps to Creating It. Program

2.6. Previews of Experiments

To date, baseline experiments up to the application level have been performed. Areas of experiments,

classified by the level of abstraction presented in Figure 2-1, are shown below. Experiment sets marked

by an If,Sterisk (.) have already been performed IClune 84J.

1. Instruction Set Level:

• Verify the clock as an accurate fundamental measuring device. With the clock
calibrated, future performance experiments can be performed with confidence. (.)

• Timings of Assembly and High-level language instructions. (*)

13

• Observe and document the existence and the direct effects of interrupts.

2. Executive Software Level:

• Executive primitive and overhead times (*)
• Interrupt procedure times
• Memory· Access time
• Bus access and contention delays
• Fault-tolerant overheads

3. System and Application Level:

• Frame utilization characteristics (*)
• Length of the frame of all task iteration rate groups
• Fault-tolerant overhead to the application programmer
• Development of an application level tool for measuring performance.

This report covers two experiments on FTMP. First, a set of experiments were run to test the existence

and document effects of interrupts on FTMP. The second part of this report discusses the development

and implementation of the application level tool for measuring performance called the synthetic workload.

A set of experiments to calibrate the synthetic workload is also discussed. Once installed, the synthetic

workload can be used to run application level experiments as well as certain executive level baseline

experiments.

14

3. Interrupts

Interrupts can be viewed as a signal of unusual events in a processor. These signals can be of simple

events like arithmetic overflow or of more complex events like a device is ready for input. Interrupts can

be used for communication between a user process and the supervisor, in which case they are called traps.

A user process invokes a trap to request service (I/0, resource request, etc.) that the user process could

not fulfill directly. Interrupts are also a mechanism for enforcing virtual memory and protection schemes.

Interrupts notify the processor that a memory reference was to a page not in memory (page fault) and the

page needs to be brought in, or can halt a program that tries to access memory outside its memory space.

Finally, interrupts are a mechanism for software reliability. Whereas, fault-tolerant systems, through

redundancy, can catch hardware errors and mask or record them for later reconfiguration, interrupts are

the mechanism for detecting and recovering from software faults. There are four categories of interrupts:

Intraprocessor

Intrasystem

Executive

asynchronous events that happen within the processor during the execution of a
machine instruction. Examples of these events include: zero divide, arithmetic
overflow, memory access violation, privileged instruction execution, and page fault.

interrupts caused by a peripheral such as a disk, timer or terminal. Examples of these
interrupts include timer reached zero, input received, and output device ready.

an interrupt caused by the current executing program. Executive interrupts are used to
make requests of the executive (operating system) program. Examples of such requests
are starting new tasks, allocating hardware resources, communication to other tasks,
etc. These interrupts are sometimes referred to as traps, supervisor calls (SVC), or
privileged mode calls.

Interprocessor interrupts between two intelligent processors. This type of interrupt can be used to
implement an interprocess communication (IPC) mechanism between processors.

This section describes mechanisms used in implementing interrupts, followed by a discussion of interrupts

on FTMP CAPS-6 processor. Finally, results of experiments to test interrupts mechanism on FTMP are

presented.

3.1. Mechanisms

Generally, interrupts are vectored, that is, the address of the interrupt handling routine is in a special

memory location. When an interrupt occurs, control is transferred to a routine pointed to by this vector.

Several devices can be associated with a single interrupt vector, in which case the processor must poll the

devices to see which one caused the interrupt.

When there are several interrupt vectors, a system will sometimes have interrupt priority nesting.

Nesting allows higher priority interrupts (e.g. power failure) to interrupt the processing of low priority

interrupt routine (e.g. overflow).

15

To provide operating system support for protection mechanisms, most computers have, at the very

minimum, user and supervisor states. Which protection violations are reported are a function of machine

state. Obviously, interrupts like privileged instruction violation should not occur in supervisor state,

hence there is an architectural decision of which interrupts are ignored in supervisor state.

Finally, there is the issue of disabling and masking interrupts. Disabling an interrupt prevents a device

from sending an interrupt. Thus, the interrupt signal is actually turned orr. Processors might disable an

interrupt to take a device out of service. In contrast, masking does not prevent the interrupt from

occurring, but instead ignores the interrupt until the mask is changed. Using this definition, in a priority

interrupt scheme, low priority interrupts are masked by a higher priority interrupt. Processors generally

have a hardware mask field which tells which interrupts to ignore. In general, most interrupts (overflow,

I/O, etc.) are supervisor maskable, but only intrasystem and interprocessor interrupts can be disabled.

Some system responses to interrupt include:

• Do nothing. The results are equivalent to masking the interrupt except that the interrupt is
cleared since it was acknowledged. For example, some applications might wish to be notified
of an overflow condition yet continue execution.

• Abort the current job (e.g. divide by 0, memory access violation, etc.).

• Restart the job or start a job with new software (e.g. N-version programming). This is a
consideration in a system with fault-tolerant software.

• Performs service (e.g. supervisor call or trap, page fault).

• React to an event (e.g. timer interrupt, I/O interrupt, IPC interrupt).

3.2. Interrupts, System Validation, and Performance

The steps to evaluating interrupts are similar to the steps taken when evaluating any part of the

system. First, the existence of the interrupt is tested, thus validating the programmer's manual. Baseline

experiments follow which test functional correctness of the interrupt mechanisms (i.e. do interrupt

masking mechanisms work correctly, are supervisor/user effects of interrupts correct, etc.). Interrupt

evaluation encompasses both the hardware and the operating system. Interrupts are invoked in hardware,

but the interrupt handlers are in the operating system.

Interrupts do affect performance. An add instruction that overflows (thus invoking an interrupt) is

slower than the equivalent instruction that does not overflow. Likewise, page faults impact performance.

Therefore, the performance matrix of Figure 2-1 was used:

• Throughput - How long does it take to process the interrupt? This delay is a function of the
length of the interrupt handler, the system load, whether the handler is in memory (i.e. does it
need to be paged in), etc.

16

• Utilization - How often are interrupts invoked. Although utilization of proce880r exception
interrupts (overnow, privileged mode violation, etc) is of less intereSt due to rarity, utilization
of IPC and page fault interrupts are more frequent.

• Delay - Variation of interrupt delay between processors. Also, does the effect of interrupts
cross processor boundaries?

The following is an example of experimental steps for evaluating interrupts:

1. Test the existence of interrupts (software manual verification).

2. Test interrupt masking mechanisms. Also test which interrupts occur in user versus
supervisor mode.

3. Test how long it takes to process each intraprocessor interrupt (overnow, page fault, etc.).
Compare this to interrupt-free execution.

4. What is the overhead of processing intrasystern interrupts (timer, terminal, etc.). How often
do these interrupts occur?

5. For executive interrupts (traps), evaluate how long it takes to service the trap. Likewise, how
long does a processor take to respond to an IPC interrupt?

6. What is the interrupt rate of page fault and IPC interrupts? For typical instruction
execution, how often do page faults occur?

7. Perform the above tests in both uniprocessor and multiprocessor configurations.

8.8. interrupts on FTMP

The processor elements in FTMP are Collins Avionics CAPS-6 processors modified for fault tolerance.

The CAPS-6 processor has 18 interrupt vectors, stored in the first 18 words of PROM. Vectors 0-7 are

unavailable in the FTMP implementation of the CAPS-6 processor. According to documentation [Draper

83aJ, interrupts can only occur in user mode; interrupts in supervisor mode are automaticly masked.

Actual implementation reveals that interprocess communication (IPC), interval timer, and page fault

interrupts can occur in supervisor mode. Otherwise, for example, the processor would not be able to page

executive code. Interrupts 8 through F (base 16) are maskable. The CAPS-6 has a bit mapped interrupt

mask which is stored in the Process Status Descriptor (PSD) of each task. This mask is loaded into the

hardware interrupt mask when the task is started. There are no interrupt priority levels in the CAPS-6

pr6cellsor.

Figure 3-1 summarizes FTMP's interrupts. This table also presents the results of experiments to test

the effect and existence of these interrupts.

17

8.4. Experimental Results

Many of the interrupts do not have an interrupt handler. These are:

• Arithmetic Overflow
• Write Protection Violation
• lllegal Opcode
• Stack Overflow
• Non-local Search Fault
• Privileged Instruction Violation
• Privileged Mode Call Fault

Instead, a generic routine called -NO.INT.HANDLER- handles all the above interrupts.

-NO.INT.HANDLER- is an infinite while loop that will, of course, hang the system when entered. An

alternative implementation of -NO.INT.HANDLER- is to ignore the interrupt, immediately returning

control to the executing task. The reason for looping forever is for debugging; when the system entered

this routine you could examine the system state to find where the error occurred. Since there is this

potential of hanging the system if one of the above exceptions occurs, all tasks, including application

tasks, run in privileged mode where exceptions are ignored.

In addition, there is no interrupt vector for divide exception. A divide by zero in user or privileged

mode will stall the system. Admittedly, the above hazards are a characteristic of the present,

experimental system. The original design called for USER/PRIVll..EGED mode implementation and

interrupt handlers.

Running tasks in privileged mode, while preventing system failure from an unimplemented interrupt,

does compromise software reliability. In particular, write protection is ignored in privileged mode, so a

software error can be potentially disastrous (i.e. a R4 task writing into a R3 task's stack area). Likewise,

an overflow or illegal instruction signals software error and the need to stop the task (for task restart or

n-version programming). These signals are missed in privileged mode execution.

