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ABSTRACT

The objective of this investigation is to make analytical deter-
mination of the acceleration produced by crew motion in an orbiting
space station and define design parameters for the suspension system of
microgravity experiments. A simple structural model for simulation of
the IOC space station is proposed. Mathematical formulation of this

model provides the engineers a simple and direct tool for designing an
effective suspension system.
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1. Introduction

Some microgravity experiments to be performed on the IOC space
station require an environment in which the acceleration level must be
below 1075 g. Among the various sources of disturbances, crew motion is
the severe one which can produce acceleration to a magnitude of 107" g.
The objectives of this investigation are to define design characteristics
for the suspension system and to find effective means for isolation of
the experiment packages from disturbance. To achieve these goals, the
following have been accomplished.

1. Analytical formulation of acceleration response of IOC to
crew motion

Assumed modes method and modal transformation are used to obtain
mathematical solution for the normal coordinates to an input function
due to crew motion. Acceleration response of any point in the space
station can be analytically formulated.

2. Structural modeling for IOC space station

The finite element model for IOC space station, shown in Figure
1, used by JFC [1] for vibration analysis generates a wide range and
closely spaced spectrum of vibration frequencies (see Table 4.3.3.3-3,
reference 1). It makes it extremely difficult for mechanical design
engineers to identify a particular mode which has dominant effect on the
experiment package. A simple structural model which is made of a rigid
main body (extension of keel frame which supports all the massive
modules), a cantilever beam (the keel frame), and a transverse canti-
lever beam (the solar boom) is proposed for simulation of the IOC. A
complete analytical formulation for this model is made. This formula-
tion provides the design engineers a simple and direct tool for deter-
mination of acceleration and disturbing frequencies acting on the
experiment package. Computations can be carried out by using a pocket
calculator. This model can be easily improved by increasing the
degrees-of-freedom. A simple computer program will do this work.

3. Derivation of design characteristics for suspension system

Consider that a microgravity experiment package is supported by
a spring and a mass-spring-damper vibration absorber is attached to it.
The acceleration magnification factor and the ratio of acceleration
response of package to acceleration input of the support is then derived.
The plots of this factor versus frequency ratio (IOC to mass-spring)
provide engineers design parameters of the suspension system.

4. Significant findings for effective isolation of disturbance

The microgravity laboratory is 23.3/83.2 feet from the center
of mass of IOC with/without the orbiter attached. It is shown by
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numerical study that the acceleration disturbance is greatly reduced when
the orbiter is not present (i.e., microgravity lab is actually 59.9 feet
farther away from the C.M. of IOC). This shows that the most favorable
location beside the C.M. of TIOC is the node of the fundamental elastic
vibration mode of the IOC.

2. Analytical Formulation
2.1 Modal analysis of a structure system

A brief presentation of modal analysis of a structure is given here.
Let P be the coordinate of a generic mass point P in a structure and
u(P,t) be its displacement which is expressed in the form [2]

N
w(®yt) = ) ¥, (P)q,(0) @.1)

i=1

where ¢i(P) is an admissible function and qi(t) is the ith generalized

coordinate of a set N. The equation of motion of the structure system
in matrix form is

[m] {g} + [k] {q} = {Q} (2.2)

where [m], [k], and {q} are the generalized mass, stiffness, and force
matrices, respectively.

The kinetic and bending strain energies of the system are formu-
lated from the following integrals:

T = »f my [ (P, )% dp = %mepwiz(mdpdiz (2.3)
B B

v = %f EI[u"(P,t)]%dP = %Zf mP[lpi"(P)]z dpqi2 (2.4)
B B

where m, is the mass density at P and EI is the bending stiffness of the

structure at P, the prime denotes partial differentiation with respect to
spatial coordinates and the symbol B with the integral sign means inte-
gration over the entire body B. From the above integrals, the elements
of the [m] and [k] matrices are obtained respectively,

2
T

mgy = ag—aq =mewi(P)w.(P)dP (2.5)
1 J B J
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_ v " epyy
i = TR J};Elwi (B)p," (P)dP (2.6)

Denoting the force acting at P in the direction of u(P,t) by fP(t), then
the virtual work is

W = ffP(t)GudP =Zf £50, (P)8q, dP 2.7
B B

It follows that

_ W

Q = 3-“’—1 = f fo0; (P)dp (2.8)
B

Next, the natural frequencies of the system are determined from the
determinant

| k] - w?[m}] =0 (2.9)

and the eigenvectors (or modal columns) {¢i} are the solution of the
matrix equations,

