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, ABSTRACT

Several Hg-^_xCdxSe crystals of composition x = 0.2 were grown in

a Bridgman-type d i rec t ional s o l i d i f i c a t i o n f u r n a c e at va ry ing

t r a n s l a t i o n rates. The i n f l u e n c e of g rowth ra te on both the

longitudinal and radial compositional uniformity for the crystals was

determined using density measurements and infrared transmission-edge

mapping.
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IHTRODUCTION

With an increasing emphasis on the growth of semiconducting

crystals which can be used for the detection of infrared radiation and

for use in the fabrication of junction devices, considerable attention

has been focused on attaining a basic understanding of the mechanisms

involved in the growth of homogeneous, bulk single crystals of these

materials. Of particular interest is the ability to control both the

longi tudinal and radial compositional uni formity of direct ional ly

sol idif ied crystals by control l ing such factors as growth rate,

interface shape, and temperature distributions during the growth

process.

A considerable amount of work has been done to date on the HgCdTe

system. There are some excellent reviews available^'2 ag well as a vast

number of publications in the technical literature on this system. To

cite just a few, which are concerned pr imari ly with the influence of

growth parameters on the sol idif icat ion process of these crystals,

Szofran et al.^ have determined that the growth rate has a significant

influence on the longitudinal compositional profile of HgCdTe crystals

and that the measured radial compositional variations in these crystals

also shows a strong correlation to both the growth rate as well as the

temperature profile used. Bartlett, et al.^ also studied the effects

of growth rate on the compositional variations in HgCdTe crystals and

found that again the uni formi ty is highly growth rate dependent . In

several other works 5-7p it has also been shown that the shape of the

melt-crystal interface is an important factor in controlling the quality

of directionally solidified HgCdTe crystals. In turn, it has been shown



that the shape of the melt-solid interface is related to the relative

thermal conductivities of the solid and liquid.^»9 Lehoczky and

Szofran,10 in a summary article, discussed the influence of all these

parameters, the growth rate, the interface shape and the solid and

liquid alloy conductivities, on the compositional uniformity of HgCdTe

crystals. Therefore, since it has been shown that all these factors

influence compositional uniformity and hence crystal quality, it is

extremely important in the growth of composit ionally homogeneous

semiconducting crystals to have a complete understanding of both the

thermophysical properties of the mater ia l s invo lved as wel l as an

unders tanding of the influence of various growth parameters on the

solidification process.

In an at tempt to characterize and thus bet ter understand the

growth process of semiconducting crystals, one procedure which has been

used by several investigators is to compare the experimentally measured

longitudinal compositional profiles of as grown crystals to theoretical

compositional profiles assuming various models. One model which appears

to fit the data quite well is the one-dimensional diffusion model. In

this f i t t ing procedure, it is possible to determine an e f fec t ive

diffusion coefficient in the liquid. In looking at the results of this

modeling by Szofran et al.5 on a Bridgman grown ingot of Hg-^CdxTe of

composition x=0.202, (Figure l) it is seen that indeed the measured

longitudinal composition profile is well modeled by the one-dimensional

diffusion case. This result indicates that during the growth of HgCdTe

crystals there will be a region of the crystal over which steady state

solidification is proceeding and in which the average axial composition

of the crystal is constant.
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Figure 1. Theoretical and experimental profiles for a H g ^ _ x C d x T e
crystal of composition X = 0.202 grown at 0.31 um/s.
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In looking through the literature on semiconducting alloys, it was

observed that in work done by Summers and Nelson^ on a similar system,

the HgCdSe system, the agreement between the measured and calculated

compositional profiles, assuming a one dimensional model, was not quite

as good as in the work previously quoted on HgCdTe. This lack of

agreement can be seen in Figure 2. It was suspected that perhaps this

disagreement, in particular the initial dip in composition followed by

the continuously increasing cadmium composition throughout the normally

observed steady state growth region was due to the use of a relatively

fast growth rate of lum/sec.

k-166
D-6x10-5cm2/«c
R- 1 OfJm/iec
L" 150cm

6 10

Oifunce dong ingot, C (cm)

Figure 2. Theoretical and experimental compositional profiles
Hg^_ x Cd x Se ingots grown by the fast Bridgman method,--
theory; ,experiment.

of
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In looking into this system further, it was noticed that although

a considerable amount of work has been done on the HgCdTe system, a

lesser amount of attention has been paid to the HgCdSe system.

