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BY
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ABSTRACT

Generally, it has been documented that the wearing of engine parts
forms a failure distribution which can be approximated by a function
developed by Weibull. The purpose of the above mentioned study is to
examine to what extent does the Weibull distribution approximate failure
data for designated engine parts of the Space Shuttle Main Engine (SSME).
The current testing certification requirements will be examined inorder to
establish confidence levels. An examination of the failure history of SSME
parts/assemblies (turbine blades, main combustion chamber, or high pressure
fuel pump first stage impellers) which are limited in usage by time or
starts will be done by using updated Weibull techniques. Efforts will be
made by the investigator to predict failure trends by using Weibull
techniques for SSME parts (turbine temperature sensors, chamber pressure
transducers, actuators, and controllers) which are not severely limited by
time or starts.
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INTRODUCTION

During the early thirties, Fisher and other statisticians developed a
new probability distribution. The distribution developed was not utilized
significantly in application until the late forties by Waloddi Weibull. In
1951, Weibull presented his argument internationally for the extensive usage
of the new distribution to describe mathematically the behavior of fatigue
data. As time progressed, Weibull distributions were found to be very good
mathematical approximations of failure data related to engine parts
analysis, thermo cycles analysis (large numbers of thermo cycles), and
electronics analysis. The Weibull distribution is currently being applied
extensively to predict the reliability of Space Shuttle Main Engine (SSME)
parts or units. The mathematical model for the Weibull distribution is:

F(t) = 1 - e \J7.X where

F(t) = Fraction Falling Up to Time t

t = Failure time

*to = Starting Point of the Distribution

7 = Characteristic Life

fj = Slope on Weibull Paper

e = Exponential . ^ S/ -t-jo y^
R(t) = P *̂ (̂  */ where

R(t) = Reliability Up to Time t

F(t) = 1 - R(t)

*t^ is generally assumed to be zero.

The Weibull distribution's shape is determined by the value of
beta. Beta is the slope of the line graphed on 1 - to -1 Weibull paper.
The probability density function is:
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f co =

The hazard function describes the instantaneous failure rate. The hazard
function is: i /• _i ^ f "t. ^

For the engineer, beta gives a cue as to what type of failure
conditions exist, i.e. rapid-wear, green-run etc. Eta does not provide
extensive information. Eta is mathematically derived as always bveing the
time where approximately 63.2? of the sample fails. Eta is used in
calculations related to risk analysis and substantiation work. The engineer
should examine B life points, i.e. B1 is the time where 1? of the sample
fails, B.05 is the time where 0.05? of the sample fails etc. For the eta,
which is called the characteristic life, can be large but due to the slope
the B1 or B10 life may be small. This paradox occurred in a study by
Rheinfurth (1985) related to chamfered and unchamfered blades. The
unchamfered blade had eta equal to 1,142,538 seconds and a B1-life of 413
seconds. The chamfered blades had an eta equal to 69,324 seconds and a B1-
life of 5,429 seconds. The difference in B1-life was created by the
difference in the slope, beta. The usage of the Weibull distribution can
also help to unmask multiple failure modes. A significant increase in the
slope can indicate lot (batch) problems.

GENERAL FINDINGS

In most instances, there is an assumption made pertaining to the
distribution type. Carter, Bompas-Smith, and Nelson describes the Weibull
distribution as being one of the most accomodating distribution available.
For, the distribution can represent increasing and decreasing failure rate.
Particularly, skewed distributions can be represented. Skewed distributions
can not be represented by log normal distributions. Brook asserts that the
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Weibull distribution allows the making of simple statistical judgements with
very little labour or efforts. Documentation by reliability engineers and
statisticians in industry and government exist with respect to the high
level of predictability of Weibull distributions. The U.S. Air Force and
Pratt-Whitney in particular use Weibull Analysis extensively to predict the
failure of jet engine parts. Breneman of Pratt-Whitney Company has 15 years
of documentation that the physics of wear for a particular part of a Jet
engine does not significantly alter with modifications. This means the
slope or failure mode doe not significantly change. This finding can be
used in a process to predict failure on new parts with material changes or
design modifications where the new parts have not experienced failure. The
methodology used is Weibayes analysis. The confidence intervals for̂ P or the
Weibull line can assist the engineer in reaching a decision as to whether or
not a given part's failure mode has been modified.

