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Preface

This presentation of time series analysis techniques has been devel-
oped by the author in the process of teaching (since 1971) a graduate
level course on the subject to scientists, engineers, and computer an-
alysts at NASA Langley Research Center. The intent is to develop,
from the beginning, the basic understanding necessary to properly ap-
ply modern spectral analysis techniques. The subject rests on a firm
foundation in the theory of probability, which will be reviewed in this
monograph. Thus, the only prerequisites are an ordinary engineering
knowledge of calculus and some acquaintance with linear system theory.
However, familiarity with random process theory, as provided in Prob-
ability, Random Variables, and Stochastic Processes by Papoulis, and
with Fourier analysis techniques, as provided in The Fourier Transform
and Its Applications by Bracewell, would be helpful.

Although there are many textbooks on time series analysis, several of
which the author has used in his courses, this monograph takes a differ-
ent approach from most. First, the theory in this presentation has been
developed, insofar as possible, for continuous data. This postpones the
inevitable use of discrete mathematics, which the author believes tends
to obscure physical understanding, until after the reader has gained
some familiarity with the concepts. Only then are the computational
detailsfordigitaldata introduced.Second,the authorassumes that
most readerswillhave accessto eitherstandardcomputer softwareor

hard-wiredspectralanalyzersto do thework ofcomputation.One big

dangerofsuchstandardanalysistechniques,however,isthattheywill

alwaysyieldan output,even ifthe inputdoes not satisfythe assump-
tionson which the analysisisbased. Thus, thismonograph seeksto

providethe theoreticaloverviewnecessaryto correctlyapply the full

range of thesepowerfultechniques.Finally,time seriesanalysisisa
vastand rapidlychanging field.In an attempt to remain complete

and current,the lastchapterintroducesthereadertomany specialized

techniquesand areaswhere researchispresentlyinprogress.
The author would liketo expresshisappreciationto William E.

Zorumskiand StephenK. Park,who worked almostashardinreviewing
thismanuscriptas theauthordid inwritingit.

Jay C. Hardin
NASA LangleyResearchCenter
Hampton, VA 23665-5225 III__ PAGE BLANK NOT
July 16, 1985
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Symbols

art_ 51,1

d(t)

E{ }

/

f(t)

fx(zl, z2, ..., z,;
tl, t2, ..., t_)

fz_

H(_)

h(t)

k

,nx(t)

N

.vs

P{}

P

Rx(t_, t2)

Rxy(tl,t2)

S

series coefficients

data window function, equal to 0 for t < 0
ort>T

expectation operator

Fourier integral transform of f(t) (eq. (2.3))

cyclic frequency, Hz

real function of independent variable t

first order density function of random
process X(t) (eq. (3.1))

nth order density function of random

process X( t)

joint density function of random processes

X(t) and Y(t)

fre_tuency response function of linear, shift-

invariant system (eq. (5.2))

impulse response function of linear, shift-

invariant system (eq. (5.3))

number of degrees of freedom of chi-square
random variable

mean value taken by random process X(t)

at time t (eq. (3.2))

number of samples (or data points) taken of
a random process

number of blocks of data

probability of event { }

period of periodic signal f(t)

autocorrelation of random process X(t) at
times tl and t2 (eq. (3.5))

cross correlation of random process X(t) at

time tt and random process Y(t) at time t2
(eq. (3.11))

chi-square random variable (eq. (3.9))
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Sx(_)

Sxr(_)

sinc(x)

T

rs

T_

T_

t

WR

ws

x(o, r(t), z(t)

X(_), Y(_)

XF(,_)

XT(W)

rx(tt, t2)

af

At

61¢.n

power spectraldensityofrandom process

xct) (eq. (4.1))

cross power spectral density of random
processes X(t) and Y(t) (eel. (4.12))

sinc function, equal to (sin z)/x

length of data record

lengthofdata block

half-lengthoflagwindow

responsetimeof linear,shift-invariant

system

independentvariable,not necessarilytime

Fouriertransformof lagwindow function
(eq. (7.8))

lag window function

window correction factor in autocorretation
estimate

window correction factor in spectral
estimate

random processes

Fourier transforms of random processes
X(t) and Y(t) (eq. (4.10))

Fourier transform of random process X(t)
through data window (eq. (7.16))

finite Fourier transform of random process
X(t), calculated from sample function of
length T (eq. (7.12))

covariance of random process X(t) at times
tt and t2

bandwidth ofspectralestimate

samplinginterval

bandwidth ofspectralestimateinrad/sec

Kroneckerdeltafunction

X
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Dirac delta function

variance of random process X(t) at time t
(eq. (3.4))

random pha_e angles of sinusoidalsignals

time lag,equal to t2- tI

frequency,units are radians per second ift
is time

Nyquist frequency,equal to _r/At

frequenciesof periodic function,equal to

2nlr/p for--oo < n < _;also, set of

frequencies not necessarily related; also, set

of frequencies at which spectral estimates
are calculated

complex conjugate

estimate
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Chapter I

Introduction

Consider a record of length T of a real function f(t) as shown in

figure I. By convention, the independent variable is called _time,"

although itneed not actuallybe time. Instead,the function may depend

on distance or angle or any other variableof interest.The data record

shown isof finitelength,sincethat isallthat isever availableinthe real

world, and need not be continuous but may, in fact,consistof digital

data taken at a set ofdiscretetimes. This monograph willbe concerned

with the development, interpretation,and use of various techniques to
extract information from such a record.

f(t)

0

Figure 1. Record of finite length of real function f(t).

1.1 Why Harmonic Analysis?

Many time series analysis techniques involve harmonic analysis, that

is, decomposition of the record f(t) into a collection of sines and cosines
of various frequencies. Before considering these techniques, it is relevant

to ask why it would ever be necessary or advantageous to represent a
function by harmonic functions. Certainly many records of interest look
very different from the well-behaved periodic sine and cosine functions.

There are at least three answers to this question.

Simple input/output relatio_ for linear systems. Consider a signal
z(t) that is passed through a linear, shift-invariant physical system to

II ii t[ U l'i II 121; E II I;.11 lJ II



Introduction to Time Series Analyni_

I
x (t) _-_ Linear

System-i
y(t)

Figure2. Schematicoflinearsystem.

produce an output signal y(t) as shown in figure 2. Although the input

and output axe related by a convolution integral in the time domain, the

harmonic representations of the input X(_), where w is the frequency
in radians per second, and the output Y(w) are related by the simple
expression

Y (_) -- H(w)X(_) (1.1)

where H(_) is called the frequency response function for the system.
This fact, which is known as the convolution theorem, is the basis of

many techniques for the solution of differential and integral equations

and is an aid to understanding the response of linear systems.

E_t_c of interpretation (db_tostics). Many time signals axe not easily

analyzed in the time domain. For example, figure 3 displays the voltage
output time history of a microphone recording the noise radiated by a

supersonic jet operating in an off-design condition. Such time histories

axe nearly unintelligible. However, although the time and frequency
domain representations contain precisely the same information in the

sense that one may be recovered from the other by integration, the

generation and potential effects of a signal may often be more easily

understood in the frequency domain. For example, figure 4 shows the

power spectral density, as a function of frequency, for the time history.
in figure 3. From the frequency domain perspective in figure 4, it can
be seen that most of the power in the signal is concentrated near 5 kHz.

In addition, a screech tone, caused by oscillation of the shocks in the jet
due to a natural instability of the jet plume, is apparent near 5.2 kHz.

Another dramatic example of such analysis was given by Blackman
and Tukey 1 in Measurement of Power Spectra when they quoted a letter

from Walter E. Munk: "... we were able to discover in the general

wave record a very weak low-frequency peak which would surely have

escaped our attention without spectral analysis. This peak, it turns out.
is almost certainly due to a swell from the Indian Ocean, 10,000 miles

distant. Physical dimensions axe: 1 mm high, a kilometer long."

11
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Figure 3. Noise radiation by supersonic jet.
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Introduction to Time Series Analysis

Because of their ability to extract information from highly variable

records, spectral analysis techniques are widely applied in fluid dy-
namics, acoustics, and vibration. In addition, such analyses are read-

ily accomplished with either modern digital computers or specialized
hardware.

of simul_iom. Often it is necessary or desirable to excite a

system with a particular time history or class of time histories, either

in the laboratory or on a computer. However, it is not practical

to develop an excitation system for each individual signal. Thus.
if the signal can be decomposed into its constituent harmonics and

ordinary oscillators (or harmonic functions on a computer) used to

produce the excitation, simulation becomes appreciably easier and less
expensive. This technique is used by electrodynamic shakers in missile

and automobile vibration testing, for example.

• 1.2 Deterministic or Random?

An important question in the extraction of information from a record

like that shown in figure I is as follows: Is the record unique or is

it merely representative of an ensemble of records which might have
been obtained? For example, a smoother version of figure 1 might be

a record of the elevation as a function of distance along the track of

an amusement park ride. If one were designing a cart to traverse that
particular track, then this would be the unique (deterministic) record of

interest. On the other hand, figure I might be a record of the vertical
gust velocity as a function of time experienced by an aircraft flying

through a thunderstorm. If one were designing an airplane, then the
record would be viewed as merely representative of an ensemble of data

that might have been obtained in many different thunderstorms. In this

random case, the particular properties of the record at hand are not as

interesting as the average properties of the whole ensemble of records
which might have been obtained. To discuss such data, the concept of

a random process must be introduced.

Although many of the techniques developed in this monograph

are equally applicable to deterministic data records, the monograph
will primarily be concerned with the extraction of information from

records that may be considered sample functions of random processes.

The analysis of such nondeterministic records is a rapidly changing
field with new techniques being devised continually. It is also a field

requiring sound engineering judgment in the application of techniques

and interpretation of results; many pitfalls await the unwary. It is hoped

that this monograph will give the reader the understanding necessary

4
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Chapter I Introduction

for the proper application and interpretation of time series analysis

techniques.
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Chapter I!

Harmonic Analysis

AJthough several seemingly different forms of harmonic analysis are

in common use today, they axe all special cases of what is now called
generalized harmonic analysis. While this monograph will occasionally

require use of the full power of this elegant theory, for the most part, the

ordinary idea of a Fourier transform as developed in advanced calculus
courses will suffice.

2.1 Fourier Transform Pair

If a function f(t) is such that the integral

_o [f(t)lao (1 + +2),-,dt (2.1)

converges for some a > O, then f(t) may be written

Sf(t) = FCw) e _t dw (2.2)
O0

where

i/_ _- f(t) e -i_t dt (2.3)f(_) _ ¢0

is called the Fourier integral transform 2 of f(t). If the variable t is

actually time, then _a is the frequency in radians per second. Since
eiwt = cos_t + isin_t, equation (2.2) provides a representation of

the function f(t) in terms of the periodic sine and cosine functions.

Equation_ (2.2) and (2.3) form what is called a Fourier transform

pair and are the fundamental Fourier transform pair that will be used
throughout this monograph.

As will be discussed further in chapter IV, one has considerable
freedom in defining a Fourier transform pair. In particular, the

II II II IJ I_ E ld L E U li I! U U



Introduction to Time Series Anal_/a_

factor (21r) -1 may be placed before either the time or the frequency

integration. The reason for the above choice is that it allows the total
power in a random process to be obtained by integrating its power

spectral density over all frequencies with no proportionality factor

required. The inherent simplicity and elegance of this relationship

seems to the author to be worthy of achieving. On the other hand.
with the above definition of a transform pair, the (21r) -1 factor must be

reserved for the frequency integration in defining the frequency response

function of a linear, shift-invariant system, in order to preserve the
simplicity of fundamental relations such as equation (1.1). Thus, this

monograph will violate the above convention in the single case of a

frequency response function.

The Fourier integral representation for the function f(t) (eq. (2.2))
converges to f(t) at every point where f(t) is continuous. If f(t) is

discontinuous at some point t ffi to, then the integral in equation (2.2)
will converge to

l(t_') + f(t_)
2

the average of the right- and left-hand limits of f(t) at t -- to, provided
that these limits exist.

2.2 Examples

The Fourier integral (eq. (2.2)) has different characteristics depen-

dent on the properties of f(t). Consider the following special cases.

Tr_uiemt fun'riot. If f(t) is bounded and approaches zero as

ttl -* oo, it certainly satisfies the condition that integral (2.1) converge

for a > 0. In this case, F(_) is an ordinary (often complex) continuous
function. For example, if

e at (t >_ 0)f(t) ffi 0 (Otherwise)

where/3 is real and positive, then

F(w) = (3 + i_)-1/2_ "

which is complex. If the magnitude of F(_),

IF(_)I = (,8_ + _'_)-1/2/2_"

8
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Chapter II Harmonic Analys_a

IF(c_)l

(o

Figure 5. Fourier transform of transient function.

is plotted as shown in figure 5, it can be seen that f(t) is represented
by harmonic functions having a continuum of frequencies.

Periodic functions. If f(t) is bounded and periodic with period p,
it again satisfies the condition associated with integral (2.1). However,
unlike the situation illustrated in figure 5, F(o;) is nonzero only at a
discrete set of frequencies. To see this, note that periodic functions may
be expanded in the familiar Fourier series, that is,

OO

a0
f(t) = T + _ (an cosoJnt + bn sin_nt)

r_ml

where _n = 2nlr/p. This series also converges to f(t) at all points
where f(t) is continuous. Introducing the mathematically convenient
concept of negative frequencies allows this series to be written as

OO

fCt) = _ Fne iw"t (2.4)
rt oo

where

Fn = an - i_ 1 fo p f(t) e -iw"t= _ dt (2.5)

and _-n = -_,_.

Now, corisider the so-called Dirac delta function 8(_z - ,J), which is
defined by the relations,

and

6(w - _') = 0

,O g(_) _(_ _ J) _ = g(_')
(DO

(_ # J)

where g(w) is any "fairly good" function, 3 that is, differentiable and
well behaved at infinity. Most functions met in the real world are of

9
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Introduction to Time Serien Analyoio

thisclass.The delta function,which isdefined by itsintegralproperty

above, isactuallya generalizedfunction;that is,itliesoutside the class

of ordinary functions. Itmay be envisioned as the limitas __w -- 0 of

the rectangular function

t0 (Otherwise)

whose width is Aw, whose height is 1/Aw, and whose integral is unity.

As Aw --* 0, the amplitude of this function grows without bound, but its

integral is unchanged. The delta function has a long and controversial
history, being first introduced without proper mathematical justifica-

tion by those who found it exceedingly convenient. Only in recent years
has it been placed on a rigorous foundation 3 to the satisfaction of the

mathematicians.

The delta function arises in the analysis of periodic functions because

periodic functions are not square integrable; that is. f_°°oof2(t)dt

is unbounded if f(t) is periodic. As the existence of this integral
is a requirement for the nongeneralized Fourier transform to exist. 2

harmonic analysis of such functions must rely on the full power of

generalized harmonic analysis. From the definition of the delta function.

it can be seen that the function f(t) - e 'w't may be expressed a.s

f(t) = eiw't= f _o 6(w - _') eiwtdoa
O0

If this relation is compared with equation (2.2), it follows that the

Fourier transform of f(t) = ¢,w't is

F(w) = 6(w - _')

Thus, by equation (2.3),the highly usefulrelation

[6(_ -- WI) = for e-i(_-w')tdt (2.6)

is derived. This equation is of fundamental importance and will be used

many times in this monograph.

As an example, only because of equation (2.6) is it possible to
develop the Fourier integral transform of a periodic function. If

equation (2.4) is used in equation (2.3) and equation (2.6) is applied.

10
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Chapter H Harmonic Analysis

then

IF(c_)I

 ,l ...
"_3 °_2 "r_l 0 _1 _2 _3

Figure 6. Fourier transform of periodic function.

F(_) = _ F.6(_-_.) (2.T)

which can be seen to be nonzero only at a discrete set of equally spaced
frequencies. Thus, the Fourier transform of a periodic function has a

discrete structure. The magnitude of this relation is shown in figure 6,

since the Fn's are generally complex. In this figure, the arrows have

been used to represent the delta functions. It should be mentioned that,
even though the delta functions are unbounded, discrete transforms

are generally plotted as an amplitude spectrum with the height of the

arrow indicating the coetticient magnitude, IFn], which is actually the
contribution to the integral of the spectrum at the frequency _ - _n.

Such amplitude spectra are even functions of w since

r_ _---- F_

2.3 Convolution Theorems

One property of the Fourier integral transform that will be used

repeatedly in this monograph is its ability to transform products.
Consider the transform of the product of two time functions:

,L°f(t)g(t) e -i_t dt

If the individual time functions f(t) and g(t) have Fourier integral
transforms F(w) and G(w), respectively, then

Ef(t) = F(oJ) e i_t d_
O0

11
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Introduction to Time Series Analysia

and

/29(t)= G(_)e_t#_
O0

These relationsallow the transform of the product to be written

l O0

f__ f(t)g(t) e-_'dt

C f_dte-iwt dw' F(J) ei_'t oo dJ' G(w") ei_''t
_ O0 O0 O0

CC= _' #_"F(J)G(J')
oO O0 O0

where the last integral may be recognized from equation (2.6) as

b(oa-_' -w"). Thus, carrying out the integrationover eitherw' or

oa" yieldsthe fundamental relation

I OO

f'--oof(t)g(t)e-_t dt

/_c_ dw' F(w')G(w - w') dw" F(w - w")G(w")
Oo oo (2.6)

called the frequency convolution theorem. 4 Often this theorem is
written

/(t)g(t).----F(w) • G(_)

where the asteriskindicatesconvolution and the double-headed arrow

indicatesa Fourier transform pair. In words, this theorem statesthat

the Fourier integraltransform of the product of two time functions is

equal to the convolution integralof the Fourier integraltransforms of

the two functions in the frequency domain. This resultwillbe applied

extensivelythroughout thismonograph.

A converse of this theorem, called the time convolution theorem. 4

may alsobe developed. The Fouriertransform ofa convolution integral
in the time domain

C
OO

satisfies the theorem

f(r)g(t - r) dr = f(t) • g(t)

f(t) * g(t).--. 27rF(w)G(w) (2.9)

12
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Chapter H Harmonic Analysis

that its Fourier transform is given by 2_r times the product of the Fourier

transforms of the individual functions f(t) and g(t). This theorem

greatly simplifies the application of Fourier transforms in linear, shift-

invariant systems.
With the definition of the fundamental Fourier transform pair and

some understanding of its properties, the tools are available to begin

consideration of the application of harmonic analysis to time histories

that may be considered to result from random phenomena.

13
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Chapter III

Random Process Theory

The theoretical foundation underlying the harmonic analysis of

random time histories is random process theory. For much of the

actual practice of such analysis, this foundation is buried so deeply

that the user may not even be aware of its existence. However, proper

understanding and application of time series analysis techniques require
its consideration.

3.1 The Concept of a Random Process

The subject ofallrandom analyses isan experiment _, which could

be performed repeatedly,at leastconceptually. For example, one might

test an aircraft part to failure in fatigue. Each performance of such

an experiment is called a trial and its result is an outcome f. If it i_

impossible to predict, independent of the number of times the ezperiment
ban been performed previously/, what the result of a 9iven trial will be,

the experiment is said to be random. In this case, there are more

than one and, perhaps, an infinite number of possible outcomes to the
experiment. The set of all possible outcomes is called the sample space

S = if1, f2,...} of the experiment. In the real world, the sample space

generally contains an uncountable number of possible outcomes. In

analyzing the experiment, an attempt is made to statistically describe
this whole set of possible outcomes.

Now, consider an operator that yields a function x(t) of the parame-

ter t for each outcome of the experiment, such as a strain gage measuring
the strain at some point on the specimen as a function of time in the

fatigue test mentioned above. This operation is shown schematically in

figure 7. One time history xj(t) is related to each outcome fj of the
experiment _'. The ensemble of all possible time functions that might
be obtained in this way, X(t; _), is called a random process. Three of

the possible time histories included in this ensemble are shown in fig-
ure 7. The single function obtained on a given trial is called a sample

P_C_ } _, , _£NI|0NALLI BLANK 15
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Introduction to Time Series Analysis
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Figure7. Schematicof a random process.

function, or realization, of the random process. For example, the ex-

periment might be launching the Space Shuttle and the operator might

be a pressure sensor mounted somewhere on the fuselage. Although
the groes characteristics of the pressure signal would be predictable de-

terministically, there will be random variations due to wind loading,

fuel burn rates, etc. Thus, the pressure time history produced by this
transducer on a given launch would be a sample function from the ran-

dom process made up of all possible pressure time histories that might

be produced in this way, some of which have occurred on past Shuttle
flights or will occur on future Shuttle flights.

Dacriptiom of random procrJs¢$. The most complete description

possible for a random process is given in terms of its distribution or

density functions. Consider the event {X(t0) _< zO} that the random
process X(t) (dependence on the outcome f is understood) takes a value

less than or equal to some chosen number z0 at time to. Imagine that

the experiment £ is repeated many times. Each time the experiment is

conducted, any one of the possible outcomes q and, thus, any one of the

time histories making up the ensemble representing the random process
X(t) could occur. However, on any given trial, one could examine the

resulting time history to see whether its value at time to was less than or
equal to z0. If the experiment is repeated N times, then one could form

the ratio NE/N of the number of times N E that the event occurred to
the number of times N that the experiment was repeated. This ratio

will be between zero and one. The probability of the event may then be

defined as the limit of this ratio as the number of repetitions approaches
infinity, that is,

P{X(to) <zO} = lim NE
-- N--oo .V
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Chapter III Random Process Theory

assuming the limit to exist. Although some mathematicians are
not totally comfortable with this intuitive definition, 5 it is the ulti-

mate relationship between the theory and the real world. 6 In words,

P{X(to) <_ z0} is the likelihood of occurrence of a sample function
whose value is less than or equal to x0 at time t0.

The value of P{X(to) < x0} generally depends on to and x0. Thus,
one may expand the concept by dropping the subscripts and thinking

of x and t as variables to define the first order distribution function of

the random process X(t):

Fx(z; t) = P{xct) ___z}

This function generally depends on both x and t and always satisfies

o < Fx(z; t) <_.1

An exactly equivalent, but mathematically more convenient, descrip-

tion is given by the first order density function of the random process

X(t):

fx(z; t) -_ OFx(z; t) (3.1)
Ox

The density function satisfies

ffl Yx(z; t) dx = I
O0

and

Ix(z; t) > o

since the distribution function is a monotonically nondecreasing func-
tion of z for each t.

For many applications, the amount of information contained in

the distribution or density function is more than is feasible, or even

desirable, to know about the random process. In these cases, it is
possible to introduce certain averages, or expected values, over the whole

ensemble of functions comprising the random process. Suppose that

9[X(t)] is any function of the values taken by the random process at
time t, such as sin X(t) or X3(t). Then one may define the expected

value of g[X(t)] by

FE{g[X(t)l} = g(x)f.,c(z; t) dx

17

\
Td IJ 1,[ 1.[ L{ L[' L[ U L[ L{Id



Introduction to Time Series Analysis

where E is called the expectation operator. Thus, the operation of

taking expectation merely amounts to multiplying the function by the

density function for the random process at time t and integrating over

all possible values of z. It is equivalent to averaging the values of the
function at time t obtained by conducting the experiment repeatedly.

The most useful of these expected values are

Mean

f_"rnx(t) ffiE{X(t)} = zfx(z; t) dz
O0

(3.2)

which is the average value taken by the random process at time t.

Mean square

E{X2(t)} --/)_ x2 fx(x; t) dx (3.3)
O0

which is often called the "power" in the random process X(t).

Variance

Fa2x(t) -- E{[X(t) - rex(t)] 2} -- [z - mx(t)]2fX(Z; t) dx (3.4)
OO

which is a measure of the variation of the random process about its mean

at time t. The square root of the variance, ax(t), is called the standard
deviation. Note that the expectation operation, which is an integration.

is linear. Thus, the exl)ected value of a sum is the sum of the expected
values. Further, the expected value of a constant or deterministic
function is equal to that constant or deterministic function. Therefore.

a_(t) = E{[X(t) - mx(t)] 2} = E{X2(t) - 2mx(t)X(t) 4- m._(t)}

= E{X2(t)} - 2mx(t)E{X(t)} + m_(t)

= E{X2(t)} - m2(t)

This expression indicates the fundamental relationship between the

mean, mean square, and variance and provides a useful alternative way
of calculating the variance.

In the same spirit in which the first order distribution function was

developed, one may define the second order distribution function of the
random process X(t):

Fx(zt,zz;tt,t2) = P{X(tt) < zt a X(t2) < zg}

18
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Chapter III Random Process Theory

Here N indicates the set operation of intersection and may be read as

"and." Thus, the second order distribution is the probability that the

random process is less than or equal to zl at time t I and less than or

equal to x2 at time t2. Again, it can be interpreted as the likelihood of
occurrence of a sample function having these properties.