Cruceanu and Niculescu^, in 1965 were the first to report in the

literature the preparation of Hg^xCdxSe alloys. Kalb and Leute1^ used

x-ray techniques to determine the miscibility gap limits in the HgSe-

CdSe system. They determined that for x<0.77, Hg-^_xCdxSe alloys possess

the cubic zincblende s tructure and that for x>0.81, they possess the

h e x a g o n a l w u r t z i t e s t r u c t u r e . A t room t e m p e r a t u r e , t he two

crystallographic phases are immiscible for 0.77<x <0.81.

Nelson, Summers, and Whitsett '4 determined the phase diagram for

the HgSe-CdSe system using differential thermal analysis measurements.

Kelson et a lJ5 performed an experimental and theoretical study of

the electron mobility in the Hg^x^x36 a l l o y system. They grew some

crys ta l s by the Bridgman method and in their work, they discussed

primarily the intrinsic and defect-scat ter ing processes dominant in

HgCdSe . A fairly comprehensive study of H g C d S e a l loys was done by

Whitsett, et al. in which the preparation and characterization of

H g C d S e a l loys was emphasized. Several different growth methods were

used in this investigation. There are a few additional studies on HgSe

and HgCdSe , however, this brief review accounts for the majority of the

published work on the growth of H g C d S e crystals.

There are several reasons for the rather limited work on this system

in comparison to the H g C d T e system. One primary reason is that H g C d S e

is an n-type semiconductor as grown and remains so under all types of

subsequent treatment. This, coupled with the fact that the carrier
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concentration is quite high (10^°) in the as grown state, poses several

problems in the utilization of H g C d S e for many applications. In

contrast, H g C d T e is p-type as grown and can be made n-type by annealing

in a mercury vapor. This capability adds greater flexibility in the

area of device production.

Also, H g C d S e appears to be quite unstable e lectr ical ly , thus

making its commercial utilization at this time unattractive. However ,

the lattice characteristics of H g C d S e are quite f avo rab le for growing

strain free crystals and if a better understanding of the system can be

obtained, it may prove to be a feasible system for further investigation

and development.

Therefore, because of the limited published results on the H g C d S e

system, coupled with the interesting results of Summers and Nelson,

and the apparent potential usefulness of H g C d S e as a semiconducting

material provided certain instabilities can be overcome, it was decided

to further investigate this system.

OBJECTIVE

The objective of this work was to gain a better understanding of

the influence of growth parameters on the compositional uniformity of

Bridgman grown H g C d S e crystals. In particular, it was decided to

determine the influence of growth rate on both the longitudinal and

radial compositional uniformity of H g C d S e crystals of fixed composition.

These crystals were directional ly solidified in a Bridgman-type crystal

growth furnace and their compositional profiles, both axial ly and
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r a d i a l l y , were determined using precision density measurements and

infrared transmission edge mapping.

An ult imate objective of this project will be to compare the

measured longitudinal profiles with the theoretical model for a one-

dimensional di f fusion case and to determine an effective diffusion

coefficient. Also, it is desired to utilize the radial compositional

variations in conjunction with the particular growth parameters to infer

the thermophysical properties of the material.

HgSe-CdSe SYSTEM

H g S e c rys ta l l i zes in the z incb lende s t ruc tu re and C d S e

crystallizes in the wurtzite structure. These two compounds combine to

form what is referred to as a pseudobinary system which is shown in

Figure 3. As noted on this diagram, and determined by K a l b and LeuteJ'

this system contains a small miscibili ty gap. The existence of this

peritectic reaction at 947° does not appear to disturb significantly

the solidus and liquidus curves which vary smoothly between HgSe and

CdSe.
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HgSe- CdSe PSEUOOBINARY ALLOY SYSTEM
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ZINCBLENDE
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HgSe MOLE FRACTION OF CdSe, x CdSe

Figure 3- Hg^_xCdxSe phase diagram
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Pseudobinary alloys of HgSe and CdSe are commonly represented by

the formula Hg}_xCdxSe where x is the mole fraction of CdSe. With

increasing values of x, it is seen in Figure 4 that the variation in

lattice constant is quite small, with the variation being smaller than

that for the HgCdTe system. This would be advantageous in the growth of

HgCdSe crystals because slight variations in composition would not

result in significant strains being introduced in the crystals due to

lattice constant changes.