WEIBULL ANALYSIS FOR SSME PARTS

The establishment of a slope (beta) file for SSME parts should be the
initial task of engineers. Due to the small number of failures allowed by
NASA engineers for most SSME parts, documentation of the initially derived
slopes over an extended period of time will not be possible. Yet, Breneman
asserts that 3 failures in a sample are sufficient to give a good
approximation of the failure mode.

The likelihood function for the Weibull distribution is a useful tool.
The likelihood function is more mathematical in nature since reliability is
a part of the computational process. Waloddi Weibull (1969) described the
mathematical traits of the likelihood function for three different
conditions. The models are:

Type 1: r units^fail (L,) for some t» failure time

where f(t») is the density function

I UI1J.VO Xd-L-1. \ !_*• / A Wl OW1U

£L, = // f(t.O where f(t»

Type 2: S units still running (L, ) for some Z«J time

L, = /I [1 - F(ZJ)]
« 1 = 1

^
' = "JT R(Zj) where R(Zj) is the reliability

3='
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Type 3: d^ units fail for some K number of inspection intervals, where
the interval size is W.. - Wi^.i of time.

ju K r-
fx ^iA^^

i-j * 77 C"̂ ^̂ * F̂ -̂M where: wk = the end of the interval

K Afo \ ŵ -, = the beginning of the interval
fl.^

So for each given condition, the final likelihood function for a total
sample is

L = L| • L^ . L3

InL = InL + lnL« + lnL%

For the Weibull distribution in logarithmic form
4ir Rĵ ^1 -/'"**

2~' A / ****- \
( ̂ K-I A - (. /̂  /"I

4̂ f e" ~7L^~ e -'
^=-

The Weibull likelihood function can be further expanded by the properties of
logarithims. Other models can be generated when all three conditions do not
exist.

L = L.* L~ Model which gives the description of Weibayes
'* ' * analysis
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r = number of units run to failure

3 = number of unfailed units

t • = known failure time

Z • = operating time on unit

Take the logarithm of both sides and differentiate. We get:

————• s* Q & J***» f Q solve simultaneously

d J3 ^ «*/?
Generally tne Newton-Raphson method can be used to solve the equations.
But, caution is needed when using this technique since under certain
conditions the process may not converge (Campbell, 1985). Initializing a
beta value is best done by obtaining some estimation from a Weibull plot.

The model L... should be utilized when the failure data is interval of
inspection.

The L 21 model can be modified to coincide descriptively with test runs.
Rheinfurth (1985) at MSFC, ED01, developed a Weibull likelihood for the
observation interval data base on N trial runs. Using the L- model

= number failing in the
interval test

= number still working
at the end of test

= number of test runS

&L=2

-7-Olĉ -JJH' "*L r£' & *
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It should be noted that the first term goes to zero when there are no
failures for all test runs. The likelihood function is best for interval
data since it makes no assumption as to the time of failure. For Weibayes
analysis where some units run to failure and others donot, we get a derived
mathematical description of eta which is

where N is the number of suspensions or unfailed units

t • is the operating time accumulated

r is the number of failures (no failures, set r=1)

B is the assumed value based on previous experience
<y (records, etc.)

Mathematically, the assumption of at least one failure ensures that/j is
definable. When there are no failures, the formula becomes

I

Since Weibayes analysis estimates the possible value of the slope, engineers
may wish to try a variety of slopes over some range. Weibayes tests will
not indicate the existance of a new failure mode. If the parts being
analyzed are nonserialized, then assumptions pertaining to success or
failure , times must be made. Mathematically, the confidence level of the
Weibayes lower bound is unknown because it depends on the actual times to
the first failure.
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SUMMARY