(Ik] - wiz[m]) {¢;} = {0} 1=1,2,...,N (2.10)

The normal coordinates {n} and the generalized coordinates are related
by the transformation

{q} = [¢] {n} (2.11)
where the modal matrix

[0] = [{6,}, {85}, «nes {8yg}H]

Applying Eq. (2.11) to Eq. (2.2) and making use of the property of
generalized orthogonality of the eigenvector with respect to [m] and [k],
the equation of motion in normal coordinates is

v 2
.t w, . = N.(t)/M,. i = 1,2,...,N 2.12
ny +ust oy J( )/ i3 j 22, ( )

where

_ T
ij = {¢j} [m]{¢j} (2.12a)
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2 _ T
wy" = {¢j} [k]{¢j}/ij (2.12b)

Ny () = {¢j}T{Q} . (2.12¢)

2.2 Structure response to disturbing force

Consider that a disturbing force fa(t) is applied to the structure

at Pa’ from Eqs. (2.8) and (2.12c) one obtains

Ni(E) = D0 0¥y (BE, () (2.13)
k=1

where ¢kj is the kth element of the jth eigenvector. The response at
point Pe in the structure, u(Pe,t), can be obtained by using Egqs. (2.1),
(2.11), and (2.13). It results in

U®g,t) = Y (e () = Y D b (B¢ N, (E)
1]

i

) [( 2 ¢ijwi(Pe)) (Z %ﬂk(f’a’)] MM (2.14)
i k

h|
where ﬁs(t) denotes the solution of the differential equation,
.- 2 .
. tw. M., - £_(t ith .(0) =n.(0) =0 . 2.15
Nyt 2 (t) s nJ() nJ() ( )
2.3 Model of crew motion and response function
The motion of an astronaut inside a space module is started by push-

ing one wall and motion is stopped by pushing the opposite wall. A
simple mathematical model is suggested [1] as shown in Figure 2.
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(fo/tl)t O<t<t

1
0 t, < t<t
£ () = 1 13 (2.16)
(E/ed (e = ty,) b3 tsty,
0 t14 <t

The magnitude of fO is 25 1bs and tl’ t13, and t14 are 1, 13, and 14

seconds, respectively. These notations for time will be kept through

the formulation for the sake that one may wish to change their magnitudes
and secondly, that the equation involved will have appropriate units

(use sinmt13 rather than sinl3w where w is in rad/s). The solution of

equation (2.15) is readily obtained. Denoting that

n(e) = (£ /u’t)UCE) 2.17)

the dimensionless displacement function U(t) is given by

0<tx t U(t) = wt - sinwt (2.17a)
t1 <t 5_t13 U(t) = - sinwt + sinw(t - tl) + wtlcosw(t - tl) (2.17b)
tig <ttty U(t) = w(t - t14) - sinwt + sinw(t - tl)

- sinw(t - t13) + wtl[cosw(t - tl)

+ cosw(t - t13)] (2.17¢)
t:l4 <t U(t) = - sinwt + sinw(t - tl) - sinw(t - t13)

+ sinw(t - t14) + mtl[cosw(t - tl)

+ cosw(t)— t13)] (2.174)

The function U(t) is continuous and has continuous first derivative
(velocity); its second derivative is only piecewise continuous. Denoting

T(E) = (£, /ut))A(t) (2.18)

and differentiating Eq. (2.17) twice, one obtains the dimensionless
acceleration A(t),
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0<tx ty A(t) = sinwt (2.19a)
t1 <t < t13 A(t) = sinwt - sinw(t - tl) - wtlcosw(t - tl) (2.19b)
tig<tsty, A(t) = sinwt - sinw(t - tl) + sinw(t - t13)

- wty [cosw(t - tl) + cosw(t - t13)] (2.19¢)
tl4 <t A(t) = sinwt - sinw(t - tl) + sinw(t - t13)

- sinw(t - t - oty [cosw(t - tl)

14)

+ cosw(t - t (2.19d)

13]

The functions of U(t) and A(t) are plotted versus time for frequencies
ranging from 0.1 to 0.4 as shown in Figures 3 and 4 respectively. Now,
the displacement and acceleration response of point Pe in the space
station can be expressed in the form

— 3
u(P,,t) = Z(Z ¢ijwi(1>e)) (Z ¢kjwk(Pa)) UL (0) (£ /w7t M, o)
J e k (2.20a)
a(p,,t) = Z(Z ¢ij‘Pi(Pe>) (Z ¢kjwk(Pa)) A5 (0) (£ fwst M, )
31 k (2.20Db)

The subscript "j" with U and A denotes that these functions are corres-
ponding to w = w,.