Mercury selenide is classified as a perfect semimetal or symmetry-

induced zero-gap semiconductor. On the other hand, cadmium selenide is

a wide gap semiconductor wi th a fundamenta l direct band gap of 1.8eV.

When HgSe and CdSe combine to form Hg!_xCdxSe, the energy gap increases

continuously from a small negative value for HgSe to a larger positive

value as a function of x. This transition is represented schematically

in Figure 5- Thus, it is possible by varying the alloy composition to

tailor the band gap of HgCdSe crystals and hence the wavelength at which

they become transparent to infrared radiation. Figure 6 from Whitsett,

et al. shows this relationship between the band gap and x at 300°K.

However, the electrical properties of HgCdSe are quite unstable

thus m a k i n g i t s use c o m m e r c i a l l y u n a t t r a c t i v e a t this t ime.

Never the less , as mentioned earlier, the latt ice characterist ics are

quite desirable as far as growing strain free crystals and if the system

can be better understood and controlled, it may prove to be a feasible

system for further investigation and development.
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Hg lx CdxSe BAND STRUCTURE

CROSSOVER Hg1o(CdxSe CdSe
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Figure 5« Energy-band model for Hg^_xCdxSe alloys
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BAND GAP ENERGY AS A FUNCTION OF COMPOSITION
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EXPERIMENTAL PROCEDURE

All alloys used in this investigation were prepared by reacting 5-

9's pure selenium(Se) 6-9's pure cadmium(Cd) and 7-9's pure mercury(Hg)

in sealed, evacuated quartz ampoules of 5mm I.D, 10mm O.D., and 40 cm in

length. The quartz ampoules were tapered to a point on one end to

facil i tate single crystal growth dur ing subsequen t d i r e c t i o n a l

solidification. The ampoules were first cleaned thoroughly with

methanol and water and annealed at 1140°C for approximately three hours

to relieve any strains induced during previous glass working processes.

Stoichiometric amounts of Hg, Cd, and Se were precisely weighed

out for an al loy composition of x=0.200. The Cd and Se were inserted

into the tube and the Hg was weighed into a glass container for

subsequent insertion into the ampoule. The ampoule and the glass

container holding the mercury were assembled and attached to a vacuum

system through an 0-ring fi t t ing. The system was evacuated to a

pressure of approximately 10 millitorr. The mercury was then inserted

into the ampoule and the ampoule was sealed off.

The ampoule containing the Hg, Cd, and Se was then wrapped in high

temperature wool and placed in a quar tz lined inconel tube inside a

rocking furnace. Care was taken to ensure that the ampoule was in the

center of the tube furnace. The furnace was heated up slowly,

particularly through the 700°C range. After the solidus temperature was

reached, the furnace was rocked in an attempt to homogenize the alloy.

After reaching the maximum temperature, which ranged from 80°C to 160°C

above the liquidus temperature, the furnace was rocked for an additional
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fifteen hours. At the end of this time, the furnace was oriented in a

slightly inclined position from horizontal and the tip of the ampoule

was lowered out the bottom of the furnace. This was done to initiate

solidification at the ampoule tip.

After solidification, the ampoule was placed in a Bridgman-type

directional solidification furnace. The alloy was remelted, and then

directionally solidified at a particular growth rate and under specific

thermal conditions.

A diagram of the furnace is shown in Figure 7. In this

configuration, the quartz ampoule is placed on a quartz pedestal, and at

the beginning of the growth process is positioned in the upper furnace.

The ampoule remains stationary throughout the process and the furnace

translates upwards. The furnace assembly consists of two resistively

heated tubular furnaces with an upper hot zone and a lower cold zone.