The mathematical flexibility of the Weibull distribution makes it the
best choice for failure analysis. The extension of the fundamental concepts
of the Weibull distribution allows it to be highly applicable to perform
risk and substantiation analysis. Not previously mentioned is the problem
with identifying outliers. An engineer most decide when such points exists
and why. For sometimes outliers at the beginning of Weibull line may
actually be the results of a ̂  which Is not initially zero. There is a
basic technique for determining t described by Abernathy (1983). A
procedure developed at General Motors also describes solving for t^ (Bompas-
Smith, 1973). This value is subtracted or added (depending on conditions)
to each point of the Weibull line. Brook suggests a trial and error process
to determine £o . The eo which has a none zero value may be the results of
storage deteriation^ testing procedures etc. When using the Weibayes
techniques one must continuously keep in mind the underlying assumptions of
the procedure. The most important caution for the engineer when using
Weibayes is that new failure mode must not exist. With the fundamental
likelihoods developed by Weibull, the engineer or statistician can by
algebraic means describe their particular data situation i.e. trial runs,
Interval data, no failures. Confidence bands allow the engineer to
visually examine the possibility of two or more slopes being produced by the
same failure mode. Mathematically Weibull distributions are very pliable.
Yet, one must keep in mind real life does not generate perfect solutions.
Weibull distributions provide a descriptive idea as to failure behavior for
a wide variety of failure rates.

Currently, a problem is the form of the failure data. With the
actuators in particular, failure by cycles or hot-firings time can occur.
Also, failure is partly a decision of the engineer. Modifications to data
collection procedure is recommended to reflect the actual point of such
failure. The cycles must be sufficiently large numbers in order to be
represented by Weibull distributions. Also, multiple failure times on each
machine is a problem. For my analysis, I used only the first time to
failure.
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DATA RESULTS

For the FPOVA, POPVA, and CCVA, the beta is approximately .75 when
the OPOVA with 1.5 seconds is ignored. The beta of .75 indicates
infant mortality. The Weibull of the CCVA indicates the possibility of
two failure modes. The beta of 1 indicates a failure mode of random failure
(green- run, etc.) The beta of 3.5 indicates normal wear. The initial
graph of FPOVA failures indicate a beta of .75. A modified graph indicates
a beta of .375. The modified graph approximates a straight line better.
The engineer needs to examine all aspects of usage of the FPOVA prior to
hot-firing. For the MFVA and MOVA, two failure modes seem to be indicated.
Upon further examination, two failure modes for the MFVA in particular
seems to exist. The MOVA has an infant mortality failure mode. Modification
of the time does not alter the value of beta.
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TABLE 1

Actuator

OPOVA

CCVA

FPOVA

FPOVA

CCVA

FPOVA

FPOVA

CCVA

CCVA

CCVA

CCVA

FPOVA

CCVA

FPOVA

CCVA

CCVA

CCVA

OPOVA

Sample Size

Number

086-524

019-003

050-501

032-323

016-003

078-552

045-588

034-573

028-255

027-154

020-001

020-005

023-003

022-006

013-003

021-004

015-002

027-004

= 131

Time (Sec.)

1.5

622

622

805

1222

1566

1848

2059

2596

2597

2864

4056

5133

5460

6170

6521

3553

12569

Rank

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Failures

Median Rank

.53

1.29

2.05

2.86

3.58

4.34

5.10

5,86

6.62

7.38

8.14

8.90

9.67

10.43

11.19

11.95

12.71

13.47

= 18
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TABLE 2

Actuator

CCVA

CCVA

CCVA

CCVA

CCVA

CCVA

CCVA

CCVA

CCVA

CCVA

Number

019-003

016-003

034-573

028-255

027-154

020-001

023-003

013-003

021-004

015-002

Time (Sec.)

622

1222

2059

2596

2597

2864

5133

6170

6521

8553

Rank

1

2

3

4

5

6

7

8

9

10

Median Rank

1.5

3.8

6.1

8.4

10.7

13

15.3

17.6

20

22.3

Sample Size 43 Number of Failures = 10
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TABLE 3

Actuator

FPOVA

FPOVA

FPOVA

FPOVA

FPOVA

FPOVA

Number

050-501

032-323

078-552

045-588

020-005

022-006

Time (Sec.)

622

805

1566

1848

4056

5460

Rank

1

2

3

4

5

6

Median Rank

1.4

3.5

5.6

7.7

9.8

11.9

Sample size = 47 Number of Failures = 6

Using the formula for to (Abernethy, 1983),we tQ

Time Changes: 12, 195, 956, 1238, 3446, 4850

610 (subtract)

o = ~ t2) (t2 "

(t3 t2)_ - (t2 - ti)

where each t is determined by

measuring or its location.

tx = 622

t£ = 850 ( by measuring)

t3 = 5460
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A C -

Actuator

MFVA

MFVA.