Even if interrupts were implemented as the original design called for, one may be reluctant to execute

tasks in USER mode because its of limited power. In particular:

1. A user task cannot use system bus service routines, that is, the user cannot access system
memory. User tasks attempting to access system memory stall the system (the original design
calls for a write protection violation interrupt). Hence, all variables must be in local memory.
Since a task might run on any processor triad from one task execution to another, local
memory variables are not guaranteed to retain values between task iterations.

2. A user task can save values through use of a task data block. Variables in a task data block
are copied from system memory into local memory by the dispatcher before the task starts,
and moved back to system memory when the task ends. Thus, these variables retain their
value between task iterations. However, changes to data block variables are not reflected in
system memory until the task finishes, which limits the potential for inter-task communication
to task completion boundaries.

Interrupt
Humber Maskable

18

Assignment/
Function

Mode/
Effect

8
9
A

B
C
D

E
F

10

11

12

13

14

15

16
17

yes
yes
yes

yes
yes
yes

yes
yes
no

no

no

no

no

no

no
no

unassigned
unassigned
Arithmetic

Overflow[1]
IPC interrupt
Interval timer
Write Protection

Violation [1]

Page Fault [4]
Test Adapter[4]
Halt Instruction
Execution [1]
Illegal Opcode[1]

Stack Overflow[1]

Hon-Iocal Search
Fault[1,2,4]

Privileged instr
Fault [1]

pmcall fault[1,3]

unassigned
unassigned

USER/Stalls system
PRIV/No effect

USER/Stalls system
PRIV/Write protection

ignored

USER/stalls system
PRIV/ignored
USER/stalls system
PRIV/ignored

USER/stalls system

USER/No supervisor routines
to support pmcalls

• no Divide exception[5] USER or PRIV/Stalls
system.

[1] No interrupt handler written. If this interrupt occurs, a routine
called -HO.IHT.HANDLER- is entered which executes a DO-FOREVER loop.

[~] Hon-Iocal Search Fault occurs when a routine attempts to access a
variable in its caller's local environment that does not exist. Hone
of FTMP's software demands non-local searches; instead, the software
uses static local variables to communicate to nested procedures.

(3) -- Pmcall, Privileged mode call, is an instruction that a user process
can use to call supervisor routines. There are no supervisor routines
to support this mechanism on the current version of FTMP.

[4] Not tested.
[5] -- There is no interrupt vector for Divide Exception.

Figure 3-1: Summary of FTMP's Interrupts

19

3. Synchronization between user tasks is very limited (ir not impossible) since user tasks cannot
access system bus routines. The original design or FTMP does provide constraint bits in the
task tables ror task ordering (Le. do not start a task until specified tasks are finished), but
these bits are not implemented on the current version or FTMP.

The reliability/system capability trade-orrs or running a task in USER or PRIVILEGED mode is a

dilemma to the FTMP programmer. However, with minor modifications to the original design, some or

the power only available in the privilege mode can be made available to a user application task. As an

example, making some or the system bus routines available as traps (see interrupt number hex[15J

pmcall rault) would give the user controlled access to system memory without compromising the sortware

reliability or user mode execution.

Since many interrupts are not implemented on FTMP, no perrormance analysis was perrormed. The

rest or the report instead concentrates on a tool ror application level experiments: the synthetic workload.

20

4. Workload

4.1. Definition

The workload of a computer is defined as the set of all inputs (programs, data, commands) the system

receives from its environment. A workload can be classified as natural or synthetic. Natural workloads

accomplish useful work while a synthetic workload models a natural workload.

There are many types of natural workloads. If the computer is a timesharing system the workload

would be a user typing commands to the terminal. The workload would also include overhead of loading

user programs, inputing data, and executing user programs. For control computers the workload is of a

different flavor; the input is in the form of sensor readings that must be processed before they are

overwritten. The program task that processes the sensor data is also considered part of the control

computer workload. These tasks are executed at regular intervals.

The above two situations are examples of natural system workloads. Evaluating the performance of a

natural workload involves putting measurement code into an existing system and collecting workload

performance data over a period of time. With the second example, a control system, evaluation would

involve taking measurements on existing control software to evaluate its performance. Sensor input to

the control program could be real input from the actual environment (i.e. the computer would be flying

an airplane) or simulated sensor input. In either case, we assume the system and application software

already exists and the major effort is in setting up the system for evaluation.

A synthetic workload, like a natural workload, exerCIses a computer system. But unlike a natural

workload which at least must have simulated input to "real" application programs, a synthetic workload

is essentially a "fake" set of application programs (or tasks) that are modeling a natural workload. A

synthetic workload can test a computer without having to develop or install application software.

Characteristicly, synthetic workloads are controllable by the experimenter and can be used to analyze

performance by varying parameters in the synthetic workload model.

4.•2. Advantages of A Synthetic Workload

As inferred from the above discussion, although a synthetic workload does not represent an application

as well as a natural workload, there are several advantages to synthetic workloads:

1. Easy to create and debug. A natural workload must be written as well as have a natural or
simulated external environment. If analyzing performance (perhap~ for a performance
improvement study), a natural workload would already exist and thus would be preferred.
However, if we are performing a feasibility study where external input, let alone application
software, might not exist for the system, a synthetic workload is an excellent device for
measuring performance. With little effort to create and debug the synthetic workload, we
could answer some feasibility questions such as "Is the computer fast enough for our target

21

applications!- or -Does the computer have enough capacity.for the natural workload we are
modeling?-

2. Easily repeatable. In an earlier section we listed several guidelines for experiments. One of
those guidelines included experimental repeatability. With natural workloads, repeating an
experiment would involve recording all the environmental inputs over a measurement period,
as well as output which might have an effect on the input. This is particularly difficult if
output from the system effccts the input. The natural workload approach tends to bc
cumbersome in terms of storage requirements. A synthetic workload not only simplifies the
environment through a model but also simplifies the interface. The only data that needs to be
recorded for repeat experiments is the workload parameters and the measurement period.
These parameters can set the system to the exact state of the original experiment.

3. Easily controlled by parameters. The workload model is designed to make variation of
parameters easy. There is no need to recompile or reload the system as parameters are varied.
With a parametric model, sensitivity to parameter changes can be systematically explored and
bottlenecks discovered.

4. Model many natural workloads. With new computer systems we usually want to study the
feasibility of using the system for many types of applications or natural workloads. Modeling
these applications with a single synthetic workload can yield a good feeling for the
performance of a set of natural workloads.

. 5. Easily migrated to different systems. Generally the same workload model can be used on
several systems. Thus if we model the same workload on several computer systems it is much
easier to make direct comparisons between systems. Figure +-1 illustrates this concept. In
this figure, if workload W is a natural workload it is sometimes called a benchmark.

~--~--~~---T---'

t r- J--,
System I System I

:P I n I
~-,--~

1'-_1__,
I ,.,,-- \
\ 19,. I
'--T--.I'

'-- --..... - - - - J

Figure 4-1: General scheme of performance comparisons among n systems (Ferrari 78]

22

Of course there are disadvantages to using sy~t~etic workloads:

1. The synthetic workload is only an approxir,nation of a natural workload.

2. The system must be dedicated while usillg the synthetic workload. With natural workloads
data can be collected while useful work is l>eing done. .

4.8. Motivations

An additional motivation for designing a synthetic workload for FTMP is to simplify the

ex~erimentation environment (see Figure 2-5). Prior to the use of the synthetic workload, experiments

were performed by creating a program on ~ IB~ 4381 followed by compilation, assembly and linkage of

the task. An absolute load module Was then downloaded to the support VAX and the~ to FTMP for

execution. The entire experimental cycle usually took up to two hour$ assuming the experiment was

designed correctly. Analysis was limited to a few parameters in each ~periInent. To aIlalyze data from

the experiment the user must provide a data collection prograIO or modify lion existing data collection

program. The ori~inal FTMP baseline experiments were conducted i~ this IIlanner. In order to master

t~.e experimental loop, the user had to learn about the internal structure of FTMP, including the setting

up of task tables, the CTA interface progrl\m between FTMP and the VAX, and the VAXjVMS

c~rp.mand language. Because of the time it tool:c t,o develop experiments, there Was substantial motivation

to simplify the experiment loop, even possibly takin;g t~e 113M 1~81 - the r,naj?r bottleneck - completely

out, of the experimen1tal loop.

A synthetic workl~:>ad relieves the user of these details as well as providing a mechanism for further

simplifying experiDllental preparation. Synthetic w9rk~oad experiments ""ould be run by varying

Parameters in the model. The parameters of the synthetic workload must correspond to meaningful

Yaril\~lesi otherwiSe analogies to real workloads woulcl be IIlel\Dillgless. There is, of course, a fine line

~et;'Yeen represeD.tativeness and ease of use.

The next s'ection discusses a realtime worklol\d model. This is followed by the ~etails of the

implementati,on of that model on FTMP and the program support for the implementation. Finally,
, ..:.'.:' .,.. "" .

several work~load experiments are compared to equivalent baseline experiments to calibrate (i.e. test the

representativeness of) the synthetic workload.