2.4 Modeling of IOC space station

The structure of the IOC space station may be treated as a struc-
tural system having three elements. The main body is a frame structure
which supports all the massive members, the vertical and horizontal HAB
modules, the vertical and horizontal LAB modules, logistic and common
modules, and above all, the orbiter. Attached to the main body is a
keel frame structure 296 feet in length which supports an antenna system
at its other end and a transverse boom at a distance 165.5 feet from the
main body. The third member of the system is a transverse boom which
is a frame structure 264 feet long. 1Its main purpose is to carry eight
solar arrays and power system radiators.
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A simple structural model for the IOC proposed consists of a rigid
main body which supports a cantilever beam (keel frame) and a transverse
cantilever beam (solar boom) mounted on the keel. As shown in Table 1
in Appendix A, the modules, equipment, solar arrays, fuel tanks, orbiter,
etc., are treated as concentrated masses. However, the rotational
moments of inertia of the orbiter and solar arrays must be included in
forming the mass matrix.

Motions of the IOC in X-Z and Y-Z planes will be treated separately.
In each plane the proposed IOC has four degrees-of-freedom, namely,
rigid-body translation, rigid-body rotation, and one bending mode for
each cantilever beam. Thus, the corresponding admissible functions are

$;(B) =1 (2.21a)
v, (B) = Z (2.21b)
¥4(P) = z2 - 2/3 (2.21c)
¥, () = 32 - 513 (2.21d)

where z = z/lk and y = y/ls in which Zk and QS are the length of the keel
(296 ft) and solar boom (132 ft), respectively.

2.5 Modal analysis of IOC model

Based on Eq. (2.21) the mass and stiffness matrices for the model
are formulated in Appendices A and B. The matrix equation of free
motion of the IOC is

_ S -
By My Wy Wy, ffdg 0 0 0 0 g 0
m m m m q 0 k 0 0 |{q 0
21 P22 23 24 |2, 22 2| _ 2.22)
Oy M3y My3 My, | fdg 0 0 kyg 0 Hag 0
m m m m q o 0 0 k q 0
P41 P2 M43 Paa (%) |° s4(|%] | °]

One may eliminate the rigid-body translation 9, from the system by solv-
ing q; in terms of the rest of q's from the first equation of Eq. (2.22)

and substituting it into the remaining equations. A further simplification
can be made by disregarding the small coupling effect of the rigid-body
rotation 9, and the elastic modes 95 and q, due to gravity gradient

torque. Thus, one may eliminate both 9, and q, from the system and obtain
the following:
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K K
1] = [T] 3] (2.23)

Fm,. w4 ke 07[4q 0
33 34] 3] +[ 33 ][ 3] =[ ] 2.26)
L3 T dld4d L O Kyudla,d LO

where

(1) = -

m
- + 32 [T]

Th1 T42

The two elastic frequencies of the IOC can be written out directly
in the form

7/

_ — _ _ 2 . — _
2 W33k tmy, Ky + V(g5 koW, Keg)T +dmg, W g Kay Ky,
®r,2 7 2(Way W, - My, T, )
33 D44 34 U43 (2.25)
and the eigenvector is
(T, @, 0.2) + Tyo(Kao = g w,2) ]
1134 5 12\%33 7 T33 @y
T, (@, ©,2) + Too (Koo - Ban w,2)
21\M34 ©4 22\%33 33 Y4
{¢i} = - 5 i=1,2 (2.26)
33 Y4
- 2 ]
- kyy = g5 0y
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2.6 Rigid-body librational motion of IOC

The equations of librational motion of an orbiting body which has
its principal axes parallel to the orbital axes subjected to disturbing
torque M can be written directly in the form [3]

. 2 _
LA, + 3w (I, - 10 =1 (2.27)
I8 +3w 2 -1)8 =M (2.28)