Likewise, the second order density function

/X(ZX, z2; q, t2) = 02Fx(zl' z_; q, t2)
Oxl Ox2

and an expected value that depends on the values taken by the random

process at two times

E {9[X(tl), X(t_)]} = dz2 9(z_, z2)fx(z_, z2; q, t2)

may be defined. Here g[X(tt), X(t2)] is again any arbitrary function

such as exp[X(tl) + X(t2)]. The most useful second order expected
values are

A utocorrelation

Rx(t,.t,)=E{X{t,)X(t,)}=£d._t_dx, xl=,/x(x,,x_;t,.t,)

(3.5)

which is a measure of the linear relation between the values taken by

the random process at times tl and t2. Note that Rx(t, t) = E{X2(t)}.

C ovariance

rx(q, t2) = E{[X(t_) - ,.x(t_)l[X(t_) - mx(t_)]}
----Rx(tl, t2) - mx(tl)rnx(ta)

Note that Fx(t,t) = o-_(t) and that if rex(t) - O, Fx(tl,t2) --
Rx(tl,t2).

Correlation coefficient

px(q, t2) =
rx(q,t2)

ax(t_)ax(t_)

which can be shown to satisfy ]px(ti, t2) I < 1.

19
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Introduction to Time Serien Analynis

The concept of a distributionfunction may be further generalized

by definingthe nth order probabilitydistributionfunction

Fx(xl, x2, ..., zn;tl, t2, ..., tn)

= P{X(tl) _ xl n X(t2) _ x2 N... M X(tn) < Xn}

for the random process X(t) for all n and any collection of times
tl,t2,...,tn. In words, the nth order distribution function is the

likelihood of occurrence of a sample function whose value x(t) is less

than xt at time tx and less than x2 at time t2 and ... and less than x,
at t_e tn.

An exactly equivalent description is given by the nth order den_zty
function

/X(Xl, x2, ..., xn;tx, t2, ..., t.)

_ OnFX(Zl, x2, ..., zn;tl, t2, ..., tn)

Oz l Oz2 "" Oxn

and, if g[X(tl), X(t2) .... , X(tn)] is any function of the values taken
by the process at times tl, t2, ..., t,, then the expected value of this

function is defined by

E{o[X(q),X(t2) .... ,X(tn)l}

/_+ ,]_"0 .]_"0= dxt d-_2--, d.z,,g(xt, z2, ..., z,)
O0 O0 O0

x fx(xl, z2, ..., x,,;t,, t2, ..., tn)

The descriptionof a random process by itsnth order distributionand

density functions provides the maximum possible information about

the process and will be required by some of the analysis laterin this

monograph.

Normalrendompro¢_$. A random process X(t) is said to be normal
if all its density functions axe of the form called Gaussian. In particular.
the first is

1 [ (x- m) 21fx(x; t)-__ exp -- 2a 2 j (3.6)

where m -- rex(t) and a 2 - a2x(t), and the second is

2O
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Chapter III Random Process Theory

1 { 1 [(xl-mi) 2/xlz_, _2;t_,t_) =2.-_,_,_VTZ--_ exp 2(1- _) _,_

20(xl - ml)(z2 - m2) + (x2- m2)2] '_ (3.7)- JJ

wherem_ = mxCq), "2 = mxCt2), _ = _(t_), _ = _(t2), and
p = pX(tl, t2). Note that if p ffi 0,

/x(xl, _; tl, t2) = fx(zl; q)/x(x2; t2) (3.8)

Similar closed form expressions exist for the density functions of higher

orders. Normal random processes are useful because they seem to

describe many phenomena that occur in the real world. Further, many
of their mathematical properties axe quite simple. For example, any

linear operation operating on a normal random process yields another

normal random process.

Cah:ulus of random process_. A calculus of random processes,

called mean square calculus,has been developed based on a concept

called mean square convergence. This calculus isa fascinatingstud](

in itselfand the interestedreader isreferredto the text by Papoulis2

However, formost purposes, itissufficientto know that allthe ordinary

operations of calculus,such a.sdifferentiationand integration,may be

applied to random processes with certainmild restrictions.Only the

concept of a limit must be interpreted differently.For example, a

random process X(t) isdifferentiableat t = to ifitsautocorrelation

has a second partialderivative where tl = t2 -_ to. Likewise, a

random process X(t) isintegrabieover the intervalI - (tl,t2) ifits

autocorrelationisintegrableover the area I x I.

Consider a random process Y(t) given by the integralof a random

process X(t) with respect to some kernel function K(t; r), that is,

= [b(t)
Y(t) Ja(t) K(t; r)X(r) dr

where the limits a and b axe arbitrary, but deterministic. Then, the

expected value of Y(t) is given by

= [b{t)K(t; r)E{X(r)} dr
E{Y(t)} Ja(t)

21
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Introduction to Time Serien Analysi_

since the expectation operator, being linear,may be interchanged with

integration.This fundamental resultwillbe used repeatedly throughout

the monograph.

3.2 Random Variables

Anyone who has read this far in this monograph is undoubtably

familiar with the concept of a random variable,which varies over a

set of numbers which are each assigned to one outcome of a random

experiment. For example, the number of dots on the upturned face
when a die is rolledisa random variable. There isalso an intimate

connection between random processes and random variables. Recall

that a random process was defined as an ensemble of time functions.

one of which was assigned to each outcome of the random experiment.

Ifthe time parameter in a random process X(t) isconsidered fixed,at

t = to say, then X(to) isjust a number associated with each outcome

and istherefore a random variable. Thus, random variables may be

described inthe same manner as random processes,having distribution

and density functions and expected values.

71_ normal random rar/abte. A normal random variable X is

described by the density function given by equation (3.6) with

z{x} = m E{(X - m)2} = 0.2

Two normal random variables Xt and X2 defined on the same exper-

iment ,e would have the joint density function given by equation (3.7)
with

E{X1} = ml E{(X1 - ml) 2} = 0"12

E{X2} = m2 E{(X2 - m2) 2} "- 0"2

and

p

E{(X,- mt)(xo. - too)}
0"1ff2

If p = 0, then the joint density factors as shown in equation (3.8), and

the random variables XI and X2 are said to be independent.

Tl_ cM-squar¢ random rariabl¢. An important random variable in

understanding the variability of spectral estimation techniques is the

chi-square random variable. Suppose that Yi for i = 1, 2 ..... k are
independent, normally distributed random variables with zero means

22



Chapter III Random Process Theory

and unit variances, that is m i = 0 and a/2 = 1. Then the random

variable
k

s = r? + r_ +... ÷ r_ = _ r? (a.9)
i=1

is called a chi-square random variable with k degrees of freedom.
In other words, the number of degrees of freedom is the number of

independent random variables whose squares are added. The mean
value of S is

/¢

E{S} = E E{_s} = k

and its mean square value is

k k k

E_ss)=E Ew?)+E E ECv?}ECv/_
i_-I i_-I j=l

= 3k + k s - k = 2k + k s

since for a normal random variable,

E{Y_} -- 3E2{Y/s}

Thus, the variance of the chi-square random variable is

_ = E{S_}- ES{S}: _k

Note that this random variable has the property that

o'S =E-_} -o as k-_¢

which shows that the variability of this random variable relative to its

mean becomes less important as the number of degrees of freedom is

increased. The probability density function of the chi-square random

variable is given by

I sk12-% -'/2 (s >_O) (3.10)
IS(S; k) = 2k12F(k/2)

where F is the gamma function. From this density, plots of the variation

of the chi-square random variable about its mean at various numbers

23
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Introduction to Time Series Analysis

of degrees of freedom may be produced. Such a graph is included in

chapter VIII.

3._ Jointly Distributed Random Proct_scs

The concepts used in describing a random process may be extended

to two random proce_m_ defined on the same experiment. For example.

consider the experiment of measuring noise transmission through the
ftmelage of an aircraft. One random process might be the acoustic

pressure measured by a microphone placed outside the fuselage near

the engine while the other might be the acoustic pressure measured by
a microphone inside the fuselage near the pilot's seat.

Dc_dptiom. Consider the two random processes X(t) and Y(t).

The joint distribution function of the two random processes is defined

Fxy(xl,z2, ..., zn, Yl, Y2, ..., ym;tl, t2, ..., tn+m)

= P {x(q) < =z n X(t2) <_z2 n... n X(t.) < z.

nY(t,+z) <_uz n Y(t,,+2) < Y2 n... n Y(t,,+,,) <__}

where there is no importance to the order of the times t 1, t2, .. •, tn+rn.

The joint der_ity function is then given by

_Xy(Zl, Z2, ..., Zn, Yl, Y2, ..., Ym; tl, t2, ..., in÷m)

_ _"+rnFxy(=l, x2 ..... x,_,VI, _ ..... Vm; q, t2 ..... tn÷,n)
axl axu ...ax,,_l o_Itu...o_v_

Joint expected values may also be defined in a similar manner. The
most useful one is

Craso correlation

Rxy(tl, t2) = E{X(q)Y(t2)} (3.11)

Note that, by convention, the first time goes with the first subscript
variable. Thus,

Ryx(tl, t2) ffi E{Y(tl)X(t2)}

and, in general, Rxy(tl, t2) # Ryx(tl, t2).

24
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Chapter III Random Process Theory

Independence. Two random processes X(t) and Y(t) are said to be

independent if

fxy(Xl, X2, ..., Xn, Yl, Y2, ..., Ym; tt, t2, ..-, in+m)

= fx(zl, z2,..., z,_; tl, t2, ..., tn)
X fY(Yl, ?:12, ..., Ym; tn+l, tn+2, ..-, tn+m)

that is. if their joint density function factom into a product of their

individual density functions.

Unco_elated random pra¢_$_. Two random processes X(t) and

Y(t) are said to be uncorrelated if their cross correlation satisfies

Rxy(tl, t2) = E{X(tl)}E{Y(t2)} -- mx(t[)my(t2)

Independent random processes are uncorrelated, since

E{X(t[)Y(t2)} "- dx dy zyfXy(x, y; t[, t2)

f_= ¢_ dxxfx(x;tl) dy yfy(y;t2)
O0 O0

= m._(tl)my(t2)

for independent process_. However, the converse is not necessarily
true.

Complex random prave$$_. Random processes that take complex
values also arise from time to time. These are easily handled by writing

the complex-valued random process Z(t) as

zct) = xct) + i YCt)

and considering the real and imaginary parts, X(t) and Y(t), respec-

tively, to be two real-valued random processes defined on the same
experiment. For complex-valued random processes, the autocorrelation

is defined by
nz(tl, t2) = E{Z(tl)Z*(t2)} (3.12)

where the asterisk indicates the complex conjugate. This makes

Rz(t,t) --E{JZ(t)J 2}

which is real and non-negative.

25
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Introduction to Time Series Analysis

3.4 Stationary Random Processes

A usefulsubdivision of the classof random processes is based on

behavior in time. Some random processes,such as the velocitycompo-

nent measured by a hot-wire anemometer at a point in a turbulent jet

running at constant speed, are reasonably independent of the precise

value of the time. That is,even though the velocity fluctuatesquite

rapidly,measurements made at differenttimes are quite similarin their

average properties. Other random processes have average properties

that vary appreciably with time; for example, the load demand on an

electricpower generating system depends on whether itisnight or day
or winter or summer.

Random processeswhose statisticalpropertiesdo not vary with the

particular value of time are much more amenable to analysis than

those whose statisticalproperties do. Thus, many more powerful

techniques have been developed for extraction of information from

them. Such processes are said to be stationary and, in fact. most of
the techniques developed in this monooraph will be limited to stationary

random processes.

A random process is said to be strictly stationary if and only if its

nth order density function is independent of the origin of time for all
n. From this requirement, it can be shown that the first order density

is independent of time, that is,

fx(z; t) =/x(x)

Thus, all expected values calculated from this density must also be

independent of time, forexample,

rex(t) = _x

That is,the mean and variance of stationary random processes must

be constants. For the second order density,independence of the origin

of time requiresthat

fx(xl, z2; tl, t2) = .fx(zl, z2; o, t2 - tt) = fx(zt, z2; r)

where _"= t2 - tl. That is,the second order density depends only

on the differenceof the two times tl and t2. Thus, all expected

values calculated from this density must display the same property.

26
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Chapter [II Random Process Theory

In particular,

ax(t_, t2) : Rx(r)
rx(tl, t2) = rx(r)
px(t_, t2) = px(r)

Thus, the autocorrelation, covariance, and correlation coefficient of

stationary random processes depend only on the time difference r.

It is this property that aids the analysis of such processes, since the

autocorrelation depends on only one independent variable rather than
two.

Weak $tationariry. Although the mathematical definition of sta-

tionarity depends on the density functions, for most of the analysis in

this monograph to be valid, only a weaker form of stationarity, based

on the expected values, is required. A random process X(t) is said to
be weakly stationary if

E{X(t)} =mx E{X(tL)X(t2)} ----nx(r) (3.13)

That is, its mean is constant and its autocorrelation depends only on
the time difference.

Joint weak stationarity. The concept of weak stationarity may be

extended to two random processes defined on the same experiment.
Two random processes X(t) and Y(t) are said to be jointly weakly

stationary if they are each weakly stationary, and

E{X(tl)Y(t2)} = Rxy(v ) (3.14)

Properties of the autocorrelation function of a weakly stationary

random process. Suppose that X(t) is a weakly stationary random

process with mean zero. (Since the mean value of a weakly stationary
random process is constant, if one had a weakly stationary random
process Y(t) with mean my, one could merely substract the mean from
the data and define

X(t) -- Y(t) - my

which is a weakly stationary random process with mean zero.) Then,

E{X(t,)X(t2)} = Rx(t2 - t_) = nx(r)

27
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Introduction to Time Series Analyoi_

where r is called the lag time, since it is the time by which the second

value of the random process X(t) lags the first. Further, since order is

immaterial in the expectation,

S{X(t2)X(tl)} = Rx(h - t2) = Rx(-r)

Thus, it follows that

Rx(r) ffi Rx(-r)

That is, the autocorrelation must be an even function of r. Further,

Rx(O ) = E{X2(t)} > 0

which says that the value of the autocorrelation at a lag of zero must

be non-negative. Also,

s{[x(q) ± x(t2)] 2} = 2[Rx(0) ± Rx(_)] _>0

which implies that

Rx(O) > Iax(r)l

Thus, the absolute value of the autocorrelation at any lag can never be
larger than its value at zero lag. Finally, recall that autocorrelation is

a measure of the linear relationship between X(t) and X(t + r). If X(t)
is a completely random process (i.e., its mean is zero and it contains

no periodic signals), this linear relation weakens as r increases and, in
fact,

lim Rx(r ) "- 0
Irl--oo

With this understanding of the properties of the autocorrelation func-

tion, it is possible to sketch the autocorrelation function for a typical.
completely random process as shown in figure 8. Further if the deriva-
tives exist, it can be seen that

dRx(r) r=0dr = 0

since the autocorrelation is even, and

d2Rx(r)

dr--T-- =0 <0

since the origin must be a maximum. The properties of the autocorrela-

tion function will be important in understanding its Fourier transform.

the power spectral density, which will be introduced in the next chapter.

28
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Chapter III Random Process Theory

_xcT)
EIX2(t)I

T

-E{X2(t)_

Figure8. Autocorrelacionofa typical,completelyrandom process.
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Chapter IV

Power Spectral Analysis

The technique of power spectral analysis of stationary random

processes was developed about 50 years ago. Power spectral analysis

was first utilized by the electrical engineering community, particularly
in the field of communicationsT'8; thus, much of the terminology of

the technique comes from electrical engineering. As will be seen, this

terminology sometimes creates confusion. In recent years, advances

in digital computers and hard-wired spectral analyzers have allowed
applications of power spectral analysis to grow exponentially.

There is a fundamental difference between power spectral analysis

and ordinary harmonic analysis. Instead of developing a harmonic

representation of the sample functions of the random process itself,
in power spectral analysis, one develops a harmonic representation of

the autocorrelation of the random process. The autocorrelation is a

well-behaved deterministic function, and from this representation, one
can infer average properties of the random process.

The power spectral density can be defined as the ordinary Fourier

integral transform (eq. (2.3)) of the autocorrelation function of a
stationar V random process, that is,

1F RX(Z )e-iwf d_" (4.1)

By the inversionrelation(eq.(2.2)),the autocorrelationcan be recov-
ered as

/_°Rx(r) = SX(_) eiW'dw (4.2)
oo

This Fourier transform pair is often called the Wiener-Khinchin rela-

tions because Wiener and Khinchin derived the pair from a harmonic
representation of the random process instead of stating the pair as a
definition as done here.
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Introduction to Time Series Analysis

4.1 Properties of Power Spectral Densities

Certain propertiesof power spectraldensitiesare readilyapparent

from the Wiener-Khinchin relations.For example, from equation (4.2).

SRx(O) - E{X2(t)} = SX(_) dw (4.3)
OO

It is this relation that gave power spectral density itsname. Recall

that ifV and I are the voltage acrossand current through an electrical

element of resistanceR, then the power consumed by the element is

I2 R = V2 / R. In electrical engineering, X(t) is frequently a voltage or
current time history, and thus electrical engineers tend to think of X2(t)

as power. For this reason, they called the mean square value, E{X2(t) },

the "power" in the random process X(t). This is unfortunate, since

the mean square value may have nothing to do with power at all and
may be confusing in other fields, such as acoustics, where power has a

different definition. However, it is too late at this point to change the

terminology..

Returning to equation (4.3), it can be seen that the "power" in

the random process X(t) may be obtained by integrating the power

spectral density over all frequencies. Thus, the "power spectraJ density"
is the density of"power with respect to frequency, or the power per unit

frequency, in the signal. One favorite examination question in this
field is, what are the units of power spectral density? From the above

discussion, it should be clear that the answer is

[Unitsof X(t)]2

Units of Sx(w) = Units of frequency

Thus, for example, if X(t) is an acceleration measured in ft/sec -°

and frequency is measured in radians per second, the units of Sx(,a)
are ft2/sec 3. On the other hand, if X(t) is elevation measured in

feet as a function of distance measured in feet, then frequency is

measured in radians per foot and the power spectral density has units
of" ft 3. Furthermore, if t is a spatial variable, then X(t) is said to

be homogeneous in space (as opposed to stationary in time) and the

frequency variable w is called ware number, or spatial frequency, and
frequently denoted by k or/_.

Now, consider equation (4.1). If the exponential is expanded,

1 /" oo i /- oo
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Chapter IV Power Spectral Analysis

However, the autocorrelation Rx(r) is an even function of r. Thus, the

second integral, being the integral of an odd function over even limits,
is zero. Therefore

1F Rx (r) cos_rdr

is real.
Further, coswr is an even function of r and thus Sx(w) may be

written

Sx(_°) = _r Rx(r) c_wrdr (4.4)
t

From equation (4.4), it can also be seen that

Sx(_)= Sx(-_)

That is,the power spectraldensity isan even function ofw.

4.2 Problems in Comparing Power Spectral Densities

The freedom inherent in the definitionof a Fourier transform pair,

as mentioned in chapter H, and the fundamental propertiesof a power

spectral density resultin there being no standard definitionfor power

spectral density. This latitudeoften leads to problems in comparing

power spectraldensitiesobtained by differentgroups utilizingdifferent

definitions.

The firstambiguity arisesbecause theoreticiansprefer to work in

terms of radish frequency ¢#,defined for both positive and negative

frequencies.However, engineers preferto use cyclicfrequency f, where

-- 2rrf, defined only for positive frequencies. The units of f are

cycles per second (hertz).Note that, since the power spectral density

isan even function of w, the mean square value of the process may be

obtained from any of the expressions

/o fo¢{x2(,-)} = Sx(_) d_ = 2 Sx(_) #_ = 4_ Sx(2_f) a/
O0

Thus, engineers prefer to define the one-sided power spectral density:

Gx(I) = 4_rSx(21rf) (f >_ O)

from which the power in the process may be obtained by

E{X2(r)} = Gx(.[) d/
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Introduction to Time Series Analysis

All the modern spectral analyzers compute the function Gx(f).

Second, older analog spectral analyzers use fixed, finite bandwidth

filters. These analyzers do not yield a power spectral density at all. but

an integrated power spectrum, that is,

SP(f') ---- Gx(f) df
l

(ft _ f" _- h)

which mounts to integrating the power spectral density over some finite

bandwidth (fl, ]'2), such as a third octave. An integrating analyzer thus

assigns the total power in a bandwidth to some frequency f* within
the band, chosen by a committee of workers in the field. To compound

matters, many standards for various phenomena are still written in
terms of this kind of data.

Finally, in any Fourier transform pair, such as equations (4.1) and

(4.2), the placement of the factor (27r) -1 is completely arbitrary. What

such a pair says is that if one starts with an autocorrelation, transforms
it into the frequency domain, and then transforms back to the time

domain, the autocorrelation is reproduced. Thus, rather than the pair

given, no coefficient could be placed in front of the time integral and

(21r) -I in front of the frequency integral, or (2_r) -1/2 in front of both.
or some other combination. Or, if it were preferable to work in terms

of cycles per second, one could use the transform pair

sxCf) =/°°oo RX(r) e--i21rfr dr

_ ei21ffr dfRx(r) ffi Sx(f)
OD

with no coefficient in front of either integral. Which of these definitions

is chosen has absolutely no effect on the reproducibility of the original

function, as long as the definitions are used consistently. However. if

o_e stops halfway through, at the power spectral density, the amplitude
depends on which definition is being employed. The only solution to

this problem when trying to compare power spectral densities is to refer
to the documentation for the software or to the equipment operator's

manual for the hardware and determine what transform pair is being

employed. Then, conversion factors which will allow comparison can be

developed.

4.3 Interpretation of Power Spectral Densities

A mathematical model that describes most stationary random
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Chapter IV Power Spectral Analysis

signals observed in real world situations is

k

Y(t) = ,40+ An cos(, nt + *n) + X(t) (4.5)
n=l

where the An's are constants, the ¢_n'sare a set of frequencies which

are not necessarily harmonically related, k may be infinite, the _n'S are

independent random phase angles taken to be equally likely to have
any value between zero and 2r (i.e., no knowledge of the phase of the

periodic functions is assumed), and X(t) is an independent completely

random process. That is, most stationary signals can be modeled by a

constant, a collection of periodic functions, and a completely random

signal. For simplicity, Ao may also be interpreted as the amplitude of
a periodic function of zero frequency.

The mean value of the signal Y(t) is

E{Y(t)} = Ao

and itsautocorrelationcan be shown to be

n=l (4.6)

where Rx(r ) is the autocorrelation of the completely random signal

X(t).

Note that if the time history contains periodic function,, the

autocorrelationcontains periodicfunctionsofthe same frequency. This

might be surprising,as correlationisa squaring operation which ought

to double the frequency (i.e.,2co62_ = (I + cos2w)). However, this

frequency doubling does not occur. Further, the presence of periodic

functions in the signalcan readilybe detected. Since liraRx(r) = 0,
?'qOO

lim Ry(r)= A_ + Z _-coswnr"T_OO
n=l

Thus, if the autocorrelation does not approach zero for large r, the

presence of periodic functions is to be expected.

The power spectral density of the model signal given by equa-

tion (4.5) is obtained by Fourier transforming equation (4.6). From
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equation (2.6), it can be shown that

x f _ e_iWrdr

Thus,

sy(_) = _6(_) + _ T[6(.-..) + + Sx(_)
rill

(4.r)

(4.8)

where SX(_a) isthe power spectral density of the completely random

process X(t).

Now since lira Rx(r) - O, SX(_) isthe Fourier transform of a

transientfunction and representsa continuum of frequency components

as shown in figure3. For example, if

Rx(r) ffi_}e -°M

then

Sx( )=
Ir a 2 + _ (4.9)

where a is real and positive. Note that Sx(O) _ 0 even though

E{X(t)} -- 0. That is, even if there is no dc component in the signal, the

power spectral density is nonzero at zero frequency. Thus, in general,
the power spectral density of the model stationary signal given by

equation (4.5) appears as shown in figure 9, where again the arrows
represent the delta functions. This general spectrum consists of a delta

function at zero frequency produced by the mean of the process, delta

functions at the frequencies -t-_a/¢ produced by the periodic components.

and a continuous distribution of power produced by the completely
random part.

4.4 Relation Between the Power Spectral Density and the
Fourier Transform of a Random Process

The relationship between the power spectral density, SX(_), which

is a Fourier transform of the autocorrelation function of X(t), and the
Fourier transform, X(_v), of the random process itself is of interest and

importance. Here, the full power of generalized harmonic analysis is

once again called into play since a stationary random process, not being

square integrable, can only be Fourier transformed in the generalized
sense.
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Chapter IV Power Spectral Analysis

Sy(a))

f_

Figure9. Generalpower spectraldensity.