4,.4~ A R'ealiibn,e Workload Model

The goal of any model is to find a simple representation of a system that is not too far removed from

th;e natural system. If the model is too complex, deriving conclusiollS from parameter changes w.ill be

difficl'Jlt. Conversely, too simplistic a model would not aclequately describe system behavior.

There are several factors that must be considered when developing a realtime workload model. First is

23

the task structure oC realtime workloads. A task is a single thread oC execution. With a realtime system,

a task is run at regular intervals, defining the iteration rate ot that task. Not all tasks need to be run at

the same iteration rate (i.e. a display terminal does not need to be updated nearly as often as the

airplane flap control). Thus a realtime task model should allow Cor multiple iteration rates. Control

systems demand task completion within the interval defined by the task iteration rate, which is referred

to as a hard deadline. This implies that any implementation oC a workload model must collect data from

several task iterations to check it deadlines, and thus iteration rates, are adhered to. A realtime workload

model was presented in [Clune 84]. The following discussion is an overview or that workload model.

For our model, tasks are assumed to be execution entities sharing a common memory. Each task has

the Corm:

• read sensor data
• read interprocess communication (IPC) data
• do work (computations) on the data
• write IPC data
• write sensor data

On FTMP, a task is represented by the program in Figure 4-2. In this case the loops represent data read

in (P and Q), operated on (T), and written out (R and S), with A=B+C considered the typical

instruction. The communication mechanism between processes on FTMP is main memory. Thus both

sensor and IPC exchanges are done through memory reads and writes. The value or the realtime clock is

stored after each iteration ror later timing analysis.

Task
1
();

Beg1n
Read (P1 , Ql' T1 , R1 , Sl);
Store(T1..e);
For X=l to P

1
do

Read Sensor Inpu~ (read ..e..ory);
Store(T1..e);

For X=l to Q
1

do
Read IPC Inpu~ (read ..emory);

Store(T1.e);
For X=l to T

1
do

Execu~e Ins~ruct10n (A =B + C);
Store(T1me);
For X=l to R

1
do

Wr1~e Sensor Ou~pu~ (vr1~e memory);
Store(Ume);
For X=l to Sl do

Wr1~. IPC Ou~pu~ (vr1~e memory);
Store(T1me);

End;

Figure 4-2: Representation or a Synthetic Workload Task

The above task model is sufficient to implement a synthetic workload on FTMP. However, if we want

to more closely approximate a realtime system, a higher level structure is required.

24

The next abstraction level above the task is the function. A workload can consist of any number of

functions, each of which is composed of one or more tasks. The parameters at the function level are:

• the number of tasks
• frequency of execution of this function. All tasks within the function will have this iteration

rate.
• percentage of total system instructions used by the function
• percentage of total sensor I/O used by the function
• percentage of totallPC I/O used by the function

Tasks are grouped into a function because of parametric similarities (Le. perform approximately the same

number of operations and have the same execution rate), rather than functional similarities.

Finally, we define the system level of the model which gives the structure and capability of the overall

realtime workload. Parameters at this level are:

• number of instructions (thousands of operations per second)
• total amount of sensor I/O (words per second)
• total amount of IPC (words per second)
• number of functions
• percentage of sensor I/O that is input
• percentage of IPC I/O that is input

Figure 4-3 illustrates the workload model for a realtime system.

A program, called the workload calculator, takes system and functional level parameters and calculates

iteration numbers that can be used to implement a synthetic workload. This program, developed in

[Clune 84], is discussed in Section 4.5.1.

4.5. IJnplelDentation of the Synthetic Workload on FTMP

The goal of the synthetic workload implementation is for a user to be able to use the workload with

minimal knowledge of the underlying system. The user should only need to know the workload model.

In addition, the workload should have an easy to use interface. Initially, the discussion of the synthetic.
workload implementation will focus on the user interface. This will be followed by a discussion of the

details of the actual synthetic workload implementation on FTMP.

4.6.1. User Interfaces

To the user there are three parts to the synthetic workload: the workload calculator, the workload

generator, and the workload data analyzer. Each of these programs is invoked at different times in the

developing and running of a workload experiment. The following is a discussion of these three programs.

Workload Calculator:
The workload calculator was developed and implemented in [Clune 84]. This program
converts parameters from the function and system level of the workload model into
iteration numbers for a workload task on FTMP. This program inputs system and
functional level parameters and calculates iteration numbers that are used by the

Fnl

25

GLOBAL
MEMORY

PN QN

Fn2

RN SN

®u'"I I
FnN

Figure 4-3: Workload Model [Clune 841

26

synthetic workload generator. The system level parameters directly correspond to those
parameters presented in the model. These parameters include total instruction KOPs,
total sensor I/O, and total IPC rate. Functional level parameters also correspond to
those presented in the model. Examples oC Cunctional level inputs include the number
oC tasks per Cunction, the Cunction's iteration rate and the percent oC the total system
instructions, the total sensor I/O, and the total IPC I/0 used by each Cunction. This
program outputs loop iteration values Cor insertion into the synthetic workload tasks
(Figure 4-2). The workload calculator can speciCy workloads Cor any control computer
that implements the same workload model.

Workload Generator:
This program is the interCace between the user and FTMP. The major motivation Cor
the program is to separate the details oC the workload model Crom the details oC
installing task level parameters into the FTMP synthetic workload. This program uses
iteration values supplied by the user (e.g. those supplied by the workload calculator)
and deposits them into synthetic workload tasks on FTMP by setting up a command
file. When run, this command rile enters CTA, the interCace between FTMP and the
VAX, and selectively writes to FTMP's memory to set up the workload. The command
rile also sets up the number oC tasks to run in each rate group (again deCined by the
calculator), plus configures FTMP Cor one, two or three processor triads. The workload
generator creates a second command rile Cor collecting timer data Crom FTMP. The
user is again quizzed on which timer values to save and the number oC iterations to
observe. These timer dumps are later analyzed by the third component oC the
workload, the data analyzer.

Data Analyser: This program works in conjunction with the workload generator to analyze data dumps
and malce histograms oC diCCerences between timer values. The user is quizzed on which
timer values to t.ompare and :put into histograms.

Figure 4-4 illustrates the relationship oC the above programs. Each program is user oriented, quizzing

the user about system configuration, workload structure, and timer values desired. Presently, the user is

reSponsible Cor filling in the link between the workload calculator and the workload generator.

The steps to running an experiment with the synthetic workload are:

1. Load FTMP with the synthetic workload (need only be done once).

2. Use the workload calculator to describe the application workload you wish to test. Iteration
values are stored in a file called RESULT.DAT.

3. Run the workload generator using data Crom Step 2 as parameters into the workload model.
The workload generator will create two command riles: one to conCigure the the synthetic
workload on FTMP and a second to collect data Crom the workload.

4. Run the first command rile to configure FTMP.

5. Run the second command rile, storing the data in an output rile. Run this command rue
several times until you have the desired amount oC data.

6. Run the data analyzer using an output rue Crom Step 5 as input. The data analyzer outputs

27

Instructions/sec.
FreQuencl es,
I/O rete, etc.

ta,
togrems

WORKLOAD l/
CALCULATOR f'

flnitl0ns,
s, etc. ,l/

WORKLOAD
GENERATOR

uration
ds ,~

F T M P

ata,
Dumps, /

DATA
"-

Da
ANALYZER , His

Raw 0
Timer

TflSk De
Iterflti on

Reconf1g
Comman

Figure 4-4: FTMP Synthetic Workload Environment

28

the data in a readable form and creates histograms of that data.

7. Repeat Steps 2 through 6 for each workload experiment.

Once FTMP is initially loaded with the synthetic workload, the elapsed time from running the workload

calculator to output histograms is about 10 minutes. Appendix B contains an example of running the

synthetic workload through the above steps.

4.&.2. Implementation: FTMP Tasks and Workload Considerations

The model for a realtime workload task was presented in Figure 4-2. In this task model, the values for

the loop iterations are read in from a special area in memory set up by the workload generator before the

workload starts. Timer values are written back to memory at the end of the task.

FTMP has three task rate groups. For initial implementation, there are three workload tasks for each

rlt,te group. Three per group is not a hard limit since there is roolIl in the task tables to potentially

expand to 15 tasks per rate group (except for the Rl rate group - there are 6 special tasks thus limiting

tllis r3te group to 9 workload tasks). The major limit on the nUlIlber of workload tasks in FTMP is

memory storage for timer values. The number of tasks that actually run in each rate group is set up by

the workload generator.

Data collection is done in cycles. A collection cycle starts when the dat3 colJection command file

(created by the workload generator) enables tasks to execute. For a period of time workload tasks write

tbner values to memory. These values are then retrieved from FTMP's memory by the command file for

13ter analysis. Once this is done, tasks are en3bled again to start another data collection cycle. The

saved data is essentially a snapshot of the computer over a defined execution period.

To encompass all workload tasks, a collection cycle must include at least one full execution frame of the

lowest frequency rate tasks (Rl). Thus, a collection cycle begins 3t an Rl frame boundary, called a major

trame. A major frame encompasses four R3 frames and eight R4 frames. An additional R4 task

collection was added, making nine R4 collection frames, to record boundary cases such as missed

deadlines. To monitor when to start collection cycles, an additional R4 task is present. This task

IDonitors when a major frame is ready to begin and sets all the workl03d tasks to start collecting data. It

tllen removes itself from the R4 task list so as not to interfere with workload tasks while the workload is

e:lCecuting. A .cycle is begun by externally linking in the special R4 task. All of these details of data

collection are transparent to the user since they are set up by a d3ta collection command rue created by

the workload generator.