Yy o X z' 'y y

where the I's are the moments of inertia about their respective principal
axes through the center of mass. The orbital frequency of a circular
orbit is

w, = v/u/R3 rad./s (2.29)

where R is the orbital radius and the gravitational constant

1.407 x 1010 £¢3/2

=
il

3.986 x 101% m3/s2

Thus, Eqs. (2.27) and (2.28) yield the librational frequencies

o = w, lﬁfiy - 1)1, (2.30a)
ay = u, JS}IX - 1)/1, (2.30b)

2.7 Response of I0C to crew motion due to rigid-body modes

As shown in Figure 6, due to the arrangement of the modules, crew
motion will create a disturbing force either in x~-direction (motion in
horizontal modules) or z-direction (motion in vertical modules). Hence,
the torque Mx is negligible in comparison with My which has the magni-
tudes,

M =

y

foa (motion in horizontal modules)
[ (2.31)

sza (motion in vertical modules)
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As indicated by Eq. (2.30), the librational frequency is approximately
equal to ¥3 times the orbital frequency (Ix = Iy, Iz << Ix’ see Table 1).

The crew kicking motion is completed in a time interval of 1 second which
is very short in comparison with the period of librational motion of 3,300
second. This means that the torque can be treated as an impulse torque,
The action of an impulse torque is equivalent to give the space station
an initial angular velocity, i.e.,

t

A .
My = f My(t)dt = ey(O) Iy (2.32)

(o}

Using the mathematical model for crew motion given by Eq. (2.16), one
obtains the response at Pe

u(Pe,t) =2 ey

ZZft /w I )31nw t (motion in horizontal module)
e"a o'l y

Nl»—' NI»—A n

ZXTf tl/wyly)sinwyt (motion in vergical module)

e"a o
(2.34)
The magnitude of acceleration produced by crew motion at Pe is
Z Z of w t /ZI (motion in horizontal module)
a(P ) (2.35)

ZXf wt,/2L (motion in vertical module)
eaoyl' ™y

3. Numerical Results of Acceleration Due to Crew Motion

Using data given in Table 4.3.3.4-2 to 4.3.3.4-4 of Reference 1,
Table 3 is formed for the formulation of the mass matrix for IOC space
station. Note that the total weight given by Tables 4.3.3.4-2 and
4.3.3.4-4 [1] is 77,600 1bs heavier than that given by Table 2. In an
effort to match the total weight given in Table 2, some of the weights
are not included. There is a significant difference on the location of
the center of mass between the present model to that given in Table 2,
as shown in the following:
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Table 2 Present Model Difference
With Orbiter 68.3 ft 113.8 ft 14.4 ft

Without Orbiter 128.2 59.5 8.8

Consider that the distance from the reference point to the micro-
gravity experiment is equal that of the location of crew motion, i.e.,

Z, = 2. = =55 ft. The magnitude of acceleration on the microgravity

experiment due to crew motion as given by Eq. (2.20b) is
2 .
g = (015 + b5z A1 (E Mowie)) A §=12 (3.1

The value of [Aj(t)]max can be estimated from curves given in Figure 4
for a given value of w. The summation is omitted so that a, is calcu-

lated for each mode. Based on the librational motion approach, one has
from Eq. (2.35)

_ 2
a, = Ze fowytl/ZIy (3.2)

The numerical resulted obtained are summarized in Table 4.
It is important to note the following:

(1) No direct comparison can be made on the frequencies obtained
to that given in Table 4.3.3.3-3 [1] due to the difference of inertia
properties of the models, and furthermore, the JSC model has no distinct
fundamental mode that can be singled out.

(2) The acceleration level obtained here is about one order smaller
than that given by Table 4.3.3.5-15 [1]. This is due to the fact that
the inertia data given by Table 4.3.3.5-6 [1] is about 1/3 of that given
by Table 4.3.3.5-6 [1] (without orbiter). In addition, the disturbance
torque given by Table 4.3.3.5-7 [1l] is more than 2 times the value used
here. Thus, the magnitude of accelerations presented in Table 5 are
reasonable.

(3) Motion of the space station in Y-Z plane will occur if the
disturbing force is in the direction parallel to the solar boom.

