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BY

Steven Nerney

ABSTRACT

An analytical procedure is developed to solve the
magnetohydrodynamic equations for the stellar wind
problem in the strong-magnetic field, optically thick
limit for hot stars. The slow-mode, Alfven, and fast-
mode critical points are modified by the radiation terms
in the force equation but in a manner that can be treated
relatively easily. Once the velocities at the critical
points and the distances to the points are known, the
streamline constants are determined in a straight-forward
manner. This allows the structure of the wind to be
elucidated without recourse to complicated computational
schemes.
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I. INTRODUCTION

Since the study of Weber and Davis (1967, WD) showed
that the Sun could be spun down by the solar wind over
its main sequence lifetime, work has continued on angular
momentum loss in the solar wind and in stellar winds
(Pizzo, et al., 1983; Nerney and Suess, 1975; Nerney,
1980; Goldreich and Julian, 1970; and Friend and
MacGregor, 1984),

Early-type stars present additional problems in
understanding angular momentum loss as stellar winds from
0 and B stars are primarily driven by their intense flux
of ultraviolet radiation. The radiation has an
associated outward force due to-Thomson scattering by
photospheric electrons as well as a line radiation force
that acts on metals in the wind. Unfortunately,
analytical solutions are not possible as the basic
stream-line constants are not known until a full
numerical solution is generated. The complexity arises
because the force due to line radiation depends
nonlinearly on the acceleration in the wind. The
critical point analysis shows that there is a focus of
singular points which the numerical solution must be
tangent to. This is accomplished through an iteration
scheme that produces an acceptable physical solution.

The purpose of this study is to attempt to
analytically model radiatively driven stellar winds with
strong magnetic fields from fast-rotating stars in the
optically-thick limit. This will allow a simplification
of the problem so that it becomes readily apparent how
the streamline constants determine the solution. Also,
the modified magnetohydrodynamic critical points are
treated and a procedure is developed for constructing
wind models which does not require a complicated
interaction scheme.
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II. EQUATIONS OF MOTION

The steady, spherically-symmetric, dissipationless,
magnetohydrodynamic (MHD) equations, together with terms
that give rise to radiative bulk forces may be written as
follows:

(1) 4qr2pv = M, which is the continuity equation

where M is fthe mass-loss rate in kg/sec, r is radial
distance from the center of the star in the usual r,8,4¢
spheric§1 polar coordinate system, p is the mass density

in kg/m”, and v, is the radial velocity of the wind.

2

r __1dp _GM (1-r) , V¢ _ 1 4 2
(2) ve =" sar 2 * oy 3 ar (FBy) T L
r 8npr

which is the radial momentum equation whére P is the
pressure, G is the gravitational constant, M is the mass
of the star, TI' is a constant (see below) related to the
radiative force due to Thomson scattering of continuum
photons by electrons, v, is the rotational (azumuthal)
velocity of the wind, Bi is the azimuthal component of
the magnetic field, and’f, is the force/kg due to line
radiation. The term in B is the radial component of

> ¢
the j x 8 force.

(3) T = Z%%ﬁ% where L is the stellar luminosity, c is

the speed of light, and SR is the electron scattering
opacity per unit mass.

(4) £, = E%ﬂ Kkt~
r

a

which is an approximate law derived in the original
theory of Castor, Abbott, and Klein (1975, CAK) where k
is a constant which is a measure of the mixture of the
number of strong radiation lines in the wind, t is an
optical depth parameter, and a is a constant which
depends on the importance of optically thick and thin
radiation lines and is model-dependent.

XXXI1-2



dv,. -1
(5) t =0, 0 v, (gz=) and vy, is the thermal velocity
of the ions which absorb and scatter radiation. CAK used
values of k = 1/30 and o« = .7, but I will use a = 1 and
choose various values for the constant that k appears
in. This Sobolev high-velocity gradient approximation to
the line radiation force is discussed in Mihalas, 1978,
p.561.

The azimuthal equation of motion and the induction
equation (a form of Faraday's law) are the same as in
Weber and Davis (1967, WD) and Friend and MacGregor
(1984), namely:

B
d _ r d
(6) dr (rv¢) N 4wpv dr (rB¢)
- _1d -
(7) (v x E)¢ =0 = T ar [xr (vqu> V¢Br)]

as vV + B =0 gives

(8) B /r for spherical symmetry and as B /pV is a
constant, (E) integrates to

Br
(9) «rv rB, = L where L is the stream constant

o 41r_pvr ¢

total angular momentum per unit mass which is the sum of
the angular momentum carried in particles, rv,, as well
as that in the electromagnetic field. Faraday's law
integrates to

(10) r(v_B = constant = - sz and (9) and (10)

together cag be gofved for v¢ and B¢ as in Weber and
Davis (1967). ]

v
(11) v, = - 5
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(12) B, = - B
¢ T Vea r 2 (1 - M 2 )

where Q@ is the rotation rate of the region where the
field lines are rooted (usually taken to be the
photospheric value), £, is the conserved radial magnetic
flux, v, ., is the radial velocity at the Alfven

radius fr ) where v, equals the speed of an Alfven wave
in the meéium, and MAr is the radial Alfven mach number.

(13) ™M = 4np — = pa/p .

Closure is obtained by using the polytropic
approximation.

(14) P = PO (p/p )Y where PO and p_ refer to values at
the base of°the wfnd {whetheF the base is in a corona or
photosphere), and Yy is the polytropic index.

This approximation is often used when the heating
sources in the wind are not well-known. Generally,
modellers replace this with an isothermal approximation
for hot stars and use the stellar effective temperature.
This is formally incorrect as it leads to inappropriate
asymptotic states of the wind, Hundhausen (1972, p.9).
However, the use of effective temperatures of even 50,000
K as for 0 stars does not lead to significant problems as
it would for stars with coronae. Most early-type stars
show x-ray emission. Therefore, I will examine a hot-
wind solution and the polytropic approximation is
appropriate.