The workload has to take into consideration several special tasks running onFTMP. These tasks are:

1. A R3 task (R31) called -TIME- which updates TIME.NOW, the current time, in memory by

29

checking RT.CLOCK (the realtime clock) and BASE.TIME. This is considered essential to the
computer performance and is always linked in.

2. The RI -DISPLAY- task which updates FTMP's display terminal on the status of the system.
This is considered non-essential and can be taken out if the user so chooses (i.e. if a workload
task already models a system display).

3. Two RI tasks -READALL· and ·SCC· which are the fault-tolerant tasks of FTMP. These
two tasks can be considered essential in a fault-tolerant computer such as FTMP for fault
recovery and reconCiguration. However, during fault-free execution they only perform selC
tests. Therefore, the user has an option to take either of these tasks out of the task structure,
which is useful should the user want to investigate the overhead of fault-tolerant tasks.

The workload generator will ask the user which special tasks to include in the workload and links them in

accordingly.

Each task has an associated Task Control Block (TCB) which contains information on that task. Task

Control Blocks are in a linked list common data structure in global memory. Processor triads select tasks

from this structure when they need a new task to execute. Figure 2-3, presented earlier, illustrates the

TCB data structure and the position of workload and other tasks in that structure. The final three RI

tasks, IDLEI, IDLE2 and IDLE3, are workload special tasks to record idle time in a major frame on each

ot the processor triads. After a processor has completed an RI task it will select an idle task and hold

that task until other processors have finished their RI tasks and select an idle task.

Finally, the FTMP RI task dispatcher can assign RI tasks to a specific processor if poesible. A special

field in the TCB of the task determines which processor (I, 2, or 3) to run the task on with 0 specifying

any processor. ·SCC- modifies this field so it can progressively run a battery of self-tests on different

processors. Execution of SCC affects TCB ordering since the dispatcher will postpone execution of this

task until the requested processor becomes available by moving this task down the task list.

4.5.3. Calibration

The final step to synthetic workload implementation is calibration. Calibration determines the

correctness of the workload model. The best calibration experiments are, of course, direct comparisons to

natural workloads. However, comparisons to dedicated FTMP experiments is acceptable since the goal of

calibration is to show that the workload can produce similar results.

The calibration experiments chosen for FTMP's synthetic workload are baseline experiments previously

conducted without the workload generator in [Clune 84). These experiments provide an opportunity for

comparison. The experiments are:

.1. A task switching time experiment. This finds the overhead associated with starting a new
task once a task finishes. This time is found by comparing timer values recorded at the end of
the first task and the beginning of the second task respectively. Figure 4-5 illustrates task

30

switching overhead.

2. A task startup experiment. This experiment measures the overhead or starting a task on a
processor. This time is round by comparing timer values taken at the beginJ}ing or tasks
running on separate processors. Figure 4-6 illustrates task startup overhead. . .

Figures 4-7 though 4-10 are the results or rour eXPeriments: task switching time, dedicated experiment;

task switching time, workload experiment; task startup overhead, dedicated experiment; and task startup,

workload experiment.

ITesk 2

Tesk
IE--S WI t ch Ing~
I Overhead I

Tesk I
~-,PI

Figure 4-5: Task Switch_ng Overhea,d

PI
Tesk

P2

I
I Tesk
I Stertup

I J Tesk 2
~ 1~------

Figure 4-8: Task StlLftuP Overhead

Jpit.ial comparison U! encouraging; both baseline and workload ~periments have similar shapes. Both'-"":,-.' '. - ;-.-., .'. ".' :' '. -:',','-', .. '.,- . - .,-', -,'.-.

tl¥l.~ ~t~tup experiments reveal similar dual peak curvejJ With fringe data points. In the baseline

e~PeriOleQt, th~e lone data points revealed that the dispatcher was oc~asionally late starting a task. The

~Yllth,et.C workload exhibits the same behavior.

Ol<>ser in~pection or the data reveals that the workload curveti or task switching overhead and task

sta.rtup time are di~placed 4 and 1.88 clock ticks (I B,nd .17 mSec) retipectively rrom their baseline

e~periment counterparts. Thus, overhead exists in the workload that is not present in the baseline

el(:periments. The source or this overhead is obvious upon inspecti<m or the AED sourCe code or tilt,

l?3,!le(ine experiment task (Figure 4-11) and a workload task (Figure 4-1~). The baseline experiment WM

c;l~igned to measure beginning and end task times. Thus, time ill read immediately upon enterillg and

just berore exiting the task. In contrast, the workload cont~ns both task entry overhead (~taten,en~

••••••••••••••••••••••••••••••••••••
••

clock data-
ticks time points

-------- ---------
16 ticks (4.00 mSec) [122]
17 ticks (4.25 mSec) [67]

..

31

clock data-
ticks time points

-------- ---------
12 ticks (3.00 .Sec) [242]
13 ticks (3.25 .Sec) [298]

Average: 12.55 ± 0.042 Ticks (540 data points)
3.13 ± 0.011 mSec

Figure 4-7: Baseline Experiment: Task Switching Overhead

•••
••••••••••••••••••••••••••••

Average: 16.35 ± 0.068 Ticks (189 data points)
4.09 ± 0.017 mSec

Figure 4-8: Workload Experiment: Task Switching Overhead

SI-S4) and task end overhead to save results (statements EI-E4). Because the synthetic workload is an

application level tool, overhead is put outside the inner loops. The workload can still be used for timing

intertask events if we take into account this overhead.

By summing the execution times of statements 81 through 8-4 in the workload we can find the workload

task initialization overhead. Execution times of the RD primitive are from a separate experiment

(Appendix A). Execution time of arithmetic operations are taken from [Clune 84]. Execution time of the

-IF- statement is neglected since global memory RD time is substantially larger.

Statement # Instructlon Execution Time (mSec)

Sl
S2
S3
S4

RD [1 word]
IF (EXEC4 GEQ 0) ...

RD [5 words]

0.138
0.0 (for simplifying calculations)
0.0
0.150

0.299 mSec (Ave.)

Similarly, the workload end overhead is:

clock
ticks tiae

32

data
points

4 ticks (1.00 aSec)
5 ticks (1.25 aSec)
6 tiCks (1.50 aSec)
7 ticks (1.75 aSec)
8 ticks (2.00 aSec)
9 ticks (2.25 aSec)
10 ticks (2.60 aSec)
11 tlcks (2.76 aSec)
12 ticks (3.00 aSec)
13 ticks (3.26 aSec)
14 tlcks (3.60 aSec)
16 ticks (3.76 aSec)
16 ticks (4.00 aSec)
17 ticks (4.26 aSec)
18 ticks (4.60 aSec)
19 ticks (4.75 aSec)
20-30 ticks
31 ticks (7.75 aSec)
32 ticks (8.00 aSec)
33 ticks (8.26 aSec)
34 ticks (8.50 aSec)

[24] ***
[298] **
[48] ******
[2] *
[29] ****
[328] **
[9] *
[0]
[0]

[1] *
[0]
[0]
[0]
[0]

[1] *
[0]
[0]
[0]

[3] *
[0]

[1] *
Average: 7.16 ± 0.198 Ticks (744 data points)

1.79 ± 0.014 aSec

Figure 4-9: Baseline Experiment: Task Startup Time

Statement #

El

E2

E3
E4

Instruction

WRT [12 words]
EXEC4*6
WRT [1 word]
3*EXEC4
EXEC4=EXEC4+1
WRT [1 word]

EXecution Time (aSec)

0.190
0.063
0.164
0.063
0.058
0.164

0.702 mSec (Ave.)

In the synthetic workload, calculation of task switching must consider task ending overhead of the first

task, and task initialization overhead of the second task. Finally, 0.164 mSec is added since the baseline

experiment must write a timer value to memory (E1) at the end of the task. Taking these into account,

we get
4.09 mS· 0.288 mS· 0.702 mS + 0.164 mS = 3.26 mS (Ave.)

a value within 5 percent of the baseline experiment's value.

Similarly, overhead should be deducted Crom the task startup time experiment. Since this experiment

33

clock data-
ticks tille points

-------- ---------
5 ticks (1.25 IISec) [18] ••••••
6 ticks (1.50 aSec) [95] •••••••••••••••••••••••••••••••
7 ticks (1 .75 IISec) [21] •••••••..
8 ticks (2.00 IISec) [0]
9 ticks (2.25 IISec) [2] •

10 ticks (2.50 IISec) [51] •••••••••••••••••
11 ticks (2.75 IISec) [108] •••••••••••••••••••••••••••••••••••
12 ticks (3.00 IISec) [0]
13 ticks (3.25 IISec) [1] •
14 ticks (3.50 IISec) [1] •
15 'ticks (3.75 aSec) [0]
16 ticks (4.00 IISec) [0]
17 ticks (4.25 IISec) [0]
18 ticks (4.50 IISec) [0]
19 ticks (4.75 IISec) [0]
20 ticks (5.00 IISec) [0]
21 ticks (5.25 aSec) [1] •
22 ticks (5.50 aSec) [3] •
23 ticks (5.75 aSec) [0]
24 ticks (6.00 aSec) [1] •
25 ticks (6.25 IISec) [2] •
26 ticks (6.50 IISec) [2] •
Average: 9.03 ± 0.391 Ticks (306 data points)

2.26 ± 0.098 IISecs

Figure 4-10: Workload Experiment: Task Startup Time

compares the first timer values of two workload tasks, task initialization overhead for both tasks should

.be deducted. The actual startup time becomes:
2.26 mSec - 2*0.288 mSec = 1.68 mSec (Ave.)

a value within 10 percent to the baseline experiment's value.