MFVA

MFVA

MFVA

MOVA

MFVA

MFVA

MFVA

MFVA

MFVA

MOVA

MOVA

MFVA

MFVA

MOVA

MFVA

MOVA

MOVA

MFVA

Sample Size

Number

068-452

046-002

070-490

088-591

036-272

075-252

011-007

050-445

064-049

030-006

032-001

029-001

022-002

034-004

054-114

063-079

066-142

051-415

027-002

028-004

= 90

Time(Sec)

20

622

932

1012

1593

1778

2035

2698

2946

2968

3325

3703

6725

9866

9882

11590

11590

16643

23834

28094

Rank

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Number of

Median Rank

.774

1.88

2.99

4.90

5.20

6.31

7.41

8.52

9.62

10.73

11.84

12.94

14.05

15.15

16.26

17.37

18.47

19.58

20.69

21.79

Failures = '.
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Actuator

MFVA

MFVA

MFVA

MFVA

MFVA

MFVA

MFVA

MFVA

MFVA

MFVA

MFVA

MFVA

MFVA

MFVA

Number

068-453

046-002

070-490

088-591

036-272

011-007

050-445

064-049

030-006

032-001

034-004

054-114

066-142

028-004

TABLE 5

Time (Sec)

20

622

932

1012

1593

2035

2698

2946

2968

3325

9866

9882

11590

28094

Rank

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Median Rank

1.6

3.9

6.3

8.6

11.0

13.3

15.7

18.1

20.4

22.8

25.7

27.5

29.9

32.2

Sample Size 42 Number of Failures 14
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TABLE 6

Actuator Number Time (Sec)

Sample Size = 48

For Correction of t

1778 4500

Rank Median Rank

MOVA

MOVA

MOVA

MOVA

MOVA

MOVA

075-252

029-001

022-002

063-079

051-415

027-002

1778

3703

6725

11590

16643

23834

1 :i

2

3

4

5

6

1.4

3.4

5.5

7.5

9.6

11.7

Number of Failures

19334

Subtract t0 = 1332

Time: 466, 2371, 5393, 10258, 15311, 22502

XIX 20



ORIGINAL PAGE IS
OF POOR QUALITY

99.9

99.5 =

i i i i i i i i i i i I ' i

3 q 5 6 7 8 » '01

21 /6U77T) /fvtnnto



99.9

99.5
99.

95.

90.

80.

70

60.

50

10.

i i i i , i , i , i

WEIBULL DISTRIBUTION

BETR -9^5
ETfl =
SflMPLE SIZE =
FRILURES=

63.2 =

30.:

20. . ,̂ :

10

5.

1.

0.5

0.1 1 1 • 1 1 I 1

5 6 7 8 9 3 1 5 6 7. 8. 9



BIBLIOGRAPHY

Books

Abernethy, R. B. et al. Weibull Analysis Handbook, United States Air Force,
Wright-Patterson AFB, Ohio, T9~B1

Bain, Lee. Statistical Analysis of Reliability and Life-Testing Models
Theory and Method, Marcel Dekker, N.Y. 1978

Bompas-Smith, J. H. Mechanical Survival, McGraw-Hill, St Louis, 1973

Carter, A. D. Mechanical Reliability, John Wiley & Sons, New York, 1972

Cramer, Harald. Mathematical Methods of Statistics. Princeton University
Press, Princeton,

Miller Irvin and Freund, John. Probability and Statistics for Engineers,
Prentice-Hall, Englewood Cliffs, N.J., 1965

Nelson, Wayne. Applied Life Data Analysis John Wiley & Sons, N.Y. 1982

Report

Campbell, C. Warren. Convergence of Newton's Method for a Single Real
Equation, NASA, June 1985

Rheinfurth, M. H. "Oxidizer Turbine (HPOTP) first Stage Blade Reliability
Analysis," ED01 Marshall Space Flight Center, July 1985.

Weibull, Waloddi. "Estimationof Distribution Parameters by a Combination of
the Best Linear Order Statistic Method and Maximum Likelihood," Wright-
Patterson AFB, April 1967.

XIX 23