The two heat zones are well defined and isothermal due to the use of a

sodium heat pipe in the upper zone and a potassium heat pipe in the

lower zone. The two heat pipes are separated by a thermal barrier, the

thickness of which is variable depending on the desired temperature

profile for the particular growth process. Barrier thicknesses used in

this study were 2.4cm and 0.64cm. The circular opening in the barrier

was 1.19cm.

Before each crystal growth experiment, a temperature profile of

the furnace was recorded to establish the thermal conditions present in

the furnace. The profile is dependent on the particular combination of

upper and lower zone temperatures as well as the barrier thickness. The

particular profile which exists in the furnace determines the relative

position of the solid-liquid interface with respect to the barrier.

Ill-14



ORDINAL PAGE ,S
<* POOR QUALITY

SINGLE CRYSTAL

SODIUM OR MERCURY HEAT-PIPE

FURNACE

THERMAL INSULATOR

THERMAL INSULATOR

SODIUM HEAT PIPE

HB. Cd, AND T« VAPOR

^-FURNACE

MOLTEN ALLOY

/-THERMAL BARRIER

QUARTZ AMPULE

QUARTZ PEDESTAL

Figure 7. Bridgman-Stockbarger crystal-growth furnace assembly
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The proper positioning of this interface is quite important in that it

may directly affect the shape of the interface and hence the radial

cqmpositioned uniformity.

The thermal gradient at the interface also is an important

consideration in the growth of semiconducting crystals in that it must

be steep enough to prevent consti tutional supercooling. Of primary

importance is the gradient at the solidus temperature, corresponding to

the steady state growth interface. However, care must also be taken to

ensure that the thermal gradient is steep enough at the l iquidus

temperature where initial solidification begins. From a knowledge of

the initial segregation coeff ic ient , k, and the thermal gradient G

obtained from a temperature profile, the maximum permissible growth rate

which should avoid constitutional supercooling was determined using the

f ollowingrelationship:

G / R = m C (k - i ) whe re
~~ Dk

m = the slope of the liquidus curve at
the composition of interest

CQ = mole fraction CdSe

D = the diffusion coefficient

R = growth rate

k = segregation coefficient
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RESULTS AffD DISCUSSION

At the time of this writing, three crystals, designated A-2, A-4,

and A-5 have been successfully grown. The growth parameters for each

are listed in Table 1. Ingot A-2 has been almost fully characterized at

this time and the results of the analysis will be the primary focus of

this report. As seen in Table 1, ingot A-4 was grown at a faster growth

rate than ingot A-2, but with a thinner barrier in an attempt to

increase the thermal gradient present at the beginning of solidification

to prevent constitutional supercooling. Ingot A-5 was grown with a

relatively steep thermal gradient, this time with a thick barrier in an

attempt to ensure that the steady state position of the growth

interface was well within the barrier. The intent was to look at the

shape of the solid-liquid interface resulting from these growth

conditions in an attempt to obtain some information about the thermal

properties of the liquid relative to the solid.

Three primary characterization techniques were utilized in this

study. Optical microscopy, precision density measurements, and infrared

transmission-edge mapping were used to obtain information about the

microstructure and the compositional uniformity of the alloys. These

results will be presented and discussed in the following sections.
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TABLE 1
GROWTH PARAMETERS FOR

SAMPLES SUCCESSFULLY GROWN To DATE

INGOT A-2 INGOT A-*

x*0,2 x « 0.2
L = 16.7 CM L « 16.8 CM
GROWTH RATE (R) <* 0,3 u«/s R = 0.4 UM/S
THERMAL GRADIENT (G) = 97° C/CM G = 187°C/cM
K » 2,25 BARRIER: 0,64 CM
BARRIER; 2.4 CM ANNEALED AT 250°C FOR 2 DAYS
Tu - 960°C Tu » 1015°C
TL - 486°C TL «

INGOT A-5

x = 0.2
L » 16,t\ CM
R = 0.3 PM/S

G = 90°C/CM

BARRIER; 2,4 CM
Tu = 1000°c
TL = 670°C
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MICROSCOPY

All samples were ground and polished using standard metallographic

procedures down to a polish on 0.25um diamond. They were etched for 15

seconds in Straughn's reageant at 60°C and then rinsed in a dilute

solution of bromine in methanol, followed by rinses in methanol.