The following table summarizes the above results:

Baseline
Experiment Experiment Times

Task Switching time 3.13 mSec (Ave.)

Workload
Experiment Times

4.09 mSec

Minus workload 3.26 mSec
overhead

Task Startup time 1.79 mSec 2.26 mSec

Minus Workload 1.68 mSec
overhead

34

oro. TEST! BEGIN

DEFINE PROCEDURE TIMETESTl TOBE
BEGIN

LONG HOLD. HoLDl ;
INTEGER EXEC.RTCNUM.I;
INTt.cER'A;

HREAD(RT.CLOCK.HOLD.2);
RD (CMU. EXEC. EXEC. 1> ;
IF EXEc LEQ 14

THEN BEGIN
RD(CMU.RTCNUM.RTCNUM.l);

FOR 1=1 STEP 1 UNTIL RTCNUM
DO BEGIN

A=l;
END;

A =EXEc • 8;
WRT(CMU.TIME(A).HoLD.2);
HREAD(RT.CLoCK.HOLD1.2);
WRT(CMU.TIME(A+l).HOLD1.2);

END;
RESUME(O) ;

END •
, .

END FINI;

El

•

Figure 4-11: Baseline Experiment Task (AED)

AIthough these experiments are not application level calibration experiments, they do show that the

synthetic workload is a valid toOl for making baseline experiments, as long as workload overhead is

e()n~idered in any intertask measurements. If measurements are intratask, the overhe&.d is much smaller

since the dock read time (HREAD) is the only overhead. In conClusion, the workload is a useful tool for

performing exp~riments on FTMP.

35

CHU ,TEST BEGIN

DEFINE PROCEDURE VRKLOADR41 TOBE
BEGIN

INTEGER X, Y, z; . .. NON-STACK LOCALS II
OWN INTEGER A;
OWN INTEGER LOCAL. EXEC4;
OWN LONG ARRAY HOLD (OUT. VALUES); •.. HOLDS TIMER VALUES II
OWN INTEGER ARRAY R41.INPUT(6); ... INPUT PARAMETERS II
INTEGER P; P $=$ R41.INPUT(0);
INTEGER Q; Q $=$ R41.INPUT(1);
INTEGER T; T $=$ R41,INPUT(2);
INTEGER R; R $=$ R41.INPUT(S);
INTEGER S; S $=$ R41.INPUT(4);

RD(CHU.EXEC(0).EXEC4,1);
IF (EXEC4 GEQ 0) AND (EXEC4 LES g) THEN

BEGIN
RD (R4.INPUT(0).R41.INPUT,6);
HREAD(RT.CLOCK.HOLD(0),2);
FOR A=l STEP 1 UNTIL P DO

RD(CMU.GLOBAL.LOCAL.l);
HREAD(RT.CLOCK.HOLD(1),2);
FOR A=l STEP 1 UNTIL Q DO

RD(CMU,GLOBAL,LOCAL,l);
HREAD(RT.CLOCK,HOLD(2).2);
FOR A=l STEP 1 UNTIL T DO

X=Y+Z;
HREAD(RT.CLOCK.HOLD(S),2);
FOR A=l STEP 1 UNTIL R DO

VRT(CMU.GLOBAL.LOCAL,l);
HREAD(RT.CLOCK.HOLD(4),2);
FOR A=l STEP 1 UNTIL S DO

VRT(CMU.GLOBAL.LOCAL.1);
HREAD(RT.CLOCK.HOLD(6),2);
VRT(R41.0UTPUT(EXEC4.6).HOLD,12);
VRT(R4.ID(S.EXEC4),TRIAD.ID.l);
EXEC4 = EXEC4 + 1;
VRT (CHU,EXEC(0),EXEC4,1);

END; ... IF (EXEC4 GEQ 0) AND •• II
RESUME(O);

END;

END FINI;

81
82
83
84

El
E2
E3
E4

Figure 4-12: Synthetic Workload Task (AED)

36

6. Future Work
On FTMP, a few remaining baseline experiments should be performed. These include:

• Measure the time to transfer varying blocks of data from global to local memory, varying
parameters much more than was done in the brief RD/WRT eXperiments described in
Appendix A.

• Measure instruction execution time in pairs to see if the result is equivalent to the sum of the
execution times when the instructions were measured singly.

• Investigate overhead and variation in application IlOftware due to the fault-tolerant
mechanisms of FTMP.

• Find the nominal length of R3 and Rl tasks on FTMP.

• Find context swap time. This time is defined as the amount of time it talces to start up an R3
task once the dispatcher finishes with R4 tasks.

The later three experiments can probably be performed with the synthetic workload.

The potential of the synthetic workload has only been superficially demonstrated. The workload should

be used for performance tests and comparisonS, along with application level baseline experiments. Only

through lise will its power be demonstrated.

Also, the present synthetic workload is a minimal implementa.tion that was used to investigate

feasibility. Presently, there are only three tasks per rate group. The R4 and R3 rate groups each have

room for ten more tasks in their task structure, while the Rl rate group has room for seven more tasks.

The only limiting factor is the amount of global memory available on FTMP to hold timer dumps. More

compact timer dumps could possibly resolve this problem. Any enhancements will require changing the

workload generator and data analyzer.

Although much work has been done defining the exp,erimental methodology and \Ising it to validate

FTMP, there. is still work to be done. First, the methodology should be verified through application to

another system. In particular, the Software Implemented Fault-Tolerant (SIFT) computer at AIRLAB

should have the validation steps applied to it. This computer has constraints similar to FTMP's and

would be an excellent candidate for the validation procedure.

Finally, in the future it will be desirable to contrast performance versus reliability of faul~tolerant

com.puters. One idea is to integrate the synthetic workload - a performance measurement 0001- with the

fault-injection experiments.

37

6. Conclusion
This project outlined and refined an experimental methodology for validating the multiprocessor

avionics computer, FTMP. The methodology emphasizes a building block approach in which tests are

performed starting at the instruction level, progressing through the operating system level and finally up

to application level validation. At each level baseline experiments, which test a single phenomenon, were

performed. These were followed by more sophisticated experiments which test interactions between

several baseline phenomenon. Finally, the concept of a generalized application level experiment tool,

called the synthetic workload, was developed.

Previous research had developed an outline of the methodology and tested it through the application

level. This research refined that methodology with additional baseline tests. In addition, the synthetic

workload was implemented as an application level tool. The synthetic workload was then calibrated with

a baseline experiment to demonstrate the workload's representativeness.

Although the technique was developed specifically for FTMP the origin of the technique dates back to

earlier work on multiprocessors at C-MU. Thus, the methods used here should be applicable to other

computer systems. Tests on another system will supply information on the robustness of the technique

along with supplying meaningful comparisons between systems.

By no means is the methodology complete. Using the synthetic workload for experiments will

undoubtedly reveal deficiencies in the original methodology. But the existence of this tool will greatly

improve productivity, allowing researchers to run more experiments and further refine the methodology.

In general, the methodology has proven to be a sound approach to validating computer systems.

38

App~Ddix A. Test of Select RD/WJ:.tT Primitives
Qn FTMP, Dl08t program tasks access the shared system memory with the foll()wing bus service

rolltines:

411 RD(s!f8.adr,cache.adr,num). This routines transCers num number oC words Cram system
lDelDoryaddress s1/s.adr to cache address ctJche.adr.

• WRT(s!/s.adr,cache.adr,num). This pr()Cedure is the same as RD except, oC course, the
direction oC transCer is reversed.

We wish to find the time these procedures use to access system lDemory with varying trallsCer sbes. In

p~tic1l1ar, we ~e interested in the sizes that are llsed in tlte w()rklo~d. The following illstructions were

tested:

1. IW(sys,cache,l)
2. WRT(sys,cache,l)a. RD(sys,cache,5)
1. ~T(sys,cache,12)

~~rllct~ons 1 and 2 were each executed in a 190p 100 tilDes ~ong with the instructioll 'A=lj'. The

o.~lter twa instructions ",ere execu.ted in a shniler 190p 50 times2
. To find loop overhead, a loop just

.',C':". '.. ,,', ,

cC?~,~ailliog an 'A=lj' instruction was executed both 50 and ~()() times. This is th.e 'NULL' loop3. Times

to ~)Cecllte instructions can be Cound by subtracting l()()p overhead CrolD. the instruction loop, leaving only

instruction execution time.
. ';- '~'.", ;-:' -, :

..