A stationary random process X(t) satisfiesequation (2.1). Thus,

X(t) has a generalizedFouriertransform given by

1 f__o X(t) e -iwt dt (4.10)x(_)= _ oo

Note that X(_) isa complez-valued random process in frequency. The

autocorrelation of X(¢#) is given by (see eq. (3.12))

1FFdtt dt2Rx(t2 - it)e-i(_tz-w't2)
E{X(,,)X'(J)} = _ o0 oo

Introducing the variables t and r such that

_= tl+t2 r = t2--tl
2

yields

iF dr ax(r) ei(_'_')r/2E{X(_)X'(_')} = _ oo

1 /,.._o dte -i(w-_')_

That is, the autocorrelation of X(w) is zero except when _ = _'. Thus,
it follows that

SSx(_) = E{X(_)X'(J)} Co' (4.11)
oO
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That is,the power spectral density may also be interpreted as the

integralof the autocorrelationof the Fourier transform of the random

process over allfrequencies. Equation (4.11)iscloselyrelated to the

expression for the power spectra/density utilizedin the finiteFourier

transform approach to be discussed inchapter VII.

4.5 Cross Spectral Density

If X(t) and Y(t) are jointly stationary random processes, it is

possible to define the cross spectral density a.sthe Fourier transform

of the crosscorrelation:

RxY (r)e-_r dr (4.12)
Sxy(_) = _ oo

The cross correlation is regained by

Faxy(r) -- SXy(_) eiwr d_ (4.13)
O0

However, the cross correlation is not in general an even function of r.

Thus, if the exponential is expanded to obtain

'f 'FRxy(r) coscwrd'f - _ Rxy(r) sin,wr drSxy(_)= _ _ _o

the second integral does not necessarily vanish, and the cross spectral

density is, in general, complex, having a real part

'S= RXy (r) cos_r dr
Re[Sxy(w)] _ oo

which is an even function of _ and is called the co-spectrum, and an

imaginary part

I f/ Rxy(r) sin_rdrImiSxy (w)] = - 2"-'_ oo

which is an odd function of _ and is called the quad-spectrum. For

plotting purposes, the cross spectral density is usually represented in

polar form, that is,

SXy (_) = ISxy (w)le iaxr (_)
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Chapter IV Power Spectral Analysis

and its magnitude

[Sxy(w)t = {Re2[Sxy(w)] + Im2[Sxv('_)]} 1/2

and phase

Oxy(w) = arctan
Im{Sxy(_)]

Re{Sxy(_)I

are plotted as a function of frequency.
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Chapter V

Random Processes in Linear Systems

Consider a linear, shift-invariant system with a random process

input X(t) as shown in figure 10. The linear system might be a bridge

girder subjected to the random loading of automobiles of various weights
and speeds arriving at various times, or it might be a Space Shuttle tile

subjected to random heat loading during reentry. Any system that can

be described by linear equations is linear. Shift invariance implies that

the parameters of the system are independent of time.

5.1 Description of the System

The system in figure i0 is uniquely defined by its impulse rezpomse
function h(t), which is the response of the system to an impulsive load

6(t) at t = 0. If the parameter t is actually time, then for all real
systems, h(t) -- 0 for t < 0, since there can be no response until the

load is applied. A system for which this is true is said to be causal.

For all real systems, the response also tends to die away with time

because of damping and becomes effectively zero for t > Tr where Tr is

called the response time. Thus, h(t) is a transient function, as shown

in figure 11.
In terms of the impulse response function, the output of the system

Y(t) is given by the convolution integral

Y(t) /"_ da= _o h(a)X(t - _) (5.1)

This fundamental equation, which describes any linear, shift-

invariant system, is developed in textbooks on linear system theory, 9 a
knowledge of which is assumed in this monograph. If the input X(t)

and the impulse response function h(t) each have Fourier transforms

by the definition in equation (2.3), then from the time convolution the-
orem (eq. (2.9)), the Fourier transform of the output Y(t) is given by
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Introduction to Time Series Analysis

x(t)--------_
Linear

System
Y(t)

Fig_u'e I0. Random process input to a linear, shit't-invariant system.

Figure 11. Tmp_Lseresponse _ction.

the product ofthe Fourier transforms ofthe input and impulse response

functionswith a proportionalityfactorof2a'.In order to remove this2,'r

factorand thus simplify the resultingexpressions,the followingdefini-

tion ofthe frequenc_./responsefunction H(w) forthe system isemployed

in this monograph:

/?H(w) = h(t) e-_' at (5.2)

The frequency response function also provides a unique descriptionof

the linear,shift-invariantsystem since the impulse response function

may be recovered by the integral

1 f? H(_) ei_at dwh(t)= _ oo (5.3)

Further, with the use of the definition in equation (5.2), the relation

between the Fourier integral transforms X(_) and Y(_a) of the input
X(t) and output Y(t), respectively, is the familiar expression

Y(_) =/_(_)x(_) (s.4)

by the time convolution theorem (eq. (2.9)).

5.2 Properties of the Output Random Process
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Chapter V Random Processes in Linear Systems

input X(t) is a weakly stationary random process in time which began
at t - -co (or in the real world, at t < -Tr so that any starting

transients have died away). Then, the output Y(t) is also a random

process, which is given by the convolution integral in equation (5.1).
The question of interest is then, what are the characteristics of the

output random process Y(t)?

The mean value of Y(t) is given by

FE{Y(t)} = h(a)E{X(t - a)} da
Co

/2= mx h(a) da = mxH(O)
Co

where expectation has been interchanged with integration and H(O) is

the frequency response function of the system at zero frequency, or the

"dc gain" of the system. Thus, the mean value of Y(t) is constant.
Further, its autocorrelation is

Ry(tl, t2) ffi E {Y(tl)Y(t2)}

= Ry(r)

da2 h(,,l)h(a2)E {X(tl - al)X(t2 - 02)}

da2 h(al)h(a2)R×(r - a2 + al)

(5.5)

which depends only on the time difference r. The output Y(t) is
therefore also a weakly stationary random process, since its mean is

constant and its autocorrelation depends only on the time difference.

Likewise, the cross correlation of X(t) and Y(t) depends only on the
time difference:

SRxy(tl, t2) = E{X(tl)Y(t2)} = h(a)Rx(r - a) da = Rxy(r)
Co

(5.6)

Thus, X(t) and Y(t) are jointly weakly stationary.

Since Y(t) is stationary, its power spectral density is defined. By
using equation (5.5) and interchanging the order of integration, it can
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be seen that

'/2Sy(w) = _ Ry(r) e-tw'dr

'/_'. /_:/2= _ d'r ¢-=_'t da I da2h(al)h(a2)Rx(r-c=2-*-al)

=f_==_,h(=,}ei=°,f_==_,_(°,),-,=o,

l f/ 4T RX(T--O[2"+'O¢I) e -tu(r-OI]'_c'al)x_-_ __oo

= H" (_)S(_)SX(W)

Thus,

[s_,(_)= I_(_)l=Sx(_,)] (5.T)
which says that the power spectral density of the output signal is just

the square of the magnitude of the frequency response function times

the input power spectral density. Thi_ simple relation, which is valid
for any linear, shifl-invariant _ystcm, in the fundamental reason for

development of power npectral analyaio in tcrrr_ of ninen and conines.

Although other complete sets of or_hogonal functions could be used.
equivalent relations corresponding to equation (5.7) would not exhibit

such simplicity. It might be mentioned that equation (5.7) can also be

derived from equation (4.11) with the use of equation (5.4).
Since X(t) and Y(t) are jointly weakly stationary, the cross spectral

density is also defined. Using equation (5.6) and the same approach
yields

1
/'_ Rxy(r) c-_r dr -- H(w)SX(W) (5.8)

That is,the crossspectraldensityisjustthe frequency response function

times the input power spectral density. Note that equations (5.7)and

(5.8)imply that

Sy(w) = H'(w)Sxy(w) (5.9)

These simple relations are very useful in understanding the response of
linear systems to random inputs.

For example, suppose that the system is an ideal band-pass filter
with frequency response function as shown in figure 12. Thus,

H(w) -- 0 (Otherwise)
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Chapter V Random Processes in Linear Systems

H(G_)

"_2 "_1 _1 _2

Figure 12. Ideal band-pa_s filter.

CO

and all frequency components in the range (_1, w2) are passed without
amplification while all others are excluded. For this system, the

relation between the input and output spectral densities is given by

equation (5.7). Thus,

F FE{Y2(t)} = Sy(w) dw =
O0 O0

/2'= 2 Sx(_) _ >_o
!

IH(w)12Sx(w) d_

(5.10)

and the total power in the output process can be seen to be just the

power in the input process in the frequency band (wl, w2). Since

equation (5.10) must be valid regardless of the values of _1 and ¢#2,
another property of the power spectral density i_ apparent.

Sx(_) > 0 (5.11)

If this were not true, the output power could be negative in some band.

It should be mentioned that the technique for spectral estimation

employed in the old analog spectral analyzers, which passed the signal
through a bank of fixed bandwidth filters, was based on equation (5.10).

Although an ideal band-pass filter for a time signal is not physically
realizable since its impulse response function

__2cos _I + _:2 t sin w2 -_:Ih(t)
2 2

is not causal, very good approximations to an ideal band-pass filter can
be constructed.

5.3 Determination of Frequency Response Functions

Equations (5.7) and (5.8) can be used to determine the frequency
response function of a linear system in a simple manner. A frequency
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SX(_)

(D

Figure13. Power spectraldensityofwhitenoise.

response function is generally complex, that is,

H(_) = IH(_)te _:_'c_)

producing both an amplitude and a phase change in the incoming
signal. To determine this function, a random process can be input

to the system and the input and output spectral densities measured.
Then, if only the magnitude of the frequency response function is of

interest, equation (5.7) yields

I.H(_)I = rSy.._)/1/2C 1
LSx(_)J

(5.t2)

as long as Sx(oJ) # O. To avoid this and to simplify the calculation.

the concept of white noise,whose power spectraldensity isa constant

as shown in figure13, isoften employed in theoreticalanalysis.Unfor-

tunately,such noise isnot physicallyrealizablesinceitstotalpower.

_'{x2(o} /_= So ,#-,'

is infinite. However, band-limited white noise such that

So (I,.,,.'1< _.s')SX(_) -- (Otherwise)

can be generated. One isusually interestedin the frequency response

function only in some range of frequencies.Thus, if_B islargerthan

the values ofo#in which one isinterested,thisband-limited white noise

can conveniently be used experimentally to determine the frequency

response function,since the denominator in equation (5.12)willnever

be zero in the frequency range of interest.'

If knowledge of the phase of the frequency response function is

also of importance, then the cross spectral density of the input and
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X(t) I Linear _N(t)
System Y(t)

Figure 14. A linear system with noise.

output processescan be measured and the frequency response function

determined from equation (5.8),that is,

SXy (W)
H(_J) -= (5.13)

Sx (_)

These techniques, which can usually determine a frequency response

function from a small amount of data, have all but replaced the old

time-consuming "sine sweep" method in which the response to each

individualfrequency input was measured.

5.4 The Coherence Function

In recentyears,the coherence function

_2(_) = IS.._Y(',,,,')12 (5.14)
SX(w)Sy(_)

has come into use. This function has very interesting and useful
properties.

Suppose first that Y(t) is obtained by passing X(t) through some

linear system. Then from equations (5.7) and (5.8),

_2(_)= IH(_)I2S_(_:) = I
SX(_:)IH(_:)I2 Sx(_:)

That is, if X(t) and Y(t) are related by equation (5.1), the coherence
function is unity.

However, suppose now that the output Y(t) contains an additive

part which is not linearly related to X(t), as shown in figure 14. The

"noise" signal N(t) could be due to nonlinearities in the system and
thus depend nonlinearly on the input signal X(t). Or it could be due

to other inputs, or contaminating signals. In either case, the noise is

assumed to be weakly stationary and uncorrelated with the input X(t).
The output Y(t) is then also weakly stationary and can be written
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FY(t) = h(a)X(t - a) da + N(t)
so

Assuming that the mean of Y(t), if any, is removed is equivalent to
assuming that E{N(t)} = 0 and RxN(r) = 0. Thus,

sy(_) - IH(w)l=Sx(w) + S_(_) (5.15)

where SN(oa) is the power spectral density of the noise signal. SinceX(t)
and N(t) are uncorrelated, from equation (5.6), the cross spectral
density

Sxr(_) = tt(_)Sx(_)

is unchanged. Thus, the coherence is

1

ffi Z + St_(_t < Z (5.16)
I//(w)l=Sx(_)

That is,at those frequencieswhere the noise spectraldensity S,v(_) is

nonzero, the coherence function islessthan unity. Thus, a coherence

value lessthan one indicatesthat the input and output processes are

not totallylinearlyrelated.

A further interpretationof the coherence function may be obtained

by writing equation (5.15)as

st(w) = SyL(w) + SN(-)

where

Syr.(_a)= IH(_)I=Sx(w)

isthat portion of the power spectraldensity of Y(t) which is linearly

relatedto the input X(t). Then equation (5.16)becomes

w2(w) _ IH(_)l_Sx(w) _- SyL(w)
SV(_) Sy (w)

and the linearly related portion of Y(t) may be determined by the
relation

Sw(_) = _2(_)Sv(_)

from the measured power spectraldensity Sy(w).
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If there is no linear relation between X(t) and Y(t), such that

Rxy(r) = O, then SXy(w) = 0 and -f2(cz) = 0. Thus, the coherence

function is useful in determining whether a linear relation exists between

the input and output at any given frequency. It should be emphasized
that the absence of a linear relation does not necessarily imply that

there is no relation between X(t) and Y(t).

The coherence function may be used in many ways. For example,

suppose that a new composite material is developed and one wishes to
determine whether it can be characterized as a linear system. The

material could be excited at one point by a random signal and its

response measured at another point. The coherence between the
two signals would then indicate whether the material is linear in its
behavior. Another use is to determine whether two time histories, which

may have similar power spectral densities, are linearly dependent. For

example, many people believe that sunspot activity produces effects

observable here on Earth, such as climatic changes evidenced by crop

yields. Data on the activity of sunspots going back to the year 1610
exist l0 and their power spectral density exhibits a peak corresponding

to a period of approximately 11 years. If one had data on some

other phenomenon, such as wheat yields in Iowa, whose power spectral
density also exhibited a peak showing an 11 year cycle, then one might

suspect a linear relationship between the wheat yields and the sunspot

activity. However, the similarity of the spectra might also be merely a
coincidence. Coherence analysis of the two records over the same span

of years would resolve the question. In one such test of which the author

is familiar, coherence analysis showed no linear relation at the 11 year

cycle, but did suggest a linear relation with a period near 80 years.
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Chapter _

Estimation Theory

This chapter begins examination of the problem of evaluating the

various expressions developed in the previous chapters from data ob-

tained in the real world. Most of these expressions involved ensemble

averages over the entire ensemble of time histories that comprise the
random process. This entire ensemble is never available for analysis

in practical situations. Nor is the probability distribution function of

the random process known. Thus, one must be content to estimate the
quantities of interest, often on the basis of a single realization of the

random process.

6.1 Estimation of a Parameter by a Random Variable

Consider an unknown parameter 8 which one wishes to estimate

by a random variable _. In this monograph, a hat over a quantity

indicates an estimate. Why would one want to make such an estimate?

Recall that the assumed data comprise a" record of length T of a single

sample function from a stationary random process X(t) as shown in
figure 15. On the basis of this single sample function, it is desired

to estimate parameters (i.e., moments) of the random process itself,

such as reX, Rx(r), and Sx(w), which for fixed r and w are constants.

However, the estimates will be random variables, since they will depend
on which particular sample function is used.

The first requirement one would ordinarily desire in an estimate is
that

E(_} = o (6.1)

where the expectation is over all possible values of the estimate (i.e.,
over all possible sample functions that comprise the random process)

in order that the average value of the estimate would be the quantity
to be estimated. An estimate which satisfies this requirement is said to

be unbiased. When this is not true, it is possible to define

Bias = E{O} - # (6.2)
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X(t)

Figure 15. Finite length sample function.

Bias is a systematic error due to the estimation technique employed.

The variation of the estimate 0 about its mean value depends on

which sample function is employed. In order to keep this uncertainty
as small as possible,'one should choose the estimate so that it varies
as little as possible about its mean value; that is minimum variance

estimation is desired. This uncertainty is measured by the standard
deviation of the estimate:

Uncertainty ffi (E([0- E(0)12}) 1/2 , (6.3)

Thus, one ordinarily attempts to choose an estimation technique that

is without bias and whose uncertainty is as small as possible.

6.2 Estimation of Mean -.

Suppose that X(t) is a stationary random process and consider the
estimate

rh x -- _ X(t) dt (6.4)

Since rh X is a number assigned to each outcome of the experiment, it
is a random variable. In addition,

I _oT m X foTE{,_x} = _ E{X(t)}et = _ dt = mx

and, thus, rh X is an unbiased estimate of the unknown mean m,( of

the random process X(t). Further the variance of rhX is
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Figure16. Regionofintegration.

tI

)2}E{mx -rex) 2} = E -- joT[X(t) - taXI dt

= E N IX(h) - rex] dr,

1 T T

= T---_O dtl_o dt2rx(t2-tt)

= - rx(r) 1 -- dr
T r

(6.5)

where the integral relation

/oT /o_ /_I_l<_-,,,)_,<_.o)dt, dr: F(t: - Q) = r

has been employed. In this equation, F(r) is any function of the variable
r = t2 -tt. This fundamental relation (eq. (6.6)) is obtained by

employing the change of variables tl = t and t2 = t + r and noting
the region of integration as shown in figure 16. The integral over t may

then be evaluated. Upon use of equation (6.5), the uncertainty in the
estimate in equation (6.4) of the mean is seen to be

Uncertainty= [T/_Trx(T) (l-_)dr] I/2
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Introduction to Time Series Analysis

which can, in theory, be made as small as desired for a completely
random process by obtaining more data (i.e., by letting T -- zc) since
lira Fx(r ) -- 0. However, for T fixed, the uncertainty is fixed and

_r_OO
nonzero.

6.3 Estimation of Autoeorrelation

Consider the autocorrelation estimate defined by

I _0T-rkx( ) = X(t)X(t + r) dt (0 <_ r < T) (6.7)

Itsexpectedvalueis

I _0 T-rE{kx(r)} = T - -; ax(r) dt = ax(r)

and thus, Rx(r) is an unbiased estimate of ax(r) for 0 _< r < T.
Several points should be noted about this estimate:

1. The estimate can be determined only out to a lag of r = T from a
data record of length T.

2. Equation (6.7) also provides an estimate for -T < r < 0 since the
autocorrelation function is even.

3. Less data contribute to the estimate as r increases, as can be seen
from the limits of integration. Thus one would expect the variance
of the estimate to increase with r. In other words, the estimate of
Rx(r ) becomes more uncertain as r becomes larger.

An equation for the variance of Rx(r) involves the expected value
of the product .of the values taken by the process at four different times
and wiR not be included in this monograph. However, the variance
can be shown to depend upon both T and r and to approach zero as
T -- c_. Thus, the uncertainty in this estimate can again be made as
small a.s desired by obtaining more data.

6.4 Estimation of Cross Correlation

In a similar manner, the expressions

and

1 fo r-rx(t)Y(t+r)dtRXy(r) -" T- r

1 fo T-r Y(t)X(t+r) dtkYX(7") = T- r

(0 _<r < T) (6.8)

(0 < r < T) (6.9)
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Chapter VI Estimation Theory

X(t)

Figure 17. Data broken into blocks.

can be shown to be unbiased estimates of the cross correlations of two

jointly weakly stationary random processes. Again, their variances
depend on both T and r and approach zero as T ---* oo. Note that

the cross correlations are not generally even functions of r. However,

the values for negative lags can be obtained from the relations

kxy(-_) = kyx(¢)

kyx(-_) = kxy(_)

6.5 A Test for Stadonarity

Because the assumption of stationarity is fundamental to most of the

analysis in this monograph, it is important to derive a test to ascertain
whether it is reasonable to assume that a particular time history is a

sample function from a stationary random process. Fortunately, such

a test is readily developed.
Consider a sample function of length T from a random process X(t)

and suppose that it is broken into N B blocks of data of length T B, as

shown in figure 17. Then, an estimate of the mean

1._ [rB x(t)dt
_x = TB .Io

and an estimate of the variance

_c= _1 forS IX(t) - m,_]2. dt (6.m)

can be calculated for each block of data. A test for stationarity is

then developed by recalling that the mean and variance of a stationary

random process are constants. Thus, the estimates of the mean
obtained from the different blocks of data should be equal, except for

random variability. In addition, the estimates of the variance obtained

55

Il il lt E li li E li l,: l! k[ lt



Introduction to Time Series Analysi_

from the differentblocks of data should also be equal. Ifone wants to

be sophisticated,there axe variousstatisticaltestswhich willallow one

to accept or reject,with a certain levelof confidence, the hypotheses

that these estimates axe all from an underlying random process with

constant mean and variance. However, for practicalpurposes, ifthese

estimates vary more than a few percent for "reasonably sized" blocks

ofdata, one should be cautious in placing much faithin analyses based

on stationaxity.Here, "reasonable size" is a judgment, based on the

frequency content of the data.

Itmight be mentioned that the estimate of the variance (eq. (6.10))

isan example of a biased estimate. Itsmean can be shown to be

-- }
where the variance of the estimate of the mean is given by equa-

tion (6.5). Thus, the mean value of the estimate of the variance is

lessthan the actual variance. However, this bias does not affectthe

test for stationaritysince allthe variance estimates willbe biased by

the same amount ifthe process isstationary.
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Chapter "vii

Estimation of Power Spectral Densities

There are two techniques in common use today for estimation of
power spectral densities: the Blackman-Tukey and finite Fourier trans-
form techniques. There are also newer techniques, such as maximum
entropy and maximum likelihood, which, though still subjects for re-
search, appear to have certain advantages over the older techniques and
may one day become standard. These newer techniques are discussed
in chapter Y_II.

7.1 The Blackman-Tukey Approach

The first practical approach to the estimation of power spectral den-
sities was developed by Blackman and Tukey. 1 Although this approach
has been superseded as the standard by the finite Fourier transform
approach, it is still valuable for certain applications, particularly when
one is analyzing digital data and the number of data points is not a
power of two. Further, it illustrates some of the di_culties in spectral
estimation more clearly than does the finite Fourier transform. Thus,
it will be discussed first.

Recall that the power spectral density is defined as the Fourier
transform of the autocorrelation function, that is,

I f5 Rx(r) e-i_ drSx(_) = _ oo

From equation (6.7), an estimate of the autocorrelation for Irl < T can
be obtained as shown in figure 18. Thus, Blackman and Tukey define
their estimate as the finite Fourier transform of this function, that is,

IfSx(_) = _ r Rx(_) e-i_" d_ (z.1)
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A

RX( r )

i
-T T

Figure 18. Estimate of autocorrelation.

UT(r)

J' I
T

T

Figure 19. The boxcar func¢ion.

In effect, the Blackman-Tukey approach assumes that Rx(r) = 0 for
]r I > T. The first question, of course, is how good is this estimate?

Introduce the bozcar function

{_ (1_1< T)uT(r) = (Otherwise)

as shown in figure 19. With the use of this function, the estimate in
equation (7.1) may be written as

1 f_'_ uT(r)kx(r) e-i_" dr (7.2)

with expectation

1FE {#x(_)} = _ ur(_)Rx(_)e-_" dr (7.3)

since Rx(r) is an unbiased estimate of Rx(r) for Irl < T. Now.

equation (7.3) is the Fourier integral transform of the product of two
functions. Thus it may be evaluated by the convolution theorem
(eq. (2.8)). That is, since the Fourier transform of the autocorrelation
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Chapter VII Estimation of Power Spectral Densities

UT(G))

-,6,-:--3,,-_'-_ o ."_ _"_,,
T T T T T T T T

Figure 20. The spectral window UT(W).

CO

is the power spectral density,

F
O0

(7.4)

where UT(W), called a spectral window, is the Fourier transform of the
boxcar function and is given by

1S uT(r) e -iwr dr = -- sinc(wT) (7.5)Ur(_) = _ _0 _"

where
sin z

sinc x -- _ (7.6)
2_

is the sinc function, which has the property that lim(sincx) = 1.

Although some authors include a 7r in the definition of the sinc function,

equation (7.6) is preferable for time series analysis. The spectral

window UT(W) is shown in figure 20. Its main lobe has height T/Tr
and width 2rr/T, and its integral is unity since by definition

FuT(r) = UT(W)e_'_"
O0

and thus

/:UT(O ) = I = UT(U_ ) d,w

Therefore, as T -, _, the spectral window has the characteristics of a

delta function, in which case the integral given in equation (7.4) would

be Sx(_a) and the estimate would be unbiased.

However, for finite T, the spectral window UT(W) is not a delta
function; it has a main lobe of finite width and both positive and
negative side lobes. Thus Sx(_a) is not an unbiased estimate of the

59

II II U I_ I_ l_ I: L_ E E. li l_ .IJ E



Introduction to Time SeriesAnalyois

power spectraldensitySx(w). It can be seen from equation (7.4)

to be biasedbecause itsexpectationisa convolutionof the actual

power spectraldensitywith the spectralwindow UT(_). Further.the
finitewidth ofthiswindow causesa major problem with thefrequency
resolutionof the power spectraldensity,as willbe discussedlaterin

thischapter.There arealsootherunfortunateaspectstothisestimation

technique,suchasthenegativeestimatesthatcan be produced attimes

by thesidelobesofthe window and thehighvariabilityoftheestimate,
aswillbe discussedinchapterVIII.