(4) The acceleration given by the librational motion is 1073 of
that given by elastic motion. This, due to the frequency of librational

3

motion, is only 10 ~ of the frequency of elastic motion.
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4. Design Characteristics of Suspension System

4.1 Acceleration response of a vibration absorber system

Consider that a microgravity experiment package is mounted on the
laboratory module structure which has motion uo(t) as a result of crew
motion or other disturbance. As shown in Figure 3, uo(t) is approximately

a harmonic. It is required to design a suspension system which can
effectively reduce this disturbance over some frequency range. Vibration
can be effectively reduced by using a vibration absorber [4] which is a
mass-spring-damper system attached to the main mass-spring system as
shown in Figure 7.

Denoting Ugs Ups Uy, the absolute displacement of the structure,

main mass, and absorber mass, respectively, the equations of motion of
the system are
mlﬁl + cﬁl + (k1 + kz)u1 - cﬁz - k2u2 = kluo(t) (4.1a)
mzﬁz + cﬁz + kyu, - cﬁl - kzu1 =0 (4.1b)
Letting the input uo(t) be a harmonic disturbance, one may put

_ iwt _ iwt _ it [ _
uo(t) =Uge s ug = Uje » and u, = Uye i 1 (4.2)

where U1 and U, are complex quantities that can be determined from the

matric equation

(k1 + k2 - mlwz + icw) - (k2 + icw) U k UO

(4.3)

. , 2 .
- (k2 + icw) \kz - myw + icw) U2 0

If one wishes to determine acceleration response rather than displace-
ment, set

. iwt . 2
u; = Ale with A1 = - @ B1 (4.4)

Now, let Ma denote the magnification factor of acceleration, the ratio of

A1 to input acceleration,
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_ 2
M, = A ]|/U 0 (4.5)
First, introduce the following dimensionless parameters:
k = kl/kZ P = m2/m1 =¢/2 Vm r = w/wn (4.6)
It can be shown that

1/2

= {[(1 - wkr?)? + 4ukc2r2]/D} (4.7)

a

where

D = {1 - [1 + (4H)ulr? + ukrz}z + 4uke?r? [1 + (14u)r2)?

4.2 Design considerations

The magnitude of the magnification factor of acceleration depends on
four parameters:

k, the spring ratio (main spring/absorber spring),
u, the mass ratio (absorber mass/main mass),
z, damping factor (damping coefficient/critical damping),

r, frequency ratio (space station frequency/natural frequency of
main mass-spring system).

To plot Ma versus frequency ratio squared as shown in Figure 8, six sets

of curves are illustrated for 7 = 0.2. The first three sets are for
fixed values of u = 0.01, 0.025, and 0.05, respectively, with various
values of k. The next three sets are for fixed values of k = 10, 15,
and 20, respectively, with various values of pu. All these curves have

2

one common characteristic, Ma which can be effectively reduced for r™ > 2.

Since the frequency of the IOC space station in elastic vibration is about
1 rad/s, it requires that k1 > 2W /g For a m1crograv1ty experiment

package of 1,000 1lbs, the spring constant of the suspension must be less
than 5 1b/in. For the frequency range 0.5 < r2 < 2, Ma can be made less

than 0.5 by a proper combination of p and k.
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5. Conclusions

A simple structural model for simulation of IOC space station has
been presented and formulation of this simple model provides engineers
a simple and direct method for computing the fundamental frequencies of
the space station and determining the magnitude of acceleration at any
point produced by crew motion. Acceleration response of a mass-spring-
absorber system to a moving support is also formulated. Design engineers
can use plots of acceleration magnification factor versus frequency
ratio squared to determine design parameters for the suspension system
of the microgravity experiment package.

The following are some significant findings:

(1) The acceleration due to librational rigid-body motion is 3
orders smaller than that due to elastic bending motion.

(2) The frequency of librational motion is 1.8 x 10—3 rad/s, which
is approximately v3 times the orbital frequency.

(3) The frequencies of elastic motion of the simple model are in
the range 0.6 to 1.5 rad/s.

(4) Only the fundamental bending mode has dominant contribution to
the acceleration, therefore, a simple model is adequate.

(5) An effective suspension system can reduce the acceleration to
1/4 of its magnitude, at most.

(6) The ideal location of the microgravity lab does not have to be
near the center of mass of the space station.

(7) The most effective means to eliminate acceleration is to have
the experiment module near the nodal point of the fundamental bending
mode, as illustrated in Figure 9. This means that the factor (¢11,+

¢21 ze/lk) in Eq. (4.1) becomes very small. Example: The IOC without

orbiter has moved the lab module 59.9 ft further away from the center of
mass, but the acceleration is reduced 3 orders smaller than the IOC with
orbiter.