Ins,t,ruct,10n

The refillits of tlte measurements were as Collows:

clock ticks pSec per instruction
per 100p(Ave.) I---~-------------------------I
/loop count w/ overhe~~ w/o overhead

Number
of ~ata

p01nts

1). ~:Q11

2)\ J;U> .. (x;,y,num=l)
3) ~T(x,y.n1lm=l)

1), ~1l1l,
5) @, (x,y,num=5)
($) ~T(x,y,num=12)

15.7/100
70.8/100
69.1/100
8.3/60

38.2/60
46.0/50

39.3 ± 0.019
177.0 ± 0.025
172.8 ± 0.023
41.6 ± 0.0;27

191.0 ± 0.025
230.0 ± 0.018

0.0
137.7 ± 0.044
133.6 ± 0.042

0.0
149.. 6 ± 0.062
188.6 ± 0.046

34.0
220
260
600
600
300

~h~ firt'lt column is the raw data in clock ticks (1 clock tick = .25 mSec). The oext column is the time

te., ~~~(:ut,e a single inlltruction including loop overhead. The third colulDo adjusts the tiloe Cram the

s~colld by subtracting overhead.

2~he loop count. was reduced to 50 Cor these calls since man)' large block transfers cQuld t8:ke mQr~ time than an Rf, prQcess is

al\\>"ed

3A loop must contain at least one instruction; otherwise the compiler will not, accept it. This is why. 'A-I' is Qed. &llas~bs~it~te
C~r a'NULL' loop

39

Appendix B. Example of Workload Use

This appendix contains an example of the running of the workload generator and data analyzer. An

example of the running of the workload calculator is not presented since that program is discussed in

IClune 84J. This example starts with the very first step of the user providing information to the

workload generator followed by the loading of FTMP with the synthetic workload. Then, using the two

command mes produced by the generator, the FTMP synthetic workload is configured and data collection

is run. Output from the data collection is redirected into a me which is used as input to the workload

data analyzer.

The workload generator basically queries the user on how he/she wants the synthetic workload

configured. Input parameters to tasks correspond directly to workload parameters in Figure 4-2. The

workload generator will also ask if the user wants the special Rl tasks (SCC, READALL, and DISPLAY)

included in the workload. Finally, this program will inquire about data collection including what values

and how many iterations the user wants from the workload collection.

The workload data analyzer is more complicated. This program reads in timer values produced by the

collection me generated by the generator and quizzes the user on which timer values to compare. The

initial part of the analyzer is me management. The program skips comments and tables in the data me

to find the start of the workload data. It then quizzes the user on where he/she wants output sent.

Should there be a break due to garbage data, a new collection set, or incomplete data (Le. CTA stalled in

the middle of a collection and had to be restarted), this program will skip to the next major frame of data

and return to the me management prompt.

Next, the Analyzer gets from the user timer values to compare. The format for specifying timer values

is:

<task name> <timer no>
Where <task name> ::= READAL, see, IDLE[123], R[431] [123]

<timer no> .. - 0-5 for Rxx tasks.
6+ for timer value in another collection frame.
0-1 for READALL, see and IDLE task.

Figure B-1 illustrates the workload tasks and timer numbers. For Rxx tasks, the user can specify a

number greater than 5 to refer to a timer value in another collection frame, e.g. 6 corresponds to the Oth

timer value in the task iteration immediately after the current iteration. Thus, to find the tim~ between

running of task R41 we would compare R41 6, the last timer value in task R41, to R41 6, the first timer

value in the next R41 iteration. This is feasible since the timer values for all iterations of a task in a

major frame are stored in a continuous array. The analyzer will try to collect as many data points as

possible in a major frame.

40

..

2

3

o

2

3

o

1

2

o

3

Rll R12 R13R41 R42 R43 R31 R32 R33

l/IO ° 0

~ 1 1 1
1./10 0 0

2 2 2

.'~ 3 3

~
V 1 1 1

~4 4

~s S ~ 2 2 2
~

"...

lJ:en R41 R43 3 3 3
sJ<_~o 01/ 0

l%
1 1 4 4 4
2 2

3 3 \ 5 5 5

/ 4 4 4

S S Sncy -- .

R41-~ R43 R31 R32 R33
0 0 """0-- r-.

~o1 1 1 0 0
2 2 2

3 3 3 1 1 1
4 4 4

S S s 2 2 2

R41 R42 R43 3 3 3
0 0 0

1 1 1 4 4 4
2 2 2

3 3 3 5 5 5
4 4 4
S S S

..