Itshouldbe noted,however,thateventhoughthisestimateisbiased.

it is still power preserving in the sense that, from equation (7.3),

E Sx(_) d_ = dr uv(r)ax(r)
O0 O0 O0

/:°= druT(r)Rx(r)6(r)
O0

ffiur(O)Rx(O) ffiE { X2(t) }

sinceUT(O) = I. Thus, the mean valueof the integralof the spectral

estimateisthesame asthe integraloftheactualpower spectraldensity.
the totalpower ofthe process.

7.2 Windows

In an attempt to improve their estimation technique, Blackman and
Tukey developed a new class of estimates

I f/u(r)/_x(r) e-_" dr (7.7)Sx('_) = _ _o

where u(r) is a real function called the lag window corresponding to the
spectral window

1 /_0 u(r) e -iwr dr (7.8)

Sinceequations(7.7)and (7.2)are identicalin form,thesenew esti-

mates have similarmathematicalpropertiesto thosediscussedearlier.

Blackman and Tukey'sideawas topicka lagwindow thatledtoa spec-

tralwindow which has smallersidelobesor otherdesirableproperties
and which reducesthe variabilityof theestimate.
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u('r)
I

I I T

-Tm rm

Figure 21. Arbitrary lag window.

All acceptable lag windows must satisfy three requirements:

1. u(0) = 1, to preserve power

2. u(r) = u(-r) so that Sx(_) is real

3. u(r) = 0 for Irl >Tm where Tm <_ T, so that unavailable data are

not required

Thus, all lag windows have a shape similar to that shown in figure 21.

Since any function that satisfiesthese three requirements is an even

function for -Tin < r < Tin, itcan be expanded in a Fourier cosine

seriesin that region:

OO

ao n_'r
u(r) = T + _"_ a,_ cos -_-_ (Irl < T,.,,) (7.9)

/1==1

where
OO

ao
u(0)= T + _ a. = 1

rl=l

Thus, equation (7.9) represents the whole family of windows for different

choices of the coefficients an. The corresponding spectral window is
given by

1 f_'_ u(r) e-_''_ aru(_) = _ oo

T,,, _o
= 2"_"_ a,_sinc(_,T,,,-,,_')

_--00

(7.10)

Thus, the arbitraryspectralwindow consistsof a sum of sine functions

occurring at the frequencies _ = nTr/Tm as shown in figure 22.

Generally, the number of nonzero an's determines the effectivewidth
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Ui(_)
, _ aoT m

a2Tm /_

-2. -. o'-- 2. 3.

Tm Tm Tm Tm Tm Tm

co

Figure 22. Arbitrary spectral window.

of the main lobe of the window. However, the positivelobesof one sinc

function tend to cancel the negative lobes of another.

Some clauicM wi_ws, Some lag windows have been so widely

used that they are worthy of discussion:

I. Boxcar (ao = 2, _ = 0 for [n)> 0):

I (M<7".,)_(_r) = 0 (Otherwise)

This window, which was the originalBlackman-Tukey window, isshown

in figure 19 and its corresponding spectrai window is displayed in

figure20.

2. Hanning (ao = I, al = I/2, a_ = 0 for I-I> i):

{A(I+cos_) <l,'i<T_)u(r) = 0 (Otherwise)

This window was named for the Austrian meteorologist Julius yon

Harm I and is probably the most widely used window for Blackman-

Tukey spectralestimation.

3. Hamming (ao -- 1.08, al --0.46, an = 0 for In[> I):

(M < z',,,)0.54 + 0.46cos _ (Otherwise)u(r)= 0

This window was named for R. W. Hamming. l Although itminimizes

the height of the side lobes for a two-term series,ithas a discontinuity

at 11"[= Tm which isnot present in the Harming window. However.

note that the Hamming and Harming windows differnegligibly.
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4. Cosine bell:

7'_'1"

cos _ (Irt < T,,,)
u(r) = 0 (Otherwise)

Although this window corresponds to a complicated set of an's, its
transform can be written

Trn cos _Trn

u(_)-
2 (_14- _)

Figure 23 presents a comparison of the cosine bell and Harming lag

windows and figure 24 presents a comparison of the corresponding

spectralwindows.
5. Bartlett:

I- _ (Irl<T,_)
U(I")

t0 (Otherwise)

This window was named for M. S. Bartlett.11 Again itcorresponds to

a complicated set of art's.However, itstransform may be written

_'r sinc2

since it isproduced by the convolution of two boxcar windows. As

can be seen, the Bartlett spectral window has no negative side lobes.

However, itsmain lobe isvery broad.

C_es spectral densities. With the Blackman-Tukey approach,

similar estimates of the cross spectral densities may be developed. For

example, from equations (6.8) and (6.9), the cross correlation Rxy(r )
may be estimated for I_l< T Then

'F u(_)kxy(_) e-i'' dr (7.11)

yields an estimate of the cross power spectral density.

7.3 The Finite Fourier Transform Approach

The technique for power spectral density estimation in most common
use today isbased on the Finite Fourier Transform of the data rather

than on the transform of the autocorrelation function. Historically,

this technique was developed firstand produced what was calledthe

63



Chapter VH Estimation of Power Spectral Densities

._,0
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-.SO O. ,5o 1.oo
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Fism'e 23. Comparison of cceine bell and Harming lag windows.
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Figure 24. Comparison of coeme bell and Harming spectral windows.
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Chapter VII Estimation of Power Spectral Densities

periodogram.ll However, it was only with the introduction of the Fast

Fourier Transform (to be discussed in chapter X) that the technique

became practical for large amounts of data.

From a single sample function of length T of a random process

X(t), it is clear that the Fourier integral transform of X(t) cannot be

computed because the data are not known for infinite time. However,
the finite Fourier transform

Xr(_) = _ x(t) e-_t dt (7.12)

can be calculated. Further

/oE {x;(_)xr(_)}= _ at, dr2Rx(t2-q)_-'_("-"_

Rx(r) e -'wr dr

2_rT T IrlRx(r) e-'_"dr (7.13)

where equation (6.6) has been employed. Now, if X(t) is a completely

random process, the second integral in equation (7.13) is finite. Thus,
one finds that

T--oolim-_-E2r {IXT(w)I2} = Sx(w) (7.14)

since the second integralisdriven to zero by the T -l multiplierand

the firstintegralbecomes the power spectraldensity.

Based on thisrelation,the classof power spectral estimates

Sx(w) = WsIXF(w)I 2 (7.15)

may be introduced where

XF(W) ffi _ j-Too d(t)X(t) e-_¢#t dt (7.16)

is a Fourier transform of the data as seen through the window function

d(t). The data window is a real function with the property that d(t) -- 0
for t < 0 and t > T so that unavailable data are not required. The

correction factor W S is to be determined.
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How good issuch an estimate? Again, for _ fixed,this estimate is

a random variablewith mean

4__ dtl dt2 d(tt)d(t2)Rx(t2-tl) e -'w(t2-q)
oO O0

f_- wsff d(t)d(t-r)dt RX(r)e-' ardr (7.17}

upon setting tt = t- r and t2 = t. Note that equation (7.17) is

analogous to equation (7.3) with the equivalent lag window

Ws flo
u(r) = I d(t)d(t-r) dt (7.18)

which is a convolution of the data window with itself. Thus. the finite

Fourier transform and Blackman-Tukey techniques are mathematically
equivalent in their expectations as long as equation (7.18) satisfies the

conditions for a lag window. The first condition, that u(0) = 1, for

power preservation requires that

WS f; d2(t)dt = 1u(O)= _

In other words, the window correctionfactormust be

2_r

Ws = f_= d2(t ) dt

Thus, the estimate in equation (7.15) becomes

21r 2

I Sx(w) = f_e_ood2(t) dt'XF(w)] I (7.19)

The second condition, that u(r) be an even function of r, is identically
satisfied since

u_-,)= w_/-o0
2_ d-cv

__Wsf °v
27r d-c_

d(t)d(t+r)dt

d(tt-r)d(t t) d_.' -- u(r)

upon setting t' = t + r. The third condition, that u(r) = 0 for
Irl > T is also identically satisfied since u(r) is the convolution of
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two data windows that are nonzero only in the range (0, T). Thus,
equation (7.18) does satisfy the conditions for a lag window, and it

can be seen that the finite Fourier transform and Blackman-Tukey
spectral estimation techniques are equivalent in their expectations.

That is, finite Fourier transform estimation with a data window d(t)

corresponds to Blackman-Tukey estimation with the lag window given

by equation (7.18). A converse statement is also valid.

One comforting property of the finite Fourier transform technique

can be seen by introducing the Fourier transform of the data window

I /_,o d(t) e -iwt dt (7.20)D(_) = _ oo

where

Fd(t) = D(w) e_tdw
O0

Then, the equivalentspectralwindow isgiven by the Fourier transform

of equation (7.18). Note that the convolution theorem (eq. (2.9))

cannot be applied to equation (7.18)directlysince the convolution in

equation (7.18)depends on t - r rather than on r - t. However, the

Fourier transform of f(-t) is F(-¢o). Thus, by equation (2.9),the

equivalentspectralwindow is

1 /_,,ou(r) e-_r dr = WsD(w)D(-w )U(_)= _ oo

Further, since d(t) is real, D(-w) = D °(_). Therefore

U(.J) = WslD(w)I 2 (7.2i)

and it is seen that the equivalent spectral window is always non-

negative. Thus, the finite Fourier transform technique cannot yield
negative spectralestimates.

Any of the lag windows introduced previously may be employed as

data windows by setting

d(t) = u(2t-T) (7.22)

which merely amounts to shifting the range from (-T, T) to (0, T). The
cosine bell window and the boxcar window modified by cosine tapers 12
on each end are probably the most widely used windows in finite Fourier
transform estimation.
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Cross Sl_C¢_! dt_ity estimation. Again, similar estimates for the

cross spectral densities may be developed. For example,

#XY(W) = WsX'F(w)YF(w ) (7.23)

where YF(w) is given by equation (7.16) with X(t) replaced by Y(t).

Autocorrelation and cross correlatiom estimata. Ifthe power spectral

density isestimated by the finiteFouriertransform, the autocorrelation

could then be estimated by Fourier transformation, that is,

/_°Rx(r) = SX(_a) e iwr d_ (]'.24)
O0

Again, the question is how good is this estimate? Its expected value is

¢)c

where, by equation (7.17),

and u(r) is given by equation (7.18). Thus,

and the estimate in equation (7.24)isseen to be biased. Even ifthe

boxcar data window is employed,

u(r) = T1ff=d(t)d(t-r)dt = 1 - _-]rl (Irl < T)

which is a Bartlett lag window, and the estimate is still biased:

and in order to make the estimate unbiased, it is necessary to define a
new estimate

Rx(r) = WR _ SX(_) e_" _ (7.25)

,.
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where W R is the window correction factor

1
W R =

,_(r)

Similar estimates may be developed for the cross correlations, for

example,

hxy(_) = wR _xr (_) ei_ d_ (7.28)

7.4 Frequency Resolution

The major problem introduced by a finite data record length is
that of frequency resolution. Since the finite Fourier transform and

Blackman-Tukey spectral estimation techniques have an equivalent

bias, this problem occurs in both techniques. Thus, the problem

of frequency resolution will be analyzed for the simplest ease of a

Blackman-Tukey estimate with a boxcar lag window.
If a random process X(t) consists only of a single sinusoid with

amplitude A and random phase _, that is,

X(t) = Acos(wtt + ¢)

then, its autoeorrelation is

A 2

Rx(,') = -_-cos_,_

with power spectraldensity

A 2

Sx(w) = T [5(w-w1) + 8(w+wl)] (7.27)

However, if equation (7.27) is substituted in equation (7.4), the expected

value of the spectral estimate is

A 2

E {Sx(w)} = --$-[Ur(_-_l) + Ur(_+_)l (7._8)

as shown in figure 25. Thus, the spectral estimate consists of two
reproductions of the spectral window. Further, since the window has

negative side lobes, the estimate is negative at certain frequencies even

though the power spectral density, by definition, must be non-negative!

It is only in the limit as T -- oo that non-negative estimates consisting
of two "spikes" at w = :t:a_t are obtained.
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Eh._x(C_)l

Figure 25. Spectral estimate of sinusoidal signal.

Now, suppose that the signalconsistsof two equal-amplitude sinu-

soids at frequencies_I and _2, that is,

X(t) = Acos (_lt + $1) + Acos(_a2t + _)

with random phase angles. Then, the expected value of the spectral
estimate is

A 2

E {gyc(w)}ffi T [UT(w-wl) + Ur(w--_) ÷ UT(w÷wx) + Ur(w+w2)] (7.29)

which is a sum of four window functions, two centered at _l and _2 and

the other two centered at -_1 and -_2. Depending on the frequency

_eparation Aw - (_2 -_al) and the characteristics of the spectral

window, it may or may not be possible to determine from the estimate
that two separate frequencies are present. In the analysis that follows.

it is sufficient to consider only the window reproductions at the positive

frequencies _l and _2. Three cases are possible as shown in figure 26. In

figure 26(a), the two frequencies are so close together that the sum of the
two window functions that represent them actually peaks at the mean
frequency _ ffi (_1 + _,_)/2, and no peak is visible at the frequencies

_1 and _2. In figure 26(b), the frequencies are better separated and
peaks at _a1 and _#2 are visible. However, the two window functions

merge into one another. Finally, in figtu-e 2fl(c), the frequencies are
sufficiently separated that the two window functions are distinct.

A criterion can be developed that will determine which of these three

conditions is present for the spectral window given by equation (7.5)
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A

E ISx(CO)l

I c_I co2

A

E/Sx(_ )}

(a) Unresolved components.

. • _( _ ,' ,* _w m

¢oI ¢o2

(b) Partially resolved components.

E I,_=X(CO)l

I _1 ¢°2

CD

.cD

(c) Fully resolved components.

Figure 26. Spectral estimate of signal containing two smusoidal components.

and various separations of the two frequencies. Define the sum of the
two window functions as

f(_) = UT(W-wt) + g.r(_-,,_)

-- 2_¢[(w-&)sin(w-_)rcoa(_#)T-(_#lcoa(w-&)rsin(_#)T'(_,-'b)2 - ('_) 2

(7.30)
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1.0

"]! !2_ I . r._

-o. -_ _ __

Fi_ 27. Peak amplitudefunctions.

where _a ----(_a2-_al). The valueof thisfunction at the mean frequency

= (wl+ _2)/2is

f(_)= --2Tsinc (-_)TIt (7.31)

while its value at the frequencies_ol and w2 can be obtained from a

limitingprocess as

In terms of these two values, the criterion for resolution may be given
as

Unresolved:

Partially resolved:

Fully resolved:

f(:.+÷ )>fI:.)>o
/(c,)= o

Figure 27 is a plot of equations (7.31) and (7.32) as a function of the
separation of the two frequencies A_. From this figure, it can be seen
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that partial resolution requires

4.2

la_l > _-

while full resolution requires the two equal-amplitude sinusoids to be

separated in frequency by

t_( = 1_2 -_Jl( _ _- (7.33)

where the first zero of f(_) has been utilized.
This analysis of the resolution problem has assumed that the two

sinusoids were of equal amplitude. Clearly, the problem of resolving
two sinusoids becomes even more difficult if the sinusoids have unequal

amplitudes.
The resolution problem also places a lower limit on the frequencies

that can be observed in a record of length T. Any frequency w lower

than 2_r/T, or

(7.34/

cannot be differentiated from zero frequency. Thus, frequencies f below

1/T appear as a nonzero mean or linear trend in the data.

B/as. If the signal X(t) is a completely random process, the

preceding discussion of frequency resolutionmay, on occasion, make

matters look worse than they reallyare. Recalling the definitionof the

boxcar function and the factthat the autocorrelationiseven, itcan be

seen from equation (7.3)that

{ } 1_0°°E SX(_) = "_ uT(r)Rx(r)coswrdr

= Sx(w) - _ Rx(r)cos_rdr

and thus

Bias=E{_x(_)}- sx(_)= -_ Rx(r) coswrdr (7.35)

Therefore, the bias depends on the values of the autocorrelation at

lags greater than the record length. If X(t) contains periodic signals
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Introduction to Time Series Analysio

or very low frequencycomponents, these autocorrelationvaluesare

nonzero and the precedingdiscussionisrelevant.However, ifX(t)
isa completelyrandom process,the autocorrelationmay wellbecome

essentiallyzerobeforethe end of the recordlengzh,in which casethe
estimateisunbiased.Itissurprisingthatthisresulthas receivedvery.

littleattentionin the literature,as the conditionsforitsvalidityaxe

oftenfulfilledinpractice.

When theestimateisbiased,a betterunderstandingofthebiascan

be obtainedby notingthatequation(7.4)may alsobe written

CO

(7.36)

Because UT(A) ishighlypeaked about A = 0, most of the valueof

the integralcomes from thisregion.The power spectraldensitymay
be expanded in a Taylorseriesabout A = 0, with primes indicating

derivativeswith respectto_:

A2S"tw) _Sx(_-_) = Sx(_) - _S_(_) + T x_ "'"

and thenequation(7.36)can be approximatedby integrationoveronly
the main lobeofthe window. The resultis

f" ur(_)Sx(w-_)d_
.t-,r/r

f_/T , tv/r
_.Sx(_) _-./r ur(_) d_ - S'x(_)J-./r

2 .t-_/T

Sx(_) +

_Ur(_) d_

since the first integral is nearly unity (i.e., UT(0) = 1) and the second
integral vanishes because the window is an even function. Thus, another
expression for the bias may be obtained:

(7.37)
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Chapter VH Estimation of Power Spectral Densities

G0

Figure 28. Smoothing produced by estimation.

It can be seen that

(If > o)

(If < o)

That is, the estimate will be too low at maxima of SX(¢_) and too high
at minima and will therefore provide a smoothing of the spectral density

as shown in figure 28. This result is to be expected, since the spectral

window acts as a moving-average low-pass filter (to be discussed in
chapter XI) and suggests a method for attempting to reduce the bias
as discussed below.

Prewhitening and postdarkening. One technique that is sometimes

used to try to remove the bias caused by estimation is called prewhiten-

ing and pontdarkening. Because the bias is proportional to the second
derivative of the actual power spectral density, the idea is that if the

actual power spectral density were flat or even linear in w, the bias
would be zero.

Suppose that the signal X(t) has a power spectral density with peaks
as shown in figure 29. If one could design a filter that has valleys at

the frequencies at which the spectrum has peaks, as shown in figure 30,

and then pass the signal through the filter, the power spectral density

of the output signal Y(t), given by

Sy(w) = IH( )I2Sx( )

would be nearly flat as shown in figure 31. Thus, an estimate of the

power spectral density of the random process Y(t) should have little
bias. Such a technique is called prewhitening. An estimate of the

power spectral density of the original signal X(t) is then obtained by
reversing the process, that is,

= sY( )
IH( )F

75

ll il. lI IJ li lSU £ II lS IZ.lJ ll



Introduction to Time Series Analysi_

ca2
69

Figure 29. Power spectral density containing peaks.

IH(co)l

| !

Figure 30. Prewhitening filter.

Sy(_)

Figure 31. Prewhitened power spectral density.

This technique iscalledpostdarkening.

To actually implement the technique, one would firstobtain a raw

estimate SX(_), use this to design the filter,and then carry,out the

procedure. Itcould even be done iterativelyifnecessary. The process

for designing such a filterwillbe discussed in chapter XI.
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Chapter VIII

Uncertainty in Power Spectral Estimates

The spectral estimates discussed in the previous chapter also vary

about their mean values, depending on which pa_icular sample function
of the random process is employed. This uncertainty can be very large

(as will be seen), and thus means for reducing it must be devised. The

two common techniques for spectral estimation use completely different
approaches to solve this problem.

8.1 Understanding of Uncertainty

An understanding of uncertainty in spectral estimates can be gained
from one case which can be worked out completely, because of the

assumed normality of the random process. Suppose that X(t) i_ a

stationary, normal random process with mean zero and variance _2X.
Then by analogy to equation (7.14), consider the random variable (for

fixed)

Z(_) = lim _-Ixr(_)l 2 (8.1)
T-*co J

whose expected value is the power spectral density Sx(w). Now, from
equation (7.12), Z(w) may be written

z(_) = x_(_) + x_(_) (8.2)

where

T--co_ X(t)co,wtdt
(8.3)

X2(_) = lira f0 TT--.co 2%/2%/2%/2%/2%/2%/_X(t) sinwtdt

Since the operations on the normal random process X(t) represented
by these expressions are linear, XI (¢_) and X2(w) are normal random

processes, or for _ fixed, normal random variables. (See chapter [II.)
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Introduction to Yime Series Analysis

Further, it can be shown by taking expectations of equations (8.3)
that

E{Xl(_)} = E{X2(_)} = 0 (8.4a)

and

2

Thus, X,(w) and X2(w) axe identically distributed. In addition,

E {X_(_)X2(_)} = o

and so they are uncorrelated; that is, for all _, the correlation coefficient
of these two random variables is

E {x_(_)x2(_)} = o
p -- 0'2

where a 2 ffi Sx(w)/2. Therefore their joint density function (see

chapter III) factors, that is,

fx_x2 (=1,=2) = fx_ (zl)/x2 Cz_)

Thus, Xl(w) and X2(w) are independent random variablesand Z('.J),

as given by equation (8.2),is the sum of squares of two independent,

identically distributed normal random variables.

8.2 Application of the Chi-Square Random Variable to Spectral
FJlimafion

The random variable

is, except for the limiting process, the power spectral density estimate

given by equation (7.19) with a boxcar data window. Further. it has

been shown that Z(w) is a sum of squares of two independent, normal
random variables X1 and X2 with means zero and variances Sx(w)/2.
Thus, the random variable

Zo(_)= _ = LVSx(_)/2J +
x2(_)

JSx(w)/2
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Chapter VIII Uncertainty in Power Spectral Estimates

is a chi-square random variable with two degrees of freedom, as dis-
cussed in chapter [II, and its mean is

= 2

Figure 32 is a plot of the variation of a chi-square random variable
about its mean as a function of degrees of freedom k. Eighty percent
of the values taken by the random variable will lie between the bounds

shown. Thus, these bounds represent the 80-percent confidence limits
on the random variable. Although other limits could have been plotted,
these limits have become standard for use in spectral estimation.

Since Z0(_) is a chi-square random variable with two degrees of
freedom, it can be seen from figure 32 that

P o.].<.-.-_-.--.<2.3 =P o.t<_<2.3

= F,{0.1Sx(_) < z(,) < ZaSx(w)} = 0.s (8.5)

which says that if Z(w) is viewed as a spectral estimate, 80 percent of
the time it will lie between 10 percent and 230 percent of the actual
power spectral density. Clearly, this uncertainty is unacceptably large.

8.3 Block Average

The finite Fourier transform spectral estimate given by equa-
tion (7.19) is essentially equal to Z(w) and thus can be expected to
have similar wide vaziability. Therefore, all spectral estimates by equa-
tion (7.19) will be assumed to be essentially chi-square random variables
with two degrees of freedom. This assumption will be employed for all
random data, even when the underlyin9 random procesa is not known
to be Gauasian. Since the Gaussian model fits many real world phe-
nomena, such an assumption may not be unreasonable, especially if
one requires only a relative evaluation of uncertainty of one spectral
estimate with respect to another.

In order to obtain less variable estimates, suppose that the data
are broken into NB blocks of length TB such that NBT B = T,
as shown in figure 17. Then a technique similar to the test for
stationarity in chapter VI can be employed. A spectral estimate Sx(J)
for j = 1,2 .... ,N B can be made over each block of data. Then,
assuming independence of the blocks, each estimate is a chi-square

T9
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Figure 32. Variation of chi-square random variable.
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Chapter VIII Uncertainty in Power Spectral Estimates

random variable with two degrees of freedom and their average

/_x(_)= _ .
j=L

is essentially a chi-square random variable with degrees of freedom k

given by

k= 2NB

As can be seen in figure 32, this greatly reduces the uncertainty of the

estimate. In fact, if a(k) is the left bound and b(k) the right bound in

figure 32, it can be seen by analogy with equation (8.5) that

P {a(k) < SX(Ca'--'_)<b(k)Sx}= 0.8

or, more meaningfully,

#x(w) }
p _ Sx(_) > Sx(_) > _ = o.8 (8.6)

[ a(k) b(_)

For instance, if the data axe broken into 50 blocks, then a(100) - 0.82
and b(100) -- 1.18. Thus,

P {1.22_x(_)> Sxl_) > o.85#x(_)} = o.8

or 80 percent of the time the actual spectral density will lie between 85

and 122 percent of the spectral estimate.