The microstructure of a sample taken at 3«95cm from the tip of

ingot A-2 is shown in Figure 8. As can be seen, a fine cell structure

is evident. This indicates an interface instability and the possibility

that the initial thermal gradient was not steep enough and as a result,

a slight amount of constitutional supercooling occurred.

>' •' • -/v ,̂':-'- < r.X><V.' :>̂ '̂̂ */£>1
> ••-•'•:" • •• •:'•? >4:'-v>>̂ >̂̂ : '̂

- -;-:- r - :. /:' :' •: *J.>JJ '7/*5f-vvf -%

Figure 8. Optical micrograph of a sample taken 3«95cm from the tip of
ingot A-2 (240x)
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However, in analyzing a slice taken at 14.91cm from the tip of A-2,

no apparent microstructure was observed. This seemed to indicate that

once steady state growth was achieved, constitutional supercooling was

eliminated. This would be expected, since the thermal gradient at the

solid-liquid steady state interface was steeper than that at the

liquidus. No grain boundaries were observed in the slice examined,

however , x-ray analysis is needed to confirm the presence of a single

crystal.

PRECISION DENSITY MEASUREMENTS

Iwanowski^, in 1975, showed that the mass density of Hgi_xCdxSe

decreases linearly with increasing x value, through both the zincblende

and wurtzite structures. Therefore, precision density measurements can

be used to accurately determine alloy composition. Precision density

measurements were madein accordance with theprocedure described by

Bowman and Schooner^°. Table 2 summarizes the results of the density

measurements for slices taken at various distances along the length of

the ingot A-2. Figure 9 graphically shows the relationship between the

measured axial density and the distance from the ampoule tip. As can be

seen, the overall trend appears to be wel l modeled by the one-

dimensional diffusion case, that is, an initial transient is observed,

fol lowed by a steady state growth region, ending up with a final

transient.

At a distance of 6.41cm from the ampoule tip, it is seen that the

average composition of the solid increased. This rise in composition

is well correlated with an actual stopping of the furnace translation

due to a motor failure.
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TABLE 2

COMPOSITION As DETERMINED FROM PRECISION DENSITY
MEASUREMENTS As A FUNCTION OF AXIAL POSITION FOR

INGOT A-2

DISTANCE FROM TIP COMPOSITION
(CM)

1,00 0,289
1,55 0,247
2,00 0,223
3,05 0,204
3,55 0,213
3,95 0,202
5,55 0,213
6,41 0,245
8,52 0.206
9,25 0,204
9,95 0,182

10,98 0,182
11,91 0,204
12,91 0,182
13,71 0,175
14,91 0,165
15,15 0,155
15,35 0,133
15,50 0,103
15,75 0,054
15,90 0,022
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It is apparent that the composition along the ingot was approaching a

steady state value when the translation stopped. However, as the alloy

remained stationary with respect to the furnace, the system began to

return to an equilibrium state, and thus, upon resuming translation,

another transient is observed, followed by a subsequent movement into a

steady state region.

Further analysis is currently underway on material sectioned from

this in ter rupted region and is showing some interesting results. The

results have prompted additional experiments which could provide some

very exciting insights into the in ter face stabil i ty and di f fus ion in

this system.

IR TRANSMISSION MAPPING

Infrared transmission mapping is a technique which can be used to

determine the radial compositional uniformity of thin slices taken along

the length of a crystal. It also is possible to utilize this technique

to get an average x value for the slice. However, the outer-most edges

of the sample, which in this experiment are lowest in x value, are not

included in the IR analysis. As a result, the average x value obtained

by this method wi l l be sl ightly higher than the x va lue obtained by

precision density measurements, however density trends should be fairly

similar.