COWW R31 R32 R33

~~~

R41
Length

Time
Betwe
R41 Te
Runs

~31

Fr~que

Flsure 8-1: Dlustration of Workload Tasks



41

It is recommended that the reader look at the steps for running the workload presented in Section 4.5.1

while reading through this example. Figure B-2 illustrates the running of the workload. '.COM' files

contain CTA commands for loading FTMP with the synthetic workload (2TRIAD.COM), configuring the

workload (CONFIG.COM), and collecting data from the workload (COLLECT.COM). WRKLD.CAP is

the absolute load module of the synthetic workload. WRKLD.LOG is an output log of workload data

produced through the collection command file (COLLECT.COM). WRKINFO.T.XT is an internal file

that communicates workload information from the workload generator to the data analyzer.

Throughout this appendix the user response will be in bold font while italicized phrases are guiding

comments. Space constraints require that the example be minimal. Therefore, data collection is for

eight major frames of data. This is much less than would be included in a normal experiment.

Worklo8d
Gener8tor

WRKLD.EXE

ANAL.EXE

DATA

D8t8
An81yzer

WORKINFO.TXT

FT M P

CONFIG.COM

WRKLD.CAP

2TR lADS.COM

Figure ~2: Running the FTMP Workload

• RUNWRKLD
Input fUe [STDIN]: <OR>
Output, fUe [STDOUT]: OONFIG.OOM
No. of R1 tasks: 0
No. of R3 tasks: 1
Task R31:
T1ae 11a1t, in t,1cks (1 t,1ck=O.25 .sec) [48 ticks]: <OR>
Input parueters [1 or (P Q T R S)]: 00000



42

No. of R4 tasks: 2
Task R41:
T111e 11111t 1n t1cks (1 t1ck=0.26 IIsec) [24 t1cks]: <OR>
Input parueters [? or (P Q T R S)]: 0 0 0 0 0
Task R42:
T111e 11111t 1n t1cks (1 t1ck=0. 26 IIsec) [24 t1cks]: <OR>
Input parameters [? or (P Q T R S)]: 0 0 0 0 0
How lIany processor tr1ads (1, 2, or 3)? 2
Do you want SCC linked 1n [Y]? <CR>
Do you want DISPLAY 11nked 1n [Y]? <CR>
Do you want READALL linked 1n [y]? <CR>
Data for collect10n
Do you want the data collect10n loop 1n a separate f1le? en] y
Output fHe [STDOUT]: COLLECT.OOM
Wa1t t111e between collect10ns [6 sees]: <OR>
There are 2 R4 tasks.

How lIany of these tasks do you want data from? [ALL) <OR>
There are 1 R3 tasks.

How lIany of these tasks do you want data from? [ALL] <OR>
Do you want the ID table dumped? [YES) <OR>
Do you want IDLE, SCC, and READALL valUes dumped? [YES] <OR>
Loop 1terat10ns [25]: 8

$ @2TltIADS.OOM Load FTMP with the synthetic workload.
Output from loading...
B1t set

tHIS PROGRAM STARTS UP 2 PROCESSOR AND MEMORY TRIADS.

MEMBERS OF TRIADl ARE LRU·S 0, 1 AND 2.

MEMBERS OF TRIAD2 ARE LRU· S 3, 4 AND 6.

THE MASTER IS LRU • A· .

COOP. CAP LOADED IN MJ,.STER

MASTER ISSUING BUS ENABLE/SELECT COMMANDS.

CLEARING SYSTEM MEMORY TO 0

BEGINNING LOAD OF EXEC MEMORY IMAGE

SYSTEM MEMORY LOAD COMPLETE

LRU·S 6,7,8,9,A,B ARE MARKED FAILED.

TRIAD.ID.TABLE, MRR.TABLE SHOULD BE ALTERED TO CHANGE
THIS CONFIGURATION.

SLOP IS SET TO 40 PER CENT OF R4 PERIOD.

STARTING 2 TRIADS

MASTER MAKING FINAL BUS ASSIGNMENTS



43

SYSTEM STARTED IN MULTIPROCESSOR MODE.

CONFIGURATION TABLES ARE LOCATED AS FOLLOWS:

TABLE LOCATION LENGTH

BUS INMUX SELECT CODE 0 20 12

C BUS ASSIGNMENTS 0 20 12

P. R AND T BUS ASSGN 0 38 12

MEMORY STATUS 0 44 12

PROCESSOR STATUS 0 50 12

ERROR LATCHES 1 00 48

INITIATING TRANSFER OF CLOCK FROM MASTER

Bit is reset
DISCONNECTED FROM C BUS 1
DISCONNECTED FROM C BUS 2
DISCONNECTED FROM C BUS 3
DISCONNECTED FROM C BUS 4
DISCONNECTED FROM C BUS 5

$ @CONFIG
Output from configuring...

Linking in DISPLAY .

Preparing Rl tasks

o Ri tasks

Preparing R3 tasks

1 R3 Tasks

Preparing R4 tasks

2 R4 Tasks

Bringing up 2 Processors



44

Repairing 0-2 .

railing 3-8 .

Sringing up Processors 3-5 .

Linking in IDLE and (opt1onally)
sec, DISPLAY and READALL

$ @COLLEOT /OUTPUT:WRKLD.LOG
All output going a file

$ RUN ANAL
Send Output to the terminal

i:nput file [STDIN]: wrkld.log

START1MG eO~eTION .

TABLES OF IMTEREST LRU assignment table and
table of workload input

0020 0020 0016 0016 0016 0015 0015 0015 0000 0050 e processor
0020 0000 0058 triads

0000 0000 0000 0000 0000 0000 0000 0000 OOOF 0000
0000 0000 0000 0000 0000 0000 0000 0000 OOOr 0008
0000 0000 0000 0000 0000 0000 0000 0000 OOOF 0010
0000 0000 0000 0000 0000 0000 0000 0000 OOOF 0018
0000 0000 0000 0000 0000 0000 0000 0000 OOOF 0020

0000 0000 0000 0000 0000 0001" 0028
OOOA 042F OOOA 042E OOOA 0420 OOOA 042D 0010 0000
~Start of new data.
Where do you want new data (S,#,M,L,?): N
New output tile [STDOUT]: <CR>

EAT:l:MG DATA ...
For this running of the workload we will tOlled data

to measure four things:
*The R41 task length. This is calculated by subtracting

the first timer value in task R-41 (R41 O) from the last
timer value in that task (R41 oj.

* The time ftJr the second processor to start its R-I task
after the first processor started its R-I task. This "task
etartup" time is found by comparing timer values taken
at the beginning of tasks R-41 and R-Ie (R41 0 and R42 OJ.

*The effective rate of an RO ta8k. This i8 done by comparing
time at the beginning of each iteration of the first RO ta8k
(RS1 0 to R31 8). There are four RO ta8k iterations
per major frame of data. ThU8, three value8 can be
collected in a major frame.

* SOO 8tartup time. Thi8 is a measure of the time for SOO to
start after the fir8t R-4 ta8k 8tarts. It is found by comparing
the first timer value in SOO (SeC O) with the fir8t timer



..

45

reading (R.41 0) 01 the lirst iteration 01 task R-Il.

There are:
2 R4 tasks, 2 are dumped.
1 R3 tasks, 1 are dumped.
o R1 tasks, 0 are dumped.
The task ID table was dumped .
sec, READALL and IDLE task values were dumped.
Data point dump 1. Please list highest rate group first.

First timer value (cmd,Q,H,?) [?] > R410
Second timer value > R41 5
Name of this data dump: Task R41 length

Data point dump 2. Please list highest rate group first.
First timer value (cmd,Q,H,?) [?] > R410
Second timer value> R420
Name of this data dump: Task Startup time

Data point dump 3. Please list highest rate group first.
First timer value (cmd,Q,H,?) [?] > R310
Second timer value > R31 8
Timer number for 2nd task crosses a frame boundary.
How many collections do you want per dump group? [1] > <OR>

Normal collection values are: 9 (R4) and 4 (R3).
Use a number that is less than default or

you'll go out of bounds on the data structure.

How many collections do you want per dump group? [?] > 8
Name of this data dump: R3 task rate

Data point dump 4. Please list highest rate group first.
First timer value (cmd,Q,H.?) [?] > R410
Second timer value> see 0
Which R4 task iteration do you want? [0-8] 0
Name of this data dump: see startup time

Data point dump 5. Please list highest rate group first.
First timer value (cmd.Q,H,1) [1] > ~

4 10 403 378
4 6
4 10 635
4 6
4 12 380
4 6
4 11
4 7
4 11
4 11 396 89
4 6
4 11 638
4 6
4 14 380
4 6
4 10
4 7
5 11
4 11 638 294
3 6



46

4 12 889
4 6
6 11 642
4 6
4 11
6 7
4 10
4 11 688 448 ~

4 6
4 10 881
6 7
8 11 641
4 6
4 10
4 7
6 11
6 11 640 288
8 6
6 11 880
4 6
6 11 688
4 6
4 10
4 7
4 11
6 11 689 84
4 6
4 11 880
4 6
4 11 642
4 6
6 11
4 7
4 11
4 10 687 67
3 6
6 11 382
4 6
4 11 648
4 6
6 11
4 7
4 10
6 11 688 298
4 6
4 16 381 ~

4 6
4 10 /642
4 6 ..
4 11
4 7
4 10

»TaSk R41 length.



•

47

AVERAGE =4.126000 (72 Data points)
VAH =0.223692 (ST. DEY. =0.472866)
MAX =6 MIN =3

Print histogram of Task R41 length [Y]? <OR>
3 ( 4) ....
4 ( 66) ••••••••••••••••••••••••••••••••••••••••••••••••••••••*
6 ( 13) •••••••••••••

»Task Startup time.
AVERAGE =8.888889 (72 Data points)
YAH =6.269163 (ST. DEY. =2.603830)
MAX = 16 MIN =6

Print histogram of Task Startup time [Y]? <OR>
6 ( 23) •••••••••••••••••••••••
7 ( 9) •••••••••
8 ( 0)
9 ( 0)

10 ( 11) •••••••••••
11 ( 26) •••••••••••••••••••••••••
12 ( 2) ••
13 ( 0)
14 ( 1).
16 ( 0)
16 ( 1).

»R3 task rate.
AVERAGE =633.468333 (24 Data points)
YAH = 12412.269040 (ST. DEY. = 128.110339)
MAX =643 MIN =380 The epread ie too large to print

Print histogram of R3 task rate [Y]? DO

»scc startup time.
AVERAGE =240.760000 (8 Data points)
YAH = 21286.214844 (ST. DEY. = 146.897960)
MAX =443 MIN =67

Print histogram of sec startup time [Y]? DO

Merge any of the data sets? DO

$



48

Appendix C. Installation Notes
The workload is installed on two systems at AlRLAB: System 10 and System 1. The directory

[EFC.WRKLD] on System 10 contains all workload related files. Since System 10 is the support system

for FTMP executable files (.EXE) for running the workload calculator, the workload generator, and the

data analyzer are here along with absolute load modules for setting up FTMP. AlsO, copies of the AED

workload tasks are on this system along with C code of the above workload programs.

Installed in the directory [FEF.WRKLD] on System 1 is duplicates of .C and .EXE versions of the the

workload calculator, generator, and analyzer. Since the C compiler is only on System 1, the user must

compile on this system rather than System 10. Table C-llists the files associated with the workload.

The files tha.t are essential to running the workload are:

SYNTH2.EXE The workload calculator.

SYNTH.DAT File that must accompany the workload calculator.

WRKLD.EXE The workload generator.

WRKLD.CAP Absolute load module of the synthetic workload.

2TRIADS.COM Command file for loading FTMP with the synthetic workload. This is modified to load
the synthetic workload memory image (WRKLD.CAP) instead of the standard
executive memory image.

ANAL.EXE The workload data analyzer.

It is recommended that the user of the workload copy the above files into his/her own directory and run

lt from that directory. This will help keep things organized and prevent crossing of WRKINFO.TXT

riles. Above all, stay organized; e.g. put output from FTMP into .LOG files and output from the

analyzer into .OUT files.



File Contents

49

Name on VAX

Absolute load module wrkld.cap10

of synthetic workload

Command file for loading 2triad.comlO

.. FTMP with the workload

Workload Calculator synth2.c10,1

C program code

Workload Calculator synth2.exe10,1

Executable code

Data file that must accompany synth.dat10,1

the workload calculator

Output file of Workload results.dat
Calculator

Workload Calculator synth.c/synth.exe10,1

Older version

Common constants used by defines.h10,1

Generator and Data Analyzer