Of course, this reduction in variability has not been achieved without

cost. Recall that from equation (7,33), the bandwidth of the spectral

estimate is given by

27r 1

A_=_- or A/=

If the data are broken into blocks, the effective data length is no longer

T, but T B. Thus, the effective bandwidth of the estimate Af has
increased to

1

_/=_

81

L

I1 U lU 1I U Ii H li I .IJ II



Introduction to Time Series Analysis

it

_ata used in

estimate

eta neglected

in esthete

-T -T m Tm T

Figure 33. Utilized portion of autocorrelation estimate.

That is, in reducing the variability, the resolution has also been reduced.

Writing k = 2NB = TT/TB yields the fundamental relation

k = 2AfT (8.7)

That is, the degrees of freedom are equal to twice the bandwidth in
hertz times the data length. Thus, for T fixed, a tradeoff dilemma.

Reduced variability _ Reduced resolution

is apparent. The only way out of this dilemma is to obtain more data
(if possible), that is, to increase T.

8.4 Uncertainty Analysis for the Blackman-Tukey Technique

Recall" that the Blackman-Tukey spectral estimate is

l O0

Sx(=) = _ f_® u(_)kx(_) e-_w"dr

where the lag window u(r) ffi 0 for [1"]> Tin. By a lengthy analysis,
again assuming normality of the data, Black,man and Tukey I were able
to show that this estimate can also be considered a chi-square random
variable with degrees of freedom

27"

T,.

where Tm is the half-width of the lag window. Thus, if the maximum
width Tm= T is employed, again the estimate has two degrees of
freedom. The degrees of freedom are increased by taking Tm < T.

Since the autocorretation can be estimated out to Irl = T. taking
Tm < T leads to the disquieting result that variability is decreased by
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Chapter VIII Uncertainty in Power Spectral Estimates

not using data at largelag valuesr,as shown in figure33. This resultis

not so surprisingwhen one recallsthat lessdata went intothe estimate

of the autocorrelationat large lag values (seeeq. (6.7)),thus making

the variabilityofthe autocorrelationestimate itselfmuch higherat large

lags.

A similartradeoffbetween resolutionand variabilityisseen here as

well,since the bandwidth of this estimate will now be Af = I/Tm.

Thus, again

]k = 2AfT

Thin relationship yields the number of degrees of freedom regardless of

which estimation technique in employed.
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Chapter L_

Digital Time Series Analysis

Most time series analysis is now done with the use of digital data,

that is, samples of the random process taken at discrete instants of time.
Digital computers are, of course, constrained to such data. However,

even stand-alone spectral analyzers usually work with digital data now.

The use of sampled data further complicates the estimation of the

various statistical quantities of interest, as will be seen. Usually, the

data are assumed to be sampled at equal intervals of time At, or at a
sampling rate of I/At samples per second. However, in recent years,

techniques for analyzing data taken at random time intervals have been
developed, as will be discussed in chapter XIL

9.1 Shannon's Sampling Theorem

Much of the understanding ofthe analysisofequally spaced sampled

data is'based on a marvelous result usually credited to Shannon 13

although itsorigin isactually much older14. An interestinghistorical

aspect of Shannon's work isthat, although it was submitted to the

journal in which itappeared in 1940, itwas not published until 1949,

apparently having been caught up in the secrecy surrounding the war
effort.

Suppose that X(t) is a stationary random process and that sampled

data X(nAt) exist for --co < n < co. On the basis of these data, it is

desired to estimate the values taken by the random process at all times,
that is,

k(t)= _ _,,(t)x(nAt) (9.1)

In other words, one wishes to interpolate between the data points to

reconstruct the entire time history. An equivalent interpretation of
equation (9.1) is that it is an attempt to expand X(t) in terms of a set

of special basis functions an(t). The data X(nAt) are the coefficients

_j),..,,_...=.llfI_liONALL2LBLAN(_
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Introduction to Time Series Analysis

of the basis functions. The basis functions an(t) are chosen such that

the mean square error between X(t) and its estimate ,k'(t),

e-_ = E { [X(t) - X(t)] 2 } (9.2)

is minimized. Since

{[ ]2}-- E X(t) - k a.(t)X(nAt)
I'I,=I -- O0

fort fixed,the minimum occurs when

or

o_t(t) = -2_ x(t) - _,(t)x(nAt) x(tAt) = o
n

(9.3)

(DO

Rx(t - tat) -- E an(t)Rx[(n - l)At] - 0 (9.4)

for -oo <_ t < co.
Now, recallthat

and thus,equation (9.4)becomes

f_ Sx(_) e-_t_t

Sx(_)ei'_

- o_(t)e i'a"At d_ = 0

Oo

n_ --00

Now, comparing

(9.5)

with equation (2.4) for t fixed, it can be seen that this series is the

Fourier series for a function f(w) that is periodic with period 2_r/At.

Thus, for --Tr/At < w < It�At, the function eiwt may be represented
exactly by the series

OO

ei"' = E a.(t) e_"_'
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Chapter IX Digital Time Series Analysis

where

At f,_l,.Xt ei(t_n,_t) _ dw = sine(wet - nTr)
an(t) = _ j_r/At

and we = r/At.

Now, suppose Sx(w) = 0 for Iwl > we. Then equation (9.5) is

satisfied because Sx(w) causes the integral to be zero for Iwl > we and

the term in brackets causes the integral to be zero for lwl < we. Thus,
the best estimate is

,V,(t)= _ X(nAt) sine(wet- nlr)

FI_ --00

The mean square error in thisestimate is

since by equation (9.3), E {}(2} = E {X_f}. Thus,

= Rx(O) - _ an(t)Rx(nAt - t) =- O

as can be seen from equation (9.4) by letting t - eat. Therefore

_:(t) = x(t)!
This result shows that, if Sx(w ) = 0 for Iwl > we, then a realization

of the random process X(t) is perfectly reproduced from the sampled

data X(nAt) by

X(t) -- X(nAt) sine(wet -- n_')

(9.6)

This fundamental resultisused insecure communications, long distance

telephone transmission, digitalmusic systems, and a host of other

applications.
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Introduction to Time Series Analysis

Although the derivation given here was for a stationary random
process, the result also holds for deterministic and transient functions
as long as their frequency content ks limited to ]wl < we, as can easily
be checked in two simple eases:

Case I
Let t--IAt. Then

sinc(wc£At - nlr) ----sinc[(l - n)lr] = 5e,n

where 6t,r, is the Kronecker delta function, which is unity when g - n
and zero otherwise. Thus,

X(eAt) -- Z X(nAt)6e,n = X(eAt)

and the data are reproduced, regardless of the properties of X(t).

CaseH
Considerthe deterministic,transientfunctionwith amplitudeA,

X(t) = A sinc(wct)

Then

X(nAt) = A sinc(wcnAt) = A sine(nit) = A6n.O

and equation (9.6)

00

X(t) = Z A6n,OSinC(wct - nrr) = Asinc(toct)
flI== --O0

reproduces the time history.

9.2 The Nyquist Frequency and Aliasing

The cutoff frequency

[ . xj_ = _ or/_=

is called the Nyquist frequency and is the highest frequency that can be
reproduced from data sampled at equal intervals At. To see this, suppose
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Chapter IX Digital Time Series Analysis

cos_ 1t

cos _at

Figure 34. llhmtration of aliMing.

that X(t) is a sinusoid of frequency col >coc, that is,

X(t) = Acoscott

aa shown in figure 34 where the dots represent samples. From the
sampled data, the sinusoid of frequency cot > coc is seen to be indistin-
guishable from a sinusoid of lower frequency cos- Further, fc = 1/2 At
corresponds to a sinusoid with period 1/fc = 2 At. A sinusoid of this
frequency would be sampled only twice per period while coscoat is seen
to be sampled more than twice per period. Thus, coa < ¢0c and the
sinusoid of frequency greater than coc cannot be distinguished from a
sinusoid of frequency less than wc. Mathematically, consider the most
often encountered case where wt is only slightly larger than wc; that is,
cot - coc + cot where col <coc- Then

X(nAt) = AcoswtnAt = Acos(coc + cot)nAt

= A cos(nTr + cotnAt)

= A(cos nlr cos wlnAt - sin n_rsin wlnAt)

ffi A cos(nit - cotnAt)

= Acos(coc -col)nAt = Acos_anAt

where cos = coc - col. Thus, the frequency cot = coc + cot is indistin-
guishable in the sampled data from the frequency co,, = coc - wl. This
phenomenon is called aliaaing, because the frequency cot goes by the
new name, or alias, _=. Aliasing is the major problem introduced by
the use of (equally spaced) sampled data.

The presence of this phenomenon suggests that if one wants to
analyze data having a maximum frequency of fmax, one must use a
sampling rate

t > 2fro= I
Sampling rate = A"_-- (9.7)I
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of at least twice the highest frequency in the data. Such data are

said to be sufficiently sampled. To Me a much higher sampling rate
is wasteful, since Shannon's sampling theorem implies that there is no

more information to be gained from the data. However, in the real

world, where few signals are ever truly band limited, some increase is
advisable. A 2.5fmax sampling rate has been found to give excellent
results 12 in most applications.

It should be mentioned that oversampling is sometimes recom-

mended t5 to give more freedom in the reconstruction of sampled

data. If the data are sampled at a rate greater than twice the

highest frequency, then SX(W) approaches zero at some frequency

lower than we. Thus, the term in brackets in equation (9.5) need

not be zero between the highest frequency in the data and -_c. This
freedom allows one to choose other functions an(t) in the expansion

(eq. (9.1)) which converge faster than the sinc functions. These

faster converging expansions for X(t) are u_eful in many applications.

such as long distance telephone conversation and photographic image
reconstruction.

93 Effect of Aliasing on Power Spectral Density

In many applications, one may not know the maximum frequency
fm_. What happens if one just chooses a sampling rate and estimates

the power spectral density?

Let X(t) be a stationary random process with power spectral density

1 f© Rx(r )e_i_ _dr
Sx(_) = _ j_ (9.8)

If the signal is sampled at intervals At, then the autocorrelation Rx(r)
may be estimated (as will be seen later in this chapter) only for r = 3 At
for -c_ < j < _. Thus, the power spectral density estimate, which

may include aliasing, is given by the discrete expression (to be shown

later in this chapter) of the integral in equation (9.8)

At _ kx(jAt ) e_i,_jat_x(_) = _ .
3ffiffi--OC_
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Chapter IX Digital Time Series Analysis

c(T)

ITTTT
0 _ 2At 3_t 4_t

Figure 35. Dirac comb function.

for Iwt < we. The expected value of this estimate is

E (w) -2"-_ _ Rx(jAt)e-i_iAt
jm-oo

A,.[_o=2"_ oo
(9.9)

since Rx(jAt), which is estimated from discrete data, will be shown to

be an unbiased estimate of Rx(jAt ). Here

go

c(r) = Z 6(r--jAt) (9.10)

j_ Q_

is the Dirac comb function shown in figure 35.

The Dirac comb function is periodic with period At. Thus, it may
be expanded in the Fourier series

1 2 go 21rk

c(,)= h_+ h_ _ cos-£T_
k=l

for allr. The Fourier transform of thisseriesis

f_ 1 oo1 go c(_)e-_" dr = _ _ 6(w-2k_c) (9.11)C(_) = _ go
kin--gO

another comb function, this time in frequency as shown in figure 36.
Thus, the Dirac comb function is one of those unusual functions whose
Fourier transform has the same form as the function itself.
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c(¢)

•..T t TTT.
-_c-_c-_c o 2% _ _c

Figure 36. Dirac comb function in frequency.

t
-4%-a%-2%-% o % =% a% 4%

Figure 37. AliMed frequencies in spectral estimation.

Since equation (9.9) is just the Fourier transform of the product of

two functions, by the convolution theorem (eq. (2.8)), it may be written

E{_x(_)}= A, c(_)sx(_-J)_'= Z sxl_-2k_o)
oo kz-oo

(9.12)

which is a sum of the values of the actual power spectral density. In

fact, for a power spectral density as shown in figure 37, power at all
the frequencies denoted by arrows appears as power at the frequency

_a0 in the aliased spectral density. It should be emphasized that

figure 37 represents an atypical case, which would result from very.
badly under,sampled data.

Another way of looking at this phenomenon is to note that since the
power spectral density is an even function of _a,

Sx(wo-2k_c) ffi Sx(2kwc-wO)

and power is seen to be _folded" about the Nyquist frequency, much

as one would fold a fan, with power at odd multiples of We appearing

at the frequency wc and power at even multiples of wc appearing at
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Chapter IX Digital Time Series Analysis

the frequency of zero. This situation is illustrated in figure 38. This
figure displays two estimates of the power spectral density of sunspot
activity obtained from the data mentioned earlier over the years 1610-
196010". For the first estimate, the sampling rate was one sample per

year yielding a At of 1 year and Nyquist frequency of t/2 cycle/year.
This estimate has 20 degrees of freedom. Note the appearance of a peak
near f = t/ll cycle/year corresponding to cyclic behavior in the data
with an 11-year period. Also shown in figure 38 is a spectral estimate
of the same phenomenon with a At of 7 years. Thus, the Nyquist
frequency is 1/14cycle/year and the sunspot activity is undersampled. In
this spectral estimate, the power in the signal at frequencies higher than
the Nyquist frequency has been folded about the Nyquist frequency and
now appears as power at lower frequencies. In particular, the peak at
f = 1/11 cycle/year now appears as a peak near f = t/21 cycle/year
corresponding to a period of 21 yearz. If the cyclic behavior was a
pure harmonic with frequency t/l _ cycle/year, which was sampled with
a Nyquist frequency of t/t4 cycle/year, the power at t/ll cycle/year
would alias back to the frequency t/t4 - (l/t, - V14) = 2/t4 - l/t1 =
_rr cycle/year, which is close to the frequency shown. It might be
mentioned that the apparent increase in the amplitude of the peak is
due to the power preservation feature of the spectral estimates discussed
in chapter VII.

_0-

At.7 yeMe

8-

_XII) 8 -

4-

1_ .06 .I0 .15 .20 .2S .30 .36 .40 .45 .5"0
I

Figure 38. Power spectral density estimates of sunspot activity.

When working with data of unknown frequency content, the only
way to be sure of avoiding aliasing is to pass the signal through a
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d(t) X(t)

Figure 39. The windowed data func¢ion.

low-pass antialiusing filter,which filtersout allpower at frequencies

higher than the Nyquist frequency based on the chosen sample interval

At. Sometimes itisadvantageous to do this even when the frequency

content isknown. For example, ifone is interestedin only the low-

frequency content of a signal that also contains high frequencies,it

is possible to reduce the sampling rate and thus the computations

required by filteringout the uninteresting higher frequencies. Such

an antialiusing filter must, Of course, be an analog filter applied to the

continuous data before it is di_tized, since after digitization there is no

way to distinguish between actual power and aliased power. This point
cannot be overemphasized as insufHcient sampling will cause the data

to be not only worthless but also misleading, as illustrated in figure 38.

9.4 Gibbs' Phenomenon

There isanother more subtle way in which aliasingcan enter into

digitalspectral analysis. For such analysis,itisalways assumed that

the random process X(t) is band limited. However, to use a finite

length ofdata, itisnecessary to suppose that the random process X(t)

is multiplied by a data window d(t) and to introduce the windowed

Fouriertransform (eq.(7.16)):

I oO

XF(w) = _ J-food(t)X(t) e-_t dt

This finite transform is exactly the Fourier integral transform of the

windowed data d(t)X(t), which is identically zero outside the region

(0, T B), as shown in figure 39.
Now, it can be proved 4 that a function which is nonzero for only

a finite interval of time cannot be band limited in frequency. Thus.

the windowed data cannot be band limited and aliasing must result.
Unfortunately, nothing can be done about this aliasing as long as one is

confined to a finite length of data. However, if T B is sufficiently [arge.
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Chapter IX Digital Time Series Analysis

the power at high frequenciesnecessary to reproduce the function is

ordinarily so low that it does not destroy the analysis in the frequency

range of interest.

Another possible source of aliasing is seen by recalling that the
Fourier integral representation (eq. (2.2)),

Ff(t) = F(w) eiwt d_
O0

is exact only where f(t) is continuous. At a point of discontinuity to,

it converges to the average value

f(t_) + f(t_)
2

of the right- and left-hand limits of f(t) as t approaches to, provided

that these limits exist. Thus, if there are discontinuities at the begin-

ning and end of the record length, as shown in figure 39, the finite

Fourier transform (eq. (7.16)) converges to the average value at these
discontinuities. Further, because of Gibbs' phenomenon, 4 if one tries

to represent a discontinuous function by a Fourier integral over a finite

range of frequencies, the representation produces high-frequency oscil-

lations near the points of discontinuity. Only by allowing unbounded
frequencies are these oscillations removed. Thus, the presence of these

discontinuities causes more power at the higher frequencies and, thus,
more aliasing.

This end-point discontinuity source of alia.sing may be reduced by

using a data window that is zero at the ends of the record, that is,

d(O) ffi d(TB) ffi 0

This removes the discontinuities in the record and reduces this

cause of aliasing. The Hanning, cosine bell, and Bartlett windows, for

example, fulfill this requirement. Some aliasing may still be produced,
however, caused by discontinuous derivatives at the ends of the record.

A similar analysis holds for the Blackman-Tukey method of estima-

tion as well. Thus, one ordinarily requires the lag windows to satisfy

u(-Tm) ffi u(Tm) = 0
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9.5 Relationship Between Continuous and Discrete Fourier

Transforms

Shannon's sampling theorem allows determination of the relation-

ship between Fourier transforms of continuous and discrete data for

band-limitedrandom processes. To eliminate the effectsof alia.singin

the following discussion, it will be assumed that all digital time histo-
ries have been passed through an antialiasing filter and are thus band
limited.

Let X(t) be a random proce_ that islimitedto the band ]_I < -_c,

where wc -- _r/At and At is the sample interval. Then, its Fourier

integraltransform (el. (2.3))isgiven by

1 fj X(t) e-_t dtx(,_) = _ oo

dt e-_t __, X(nAt) sinc(_t - n_')
_ OO _tm--OO

if_= n.)dt(9.13)

where Shannon's sampling theorem (el. (9.6)) has been applied.
Now, the Fourier transform of the sinc function is

o

1 oo e_/_/: sinc(wct - nlr) dt -- sine y e -iwtt/"l¢ d!/
oo 2_c _o

{ _-ml"w/_c
= _ (Iwl< we)

0 (Otherwise)

upon setting y = wet - mr, since

ffl • {- (Ill < t)oo sincwe-ZWt d_ -- 0 (Otherwise) (9.14)

Thus, equation (9.13) becomes
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x(t)

r' Interval Represented I=I

Figure 40. Interval represented by digital data.

since_c = Irl&t. This exact expression would allow calculationof the

Fourierintegraltransform from discretedata X(nAt) for-oo < n < oo,

and isan extension ofShannon's sampling theorem; that is,the Fourier

transform of the signal can also be reconstructed from the sampled
data.

In actual practice,the amount of data is always finite. Usually,

knowledge of the values X(nAt) for n = 0,1,2,...,N - I isassumed.

These values are taken to represent the sample function X(t) in the

interval(-At�2, T-At�2) a.sshown in figure40 where the dots indicate

data points.That is,the data point X(_At) isthought to representthe

time historyin the interval((_ - I/2)At,(t+ V2)&t).

Now, consider the finiteFourier transform (eq. (7.12))over this
interval

1 [T-At/2X(t)e__tdt 1 /_ x:= do(t)X(t) e-_t dtXr(_) = _ J-_t/2 _ oo
(9.16)

where do(t) is a boxcar function taking the value unity for -At�2 <

t < T- At�2. By the convolution theorem (eq. (2.8)) and substituting
equation (9.15),

Xv(w) =/:oo Do(w - _')X(w')a_,'

=At _-, X(nA,) _,.hA,/_+'#" Do(w") elw'nA= dw"

where D0(w) is the Fourier transform of d0(t ) . The latter integral,
which is to be evaluated only for Iw I < Wc, represents an ideal filter
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operating on the boxcar function,that is,

w-b_#cI(n, N, w) = Do(w") e_'nAt d_" -_ do(nAt)
J _1_wc

For example, figure41 presents the real and imaginary parts of the

integralfor N - 64 and w --wc/2. The realpart of the integralvery.

closelyapproximates the boxcar function,while the imaginary part is

negligible.The case shown istypical.The approximation isbetter as

N -* oo and l_l -* 0 and worse as N -* 0 and [wl -- ¢#c.From this

approximation, equation (9.16)becomes

At N-I

n_O (9.17)

and itcan be seen that the finitesummation on the right-hand side

approximately representsthe finiteFouriertransform ofthe signalX(t)

over the interval (--At/2, T - &t/2).

It should be noted that because of the assumed stationarity of the

random process X(t), the average properties of the random process in

the interval (--At�2, T - At�2) are the same as those in any interval
of length T. Thus, fundamental relation (9.17) will be used as the
definition of the discrete finite Fourier transform in this monograph.

9.6 Digital Blacknmn-Tukey Estimation

Baaed on the understanding of digitaldata analysisdeveloped inthe

previous sections,itis possible to develop discreteforms for spectral

estimation. Suppose that N samples X(nAt) for n - 0, i,2.....N - I

from a stationary random process exist. Then, taking T - .VAt and
r - jAt, the autocorrelation estimate analogous to equation (6.7) is

N-j-I
1

RX(jAt) = N- j _ X(n_,t)X[(n+jlAt]
n=,o

(9.18)

for j - 0, 1, 2 .... , N - 1. This yields an unbiased estimate of the

autocorrelation at these discrete lag values, j At.

Likewise, if Tm= m At is the width of the lag window, the power

spectral density estimate is defined as the discrete approximation to
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equation (7.7),

_3X(W) = _ u(O)/_x(O) + 2 Z u(jAt)[:tx(jAt)cos_jAt (9.19)
jffitl

by analysis similar to that which led to equation (9.17).
If data on two jointly stationary random processes exist, similar

expressions for the cross correlation and cross spectral density are

N-j-1
1

Rxy(jAt) -= N- j Z X(nAtlY[(n+j)At]
rz:ffiO

(9.20)

N-j-I
I

i_rx(jAt) = N- j _
nmO

for j = 0, 1,2,... ,N - 1 and

Y(nAt)X[(n+j)At] (9.21)

At _ u(jAt)kxy(jAt)e_i,_)_t_._rffi_.
J S _Fltl

(9.22)

since the cross correlation is not generally an even function of r.

9.7 Diserem Finite Fourier Transform Estimation

A similar discrete version of the finite Fourier transform spectral

estimate may be developed. If the block size is T B ffi bat, then

equation (7.16) may be estimated by

At b--I

X$.(_) = _ _ d(nat)X(nAt)e -i'_n''t
nzO

(9.23)

from the discrete data X(nAt) for n = 0, 1, 2,..., b - 1.

The spectral density estimate is then given by equation (7.15),

Sx(_) = WslXr@)l 2 (9.24)

For jointly stationary random processes, the cross spectral density is

SXY(_J) ---- WSX'F(W)YF(cZ) (9.25)
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Chapter IX Dioital Time Series Analynis

where IYF(_a) is given by equation (9.23) with X(nAt) replaced by

Y(nAt). The window correction factor W$ can usually be determined
analytically.

9_8 Frequency Domain Window Insertion

Many times, particularlywhen one wants to investigatethe effects

of various windows, itis more efficientto insertthe windows in the

frequency domain. Expressions by which this may be achieved are

quite easilydeveloped. Note firstthat, although the spectralestimates

in equations (9.19), (9.22), (9.24), and (9.25) are given as continuous

functions of frequency, the data are sampled, and thus these expressions

should not be evaluated at frequencieshigher than wc = rr/At, the

Nyquist frequency. Further, since the data have finitelength, the

resolution criterion(eq. (7.33)) suggests that the estimates should

not be evaluated at frequencies that are too close together. The

actual resolutiondepends on the window chosen, of course. However,

equation (7.33)provides a reasonable guideline.

Blackman-Tukey estimation. Now, recall from equation (7.2) that
the windowed spectralestimate may be written as

u(r)kx(_) e-i_"dr

By the convolution theorem, (eq. (2.8)), this estimate becomes

/2SX(W) -- U(w-_')S0(w')dw' (9.261
OO

where, since u(r) = 0 for Irl > T,.,

'/?SO(_a) = _ Tm RX(T) e--Uar dr

is the spectral estimate (eq. (7.1)) with the boxcar lag window (i.e.,
effectively no window at all). Thus, equation (9.26) states that the

spectral estimate with an arbitrary lag window is the convolution of
the spectral estimate with a boxcar window. This allows one to first

estimate the spectral density with a boxcar lag window and then insert
various other windows in the frequency domain.