(8) 1It is favorable to perform the microgravity experiments when
the orbiter is not present.

(9) 1It is possible that by rearranging some massive elements, a
minimum value of (¢11 + ¢21 ze/ILk)/M11 can be reached. However, this

has to be done by trial and error method.
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Appendix A. Formulation of Mass Matrix

Notations:
ox’ on moment of inertia of orbiter about x- and y-~axis through

C.M. of orbiter, respectively

I ,1I moment of inertia of solar arrays about x- and y-axis

sX sy .

through solar boom at the attachment, respectively

IUB moment of inertia of upper boom about x-axis through end
of keel

ILB moment of inerti~ of lower boom about x-axis through
attachment

Zk length of keel frame

Zs length of solar boom

Mk mass of keel frame alone

m kth concentrated mass attached to keel at distance 2,

MS mass of solar boom frame alone

m sth concentrated mass attached to solar boom at Y

m rth concentrated mass attached to rigid main body at z

m mass of orbiter

u, uy displacement in x and y direction respectively

?S = ys/zs, coordinate of concentrated mass attached to solar boom

Ek = zk/zk, coordinate of concentrated mass attached to keel

z, coordinate of orbiter

subscripts &
summation index k(keel), r(rigid main body), s(solar boom)

A-1. Motion of IOC in X-Z Plane

The kinetic energy of rigid main body is
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=3
]

R 1/2 z: mrﬁxz(zr)
r

172 3 n (v, (204, + v,(z)a,0% + 1/2 T_[92(z) 4,1°  (a-1)
r 71 r’tl 2 %r’72 oy "2 70”7 2

r

The kinetic energy of keel structure is

T = 172 Y, m b, (204; + ¥,(504, + 520457
k

+1/2 31 [y (2)d, + 4324507 (a-2)
S

The kinetic energy of solar boom is
= . . . .2
1 = 1720, [Ty 2dy + 42, + v, a1 0y 2,

+ 1/2 Z m (v (24 + v,(2)4, + ¢4(ys)d4]2

S

12 Y1) v )41
S

(A-3)

By using Eq. (2.5) the elements of the mass matrix are obtained as follows:
™1 =Mt:otal =Mr+Mk+z mk+Ms+ st
k s

m, = Z mz_ +1/2M + Z m7, + 01 + Z m )z,
r k s

B
|

3= Vb + > mk(zk2 - 1/3 Ek3) M+ Y m) (Esz - 1/3 283)
K

S

XXVIII-16



2 3
14 = LA M+ Z m (v, " - 1/3 y.)
]

-2 — 2 -2 2 1y 2
99 = Z m.z + 1/3 M'k + Z m Zy + (MS +st)zS + Z Isy/g'k + on(xpz)
r k s s

= + D wE - 13 0+ Y, m)A - 137 7>
Kk

S

- —_ 2
+ (Y o) T2 - T/

s

26 = %sM14

_2 _3
3y = (g7 - 13 z27) my,

2

Z
S

33 = (L7109 + 3" m (Z % - 1/3 Ek3)2 o1+ Y ms)(zs2 ~1/3323
k s

- 2,2

(Y 1) @z, - 75 /zkz
S

2

=2 = 3,2 -
4y = L0, + Y m (7.5 - 1/3F ) +41 {5, -y )
S

+ [ySZ(z N y32)2}/2'32

A-2. Motion in Y-Z Plane
The kinetic energy of rigid main body is

T = 12 Y mlwy (2)d; + ¥,y(20d,0% + 1/2 I, (43 (204,17

r

2

+ 1/2 IUB[w.';.(ZUB)CiZ] (A-4)
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The kinetic energy of the keel structure is

Te = 12 2L mlhgdy + 4 ()d; + ¥3zdy)°
K

k

+1/2 T Iu(2)d, + 93z )d,1° (A-5)

The kinetic energy of the solar boom structure is
¢

Tg = 1/2 M_ f[wldl + ¥,(z)q, + w3(zs)€13]2dyslzs
S
+1/2 M f{[\péc}z + 93z )a,ly, - ¥, (5 )4,y /e
S

+1/2 3 {m [h1d; + 4,2 )8, + ¥3(z)a5]°
S

+ U, + V(e )aly, - ¥,7)4,)%)

+1/2 371 [0ydy + (2045 - ¥4 )4,1° (A-6)

