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ABSTRACT

A nonlinear system governed by x = f(x,u) with six state variables and
three control variables is considered in this project. A set of
transformation from (x,u) - space to (z,v) - space is defined such that
the linear tangent model is independent of the operating point in the
z-space. Therefore, it is possible to design a control law satisfying
all operating points in the transformed space. An algorithm to construct
the above transformations and to obtain the associated linearized system
is described in this report.

This method is applied to a rigid body using pole placement for the control
law. Results are verified by numerical simulation. Closed loop poles in
x-space using traditional local linearization are compared with those pole
placements in the z-space.
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INTRODUCTION

In general, there are two commonly used approaches to linearize a nonlinear
control system: one is to linearize locally about some operating points,
the other is to linearize globally. However, difficulties will arise when
these approaches are applied. For the former one, it is hard to design a
unified control law over the entire set of operating points; on the other
hand, for the later approach, usually, the control does not permit an
acceptable closed-loop system behavior over a wide operating range. But, if
a nonlinear system has a tangent model independent of the operating point,
the above stated difficulties disappear. Using this concept, Reboulet and
Champetier [1] developed a procedure which transforms a nonlinear system
with one control variable to another space such that the desired independent
property is satisfied. In this project, we generalize their procedure to
the case where a nonlinear system consists of six state variables and three
control variables. This method is then applied to a rigid body dynamic
model using pole placement for the control law.
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OBJECTIVES

The objectives of this project are:

1. Develop a pseudo-linearization technique to analyze a nonlinear
control system with six state variables and three control variables.

2. Apply this technique to a rigid body dynamic model.

3. Verify the feasibility of this technique by computer simulation.
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BODY OF REPORT

Concept

Consider the class of 6-state and 3-input nonlinear systems governed by

x = f(x,u) (1)

where x e R6, u e R3, and f = (f^ .... f,)* : R9 -»• R6 of class C1. The
set of operating points is defined by

M A {(XA,U ) : f(x ,u ) = 0}x , u — D o o o

and its projection in the state space is defined by

M A {x : 3 u s.t. f(x ,u ) = 0}.
X — O O O O

In the neighborhood of an operating point (x ,u ) , the dynamic behaviour of
the system may be considered as linear. It is then described by

6x = F(x ,u )6x + G(x ,u )6u (2)
O O O O

where 6x e R6 , 6u e R3 and F t± 3f/8x, G A.

Our aim is to find mappings

z. = T (x) , i = 1, ..., 6

Vj = T6+j(x'u) , j = 1, 2, 3

(3)

(T1§ ..., T, being functionally independent and 3Tg+./3u ̂  0, j =1, 2, 3)
such that, in the z-state space, the linear tangent model is independent of
the operating point and can be written under the controllability canonical
form

(4)

, = 6v_o J
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Note that the controllability of the linear tangent model is invariant
under the mappings (3). Hence, to obtain (4) the following condition
must hold:

For any (x ,u ) £ M the pair (F(x ,u ), G(x ,u )) is
controllable. ° ° X'U o o o o

In practice, the solution provided by our method is effective along M ,
except at the points (x ,u ) for which (5) is not satisfied. '

Nuw, the variations in the z-state space 6z will be rewritten in terms of
6x and 6u. From eqn. (1) and (3) we have

z = OTi/3x)f(x,u) , i = 1, ..., 6.

Hence, at any points (x ,u ) of M
O O X ,U

6z. = o^FCx ,u )6x + a.G(x ,u )6u,

where a. are the 1-forms over M
1 X

a± A d T±
X

, i = 1, .... 6. (6)

For convenience, reference to the operating point will be omitted. To obtain
eqn. (4) it is easy to show the following equations must be satisfied on M

X 9 U

a..G = 0 , i = 1, 2, 3 (7a)

a±F = a , i = 1, 2, 3 (7b)

a3+i = ai(F G) , i = 4, 5, 6 (7c)

with a. A d T.
J — 3 Mx,u

J = 7, 8, 9.

With this result, the problem then becomes that of finding 1-forms a.. , ..., a,
(resp. a,, a&, ag) satisfying eqns. (7) at any point of M (resp. M ) and
such that there exist mappings T̂ x) (1 = 1, .... 6) and T\(x,u), (f'= 7, 8, 9)
such that
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T. .. , i = 1, ..., 6
x

al • d M 7, 8, 9.
x,u

Analysis

Recall that M is a set of points described by six nonlinear equations with
nine unknowns.'

Let M be the set of operating points in the neighborhood of which the linear
tangent model of system (1) is controllable. Since the uncontrollability of
the tangent model (2) is equivalent to the nullity of all 5-dimension minors
(Kalman rank condition). Therefore, the complement of ft is a closed subset
in M which implies M is an open subset in M '

Furthermore, another controllability condition is given by

rank(F-Xl G) = 6 ,V X .