The frequencies at which spectral estimates are evaluated is a matter
of choice. The standard choice in Blackman-Tukey estimation is

kr kr

oak = _m -- mAt (k = O, 1,2,...,m)
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which yields as many estimates as lag points were used, reaches the
Nyquist frequency when k - m, and provides a bandwidth of

lr 1

Aw = lm=-" or Af = 1m2.=.. (9.27)

Although thischoice does not yieldfullresolutionby equation (7.33),it

does have the virtue that itallows simple window insertion.Note that

in thiscase,the discreteanalog ofequation (9.26)is

m

SX(_I_)- A_ E U(_lc-wj)SO(Wj) (9.28)

j1'=I_F]_I

since S0(_j) = 0 for lJl> m.

Now, from equation (7.10)

Tm _ an sinc[(k - j - n)_rl
FIz--_

I _

=_--__ ..6_._÷.
nm _oo

Thus, equation (9.28)becomes

k+m
I

n_k-frl

(9.29)

which allows window insertionin the frequency domain. Necessary

terms forw < 0 are obtained from S0(w-/¢) = S0(_/c).Equation (9.29)

shows that windowing is equivalent to applying a low-pass moving-

average filter(to be discussed in chapter XI) to the unwindowed

spectral estimate. For example, to apply the Hanning window where

ao -- I,at -- I/2,and allother art'saxe zero,

Sx(_k)= ¼_0(_k-t)+ _So(_k)+

lffnlte Fouler transform estimation. A similar expression for

frequency domain window insertion may be developed for the finite
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Chapter IX Digital Time Series Analysis

Fourier transform. Recall equation (7.16):

1 f'_¢ d(t)X(t)e -iwt dt
XF(_) = _ j_

Applying the convolution theorem (eel. (2.8)) to this equation results in

/2XF(¢o) = D(w-w')XT(w') dJ (9.30)
<3O

where XT(W ) is the finite Fourier transform (eq. (7.12)) of the data

with block length T B = b At,

f ra x(t} e-_t dt
XT(_) = 2_r.to

since X(t) - 0 for t < 0 and t > TB.
Standard practice in the finite Fourier transform estimate is to

assume that b is even and to evaluate the estimate at the frequencies

2ka- 2kTr

wk = "_B = bA--"_ (k =0, i,2,...,b/2) (9.31)

This choice yields half as many estimates as data points, reaches the

Nyqulst frequency when k - b/2, and provides a bandwidth of

27r I

= _B = Af = _ (9.32)

Note that, for a similar data length, this is twice the bandwidth of

the Blackman-Tukey estimate and provides full resolution by equa-
tion (7.33). The frequency choice in equation (9.31) also allows highly

efficient computations as will be seen in chapter X.

At these frequencies, the discrete analog of equation (9.30) is

bt2

X_'(wk) =Aw _ D(wk--wj)XT(_j) (9.33)
jf-b/2

Now, recalling that the data window is defined only for 0 < t < TB,
analogous to equation (7.10),

41r Z an sinc --n_r
}_ (3o

103

II II II IJ II IJ li 15 IJ II li _ IJ II



Introduction to Time Series Analysis

Thus,

D(wk - wj) =
rS(_l)k-_ ' °¢

4.- _ a., .inc[(k - j - .)_'1
z_n OO

(-1)k-J _ a_6k,j+.
2 Aw

'?lt_- -- OO

and equation (9.33)becomes

k+b/2
1

n_k-b/2

(9.34)

which again allows window insertionin the frequency domain. Nec-

essary terms for w < 0 axe obtained from XT(-k) = Xyr(_k). For

example, ifthe Hamming window where a0 = 1.08,al = 0.46, and all

other an's are 0 isused as the data window,

XF(W_) -- --0.23XT(wk_l) + 0.54XT(cdk) -- 0.23XT(wk÷ 1)

Because of the simplicity of equations (9.29) and (9.34), the data
are practically always left unaltered in the time domain and any desired

window is inserted in the frequency domain.

9.9 Autocorrelation Estimation Via Discrete Fourier

Transformation

Estimates from discretedata are not always directlyanalogous to

those from continuous data. For example, the autocorrelationestimate

in equation (7.25) is unbiased for continuous data. However, for a

discreteset ofdata X(nAt) forn = 0,I,2,...,b- I,the discreteFourier

transform (eq. (9.23)),assuming a boxcar data window and evaluation

at the frequencies

(k = 0,1,2,...,b/2)

isgiven by

At b--I

x_-(_k) = _ _ x(.At)e-i2'_k"/b = XT(_k)
n--O

(9.35)
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Chapter IX

Then, the spectral estimate (eq.(7.19)) becomes

Digital Time Series Analysi_

27f

gx(_k) = _-'_'IXT(_k)I 2 (9.36)

which is an even function of w since XT(W_k) = X_(wk). This can be
employed to estimate the autocorrelation, based on equation (7.25), as

27rWR _ b/_lRx(jAt) = _ IXT(wk)l 2eiwkjAt
k=---b�2

b/2-1

=WR(A_) 2 _ IXT(_)I2g 2'_j/b
k=-b/2

The upper limitofthe sum isb/2 - 1 because only one-half ofthe values

at each end of the spectrum isadded due to the discontinuityat those

points.

Now, note from equation (9.35)that

XT(_-k) = Xr(_b-_)

since

e-i21r(b-k)j/b _. e-i27r(-k)j/b

Thus, the estimate may be written

b--I

i_x(jAt) - wR(z_) 2 _ IXT(_k)12ei2"kl/b (9.37)
k'=O

for j =0,1,2 .... b-l.

How good is this estimate? Its mean is

b-I

k-=-O
(9.38)

where, by equation (9.35),

/Atx2b-lb--I

r=O t=O
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Thus, equation(9.38) becomes

E [Rx(jAt)]
l=,O k,ffiO

Now, note that for all real or complex values z,

1_-o (.= 11

b-lb-1 b-I

(9.39)

This series is of fundamental importance in the analysis of discrete data.
Thus,

b--l

LJrei21r(j-r÷l)/blk 1--e i2w(j-r+l)
kmOZ = 1 -- ei27r(J-r+t)/b = b (6j,r_ t + 6j,b+r__)

(9.40)
The two delta terms arise when n - r - t is some integer multiple
of b, which occurs only for j - r + £ ----0 and j - r + _ -_ b since
-(b-l) <j-r+l<2(b-1). Thus,

Recall that a boxcar data window results in a Bartlett lag window•
Therefore

wR = _(f_t)= x-
and

E {Rx(jAt)} -- Rx(jAt) + _2__jRx[(b- j)At]

Therefore, the estimate is seen to be biased.

9.10 Zero Insertion

The bias in this estimate was caused by the presence of the second
term in equation (9.40). This term may be eliminated by the technique
of zero insertion. Suppose that the original b data points X(nAt) for
n ffi 0, 1,2,... ,b - 1 are augmented by b zeros, that is,

X(nAt) ----0 (n = b,b+ 1.... ,2b- I)
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The discrete Fourier transform of this entire sequence is then

/k t 2b- 1

XT(,,e) = _ _ x(._t)e -_2"k'/2b
rl=O

At b-1

= 2--_E X(nAt)e -i=en/b (9.41)
r_.O

Note that this has the effect of reducing we by a factor of 2, that is,

Irk
_e = bA--'_ (k = 0, 1, 2.... , b)

with .X_ - 7r/bAt. Thus, the spectral estimate (eq. (9.36)) when
zeros are inserted has the equivalent bandwidth of a Blackman-Tukey
estimate.

Now, analogous to equation (9.37),

2b-I

Rx(j_t) = 2WR(_Xw) 2 E IXT(_e)12ei_ki/b

Digital Time Series Analysis

(9.42)

is the e.xpre_ion used to estimate the autocorrelation. The mean of
this estimate is

2b-I

k-ffiO

where now

At)2 b-I b'" 1_ _ RX[(£-r)Atl e-"r(r-t)e/b
r=O e ffiO

Thus,

rffiO triO kffiO

I07

I1 il 11 I1 lI 11 l.I i/ II II. .li I! g ll
\.



Introduction to Time Ser_e8 Analynis

However,

2t_-1

E [et_r(3_r+l)/b]k _ 1--e i21r(j-r÷l)1 -- e i_(j-r+t)/b = 2663"r-g
k_O

since j - r + _ never reaches 2b. Thus,

using the same b-point window correction factor as before and the

estimate in equation (9.42) is unbiased. The same zero insertion
technique should also be used for estimation of a cross correlation.

9.11 Digital Spectral Estimation Procedure

Now that all of the required relations have been developed, it is

possible to develop a decision-making procedure that one should follow
when attempting to estimate power spectral densities with digital data.

This procedure should be thought through before one ever begins to take
data.

Step 1: Are the data stationary? Since all the analysis developed

thus far is based on this assumption, these techniques are not valid if

the underlying random process is not stationary. Whether or not a

particular time history is a sample function of a stationary random
procem is a decision that must be based primarily on engineering

judgment. However, a test of stationarity is discussed in chapter V_.
If the data are not stationary, it may be possible to detrend them and

make them appear stationary without losing the information of interest.

This technique is discussed in chapter XI.
Step 2: What is the maximum frequency of interest fmax? This

defines the sampling rate since

1
At <_

2fm_

Step 3: Does the signal contain power at frequencies higher than
fma.x? If so, the analog data must be passed through a low-pass

antialiasing filter before it is digitized.

Step _: What frequency resolution is required? For the finite Fourier

transform technique, the required resolution sets the block length TB,
since

1

&f = _ (T8 = b At)

108

It ltl ltl I1 11 U lI li II 11_ ld I!_],l_ll



Chapter IX Dieital Time Series Analvni,

or if zeros are inserted,
1

Af = 2"_B

For the Blackman-Tukey technique, the required resolution sets the

width of the lag window Tin, since

1
a/= _-- (T= = m At)

zam

Step 5: How much accuracy is required? This sets the total length
of data to be taken since the degrees of freedom for the finite Fourier

transform technique are

k = 22VB

where NB is the number of data blocks. For the Blackman-Tukey

technique,
2/' 2N

T= m

where N is the total number of data points. If it is not possible to

obtain this many data points, then one must relax the requirements on

either resolution or accuracy or both.
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Chapter X

The Fast Fourier Transform

In the late 19_'s, the fieldof time seriesanalysis was completely

revolutionized by the introduction of highly efficienttechniques for

computing the discreteFouriertransform. The applicationofthese Fast

Fouler Transform, or FFT, techniques on modern digitalcomputers

was popularized by Cooley and Tukey m in their paper entitled "An

Algorithm for the Machine Calculation of Complex Fourier Series."

With the use of the FFT, the finiteFourier transform approach to

spectralestimation became so computationally efficientthat itreplaced

the Blackman-Tukey approach for most practicalapplications.Even if

one isinterestedinonly the autocorrelation,itisoften more efficientto

firstestimate the power spectral density and then transform to obtain

the autocorrelationrather than to use the more directlagged product

approach (eq. (9.18))!

There are actually many FFT algorithms in common use today. In

fact,most are tailoredto take advantage of the particulararchitecture

of the computer on which they are implemented. However, all are

concerned with evaluating the discreteFourier transform (DFT)

N-I

Zk = _ ziw-ik
j=0

(k = 0,1,2,...,N- 1) (10.1)

where z# is,in general,a sequence of complex numbers and

W = e -i27¢/N

isan Nth root of unity. Note that except for the scale factorAt/2_r,

equation (10.1) is preciselythe discrete Fourier transform of equa-

tion (9.35) ifthe z3-'sare taken to be real. Note also that because

of the propertiesof W, equation (10.1)isperiodic with period N and
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Introduction to Time Series Analysis

may thus be considered to be defined for all k; that is, Zk+N ---- Z_.
The inverse of equation (10.1) is

1 N-I

k-,,O

since substituting equation (10.1) in equation (10.2) results in

N-IN-I

N _ _..,w-(J-,l_-___,.,_ e-'_,-'_/__
k=,O triO N tffiO kffiO

I N-!

t=_o

upon use of equation (9.39).

If a single multiply-add operation is taken as a measure of com-

putational work, straightforward calculation of equation (10.1) would

take N 2 operations, since for each k, the N data points z3 would
have to be multiplied by the appropriate complex exponential and then

added to the sum, requiring N operations for each k. However, since
k ffi 0, 1, 2 .... , N- 1, there are NZ operations for the complete calcula-

tion. This discussion assumes, of course, that the complex exponentials
W have been previously calculated.

10.1 Theory of the Fast Fourier Tra_form

The basic idea of the FFT goes back at least to 1903, x7 when Runge
noticed that if the number of data poinr_ N is not a prime integer.

the number of operations can be reduced by splitting the calculation
up into parts. Consider the simplest case when N -- AB Then the

data may be broken up into A subrecords of length /3 as shown in
figure 42, where a ffi 0, 1, 2 .... , A - 1 is the index of subrecords and

b -- 0, I, 2,...,/3 - 1 is the index within a subrecord. Then the time

index j in equation (10.1) may be written

3'ffiaB + b (10.3)

which simply states that b is equal to j modulo/3. Likewise, there will

be N ffi AB values of the frequency index k. Suppose the frequency

data points Zk are broken into/3 subrecords of length A. Then letting
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Chapter X The Fast Fourier Transform

I I I I I J I I

01 2 B-1 B B+I 2B-1 AB_-N

length B

a----O a----1 a_A-1

Figure 42. A subrecords of length B.

c = 0, 1, 2 ..... B-1 be the index of subrecords and d = 0, 1, 2,..., A-1

be the index within a subrecord yields

k = cA + d (10.4)

Thus, equation (10.1) may be written

A-IB-I

ZcA+d = E E ZaS"+'bW(aB+b)(cA'+'d)

affiO bffi'O
(10.5)

where
w(aB+b)(cA+d) -- wacABwadBwbcAwbd

However,

W aeAB ---- W acN = e -i21rac = 1

and thus this term need not enter the computation. Then, equation
(10.5) may be written

B-1

ZeA+d -'_ E wbeA

b=O

Twiddle
factor

J, A-I

wbd E ZaB+bWadB
a-_O

v

Is¢ transform

2rid transform

(10.6)

This expression has the character of a double Fourier transform. The
first transform

A--I

E ZaB+b WadB

a-_O

requires A operations and must be done for each b (B of them)
and each d (A of them). Thus, A2B operations are required by

the first transform. Each of these transforms (AB of them) must
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Introduction to Time Sere8 Analynis

then be multiplied by the appropriate exponential W bd, called the

_twiddle factor" by Gentleman and Sande. 18 This requires another

AB operations. Finally, the second transform requiring B operations

must be accomplished for each c (B of them) and each d (.4 of them).
Thus, AB 2 operations are required by the second transform. The total

number of operations Nop is

Nop ffi A2B + AB + AB 2 -- AB(A + 1+ B) -- N(A + B + 1)

compared with N 2 for the direct evaluation. Suppose, for example.

that N ffi 100 - 10 × 10. Then the 10000 operations required by the

direct transform would be reduced to 2100 by splitting the calculation

into parts. Further, this reduction is due to only one reduction. If A

and/or B is not prime, the technique can be applied again.
The ultimate reduction of course comes when the number of data

points is some power of 2, say 2p. Then the calculation can be

reduced to 2p - 1 transforms, each of length 2. To see this, note.that
equation (10.1) may be written

N-1

Zk = _ zje -_s,ej/N
jffiO

N/S- z N/2-1

= _ z2je-iS'_(2J)/N+ _ z2j+le -is_k(s#+z)/N
jffi0 jffi0

Even ternm Odd _rms

N/2-1 N/2-1

-_ Z z2J e-is_kj/(N/2) ÷e-i2_k/N Z ZSJ÷ le-is_kJ/(N/s)
jffiO _ jffiO

• ' Twiddle _ ,
_(orm of faxtor Trffir_form of

N/2 poin_ ,¥/2 poin_

(i0.7)
Thus, by separating the transform into even and odd terms, the

calculationhas been reduced to two transforms of N/2 points. Again

note the appearance of the twiddle factor.Now, N/2 -- 2p-t, so that
the procedure may be repeated untilthe ultimate reduction isachieved.

For example, the transform of eightdata points would be accomplished
as shown in figure43 where the dots indicate transforms of two data

points. This scheme resultsin a totalnumber of operations equal to

N logs N rather than the N s forthe directapproach. For example, with

N -- 128, the directapproach would require16384 operations while the

FFT would requireonly 896.
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zo z4 z2 z6 z5 z3 zv

Figure43. Schematicofeight-pointFFT.

The above explanation, found in Nussbaumer, 19 is one of the most

easily understandable. For actual coding, binary notation is introduced

for the time and frequency indices and the transforms are calculated

recursively. To achieve the desired speed, the complex exponentials

must be calculated e_ciently as well. By using the fact that W _ =

WWr-1, this calculation can also be done recursively, with evaluation

of only W itself required from a series. Great care is also given to
the storage of the intermediate results since the data are used in

complicated orders as can be seen in figure 43. The k values of the

transform also do not remain sequentially ordered. Thus, a massive

schufl_ing of data is required. For this reason, there are many different
versions of the FFT, which are very computer specific. Good references
to these methods are Otnes and Enochson 12 and Nussbaumer. L9 In

spite of the seeming complexity of these techniques, implementation is

not overly arduous. For example, Gonzalez and Wintz 20 published a

FORTRAN program for an FFT algorithm consisting of only 34 lines

of code, including generation of the complex exponentials W!

10.2 Properties of the Discrete Fourier Transform for Real-
Valued Data

Although the idea of an FFT can be employed only if the number

of data points N is not prime, the discrete Fourier transform (DFT)
(eq.(10.1))always exists.Further, the DFT issometimes necessary for

use in spectralestimation when there are constraintson the number of

data pointsor greaterfreedom in the selectionoffrequency resolutionis
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Introduction to Time Series Analysis

required. However, it should be emphasized that the DFT is generally

computationally less efficient than the Blackman-Tukey technique.

The DFT (of which the FFT is a subset) has some useful properties

for real-valued data zj - zj. In this case, note that equation (10.1)
may be written

N-I

Xk = E zJ e-i2fkj/N

]=0

(k = 0, 1,2,...,N- 1)

NOW,

Further,

N-I

x__ = _ zje i2"_JlN = x_
j----O

N-I N-I

XN-k- Z Z] e-i2_(N-k)J/N- E XJei2_k3/Ne-i21r)

j=,O jr0

N-I

= _ zje _2"_3/N= X_ = X-k
]mo

since e -/2r_ -- 1. Thus, the DFT is periodic with period N since

XN_ k -_ X_ k

Further, only N/2 of the points need to be calculated since

XN-_ = X_

(Recall that the Nyquist frequency occurs at k = N/2 if N is even.)

For real data, the power of the DFT is not being fully utilized since

only half of the transforms are of interest. However, suppose one has

two real sequences zj and yj to be transformed. Then one can make
better use of the DFT by defining complex data

Then
N-I

& -- E (Z] + iyj) e -i2*ek3/N = X k + iY k

j=O
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Chapter X The Fast Fourier Transform

and
N-1

ZN-k _" E (Z3--iyj)e -i2*ekj/N = X k - iY k

jffiO

Thus, the transforms of the real sequences can be recovered by

N-I

Xk - E zJ e-ia*rkj/N -
jffiO

and
N-1

Yk "" E YJ e-i21rhj/N =

j---O
2i
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Chapter XI

Digital Filtering

A filter is any physical device or mathematical operation which is

applied to a time history in order to change it in some way. Filters are

usually broadly classified as low pass, passing the low frequencies and

attenuating the high frequencies, high pazn, passing the high frequencies
and attenuating the low frequencies, band pass, passing frequencies in

some band while attenuating both the higher and the lower frequencies,

and band reject, attenuating the frequencies in some band. Many times,
it is of interest to perform such an operation after the time history is

digitized. Thus, one is led to the subject of digital filters.

11.1 Linear Filters

The most prevalent filters are linear. Consider the ordinary linear,

shift-invariant system shown in figure 44, where X(t) and Y(t) are
related by

/_: h(rlX(tY(t) - - r) dr (I1.1)

By definition, h(t) is a filter since the time history X(t) is changed into

the time history Y(t). If X(t) is band limited and is known only at
discrete times n At for -c_ < , < _, then by Shannon's sampling

theorem (eq. (9.6)) and equation (5.3), equation (11.1) may be written

Y(t)ffi I _ X(nLxt) 1 ezoa(e_n_r/wc)--_ _ dw H(w) sine V• -'wy/_e dy
rim --_,s

Further, since X(t) is band limited and the system is linear, Y(t) is

also band limited because of the convolution theorem (eq. (2.9)). Thus,
evaluating equation (11.2) at t = kAt results in
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x(t) h(t) Y(t) i[

Figure 44. Linear filter.

Y(kAt) =
O0 O0

hb[(k-n)At]X(n&t) = _ hb(j&t)X[(k-j)&t]
nI--O0 jI--O0

(11.3)
where

hb(t) = 2_r s-w¢

Note that hb(t ) is not quite equal to h(t) &t since h(t), being a transient
function, cannot be band limited. Thus, hb(t)/At physically represents
a filtered impulse response function.

Based on equation (11.3), a linear digital filter is defined to obey the
discrete convolution relation

OO

Y'k= _ h.yX__y (11.4)

js m_

[ I: " " " F V

where Y/= ffi Y(k&t) and X/c_j -- X[(k-j)_,t]. Equation (11.4)
representsa simpleor nonrecursivedigitalfilteroperatingon the data

X(nAt) and may be implemented by choosinga setof hy's.Note that
for causality, hi = 0 for j < O. However, if the data have been stored on • :
magnetictape,one need not be constrainedby causality.This freedom _ L i.
isa fundamentaldifferencebetweenanalogand digitalprocessingwhich
can be exploitedto one's advantage at times. A filterof the type

representedby equation(11.4),appliedin the frequencydomain, has
alreadybeen seeninequation(9.29).

The frequencyresponseofthefilterisdeterminedfromthefrequency
responsefunction

OO

n(_)= _ h_.e-__t (11.5)
j=-oo ! If II

which can be seen to be a discrete approximation to equation (5.2)
utilizing equation (9.15).
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Chapter XI Digital Filtering

H(co)

Figure 4,5. Frequency response of three-point moving average.

One of the most common and useful digitalfiltersis called the

moving average, which can be used for trend removal. For example,

for a three-pointmoving average, one would take h3 - 0 for [Jl> i to

yieldthe noncausal relation

(11.6)Yk = h-iXk+1 + hoX_ + hiXk-1

The frequency response of the filter, from equation (11.5), is

H(w) = h_le _wAt + ho + hie -_t

= hO + (hi + h-l)coswAt -- i(hl - h-l)sinwAt

For a low-pass filter,the normalization

H(0) = ho + h_ + h__ = I

is conventionally applied to ensure that a dc (constant) signal will pass

through the filter unchanged. Further, because digital filters operate

only in the range (0, 7r/At) where lr/&t is the Nyquist frequency, setting

H(_r/At) ----/tO - (hi + h-l) = 0

ensures that the frequency response will be low at high frequencies.

Then, taking hi = h-1 to make the frequency response function real
(i.e., the phase is zero} and solving these three relations yields

Thus,

1 1
hO "" - hi--h-l---

2 4

1

H(w) = _(I+ coswAt)

which isa simple low-pass filteras shown in figure45.
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x(t)

T

Figure 46. Time history with trend.

Moving-average (low-pass) filters are especially useful for removing

trends from data. Suppose, for example, that one had a finite-length
digital time history as shown (continuously) in figure 46. The data

in this figure are decidely nonstationary, and if this time history were

analyzed directly, it would have practically all of its power at very low
frequencies. A time history like this might be produced by the price

of a stock on a stock exchange (where the values X(t) would all be

positive) or the surface temperature of a spacecraft undergoing reentry..
for example.

Suppose one were interested in the high-frequency components
rather than the long-term trend in the data. If so, the data could

be passed through a moving-average filter, that is,

I I I

Yk ffi iXk+t + _Xk + iXk-t

and Y(t), again shown continuously, would appear as shown in figure 47.

Actually, to achieve this much smoothing, the data might need to be

passed through the filter several times in sequence. Such a series of filter

operations is equivalent to applying a higher order (i.e., more nonzero
h's) filter once. For example, two applications of the operation in

equation (11.6) would produce a frequency response function H2(_) =
1/4 (1 +cos_At) 2 = 3/s + L/2 cos_At + Vs cos2_,t, which might also

be produced by one application of a five-point moving average.

After sufficient smoothing has been achieved, the Yk's could be
subtracted from the Xk's to yield

ffi Yk

where Z(t) would appear much more stationary, as shown in figure 48.

In this way, a much better estimate of the power at the higher

frequencies could be obtained. Note that this moving-average operation
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Y(t)

Figure 47. Long-term trend in time history.

Z(t)

LL_ J_ IJ_ L-L J_ _._.LLA LA./_

II, lie v'_-v "- _ _"v"_" _e- '
T

Figure 48. Detrended time history.

x(t)

Delay

-_Y(t)

Figttre 49. Schematic of recursive filter.

is exactly equivalent to passing the input X(t) through a high-pass

moving-average filter with weights ho -- 1/2 and h-l ffi hi ffi -1/4.