Slices of approximately 1mm thickness were cut along the length of

ingot A-2, ground to about 0.75mm thickness and etched with a methanol-

5% bromine solution. All transmission measurements were made at room

temperature at regularly spaced in tervals on each slice. To improve

spatial resolution, an aperture 100 urn in diameter was used.
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Typical results for a spectra obtained from a slice 2.00cm from

the tip of ingot A-2 is shown in Figure 10. Pairs of curves correspond

to symmetrical points on the sample, with the outermost curve

representing the center of the slice. As can be seen in this plot of

transmission vs wavenuraber, a wavenumber corresponding to the cut-on

where the crystal goes from being transparent to opaque can be obtained,

and this wavenumber which corresponds to a particular gap energy can be

used to obtain an x value, since, as discussed earlier, the energy band

gap of a Hg1_xcdxSe crystal can be di re t ly related to the alloy

composition. This relationship is also temperature dependent and can

best be expressed by the following equation:^

Eg = -0.209(1-7.172x-2.17x2)

+7.57 x 10-4(1-1.277 x -0.151x2)T

+2.00 x 10-9(1+23.45x-599-4x2)T2

Typical results of radial compositional profiles are shown in

Figures 11 and 12. As can be seen here, the ingot, as grown, is

cadmium rich in the center and cadmium deficient on the edges. This

finding was quite surprising since it is direct ly opposite to that

commonly observed in the Hg^_xCdxTe system. Such variations suggest a

convex interface for the entire growth length. Such an interface shape

can have definite implications as to the thermophysical properties of

this system and this area is currently being investigated further as a

continuation of this project.
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Figure 10. Infrared transmission spectra taken on a sample 2.00cm from
the tip of ingot A-2
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Figure 11. Compositional map obtained from infrared transmission-edge
mapping of a sample taken 3«95cm from the tip of ingot A-2
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Figure 12. Compositional map obtained from infrared transmission-edge
mapping of a sample taken 11.91cm from the tip of ingot A-2
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Table 3 is a tabulation of the average x value obtained by IR

mapping for each slice taken from ingot A-2. A plot of this average

composition (x) of each radial slice as a function of distance from the

tip is shown in Figure 13- As can be seen from this figure, the axial

compositional profile appears at a first approximation to be well

modeled by the one-dimensional diffusion model. The length of the

steady state region of growth also indicates that the diffusion

coefficient, D, in this system may in fact be lower than that in the

HgCdTe system. This is also a very interesting finding, since it was

initially assumed that they would be approximately the same.
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TABLE 3

AVERAGE COMPOSITION As DETERMINED FROM IR
TRANSMISSION NAPPING As A FUNCTION OF AXIAL
POSITION FOR INGOT A-2

DISTANCE FROM TIP COMPOSITION

1,55 ,235
2,00 ,218
3,05 .211
3,55 .209
3,95 ,212
1.51 ,207
5,55 ,203
6,41 ,236
8.52 ,199
9,25 ,204
9,95 ,206

10,98 ,206
11,91 ,209
12,91 ,206
13,71 ,202
14,91 .191
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Figure 13. Measured compositional profile for ingot A-2 (from IR
transmission edge-mapping data)
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TENTATIVE CONCLUSION

At this time it is d i f f i cu l t to make defini te conclusions.

However, based upon the preliminary results of this investigation, the

following tentative conclusions can be made:

1. The results of the longitudinal composit ion prof i le on a

Bridgman grown crystal of Hg^xCd^e of composition x = 0.2,
•

grown at 0.3um/sec,(ingot A-2) appears to be well modeled by

the one-dimensional diffusion model. This suggests that the

r e s u l t s o f S u m m e r s a n d N e l s o n ^ 1 w e r e i n f l u e n c e d b y

constitutional super cooling.

2. The radial composit ion prof i le of ingot A-2 consists of a

cadmium rich center and hence implies a convex growth

interface. This is opposite to that of the Hg1_xCdxTe system

and this in turn implies d i f f e rences in the thermophysical

properties of the two systems.

3« Due to the length of the steady state growth region in the

axial composition profile, the diffusion coefficient in the

liquid in the HgCdSe system appears to be less than in the

HgCdTe system.

Further experimentat ion is cur ren t ly underway and planned.

Evaluat ion of the results will be necessary to conf i rm or modi fy the

above conclusions. Also, crystal growth experiments are planned which

w i l l be used to e v a l u a t e the i n f l u e n c e of the g r o w t h r a t e on

compositional uniformity.
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As mentioned previously, ingot A-4, grown at 0.4um/sec, is

currently being evaluated, as well as ingot A-5, grown at O.Jum/sec

utilizing different thermal conditions in the growth furnace. These

results will provide a better understanding between thermal conditions

and interface shape.
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