In particular, for X = 0

rank(F G) = 6.

This means that the mappings f., i = 1, ..., 6 are functionally independent
at the point of interest. Hence, M is a 3-dimensional submanifold of R9

Which also implies that M is a 3-dimensional submanifold of R9 since
dim M = dim M if M X'£ 4>.

x,u x,u x,u

Let M be the projection of M on the x-state space. In order to develop
global results we will suppose'that the following condition holds:

There exists a C1-diffeomorphism <|> = (<{>., ..., <f>g) from R6 to R6 such
that M is given by

<j>4(x) = <|>5(x) = <f>6(x) = 0 (8)

Under this assumption, if we define

zi = ̂ i^ ' i = 1» •••» 6
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then the surface M is transformed in the z-space into a 3-dimensional
manifold D : z. = zc = z, = 0. Let a be the image of a 1-form a = d T_ . _ j . _ ± ^ ; z _ 4 5 6 °under <|>, tfien M

a(z) A a , z e D .
JJ Z

z
(9)

Note that if we post-multiply a = d T M by (3x/3x) D 'z

we obtain

a(<j)~1(z)X3x/3z) -1,
D = d T(* (z)) (3x/9z) , V z £

I/
(10)

i.e.,

a = d T (11)

with

T = T ,-1 (12)

Therefore, the integrability of a over M in the x-space can be transposed in
terms of integrability of a over D .

Z

Note that a only depends on z,, z-, z- over D , i.e.,

6 _
a(z) z e

If we choose the 1-form a such that a, , a», and ou depend on z.. , z?, and z_
only, respectively. We can define

T(z) = Z f 5.(z., z,, z_)d
i=l •»• J- ^ o

(13)

and we have

dT(z)
6 _
Z
i=1

,,» z,»i I /
6 3

, + E z [ E (3a /3z.)dz
x ±=4 i i=1 i j 3

6 _
S a (z., z_, z,)dz.

i=1 i i z J

a
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Since the second term of the right hand side vanishes over D . Therefore,
a is integrable over D and so is a over M . z

Z X

Method

The procedure for searching for these transformations can be decomposed into
three steps.

Step 1; Find three independent directions a, , ou, ot_ perpendicular to G.

Step 2; From eqns. (7b) (resp. (7c)), a,, a,-, a, (resp. ou, ttg, ag)
can be computed.

Step 3; Integration of a,, ...,o<, (resp. ou, afl, a_) along M
(resp. M ) provides the desired mapping T.. , . . . , TQ .x,u j. y

Application

Consider a rigid body in which the angular velocities are measured along a
body fixed axis, and with an Euler angle sequence (space - three 1-2-3)
defining the attitudes in inertial space:

to + w x Iw = u

e1 = u>x + (u>ySl + uzCl)s2/c2

(14)

e3 = (uy8l + u>zci>/
c2

where to = (w , w , w ) is the angular velocity vectorx y z

6 = (6p 9 „, 0_) is the Euler angle vector

, u = (u , u , u ) is the external torque acting on the rigid bodyx y z — — - — -— - -

s. = sin 9., c., = cos 9 , s2 = sin 92, c2 = cos 92

and I, a 3x3 matrix, is the inertial tensor.

Without loss of generality, principle axes are used to describe this system.
Therefore, we can assume the matrix I is a diagonal matrix, i.e.,
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1 0 0
x

0 1 0y

o o i

Using principle axes, system (14) become:

-I )u (D ] —
x

= [U2 -

Wy = [uy -

Uz = Euz -

_L

y

_i
z

9.. = to + (to ST + to C,)s /C1 x y 1 z 1' z' z

62 = Vl " Vl

The set of operating points is

Mx,u » 62' * °*

and its projection in the state space is

= {(0, 0, 0, , 63)

On Mx,u,

9 <

F(x ,u ) =o o

0

0

0

1

0

0

0

0

0

S1S2/C2

si1

S1/C2

0

0

0

C1S2/C2

-S-1

C1/C2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

(15)

(16)

(17)
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and

G(xo,uo) =

L/Ix

0

0

0

0

0
X

0

I/Iy
0

0

0

0

^
0

0

17I
2

0

0

0

It is clear the system is controllable at every point (x ,u ) £ M
O O X 9 XI

Now, we shall choose three independent vectors a,, <*„, a_ all orthogonal to G.

Let a1 = (0, 0, 0, 1, 0, 0), a2 = (0, 0, 0, 0, 1, 0) and c*3 = (0, 0, 0, 0, 0, 1)

From (7b) and (7c), we obtain

ot4 = (l,S;Ls2/c2, C1s2/c2, 0, 0, 0).