Workload Generator wrkld.c/wrkld.exe10,1

Data file created by the Generator wrkinfo.txt
and used by the Analyzer

Workload Data Analyzer anal.c/anal.exe10,1

Binary tree routines btree.c1O,1

used by Data Analyzer

Command files for compiling synth2.com10,1

the workload Calculator, wrkcomp.com10,1

Generator, and Data Analyzer analcomp.com10,1

Respectively.

•

10 File installed on System 10 in the directory [EFC.WRKLDJ
1 File installed on System 1 in the directory [FEF.WRKLDJ

Table 0-1: Files for Running the Synthetic Workload



50

Appendix D. FTMP Tasks
This appendix describes the AED code used in the synthetic workload. This code is in the data set

LFMTN.CMU.AED on the Business Data Systems Division's (BDSD) mM .381 at Langley Research

Center. Also included is a description of files used to compile and link the workload. For information on

accessing the mM 4381 and the associated file structure see [Feather 84J. The data set member name (file

name) is in the header to the file.

Table D-1 summarizes the AED and associated files used in making the FTMP synthetic workload. In

a.d<lition, many files are on VAX System 10 in directory [EFC.WRKLDJ as indicated by the last column

of the table.

File Oo~tents Name on mM

Ra.te 4 Workload Tasks LFMTN.CMU.AED(wrkld4)

Ilate 3 Workload 'rasks LFMTN.CMU.AEp(wrkld3)

Ilate 1 Workload 'rasks LFMTN.CMU.AED(wrkld1)

R~t~ 4 -Special- 'rask LFMTN.CMU.AED(wrkld44)
t() start the workload

Ilate 1 -idle- Tasks LFMTN.CMU.AED(wrkldn14)

SOC modified to record LFMTN.CMU.AED(nscc)
st"..t 8.& stop time

~ALL lDodified to LFMTN.CMU.AED(nreadall)
record start & stop tilDe

Table of all of the FTMP LFMTN.CMU.ASM(wrktab)
aJI.<t workload global variables.

Linker command file LFMTN.CMU.LINK(wrkld)
for the workloacl

Name on VAX 10

wrkld4.aed

wrkld3.aed

wrkld1.aed

wrkld44.aed

wrkldn14.aed

nscc.aed
(partial listing)

nreadall.aed
(partial listing)

wrktab.asm

wrkld.lnk

Linker output

J\,b~lute load Qlodule
of workload

CQJDmand file for loading
FTMP with the workload

LFMTN.CMU.LINKLIST(wrkld)

LFMTN.CMU.LOAD(wrkld)

Table D-l: FTMP Files for the Synthetic Workload

wrkld.cap

2triad.com

'rhe. following is a detailed description of all of the files used to make the workload.



•

51

LFMTN.CMU.AED(wrkld4)
This file contains the highest rate group (R4) workload tasks. There are three rate
four workload tasks. Parameters to each task correspond to the model parameters
(Figure 4-2) and are read from FTMP's global memory by the task. These parameters
are set in memory by the workload generator (Section 4.5.1). A total of six, two-word
timer values are recorded.

LFMTN.CMU.AED(wrkld44)
This is the forth R4 task. Although not linked in while the workload is collecting data,
this task is absolutely essential for starting a round of data collection. This task waits
for a global variable to be set to -1 (set by a command file generated by the workload
generator), thus signaling the start of data collection. Once this variable is set, this
task waits for the start of a major frame (Section 2.4), sets all the other tasks'
execution counters, and links itself out of the task structure. Each tasks' execution
count indicate how many times the task should run in a collection round. At the
conclusion of a collection round, the workload generator command file links this special
R4 task back into the task list for another round of data collection.

LFMTN.CMU.AED(wrkld3)
This file contains the R3 workload tasks. Except for the rate group, these tasks are
identical in all respects to the R4 workload tasks.

LfMTN.CMU.LINK(wrkldl)
This file contains the Rl synthetic workload tasks. These tasks are very similar to the
R4 and R3 workload tasks.

LFMTN.CMU.AED(wrkldn14)
This file contains special Rl -idle- tasks that help record triad idle time. Once a
processor triad has finished its regular Rl tasks (i.e. Rl workload tasks, SCC,
READALL, and DISPLAY), that triad will execute one of the -idle- tasks. The triad
will hold onto the task until all other processor triads have finished their Rl tasks and
started an Rl -idle- tasks. Thus, these tasks give the user an idea of the amount of
idle time in a, major frame. The time from the start of the idle task to the end of the
frame is not a direct measurement of idle time since Rl task execution can be
interrupted by the start of a Rate 3 or Rate 4 task frame. Also, because SCC's position
in the task list may change depending on processor availability (Section 4.5.2), the SCC
task might execute after that processor's idle time in a major frame. In conclusion,
these tasks are a tool for measuring idle time in a major frame.

LFMTN.CMU.AED(nscc)
This code is the System Configuration Control (SCC) task modified for recording time.

LFMTN.CMU.AED(nreadall)
This file contains the -READALL- task modified for recording time.

LFMTN.CMU.LINK(wrkld}
This is the linker command file for the workload. It ties all of the miscellaneous files
together for linking into a download module.

LFMTN.CMU.LINKLIST(wrkld}
This file is the output from the linker. It contains a linker cross-reference along with a



52

memory map of the FTMP workload. There is a copy of this file on the VAX called
wrkld.lnk.

LFMTN.cMu.LOAD (wrkld)
This file contains the absolute load module, ntinus PROM code, for downloading to the
VAX. A copy of this file should already be on the VAX under wrkld.cap.

LFMTN.CMU.ASM (wrktab)
This is the OAPS-6 assembly file of all the global variables in FTMP. It, of course
includes workload variables, A copy of this file called wrktab...rn is on the VAX
System 10 in directory [EFO.WORKLD].

..



•

..

•

[Clune 84J

[Draper 83aJ

[Draper 83bJ

[Draper 83cJ

[Draper 83dJ

[Feather 84J

[Ferrari 78J

[Hopkins 78J

[Kong 82J

(NASA 79a)

(NASA 79b)

[Singh 81J

[Toy 78J

53

References

Ed Clune.
Analysis of the Fault-Free Behavior of the FTMP Muliprocessor System: Baseline

Measurements and Synthetic Workload Development.
Master's thesis, Carnegie-Mellon University, 1984.

Development and Evaluation 01 a Fault-Tolerant Multiproceaaor (FrMP) Oomputer,
Vol I, FrMP Principle8 0lOperation8
Charles Stark Draper Laboratories, 1983.
Contract Report (CR) 166071.

Development and Evaluation 01 a FrMPOomputer, Vol II, FrMP Soltware
Charles Stark Draper Laboratories, 1983.
CR166072.

Development and Evaluation 01 a FrMP Oomputer, Vol III, FrMP Te8t and
Evaluation
Charles Stark Draper Laboratories, 1983.
CR166073.

Development and Evaluation 01 a FrMPComputer, Voillf, FrMP Executive Summary
Charles Stark Draper Laboratories, 1983.

Frank Feather, Carlos Liceaga.
FrMP Programmer '8 Manual
2nd edition, 1984.

Domenico Ferrari.
Computer SY8tem8 Perlormance Evaluation.
Prentice-Hall, 1978.

Hopkins, A.L., et.al.
FTMP - A Highly Reliable Multiprocessor.
IEEE Tran8. on Oomputer8 , October, 1978.

Thomas H. Kong.
Measuring Time for Performance Evaluation of Multiprocessor Systems.
Master's thesis, Carnegie-Mellon University, 1982.

NASA-Langley Research Center.
Validation Method8 lor Fault-Tolerant Avionic8 and Control SY8tem8 - Working Group

Meeting I, NASA-Langley Research Center, 1979.
NASA Conference Publication 2114.

Research Triangle Institute.
Validation Method8 lor Fault-Tolerant Avionic8 and Control SY8tem8 - Working Group

Meeting II, NASA-Langley Research Center, 1979.
NASA Conference Publication 2130.

Ajay Singh.
Pegasus: A Controllable, Interactive, Workload Generator for Multiprocessors.
Master's thesis, Carnegie-Mellon University, 1981.

W.N. Toy.
Fault-Tolerant Design of Local ESS Processors.
IEEE Tran8 on Computer8 , October, 1978.



[Wensley 78]

54

Wensley, J.H., et.al.
SIFT: A Computer (or Aircraft Control.
IEEE 7'rans. on Oomputers , October, 1978.

..



•

..



1. R~ NO.
NASA CR-178075

3. Recipient'. c.tllog No.

4. Title Ind· Subtitle

Fauit-Free Validation of a Fault-Tolerant Multipro
cessor: Baseline Experiments and ~orkload Implementa~

Hnn

5. Report Date

April 1986
8. Performing Orl'lniZition Code

...

•

NAG1-190

8. Performing Organimion Report No.

11. Contract or Grlnt No.

7. Author(sJ

Frank Feather, Daniel Siewiorek, Zary Segall
t-,-.,-:----,-.,-----------------------~10. Work Unit No.

9. ""orrnirtO Orglilizltion Name and Addr_

Carnegie-Mellon University
Pittsburgh, PA 15213

Contractor Report
1•. Sponsoring Agency Code

505-66-21-01

.......,-.,.....-,-.,--__------------------------i 13. Type of Report and Period Covered
12. SPonsoring AgilriCy Name and Addr...

National Aeronautics and Space Administration
Washington, DC 20546

15. SupPIerritrit-v Not"

Langley Technical Monitor: George B. Finelli

,6. Atisulct
In the future, aircraft employing active control technology must use highly
reliable multiprocessors in order to achieve flight safety. Such computers must
be experimentally validated before they are deployed. This project outlines a

, methodology for doing fault-free validation of reliable multiprocessors. The
methodology begins with baseline experiments, which test single phenomenon. As
experiments progress, tools for performance testing are developed.

This report presents the results of interrupt baseline experiments performed on the
Fault-Tolerant Multiprocessor (FTMP) at NASA-Langley's AIRLAB. Interrupt-causing
exception conditions were tested, and several were found to have unimplemented
interrupt ha.ndling software while one had an unimplemented interrupt vector.
A synthetic workload model for realtime multiprocessors is then developed as an
a.pplication level performance analysis tool. Details of the workload implemen
'ta;tidnand calibration are presented. Both the experimental methodology and the
sy'nth~tic workload model are general enough to be applicable to reliable multi
prOcessors besides FTMP.

17. KiyWordi (Su9llllted by Autllof(s)

Validation
Fau'1t~Tolerant

Multiprocessors
Performance Measurement
W():rkload

Fault-Free
18. Distribution Stltement

Unclassified - Unlimited
Subject Category 62 •

.. It.Slcurity o..;f. lof this report)

Undass if ied

20. Slcurity Clatlif. lof this PIlI)

Unclassified

21. No. of Pili"

58

2~. Price

A04

FCII sale by the Nalional TechnicallnfCllmationService.Springfield. Virginia 22161



..



._. - ,v

); II \\1 III\\1 ~~\\11\~~ \[r\~\~~[I\I[~\\fli[\ III\11\11II '
3 1176 01315 0967

..