]

Applying Eq. (2.5) results in the mass matrix for motion in Y-Z plane:

B
I

11 MT = (mll)xz
12 © (m12)xz

13 = (ml3)xz
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my, =0

m22=(mZZ)x2 + wé)z [Z(st - Isy) +1/3 MSR'SZ + Z msys2
s

S

Loy = Toy + Iyp + Ipgl

2

=]
)

1t 2
23 = (my3)y, * lp2‘1)3(zs)[2 (ox ~ Isy) M Z ngy¥s * 173 Mg
s s

Lyp¥a¥3®

24 [;3M2, *sz"’4(y)+z stwl;(y )]

S ]

K’

B
|

m33 = (m33)xz + [Z msys2 + 2: (st - Isy):l wé(zs)]z + IUBWZ;(R'k)]2

my, = [;8 ML+ Z oy, (v + Z I ¥, 0g )]w3(z )

my = (my,)xz

The subscript "xz" denotes element of mass matrix of motion in X-Z plane.
A-3. Mass and inertia properties for IOC model

Table 3 is formed based on data given by Table 4.3.3.4-2 to 4.3.3.4-4 [1]
for the purpose of formulation of the mass matrix.
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Appendix B. Determination of Stiffness Matrix

B-1. Bending strain energy

The bending strain energy of keel and solar boom structure is given by

2 £
k 2 s
V=1/2 f (EI)k[\pgq3] dzk +1/2 f

o [e)

ED) _[¥] (v )a,1%dy

Applying Eq. (2.6), one obtains the following non-zero elements of the
stiffness matrix

- 3 _ 3
k33 = 4(EI)k/32,k k44 = 4(EI)S/32,S
B-2. Moment due to gravity gradient

Using the formula given by Reference 3, the following are obtained:

Motion in X-Z Plane

M= - SGRD (D - TDa, b Ky, = 3R, - 1)

Motion in Y-Z Plane

Moo= - 3GRDI - I)a, 5 kyy = 3G/ARDA, - 1)

where the moments of inertia are about the axes through the c.m. of the
IOC space station.
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Appendix C. Numerical Results

C-1. Motion in X-Z plane (I0C with orbiter attached)

18900 ~2758 1096 171.6 w % = 1.0431
_|-2758 3168 831.9  96.0
(m] =1 1096 831.9  483.7  43.7 W26 e
171.6 96.0 43.7 122.9 2 .
1.1135 .2770 M, = 29157
o .9546 (o) = .1165
63 = |-10.118 2 -6.49 W = 1488
.1639 -411.87 22
C-2. Motion in X-Z plane (IOC without orbiter attached)
11590 376.2 1096 171.6 mlz = 2.0243
-| 3762 1829.6  83L9 9.0
[ml =1 1096 831.9  483.7  43.7 o2 = 743
171.6 96.0 43.7 115.2 2 .
.1936 . 9485 My, = 191.5
| 1.054 | 4.769
{613 = | 2,429 {0} = | 8923 W = 32169
.1095 -17.603 22
C-3. Motion in Y-~Z plane (IOC with orbiter attached)
18900 -2758 1096 0 mlz = .8022
m] = |2758 3298 872.3 -92.5
m 1096 872.3 513.5 -74.5 2 _ 7 881
0 -92.5 -74.5 122.9 Wy = 7/-
.3673 .3332 M), = 959.8
| o1.194 | .9829
o} = 13,332 topd = |-30274 M < 3310
L1674 -5.779 22
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C-4. Motion in Y-Z plane (IOC without orbiter attached)

11590 369.8 1096 0 w,© = .4301

(m] = | 369-8 3298 872.3 -92.5

m 1096 872.3 513.5 -~74.5 2 _ 7. 046
0 -92.5  -74.5 11 Wy T /o
.1906 .3221 My, = 927.5

_ .510 _ .5438
{4} =1 2101 {e53 =1 _3.589 W = 18582
-1.716 | -13.17 22

C-5 Computation of accelerations

Using the data given above, Eq. (3.1), and with the aid of Figure 4
for the value of [A(t)]max, acceleration of the experiment package can

be calculated. The results are shown in Table 4.
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Table 1. Properties of Analytical Reference Configuration
Space Station Model (Table 4.3.3.3-1 [1])