II.2 Recursive Filters

A much more computationally efficient filter is one where the output
is fed back into the input, as shown in figure 49.

In general, the delay (or shift if the independent variable is not
time) may be considered a bank of delays where the output is delayed

by various delay times before being fed back into the input. Such a filter
may, of course, be unstable (i.e., unbounded output) if the feedback is

too large,just a.sa microphone-amplifier-speaker system willbegin to

screech ifthe gain istoo high. Mathematically, itcan be shown by an

argument inthe complex plane that such a filteris_table(i.e.,bounded
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output) if and only if all the root8 of the denominator of its transfer
function have positive imaginary parts.

Fir_ order recursive filter. Let

Yk = aYk-1 + aXk (11.7)

where a and B are real. This iscalled a firstorder recursive filter

because ituses only a singledelay of time At. Equation (11.7) isan

example of a differenceequation and may be solved by defining the

generating function
_O

Y(z)= _ y_zk (11.s)
kz-_o

where z iscomplex. Ifequation (11.7)ismultipliedby zk and summed

over allk, the equation

Y(z) = azY(z) + _3X(z)

resultswhere X(z) isdefinedsimilarlyto Y(z) inequation (11.8).Thus.

/¢

Y(z) - 1_---_zX(z) -- B[1 + az + (az) 2 +-..]X(z) (11.9)

assuming that lax] < I. Thus, equating coefficientsyieldsthe solution

of equation (11.7),
_O

Yk ----BZ aPXk_j (11.10)

y,,O

which can be seen to be bounded forarbitrary bounded input ifand

only iflal< 1,sinceotherwise the magnitude of the coefficientswould

increasewith j.

Consider now the transferfunction for thisrecursivefilter.Suppose

one takes z = e-it#At which satisfieslazl < I for a bounded output

filter.Then, equation (11.8)becomes

OO

Y(_)= Z Yke-_k&t
_s--O0

which except for the scale factor is the discrete Fourier transform

(eq.(9.15))of the band limitedprocess Y(t). Further, equation (11.9)
becomes

Y(,_)= z-/(_)x(_)
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where
3

H(_) = i - ae -_t (11.11)

isthe transferfunction of the fir,_torder recumive filter.The root of

the denominator of this transferfunction isgiven by e-_At -- I/_ or

[_,In(_) (_,> O)
= _,_+_In(-_) (_<0)

and it can be seen that the condition lal < I obtained for the

boundedness of the equation (11.10)ispreciselythat required to cause

the root of the denominator of the transferfunction to have a positive

imaginary par_ as required by the stabilitycriterion.This condition

also isintuitivesince ifitwere not true,the output would be amplified

before being fed back.

Returning to equation (11.1i),the squared magnitude ofthe transfer
function is

_2
IH(_)I2=

1 + a2 - 2a cos_At (11.12)

and it can be seen that

_2

IZ_(°)l_= (I- a)2

and

I_(_,/At)l 2= _"
(1.+ ,:,)2

Thus. for 0 < cz< I,the filterislow pass as shown in figure50, and

for -i < a < 0, the filterishigh pass as shown in figure51. In these

figures,the values of _ have been chosen to make the gain unity at the

respectivepa_sband ends.

Second order recursive filter. More freedom in tailoring the shape
of the transfer function may be obtained with a second order recursive
filter:

Y_ = a_Y___+ ,_2Y_-2+ _xk (IL13)

A s:.milaranalysisyields

Y(_) = I- ale-_t - (_2e-'_2_tX(_)
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, (o

Figure50. Low-paM firstorderrecursivefilter.

JH(c_)l

,

I c.J

Figure 51. I-Iigh-pmm t_z order recto'sire filter.

and the transferfunction isseen to be

_(=) =
1 -- _i e-iwAt -- _2 e-iw2At

For stability, the roots of

I -- _1 e-iw_t -- 012 e-iw2At = 0

must be examined. For convenience, defining 8 = e_wAt =

multiplying by s 2 yields

s 2-_1s-c_2=0

11.14)

I/z and

with roots l

o_i± V/a_ + 4a - 2

sl.2= 2 (11.15)
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a2

I

_._ RE( ION _\_/

-1 a2: -I

a I

Figure 52. Stabilivy diagram for second order recursive filter.

Therefore, the roots in terms of _ axe

-i -i

_l,u = _ In sI.= = _'i (lnl81,21-+-iO1.2)

01.2 i
- At At lnjsl'2j

where #1,2 axe the polar angles of the roots. Thus, an equivalent
condition for stability is

18L2t< 1 (11.16)

Now, if a 2 + 4a2 < 0 in equation (I1.15), then Sl = s_ and

Isl,:l = (-,_:)'/:

Thus, (-a2) 1/2 < 1, which implies that a2 > -1. However, if

a T + 4a2 > 0, then the roots axe real and unequal. The stability
conditions on these roots lead to ci 2 < 1 - cl 1 and 1 + ci I > ct2 and

therefore to the stability diagram shown in figure 52. In summary, if
the parameters al and a2 axe chosen in the triangular region, the filter
is stable.

Returning to equation (11.14), the squared magnitude of the transfer

function is given by

_2
IH(_)I 2 =

(1 + a T+ a_) - 2al(i - a2) cosiest - 2a2 cos 2_At
(li.iT)

By choosing various values of al, a2, and ;7, one can tailor this transfer
function to have desired characteristics. For example, if a2 = 0, then
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IH(_)I

1+ a,

0

(I2<0

_-1 + a 2

! i
I1 rf

2At At

Figure 53. Band-pro recursive Filter.

IH(co)i

0

a2>0

_.1- a2

i_ l"f

2At At

Figure 54. Band-reject recursive Rlter.

the second order recursive filter reduces to the first order recursive _lter

studied inthe previous section.Thus, _l > 0 produces a low-pass filter

and al < 0 produces a high-pass filter.However, ifal --0, then

_2

I/'/(°)12 = (1 - c_2)2 = IH(=/At)ff

while

IH(=/2,,Xt)l :z_-
,82

(1 + a2)2

Thus, for r,2 < O, the filter is band pass as shown in figure 53, while for

a2 > O, the filter is band reject as shown in figure 54. In these figures,
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the values of _3 have again been chosen to make the gain unity in the

regions of interest.
By taking both al and a2 to be nonzero within the stable region of

figure 52, various weighted combinations of high-pass, low-pa_s, band-
pass, and band-reject filters may be obtained. More sophisticated filters

with even more freedom in their shape may, of course, be developed. A
good reference is Otnes and Enockson. 12
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Chapter XII

Special Topics

The fieldof time seriesanalysisisvast and rapidlychanging. In an

attempt to provide both complete and current coverage, this chapter

presents a potpourri of specializedtopics and areas where research is

currentlyin progress.

12.1 The Kendall Sefies--A Test Case

In the development of computer codes to implement the various

estimation techniques discussed in this monograph, it is extremely

useful to have a benchmark time history for which the various statistical
moments are known theoretically. One particularly simple way of

generating such a time history is to use the Kendall series.

The Kendall series Y, is generated by the recursive relation

Y. =_IYn-I+a2Yn-2+X. (. = 0,1,2 .... ) (12.1)

where X, is a sequence to be specifiedlater. This serieshas been

studied by Bartletttt and can be seen to be a second order recursive

filter(eq.(11.13))operating on the Xn's. Equation (12.i)may be solved

by a technique similarto that used in solvingequation (11.7)to yield

(s? +2 - srt+2_
y.__ 2 JY-I-

s I - s2 Sl --_2 Sl
k=O

where Y-i and Y-2 are the initial conditions and the s's are the roots

ot1 ± _/c_ 2 + 4,', 2

"s1'2 ---- 2

which are assumed distinct; that is, a T + 4o_2 # O. The roots (st.2( axe

lessthan unity for stability;thus, as n -* co, the solutionapproaches
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the steady-state solution

y.=_,] (sf +1 s k+l_- _ 'X._,_
/cad) 31 -- 82

(12.2)

Now, suppose that the terms inthe input sequence Xn are indepen-

dent and identicallydistributedrandom variablessuch that

E{X.} = o

and

_:(x.x.+,,,} = _'_c6,,,,o
That is,the input random variables simulate a white noise random

process. Then, when steady state has been reached, the mean value of

Y. is
E{Y.} = 0

and its autocorrelation is

Rv(,-) = _ {Y.Y,,÷,.}= A3_+ 33_ (12.3)

where

and

A -- 0'}81

(31- 32)(1- 3132)(1- 32)

= --0'}32

(31 --32)(I --0132)(1 --32)

Thus, Yn isa weakly stationary random process. Further,

0
Ol --o2

and Xn and Y. are jointly weakly stationry.

In this case, both the power spectral density

(r> O)

(r <__O)
(12.4)

1 oo

s_(_)=_ _ Rv(,)e -_"

A( + i 1)-- _ 1-31 e-ua l--Sl e_

B( 1 + I -1)+ _ 1- 32_-"' 1- ;2e_ (12.5)

132
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(taking At = I) and cross power spectraldensity

1 oo e -iwr

r oo

__ a}
2rr [1 -- (Sl + s2). i_ + _lo2e i2_°]

(12.6)

existfor ]wl< _'.Itmight be noted that theserelationsare independent

of the distributionfunction for the random variablesX,.

Most computer systems have standard software that generates white

noisedata with mean zero,any desiredvariance a_, and many different

distributionfunctions.Thus, one may choose values ofal and a2 (such

that the filterisstable according to fig.52), use the initialconditions

Y-l = Y-2 = 0 (thus startingoffwith the steady-statesolution),and

recursivelycompute equation (12.1) to yield a set of digitalrandom

data of any desiredlengzh. Any program to analyze such data can then

be exercisedand the resultscompared with the theoreticalexpressions

(12.3),(12.4),(12.5),and (12.6).

For example, figure55 shows a comparison of the theoreticalexpres-

sion (12.3)for the autocorrelationwith estimates ofthe autocorrelation

obtained from the classicallag product approach (eq. (9.18)).21 The

data used in the estimate shown in figure55(a) were generated by the

seriesin equation (12.1)with al = 1.1,a2 = -0.5, _X = 0.333, and a

uniform distributionof the random variablesX,. For figure55(b), the

conditions were the same except that the random variableswere nor-

reallydistributed.Note that the autocorrelationestimates are nearly

the same in both cases and agree well with the theoreticalexpression

except near the lag value of 22, that isr = 22 At. This differenceis

apparently due to spurious correlationinduced by the white noise gen-

erator. Such spurious correlationisoften seen as itisvery di_cult to

generate truly uncorrelated random variables.22

Figure 56 shows a similar comparison of power spectral density

estimates with the theoreticalexpression (12.5). These estimates

were obtained by transforming the autocorrelation estimates shown

in figure 55 according to the standard Blackman-Tukey technique

(eq. (9.19))with a Harming lag window. The number of degrees

of freedom was 1000 for this estimation technique. Note the good

agreement between the theoreticalexpression and the estimates in both

Cases.

In figure 57, estimates of the magnitude and phase of the cross

power spectral density are compared with the theoreticalexpression

(12.6). The data utilizedin this study23 were generated with the
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Figure 55. Comparison of theoretical and estimated autocorrelations.
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Figure 56. Comparison of theoretical and estimated power spectral densities.
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Figure57. Comparison oftheoreticaland estimatedcrossspectraldensities.
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Fly.re 58. Comparison of theoretical and estimated cross correlations.

same parameters as before and normally distributed random variables.

However, the cross spectral density was estimated directly using the
finite Fourier transform technique (eq. (9.25)) with a Harming data

window. This estimation technique had only 64 degrees of freedom.

Note that the cross spectral magnitude generally follows the trend of
the theoretical expression. However, there is much random variability

because of the small number of degrees of freedom. The cross spectral

phase estimates, however, agree exactly with the theoretical expression.
The cross correlation of these data was estimated by transforming

the cross spectral estimate shown in figure 57 using the finite Fourier
transform technique (eq. (9.42)/ adapted for a cross correlation. This
estimate is compared in figure 58 with the theoretical expression (12.4).
Note that reasonably good agreement is achieved although there is again
a deviation near a lag of 22.

12.2 AR, MA, and ARMA Models

Results like that of the previous _ction, in which the passage
of a white noise signal through a second order recursive filterleads

to an output random process whose statisticalcharacteristicscan be

determined analytically,have stimulated much interestin attempts to

model arbitraryrandom processesby the passage ofwhite noisethrough
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various types of filters. Such modeling is the topic of considerable
current research.

The Kendall series considered in the previous section is a simple

example of an autoregressive (AR) model of a random process, that is,

Yn = alYn-1 + a2Yn-2 +"" + apYn-p + Zn (12.7)

where Xn is a white noise process. Equation (12.7) is called an
autoregressive model of order p. Similarly, a moving average (MA)

model is defined by

Yn = boXn + blXn-I + b2Xn-2 +"" + bqXn-q

where q is the order of the model. These models are special cases of

the more general relation

Y,, =al Y.-t + a2Y.-2 +'" + %Y,,-p

+ boXn + blZn-i +'" + bqZn-q (12.8)

which is called an autoregressive-moving-average (ARMA) model of

order (p,q).

When a random process Y(t) may be represented by such a model, it
admits solution just as did the Kendall series and thus its moments are
well understood. For example, multiplying equation (12.8) by e iwn'xt

and summing yields

y(_) = bo + blz + b2z 2 +'" + bqz a
1 - alz - a2z 2 ..... apzP X(_) = H(_)X(_)

where z = e -i_At and Y(_) and X(w) are defined by equation (11.8).

Thus, X(t) is the output of a linear filter with frequency response

function H(_).

Assume that H(_) is a stable filter and note that the input X(t) is
a weakly stationary random process with

E{X.} = 0

and

E {X.X.+m} = a_6m,O

Then, as n -- co, Y(t) is a weakly stationary random process with

E{Y(t)} = 0

13T
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Introduction to Time Se_es Analysis

and

5'y(w) ffiI/-/'(w)12Sx(w)= o._lH(w)l 2

Thus, such models can represent any mean zero random process whose

power spectral density can be expressed as

_2 bo+blz+ _z_ +"" +bqzqI2
Sy(w)= x 1-atz-a2 z2..... apzp

in which p + q + 2 arbitrary constants are available to match the power
spectral density.

This result has led to much interest in representing real data
sequences in terms of such models. Many different techniques have been

developed for choosing an appropriate set of a's and b's. For example,

for an AR model, multiplying equation (12.7) by Yn-r for some integer

1"greater than or equal to 0, taking expectation, and using the fact that
Ry(-r) --Ry(r) yields

Ry(1") ffi aiRy(l"-1) +a2Ry(r-2) +... +apRy(r-p) +o'_6_..o (12.9)

since E {Xn Yn } = E {X 2} --_2x. This recursiveequation may be used

toextrapolatethe autocorrelationfrom known valuesforan AR process.

However, for the purpose of estimating the coefficient,note that if

equation (12.9)isevaluated for I"- 1,2,...,p,the matrix equation

Ry(1) Ry(O) ... Ry(p-2)J a2 Ry(2)
: : ".. : ---- .

av(p-l) av(p-2) ... Ry'(0) J LaY(p)J

results.Thus, ifestimates Ry(j&t) forj = 0,I,2,...,p ofthe autocor-

relationof a random process are obtained from equation (9.18),time

may be considered to be nondimensionalized by At and appropriate co-

ei_icientsfor representingthat process by an AR model can be obtained

by solving the matrix equation.

12.3 Data Adaptive Spectral Estimtion Techniques

Spectral estimation techniques such as the Blackman-Tukey or
finite Fourier transform are said to be nonadaptive in the sense that

the characteristics of these techniques are the same for all sets of
data. That is, the algorithms for their implementation treat all
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^

R, r)

_.. / extral=olation

. (| "" ..... T

T

Fiwe 59. Extrapolation of autoeorrelation.

sets of data in exactly the same way. Recently, two new spectral
estimation techniques, the maximum entropy method (MEM) and

maximum likelihood method (MLM) have been developed. These
methods are said to be adaptive since theirdesign isdata dependent.

The characteristicsof these techniques adapt to the particular data

being analyzed. Such techniques allow much hiqher resolution than the

nonadaptive techniques and are particularly useful when resolution is

limited by short data lengths.

Maximum entropy method (MEAt). This technique was introduced

by Burg. 24 The basic idea is to choose as the spectral estimate the
power spectral density of the most random (i.e., maximum entropy)
time series whose autoeorrelation agrees with the known values. It can
be shown that this amounts to extrapolating the autoeorrelation to
larger lag values than can be estimated from data of length T as shown
in figure 59. The extrapolation is done in such a way that the entropy is
maximized; that is, as little information as possible is added. Since no

lag window exists in this case, the resolution is theoretically unbounded
and the estimate is unbiased.

Suppose that discrete equally spaced data X(nAt) for n =
1, 2 ..... N from a stationary random process X(t) exists. Shannon 25

has defined the entropy of the random process as

F [ ]HN =- fx(x) In c2N fX(X ) dx
O0

(12.10)

where fx(x) = fx(xt, x2,..., XN; At, 2At .... , NAt) is the Nth.order
density function of the random process X(t) and c is an arbitrary
constant.
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Now, suppose that X(t) is a normal random process with mean zero
(see chapter HI). Then

1 ( 1 N N )fx(×) = (2_)N/21AIt/2 exp -21A-"T_ _ IAI_.X..X.

where Xm = X(mAt) and IAI is the determinant and ]Alton is the mnth
cofaetor of the matrix of correlations,

A

Rx(O) Rx(At) ... Rx[(N-1)At]]
Rx(At) Rx(O) ... Rx[(N-2),_Xt] I• . • •

Rx[(N-1)At] Rx[(N-2)At] ... R;(O) J

In thiscase,['orproper choice of the constant c,

As N -. oo, H N -- oo. However, it ispossible to definethe entropy
rate to be

h-- lira HN = lira 1
N---*_ _ N-.c_ 2 In IAI1/N

Further, since the autocorrelation depends on the power spectral den-
sitv, it can be shown that

lim IAI t/N ffi we I _ fwe ln[2rrSx(ca)] d_ }N--oo _ exp _ 2_e., -w_ "

where we = r/At isthe Nyquist frequency and it has been assumed

that SX(_ ) = 0 for I_l> _c. Thus,

h=_ln + _"ce _c

Recall that

At _ R_:(mAt) e -i_m_tSx(_) = 2"-_
rtl_ --00
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and thus

h = _e wc In m--_-oo Rx(mAt) e -i_mAt d_
(12.11)

From the data, estimates of the autocorrelation Rx(mAt) for m --

0, 1, 2,..., N - 1 can be obtained. The desire is to extrapolate these
values to obtain other estimates ]_x(mAt) for m _> N in such a way

that the entropy rate (eq. (12.11)) is maximized. Thus

or

as

Oh

O&x(m_t)
= o (m > N)

/ :c e -iwnAtoo d_ ffi 0 (12.12)

wc _ Rx(mAt) e-iwmat
tlq oo

Thus, if the new unbiased estimate of the spectral density is defined

_x(_)= at
21r

&x(mAt) e -i'_mAt

in terms of the estimated and extrapolated autocorrelation values, then

equation (12.12) may be solved to yield

N-1

Z amRx(mAt)

,_X (_) -- m---O (12.13)

2_e N 21 + _ am e-iwmL_t

rrt_ l

where

a_it 1 (m = o)-hm (m = 1,2,...,N)

and the h's are given by the solution of the matrix equation

A

hi

h2 ._

hN

_x(O)

ax:(1)
Rx[(N'- l)At]
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X(t) hc°o(t) Xo(t )

Figure 60. MLM filter.

M_im=m lil_libood m_lwd (MLM). The maximum likelihood

method was introduced by Capon. 2e The basic idea i8 to develop a

minimum variance unbiased estimator of the spectral components of the

time history by designing a filter at each particular frequency that passez

that frequency undiatorted and rejecta all other frequencies in an optzmal
manner.

Consider a record of length T of a stationary random process X(t).
It is desired to estimate the power spectral density of this random
process at a particular frequency w0. This can be done by designing an
optimal causal filter for the particular frequency as shown in figure 60.
Note that the filter impulse response need not be restricted to be real. In
this case, the output Xo(t) can also be complex. The spectral estimate
is then the power output by this filter:

3x(_o) = IXo(t)l"

where if the impulse response has duration Tr,

/2xo(t) ffi _(a/X(t-_/dc, (12.141

is the time history passed by the filter.

In order for the filter to be optimal, it should have unit gain at the
frequency of interest, that is,

oT"H_o(WO) = h_o(t)e -i_°t dt ffi 1

Further, in order to reject other frequencies in an optimal manner, the

filter should minimize the output power when the input process has an

autocorrelation that agrees with the known data over the range (-T, T).
By equation (12.14), the average output power of the filter is
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Minimizingthisexpressionsubjecttothe constraintthatHwo (_o)= 1
yields

_o(7,)h:,o(_) = E {IXo(012} Q(n, 72) (12.1s)

where

for" Q(t, r)RxCT-t') = 6(t-t')dr

Now, multiply equation (12.15) by e -_o(n-'_} and integrate over rl

and r2 to obtain

dr1/. dr2 Q(rl, r2)e-_°(n-_)

/? /0dr1 h_(71) e -i_n r,= dr2 h_o(r2)e_°r2 = 1

Thus, sincethe spectralestimateistakento be the outputpower,

[J:J: ]'SX(_0) -- drl dr2 Q(rl, r2) e -iw°(r'-_) (12.16)

where Q(t, 7) may be estimated from the autocorrelation estimate by

fo r" Q(t, dr = 6(t-t')7)RX(T-$ t)

for t > 0 and t_ < T. For discrete data, this can again be written as a
matrix equation.

Although these techniques provide higher resolution, they do so at
the cost of increased computational effort. Basically, an additional
matrix equation must be solved. Other techniques could, of course,
be developed. Recall that

/2Rx(r) = Sx(_) ei_r dw
oO

The data [:tx(nAt ) for n = 0,1,2,...,N- 1 provide a set of N
constraints

Loi:tX(nAt) = Sx(w) e_'"At

on the possible form of the power spectral density. Many methods for
estimating Sx(w) within these constraints might be devised.
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12.4 Spectra] Analysis of Randomly Smnpled Signals

M1 the digitalanalysisthathas been coveredso farin thismono-

graph has assumed that the time history is sampled at equal intervals
At. However, in recent years, certain applications have stimulated inter-
est in data sampled at random intervals. For example, the laser Doppler
anemometry technique, which is used to measure velocity components
in flows, amounts to setting up a control volume within the flow by
croming laser beams from different angles. The flow is then seeded
with some particulates and a velocity measurement is obtained when-
ever a particle happens to pass through the control volume. Spectral
estimate_ obtained from ouch data are comparatively free from alia.s:n 0
but have hioher variability than corresponding estimateo from equall!/
spaced data. This is because the unequally spaced sample times elimi-
nate the ambiguity associated with equally spaced samples that leads
to aliasing, while the uncertainty of the random sample times reads to
further uncertainty in the estimate.

In both methods to be developed, the sampling times are assumed
to be Poisson distributed 5 such that

P{Sample intime interval(t,t+ At)} ffiA At + o(At)

where A is the average rate at which samples occur and o(At) indicates
a term that approaches zero faster than At does as At -- 0. In the
absence of any better information, this model is preferred in the sense
that it fits many real world phenomena where events occur randomly
in time.

M_kod I. This method was developedby Gasterand Roberts27in

1975. Considera stationaryrandom processX(t) that issampled at
Poissondistributedrandom timestifori--i,2....and define

c(n)= E {x(t,)x(t,+,,)}

Note that this is similar to an autocorrelation, being the expected
value of the product of a sample with another sample n samples later.
However, here the expectation is not only over the ensemble comprising
the random process X(t) but also over the random sampling times ti.
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From the concept of conditional probability, 5

E {X(t_)X(t_÷,_)[ti+, - ti - r} P {t_+, - t_ = r} dr

Rx(r)pn(r) dr (12.17)

where E{[} is the conditional expectation and pn(r) is the probability
density function for the time interval between the ith and (i+n)th
samples

Anrn-le-Ar

p.(r) = (r > 0:n > 1) (12.18)
(.- 1)!

which iscalledthe gamma densityfunction.5

Recallthat

/;Rx(r) = SX(W) e iwr d,w
OO

Then equation(12.17)may be written

where

EC(n) - Sx(_)C)n(w)d_ (12.19)
O0

¢p,(w) -- p,(r) e_r dr ffi

Thus, equation(12.19)becomes the integralequation

c(.) = Sx(_) d_ (12.20)
OO

for the power spectral density Sx(w).

Integral equation (12.20) has been solved for Sx(w) by Shapiro and
Silverman. 28 The unique solution is

OO

I _ b(n)1_n(o#) (12.21)Sx(_) = ;
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where

and

q_-_(iw + ,X)"-1'
_.(_) = Re -,/2_ VE,'-'T_

n--I

n_

isthe binomialcoefficient.