«5 = (0,

a = (0,

- S;L, 0, 0, 0)

, 0, 0, 0).

a? = (0, 0, 0, 0, 0, 0, l/Ix, slS2/Iyc2, clS2/Izc2),

ag = (0, 0, 0, 0, 0, 0, 0, c1/I , - s1/Iz),

a9 = (0, 0, 0, 0, 0, 0, 0, sL/I c2, Cl/Izc2).

After integrating a., i = l , ..., 6, (resp. a , a_, aq) over M (resp. M ),
the desired transformations are: X X'U
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x + (u 8l + <Vl)s2/c2 =

z5 = (a )G I - 0)^) = 02 (18)

Z6 = (wysl + WzCl)/c2 = °3

vl = vla + vlb

V2 = V2a + V2b

V3 = V3a + V3b

where

vla = uz;ix + (uy8A + Uzcl/:[z)s2/c2*

Vlb

V2a

V3b

" U)zSl)KS2/C2

- V
(u s-ĵ  + wz,c1)[wx + (u s-ĵ  +

(w Cj - wzs1)[wx + (to 8̂ ^ + u)z,c1)(l + l/c2)s2/c2]/c2
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Note that each transformed input v. (i.. =1, 2, 3) is partitioned into
v. and v., terms. The v. term arises directly from integration of the
corresponding a, . vector. The v., term can be identified with the
nonlinear terms wnich appear in the expression of z» .. According to [1],
these high order terms may be neglected in the neighborhood of the operating
point, in which case the equations of motion are said to be psuedo-linearized.
However, in this particular case, since the operating points require u = 0,
the transformation from v. can be augmented to include the v., term without
affecting the requirement """that dv., .. = a., j = i+6. Therefore, as shownib M 1x,u J

before, the equation of motion for a rigid body become extirely linear when
expressed in terms of Euler angles and Euler angular rates.

Taking account of (18), (15) can be rewritten as a linear systems:

*i - V Z2 " V

or, in a matrix form:

Z6 = V

X
Z2

Z3

Z4

»

5

g
k 6

=

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
N

f •%zl
Z2

Z3

Z4

Zc5

z.6

+

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1
v >

V-.1

V2

-V3
(19)

Furthermore, the inverse transformations also can be found as:
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Wy = - Z5S1 + Z6C1C2

* 7 < Q2 < I

ux = y^l - vlb> - (V3 - V3b)s2]

uy = V(V2 - V2b)cl + <V3 = V3b)c2Sl]

Uz = VC1C2(V3 -V3b> - S1(V2 - V2b)]

XXIII - 12
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The above transformations were verified by numerical integration in both
the x-space and z-space for a prescribed input u. Trajectories obtained
by integrating in x-space were virtually identical to those obtained by
integrating in z-space then transforming to x-space via equation (20).
Figure 1 shows the effect of psuedo-linearization at an operating point
of QI = G£ =63 = ir/4 with a unit step input for u. The solid lines
are trajectories obtained by directly integrating equation (15), while
the dashed curves represent the transformation from z-space to x-space
neglecting the v , terms.

For control studies, a constant gain, full state feedback control v = -Kz
was employed. Working in the z-space with z = Az + Bv, the following
gain matrix K allows for arbitrary, complex conjugate pole placement,

K

0 0

0

0 0 to.

(21)

where w^ and ^^ prescribe the closed loop frequency and damping ratio of
the ith axis. The actual control to be used in x-space comes from equations
(18), (20) and (21), where both to and 6 are assumed to be available as plant
measurements. Figures 2, 3 show the system response to the arbitrary initial
conditions 0 0
and dampings of to

03 ** Tf/4 and 01 = toy =
= to^ = UU = 1.0 and Z;.

0.5 using control frequencies
= 0.707. Once again,,. . ,

tne response using the exact transformation ofthe solid lines represent
equation (20) while the dashed lines show the effect of psuedo-linearization.
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CONCLUSION AND RECOMMENDATION

A global linearization method for a nonlinear control system with 6 states
and 3 inputs is successfully developed in this project. This method is an
extension of a pseudo-linearization technique proposed by Reboulet and
Champetier [1] in which only one input is considered. After applying this
method to a rigid body in which the angular velocities are measured along
a body fixed axis, and with an Euler angle sequence defining the altitudes
in inertial space, the original non-linear system is described by a linear
system in a transformed space. Therefore, a global control law can be
established accordingly.

For further application of this method, we will turn our attention to the
case of control systems of multiple bodies. Applying this method, Mr. Sharkey
has obtained very positive numerical results on a two-body model using pole
placement for a control law. We suggest a mathematical research to support
this new application which is necessary and should start immediately after
this program to pave the road for the next summer's project.
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