Bending Torsional Mass Bending Torsional
Stiffness Stiffness Length Strength Strength
Component (ft-1bs-ft) (Slugs/ft) (ft-1bs)
Booms and Keels 1.31 E+9 3.18 E+8 0.25 35,000 15,000
30-Inch Astro 3.13 E+6 2.08 E+5 2.3 3,480 208
Mast
Table 2. 1Inertial Properties of Analytical Model
(Table 4.3.3.3-2 [1])
Weight C. G. Coordinates Moments of Inertia

Case (1bs) (ft) (1b-ft-sec?)
Without 269,000 (1.1,0,84.2) (8.63 E+7,
Payloads 7.82 E+7,
and Orbiter 1.20 E+7)
With 373,200 (-1.1,0,128.2) (2.06 E+8,
Payloads 1.98 EH8,
Only 1.45 E+7)
With 508,800 (5.7,0,34.4) (1.45 E+8,
Orbiter 2.37 E+8,
Only 1.35 E+7)
With 608,600 (3.59,0,68.3) (3.21 E48,
Payloads 3.14 E+8,
and Orbiter 1.62 E+7)
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Table 3. Masses and Inertia Properties Used for IOC Model

r Masses attached to main body Zr fe r fe wr 1bs
1 Fuel tank and gases 94.5 - 5.5 17,002
2 Module radiators 82.5 - 17.5 3,000
3 Five-bay platform 76.5 - 23.5 1,403
4 COM 1203 64.0 - 26.0 11,000
5 Logistics module 71.5 - 28.5 37,823
6 OMV and kits 67.5 - 32.5 23,750
7 Horizontal lab 45.0 - 55.0 54,295
8 Vertical lab 34.5 - 65.5 27,067
9 Keel extension 27.0 - 73.0 970
10 Vertical lab 19.5 - 80.5 47,709
11 Lower boom 13.5 - 86.5 728
12 Horizontal lab, SAA0207 and SAA0201 9.0 - 91.0 37,089
13 Orbiter -26.66 | -126.66 | 235,400
s Masses attached to solar boom Zs ft zg ft g ft WS 1bs
Solar boom structure 265.5 165.5 0-132 2,345
1 Power system radiators 265.5 | 165.5 54.0 750
2 TDM 2010 265.5 | 165.5 63.4 1,540
3 4 inboard solar arrays 265.5 | 165.5 78.0 | 4,787
4 4 outboard solar arrays 265.5 | 165.5 132 4,787
k Mass attached to keel Zk ft ) ft Wk 1bs
Upper and lower keel structure 100-396 | 0-296 2,504
1 Remote manipulator 162.0 62.0 2,000
2 Refuel attachment, tanks and tools 107.5 7.5 4,625
3 TDM 2570 210.5 110.5 2,000
4 Instruments and storage shelter 212.5 112.5 4,625
5 Storage boxes and tools 272.5 172.5 9.850
6 Service attachments 290.5 190.5 3,750
7 TDM 2560 295.5 195.5 7,055
8 Satellite 324.5 224.5 20,000
9 Upper boom and antenna system 396.0 296.0 17,734
Rotational Moment of Inertia Ix ft-lb--s2 Iy ft—lb-32
Orbiter (about c.m. of orbiter) 7 x 106 8 x 106
Solar array (about attachment) each
Parallel to Nadir 101,000 107,300
Normal 2,790 107,300
Upper boom with antenna system 158,800 small
Module radiators (about attachment) 583,500 4,470
Power system radiators (about attachment) 750 25,120

Note: Z is measured from the bottom end of the keel extension and z is
measured from the joint of keel and keel extension
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Table 4.

w and
Motion ae

w rad/s 1.

a 1
Bending ¢

w rad/s 2.

a 2

e

Libra. w rad/s 1
Motion

a

e

Motion in X-Z Plane

With Without
Orbiter Orbiter
021 1.423
b gx 1070 1.44gx 1078
577 2.730
26 g x 10°° 1.38 g x 1077

.89 x 1073 1.89 x 1073

.25 g x 1078 5.13 g x 1078

XXVIII-31

Numerical Results for I0C Model

Motion in Y-Z Plane

With
Orbiter

0.896
0.86 g x 107
2.810
0.66 g x 107

1.85 x 1073

0.24 g x 1078

0.

1

2.

4

Without
Orbiter

656
.17 g x 10
654

.9 g x 10

.81 x 1073

.72 x 1078

6

5