In practice,with N data pointsX(ti) fori = I,2.....N from a

singlesample function,the functionC(n) isestimatedby

Na_

I _ x(tdx(t,+.) (12.22)_(.) = #------_
iffi=l

which can be seen to be an unbiasedestimate.This estimateisthen

usedinequation(12.21)to yieldthespectralestimateSx(w).

Ma/wd 2. In a lateranalysis(1977),Gaster and Roberts29

estimatedthespectraldensitymore directly.RecallthediscreteFourier
transformspectralestimate(eq.(7.15)):

#x(,a) = WslXr(_)l 2 (12.23)

where

1 f2_ d(t)X(t) e -iwt dt

--_ d(t)X(t) e-_t dt (12.24)

Now, if N randomly sampled data points X(ti) for i = 1, 2,..., N oc-
cur in the interval (0, T), an approximation to integral equation (12.24)
may be obtainedfrom

1 N

XF(_°) _ _ Z d(ti)X(ti) e-iwt' Ati
i=l

(12.25)
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where /xti = t i - ti-l and to = O. Further, if samples occur at the

average sampling rate A, then

and equation (12.25)may be furtherapproximated by

N
1 e-iwq

Xr(_) _ _ _ d(t,)X(t_) (X2.20)
i--I

This expression could be used in equation (12.23) to provide the spectral
estimate. However, upon doing so, Gaster and Roberts found this

estimate to be biased by a false constant shift, which they removed

by the use of the estimate

" _._ e -i_°t_ 2 N

SX(_) = _ ws . _'= d(t_)X(t() -i=t_ da(t*)xa(t*) (12.27)

Although this technique is computationally more e_cient than
method 1, more data are necessary to achieve the same level of

accuracy.

12..5 Cepsn, mm Analysis

In the past few years,the use of cepstrum analysis30 has come into

•prominence. The name isderived by invertingthe firstfour lettersin

spectrum. This type of analysisisparticularlyusefulfor time histories

involving a signalthat isdelayed and then added to itself,such as an

echo, or for noisetransmission by differentpaths, such as airborne and

structure-borne sound. IfX(t) isa stationary random process,then its

power cepstrum is defined by

FCp(r) -" in[Sx(_)] e iwr dw (12.28)
@O

which is the Fourier integral transform of the natural logarithm of the

power spectral density. Since the power spectral density is real and an
even function of frequency, the power cepstrum can be seen to be real
and an even function of the variable r. The reason for the use of the

logarithm here is that any product term in the power spectral density

appears as a summation in the cepstrum.
The definition in equation (12.28) assumes that the power spectral

density is never zero. When working with digital data, equation (12.28)
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isapproximatedby theintegralfrom -we toWe,where '_cistheNyquist
frequency.For realworldrandom data,theoccurrenceofan identically
zerovalueinthisrange isunlikely.

Although the ideaof invertingthe firstfour lettersin spectrum
may have been a good one, thisidea has been carriedtoo far in

cepstrum analysis.For example, the variabler in equation (12.28)
iscalled"quefrency,"paraphrasingfrequency,which is unfortunate

sincer isa timelikevariable.Clearly,ifitwere not forthe logarithm,
equation(12.28)would be justthe autocorrelationand r would be the

lag time. Other examples of thistype of paraphrasticexcesswillbe
noted.

It is also possible to define the complez cepstrum to be

FCc(1") -- In[X(_)] e/'_" d_ (12.29)
O0

where X(_) isthe FourierintegraltransformofX(t):

1 /:_ X(t) e-i_t dt = IX(_)#e i_('_)X(,_) = _ (12.30)

Note that, for X(t) real,

x(-_) = x'(_)

and thus

and

Ix(,_)l = IX(-,_)l

_(_) = -,(-_)

Thus, from equation (12.30)

FCo(r) ---- [In IX(_)l + i_(_)](cos_r + i sin _;7-)d_
oO

/2ffi [InIX(_)Icos_I"- _(_)sin_r]d_

+ i[ °° [InIX(_)l sinwr + _0(_) coswr] d_

The second integral vanishes since it is an odd function. Thus, the
complex cepstrum is real! However, it is not an even function of r.
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Source

Figure 61. Sound source above flat surface.

A third type of cepstrum, the real cepstrum,

Fc,(_) = In IX(_)12e_" d_ (12.31)

isboth real and an even function of r and may prove to be even more
convenient for transientfunctions.

As an example of the use of this type of analysis,consider the

geometry shown in figure 61. An acoustic source is producing a

stationaryacousticsignalS{t),which isbeing receivedby a microphone.
Sound can reach the microphone by the directpath of length et or by

echoing offthe surface,resultingina path length ofI_2+I3. The pressure
signalrecorded by the microphone isthus

e(t) = S(t - gl/c) ÷ aS[t - (12 ÷ e3)/c] (12.32)
II _2 + _3

where c is the speed of sound and a is the fraction of the incoming

energy that is reflected by the surface. If the reflecting surface was not
present, the microphone would record the signal

Q(t) = s(t - e_/c)
et (12.33)

which is equivalent to choosing a = 0 in equation (12.32).

From equation (12.32), the autocorrelation of the microphone signal
is

Rp(r) = E{P(t)e(t ÷ r)}

= ZRS(r) + _[RS(_ - _0) + Rs(r + To)] (12.34)
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Rp(T )

"ro vo

Figure 62. Autocorrelation of microphone signal.

where Rs(r) is the autocorrelation of the source signal,

1 _2

_= t,(t2+13)

and

•ro

Thus, the autocorrelation of the microphone signal appears as the sum
of the three curves shown in figure 62, and separating the directly
radiated sound from the echo would be very difficult because of the
distributed nature of the autocorrelation Rs(I").

However, the power spectral density of the microphone signal is,
from equation (12.34),

I /__o Rp(r) e -i_r dr = [# + 2"fcos_ro]Ss(_) (12.35)

where S$(w) is the power spectral density of the source signal S(t).
Thus, the source and receiver signals are related by the standard linear

system relation

sl,(_) = IH(_)I2Ss(_)

where the squared frequency response function of the equivalent linear
filter is

IH(_a)l2 = _ + 2-7cos_
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Thus, if the propagation paths and reflection coefficient were known,
the source spectrum could be recovered by

Sp(_)
Ss(_)= B + 2-yc_

Generally, the propagation paths and reflection coefficient(s) are not
known, in which case equation (12.35) may be written

2_ cos_vb)Sp(w) ffi_Ss(_,) (i + -ff

Thus,

( )InSp(u:) = inSQ(w) + tn(_£2) +In I + -_-cosu;rO

where SQ(_) -- Ss(w)/£ 2 isthe power spectraldensity of the echo-free

signal(eq. (12.33)),and the power cepstrum of the microphone signal

is

C_(r)= /5oo'"[Sp(w)le'w"_f /5 '"[SQ(w)]e'wr_

+ 27co6w,o (12.36)

Here, the first integral is the power cepstrum of the echo-free signal and

the second is 27r6(r) by equation (2.6). Further, for Iz[ < 1

z 2 z 3

In(1 +z) = z - -_- -{-T ....

Since

2_
m -=-
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Introduction to Time Series Analysis

whose magnitude is less than unity, the third integral in equa-
tion (12.36) may be written

oo 2"7coscovO) eiWr

2"7 fcv ' 1

- _ lr[25(r) + 6(r-21"0) + 6(r+2rO) ] +...

': cos2_r0 e _wr d_ -_ . , .

upon noting that cos2z = 1/2(1 + cos2z) and using equation (4.7).

Thus, the power cepstrum of the microphone signal is

[ ]ca(r)=CQ(_)+_ 2t_Zt_-_ -- +... 6(r)

- f +... [$(r-2r0) + 6(r+_r0)] +... (12.37)

where CQ(r) isthe power cepstrum of the echo-freesignal.Further. it

can be shown that the coei_icientof the 6(r) term isidenticallyzero.
Thus, the power cepstrum is as shown in figure 63, where the echo

shows up as delta functions (called_ralamonics') at multiples of the
delay time I-0.

This cepstrum can theoreticallybe readilyfiltered(or _liftered") by

interpolatingthe continuous function at the positionswhere the delta

functionsoccur leavingonly the echo-freereceivercepstrum. The echo-

freereceiverspectrum isthen recovered by inverseFouriertransforming,
that is,

SQ(w) - exp _ ao CQ(r) e -iwr dr (12.38)

It should be mentioned, however, that programming the liftering oper-
ation may be difficult, particularly when more than one echo is present.

12.6 Zoom FFT

In recent years, the manufacturers of stand-alone spectral analyz-
ers have developed a new feature called the zoom FFT, 31 which allows
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Cp(r)

-3T° I -r° TO [ 3tO

-2T0 2T0

Figure63. Power cepstrum ofmicrophonesignal.

one to greatly increase the resolutionin a sm_ll portion of the spec-

trum. However, although the technique involves cleverhardware im-

plementation, itdoes not violatethe fundamental resolutionconstraint

(eq.(7.33))that
2a"

where T isthe length of the record.

The method involves two assumptions:

I. That data storage islimitedby the memory of the spectralanalyzer

to N realdata points

2. That accessto additionaldata isessentiallyunlimited

Consider N data points x(n£xt) for n --0,1,2,...,N - I. The FFT of
these data is

N-I

X(kAw) = Z z(nAt) e-i2"kn/N (12.39)

where Aw = 27r/N At. Thus, the bandwidth of the FFT must satisfy
the fundamental constraint

IfN isfixedby memory restrictions,the only way to increase the reso-

lution(i.e.,reduce Aw) isto increaseAt. However, increasingAt would

lower the Nyquist frequency and introduce aliasingintothe spectrales-

timate. The way out of thisdilemma isto use the old technique that

electricalengineers callheterodyning. That is,multiply the signal by
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1t

Interesting Region

I I

! ! I I !
0 Af_ 2AC0 _ U,a.C_ N/2A_

C0

Figure 64. Interesting region in spectral estimate.

another signalto generate sum and differencefrequencies,filterout the

sum frequencies,and analyze only the differencefrequencies.These fre-

quencies are low and can thus be sampled at a much largerAt without

introducing aliasing.However, sincethe record leng_h isT --N At, the

record length must increaseinorder to obtain the same number of data

points at the largerAt.

The implementation of the zoom FFT technique involvesthe follow-

ing steps. From the FFT (eq.(12.39))of the originalN data points,the

spectra/density may be estimated in the region 0 < w < wc = N/2 A_'

as shown in figure64, where _ = 21r/NAt. Suppose that the range

wt = lAw < w < wu = u Aw isof particularinterest.Then, let

t4-u

2

and multiply the original data X(nAt) by the complex exponential

e -i2_nn/N to obtain the seriesof complex data points

z(nAt) = e-'2"""/Nz(nAt)

The FFT of this new serieswould be

N-I

Z(kAw)= _ z(._t)e-'2"k"/N
n=0

N-I

= 2 =(nAt)e-i2"(k+ra)n/N
n==0

= x[(k+ .,)_]

Thus, the power in the random process Z(t) at the frequency of

zero ispreciselythe power in the random process X(t) at the frequency
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Ix(_o)l IZ(_) I

0
I (o

NI2 A_

Figure 65. Change in frequency origin.

IH(_)I

(_--m_ (u-rn)A_
Figttre 66. Low-pMs zoom filter.

CO

m A_ and the frequency origin has effectively been moved as shown in
figure 65.

Then, suppose that the random process Z(t) is passed through a low-
pass digital filter with frequency response function as shown in figure 66

to yield anew random process Y(t) containing only low frequencies such

that [_[ < (u - m)A_. Since Y(t) contains only low frequencies, the
Nyquist criterion (eq. (9.7)) then says that the data axe being sampled

more frequently than necessary. In fact, one may now use a new At

given by
_" N

Atnew = = At (12.40)
(u-m)_ 2(u-m)

For example, if N = 128 and u - m = 2, then Atnew ----32 At and the
same information can be obtained by keeping only every 32nd value of
Y(t).

Suppose one keeps only every _tnew data point and stillfillsup the

memory. The memory now holds N/2 complex data points y(nAtnew)

forn ----0,I,2,...,N/2 - I.The FFT of these data

Y ( k A_new ) =

N/2- t
y( nA tnew ) e -i2_knl (N/2)

n=O
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then yields a spectral estimate only in the region of interestwith
resolution

_._new ---- 27r ... 4(u - m)A w (12.41)
(N/2)Atn_, N

Thus, for the same example, N = 128 and (u - m) = 2,

Aw
/_{.dn@w _ m

16

and the resolution is increased by a factor of 16. However, the total

record length required to do this is

N Y (N At)
T At"'`" = 4(u - m)

or 16 times more data for the example cited.

12.7 Digital Spectral Analysis of Periodic Signals

Often one is interestedin analyzing a periodic signal,which may

or may not be contaminated by random noise. For example, the noise

produced by a helicopteris largelydue to the periodic motion of the

rotor.However, there are alsoother sources ofhelicopternoise that axe

more random. In this case, many of the problems seen in the analysis

of random data, as well as some new ones, arise.

Recall that if]'(t)isa periodic signalwith period p, then itmay be

represented by the Fourier series(eq.(2.4))

OO

ao Z (an cost#hi+ bn sinwnt)f(t) ----T "+"

" Z Fneiwnt (12.42)

where Wn "- 27rn/p are harmonics of the fundamental radian frequency

ca1 -- 2_r/p of the signal. The Fourier integral transform of this signal
is(eq. (2.7))

OO

F(w)-- Z Fn6(W-wn)
l_.:z--OO
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-%-_-% o % % %

Figure 67. Amplitude spectrum of periodic signal.

Such harmonic analyses are ordinarily represented by the amplitude
spectrum as shown in figure67. In terms of the more familiara's and

b_s,

IF.I - _a2n+
2

Note that this is a much different representation from a power spectral

density since IFnl2_s the finite power in the signal at the discrete fre-
quency wn. One is ordinarily interested in obtaining accurate estimates

of these amplitudes IFnl and the frequencies wn.

For the digital analysis of such data, it might intuitively be expected

that one ought to analyze data of length

T = up (12.43)

where v is an integer. That is, the data length ought to be some whole

number of periods of the signal. Equation (12.43) can, in fact, be shown
to be true mathematically.

Suppose that the periodic signal is sampled at equal intervals At

yielding data f(jAt) for j -- 0, 1, 2,..., N - 1 for a total sample length
of T = N At. The finite Fourier transform of this signal is

N-I

F(kAw) = _ f(jAt) e -i2rkj/N (12.44)

jffi0

which is evaluated at the frequencies

2_rk

_ = kA_ = -_- (kfO, 1,2,...,N/2)

The signal (eq. (12.42)) has power occurring at the frequencies
con = 2rtn/p. Thus, the frequencies at which equation (12.44) is
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evaluated may not be the frequencies at which equation (12.42) has

power! For n fixed, there is a k such that ,ak -- _n if and only if

or

2_k 2_n

T p

k
T - -p

n

Ifone wishesthisto be true foralln such that _n islessthan the

Nyquistfrequency,_c ""_/At, then

T= up

where v is an integer and the k corresponding to a given n is

k --_ beB

Thus, thedata&nffth T must be some integer number of periodsof the
signal.

Unfortunately, it is not always po_ible to satisfy the criterion in
equation (12.43) that the data length be some integer number of periods
because either (1) The period is not known a priori or (2) use of the
FFT requiring N -- 2_ does not make it convenient.

Then, what happens if one proceeds with the analysis when the
frequencies at which the dLscreteFourier transform is evaluated arenot
equal to the frequencies at which the periodic signal has power? This
case has been studied extensively by Burgess. 32

Suppose T = up where v is not an integer and data f(jAt) for
j ffi 0, 1, 2,..., N - 1 from a periodic process f(t) exist. The discrete
Fourier transform of these data is

where

N-I

F(k/x_) = _ f(jAt)e-i27rkJ/N
jffiO
N-1 oo

= _. _ F.e_"_"'e-_2"_/'_
j--'---On=-oo

oo N-I

nm--_ j----O

27rk 27r
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f(t)

o o,,Io[_,
Figure 68. Square wave of amplitude A.

since T = N At -- up. Thus, defining

N-I

j=O

1 - e _2r(nv-k)

1 - ei27r(nv-k)/N
(12.45)

and noting that division by N is necessary for equation (12.44) to

approximate equation (2.5),the estimated Fouriercoefficientsare

F(kA_) I
$'k= -_ = -_ F.F.w_(_) (12._)

tg_tl _OO

which is a weighted sum of all the Fourier coefficients with respect

to the very complicated weighting function (eq. (12.45)). Physically,

wk,_(v) represents a transfer of that power which in the periodic signal
would appear at the frequency _,_ -- 2_rn/p to the estimated Fourier

coefficient at the frequency wk -'- 2_rk/T. This phenomenon is called
leakage and can result in substantial errors in both the amplitude and

the frequency of the Fourier coefficients, basically dependent on how
close nu ever gets to k.

Periodic signals may also have problems with aliasing, if they contain
power at frequencies higher than the Nyquist frequency, just as in
random signals. In fact, aliasing is much more evident in periodic
signals. A simple example that can be readily analyzed is to consider
a square wave of amplitude A as shown in figure 68. The Fourier
coefficients axe given by equation (2.5):
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I fo p f(t) e-_t dtF,., = p

_-- Ap jo/pl2 ¢_iw,_ t dt - PA_v/2 e-_w'_t dt

iA n
= _[(-1) - 1]

Now, suppose that the signal is sampled at equal intervals At for

one period, that is, NAt = p, and that N is even. Then. by
equation (12.44), noting that f(0) -- f(p/2) - 0 because of the jump
discontinuity,

N-I

jffi0

N/2-1 N-l

-_ r_ (.-,_1 _-_ E (_-'_1 _
j_o jffiNI2+ t

= iA[(-1) k - 1] cot -_

Thus, the approximate Fourier coefficients are

$'r_ = F(NAW) iA . "n a'k= _[(-I) - I]cotW"

-_I_-_)-_I_- _ (_)
k_t

upon expansion of the cotangent. Here B2k is a Bernoulli number.

Note that the firstterm is the exact Fourier coefficientand the sum

representsaliasedterms. Thus, periodicsignalsmust also be filteredto

avoid aliasing.

12.8 Spectral Analysis of Nonstationary Random Processes

Practically all the analysis discussed thus far in this monograph
has assumed that the random process of interest is at least weakly
stationary. When this is not true, two major problems arise:

1. Since the statistics of the random process vary with time, time
averages cannot be used to reduce variability. Thus, an ensemble

of sample functions must be collected, analyzed, and averaged.
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2. Since second order moments depend on two variables instead of one,

interpretation is more difficult.

For example, the autocorrelation of a nonstationary random process

X(t), Rx(tl, t2), depends on two variables tl and t2. The corresponding

power spectral density may be defined as

1 f_:dtlf/ dt2Rx(tl,t2)e i(wlti-w2t2)

= E {X'(wl)X(w2)} (12.47)

where

i f/ X(t) e -_wt dtx(_)= _ oo

The autocorrelation may then be recovered by the inversion relation:

F FRx(tl, t2) = d_l d_2 Sx(wl, w2) e-i(w*q-_t2) (12.48)
O0

However, the power in the process at time t is

FE[X2(t)]= ax(t,t)= d_, d_S=(w,,_)e-i(_*-_2)t
O0 O0

Thus, the power spectra/density (eq. (12.47))does not admit a simple

interpretationin terms of power per unit frequency. If the random

process were stationa_, then Sx(c#l,W2) = Sx(wl)6(w2-izl). Thus,
it has been suggested "_ that the spread of the values of the spectrum

Sx(wl,w2) about the line _1 = w2 is a measure of the nonstationarity
of the random process. One virtue of the definition in equation (12.47)

is that if X(t) is input to a linear system, the power spectral density of

the output Y(t) is given by

Sy(wl, w2) = H" (wl)H(w2)Sx(wl, w2)

However, although this definition is relatively straightforward, it has

proven to be of limited practical use.

A more useful definition is accomplished by introducing the variables

tl+t2= r=t2--t I
2
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Introduction to Time Series Analysis

called the mean time and time difference. Then, the autocorrelation
may be written

Rx(t_, t2) = Rx(_-,'/2, _+r/2)

and one can definethe time varying power spectraldensityas

I O0

Sx(i, _) = _ f_= Rx(i-rl2, _+_12)e-"_" d_ (12.49)

with inverse

FRx(I-,12, _+,/2) = Sx(i, _)#_"
O0

(12.50)

Although this definitiondoes not satisfya simple relationfor a linear

system, the power is

E{X2(t)} = Rx(i,i) = f'_.'_Sx(i,_)#_
O0

Thus, S(t, _) admits interpretation as the power per unit frequency in

the signal at time t. This definition has proven useful, probably being
most widely used in the field of voice analysis and identification.

A class of nonstationary random processes that have been fairly
widely studied are called "peeudostationary" random processes. Here

Y(t) ffi a(t)X(t) (12.51)

where X(t) is a stationary random process and A(t) is a deterministic
modulation signal that is assumed to vary much more slowly than
X(t). For example, figure 69 presents the acoustic pressure time history.
measured by a stationary microphone as an aircraft flies over it. Such
data can be represented by equation (12.51), although the Doppler shift
in frequency inherent in this measurement technique must also be taken
into account. For processes that can be described by equation (12.51).

Ry(t-r/2, t+r/2) ----E{Y(t-r/2)Y(i+r/2)}

= A(t-r/2)A(i+rl2)E{X(t-r/2)X(t+r/2)}

_. A2(t)Rx(r)

and thus

Sy(t,w) _. A2(t)Sx(w)
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Figure 69. Acoustic pressure time history produced by aircraft flyover.

x(t)

Region

.....  A.A^A .,.-...,, A.

Figure 70. Identifiablynonstationarysignal

where SX(_) isthe ordinary power spectraldensity of X(t).

Another type of nonstationary signal that seems to occur fairly

frequentlyisshown in flgnre70. This type might be calledidentifiably
nonstationary. In such signals,the time history consists of two (or

more) regionswhere clearlydifferentphenomena are occurring. Such a

record might be produced, for example, by a velocitysensor mounted
on an aircraftflyingin and out of thunderstorms, by a microphone

measuring the noise levelinside a train traversingsections of smooth

and rough track,or by a seismometer recording periodsof more and less
seismicactivity.For such records,itseems reasonable to break the time

history into blocks corresponding to the differentregionsand analyze

the records in the blocks from each region as ifthey were produced by
a singlestationary random process.

While such an approach undoubtably produces usefulinformation,

itrequiresmuch engineeringjudgment. First,the variousregions must

be identifiedand the break points between them determined. Then,

the reasonability of treating the sections of a given region as stationary

must be evaluated. For this purpose, the test for stationarity given in
chapter VI is useful. Sometimes the means may not pass such a test,

although the variances do. In this case, the mean of each block may be
subtracted from the data in that block before analysis. Other times,
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detrending,as was discussedinchapterXI, may have to be appliedto

each individualblockbeforethe stationaritytestissatisfied.
Assuming satisfactorypassage (which again requiresengineering

judgment),spectralestimatesforeachblockcan thenbe computed and

averagedtogether,justas inblockaveraging,to reducethe statistical
variability.However, the blocksmay be so short that the needed

resolutioncannot be obtainedwith standardtechniques.In thiscase,

itmay be necessarytoapply techniquessuch asthe maximum entropy
or maximum likelihoodmethods.

In analyzin9 such data, one should use 9sod eng'ineerin9 judgment at
every step a_ong the may and should always be mindful in interpreting
the final r_sult.s that many _sumptior_s have gone into the analysis.

A way in which one can make any random process appear more

stationary is to _normalize" it. Suppose X_t) is a nonstationary random
process with mean mx(t ) and variance _x(t). Then, the new random
process

Z(t) ffi X(t) - rex(t)
ax(t)

is such that E{Z(t)} - 0 and a_ ffi 1. Thus, Z(t) is much closer to
being stationary than X(t) was. Further, X(t) may be written

X(t) -- mx(t ) + ax(t)Z(t)

which isjustthe sum of a deterministicsignalrex(t)plusa random

processthatlookssomethinglikeequation(12.51).Thistypeofanalysis

hasoftenbeen appliedto transientphenomena suchas vibrationduring
a Space Shuttleliftofl"or noisemeasurements duringan exhalationof

breath,where mx(t )and ax(t) may be estimatedby ensembleaverages
overrepeatedexperiments.

The analysisofnonstationaryprocessesisnot ina verysatisfactory.

stateand may, infact,neverbe,althoughtheyaxethetopicofconsider-

ablecurrentresearch.The difficultyliesinthefundamentalimportance

of the assumptionof stationarityin the analysisand interpretationof
random data. Basically, the state of the art is that one tries to make the

nonstationary signal look enough like a stationary signal that station-
axy techniques may be used. Recently, 34 this approach has been placed
on a firm foundation by a unified theory that considers more general
types of invariance under transformation in addition to independence
of the origin of time, which led to the concept of stationaxity.
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