Thg radial momentum equation, (2), can be simplified
using a” = vp/p (a is the sound speed) together with

[0 3
(15) fL = ﬁ-l (2%%) . Using a = 1, (2) eventually
reduces to p
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2

2 2 2 2 Ve
(16) I dv_ ) (v."= A.") (2a“+ Vo T T3 (1-1)) + 2 Ve Vs Al A¢
\ dr 2 2 2 _ a2y _ 2 2
r (vr - Ar ) [vr (1-1) a®] v, A¢
2 _ 2 2 _ 2 .
where Ar = Br /4Tp, A¢ = B¢ /4nrp, , the radial and
azimuthal Alfven speeds, vez = 2 gM + the escape velocity
at r, and r
_ (AT * _
(17) A = (————) T GMk or, for a =1,
M % Vin
(18) A = —Xb
cM vth

A is the essential radiation parameter in this wind
model and can be estimated for a particular star. For
instance, Friend and MacGregor (1984) model the 0O6ef
star A Cephei with a = .7, M = 5,2 x 107 Mo/year,

T = 6.5x104K, L = 6.76x105Lo, and k was specified by
using the CAK value of 1/30. These numbers give A = .66
in the current model. It is difficult to estimate A
because k is model dependent, Vih depends on both the
base temperature as well as the mass of the ions that
absorb and scatter radiation, and mass-—-loss rates are not
well-known for many stars.

Therefore A will be specified for a range of values
and a variety of models will be calculated.

The general results of this study are based on the
strong magnetic field limit of the MHD equations. This
allows the explicit calculation of the position of the
critical points based upon a similar prescription for
non-radiative strong-field winds in the study of Hartmann
and MacGregor (1982, HM).
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ITI. THE CRITICAL POINTS

A. Critical Velocities

The WD theory gives rise to three critical points in
the radial momentum equation. These points correspond to
distances from the star where the speed of the stellar
wind equals the speed of the characteristic MHD
disturbances that occur in the fluid approximation;
namely, the slow-mode wave, Alfven wave, and fast—-mode
wave. Setting A = T = 0 for the moment, the denominator
of equation (16) goes to zero for three different wind
speeds and, hence, the numerator must be zero at these
critical points. These boundary conditions partially
specify the physical characteristics of the wind. 1In the
current study, radiation changes the nature of the
critical points in a manner that can be explicitly shown.

The strong-field limit requires that v 2 <K Ar2 at
the mgdified slow-mode point, r This is equivalent

to mA r << 1 at rg-.

so

This will be true for sufficiently strong magnetic
fields and is justified a posteriori. Setting the
denominator of (16) equal to zero:

2
r

2 2

2 2y _
A {v (1 - -a% -v, A¢ /Ar } =0

Faraday's law can be written as

rz A¢2

A = (v, - an)
A 2 ¢

r

v 2

and as v¢ is equal to the corotation value at r

2 A¢2/Ar2 in the strong-field

g to

O(M2A ) we can neglect v,
limit. Therefore,

- S
(19) vrs 1 -A
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which reduces to a well-known result when

A =0, Veg = ag¢

At the Alfven point, the radial velocity is assumed to be
much greater than its value at r, so that

v 2
rA

2

(1 = A) >> a A

Setting the denominator of (16) equal to zero.

(20) v 2. A 2+ 2 at rs at which reduces to the well-

known

result Ve = A at LA when A = 0.

The modifiedzfasﬁ-mode velocity is found by
assumming v,."> Al (MAr> 1) at rg. In a similar manner,

- of
(21) Vre 1 -4

B. Optically-Thick Slow-Mode Point

Expanding Equation (11) for v¢

= - r
(22) v, = ar(l MAr + M + ...)

For clarity, let v, = Qr(l - §) where § < 1.

Setting the numerator egual to zero at rq

2 _ 2 — =
2a Ve /2 + v, (v 2Vr A¢/Ar) 0 .

¢ $
Using equation (10) gives
v 2
2 e 2 2

(23) 2a° - =~ (1-1) + @° r® = 0 to 0(82)

as terms of 0(8) exactly cancel.
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Using the non-dimensional parameters in HM,

ZS = rS/ro, 92 = az GM/ro3, and the non-dimensional
Parker critical point Z2_ = —s 1 Ve find
p 2r a
o ‘o
(24) 2 a2, 2 2 23 -2 (1-r) = 0
S 4 2 p S p
o

which reduces to equation (9) in HM for the isothermal
limit. Equation (24) does not explicity depend on the
radiation parameter, A. The distance to the slow-mode
point is the same in the radiative wind (except for the
hottest stars where I' 1is not negligible) as in the non-
radiative MHD wind, except that the radial velocity in
the radiative case is greater by the factor 1/ 1 - A.

Another point is that the calculation of ZS assumes

v, is given by the corolation value at r This is

¢ s*
accurate to O(MAr)' yet due to a fortuitous cancellation,
the equation for Zs is accurate to O(MzAr) so that these
results and HM's are more accurate than anticipated.

2

To solve (24) for 25, we must know az/ao which
depends on Vo In the isothermal limit, az/ao2 = 1
and this problem does not arise. However,

a2 Veo ! 1 - A g
(25) 5 = 5 where
a a_ 12
o o s
-2 (y-1)

A second equation in Z_ and V.o Can be found by

examining the energy/kg in the flo%S
. , 1 9 a2 v,2(-m) era_a

r
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The Poynting flux term can be calculated from
equation (9) so that

2
2 v
1 _ 2 1 2 a~ _ e -
(28) E=35(1-AN) v"™ +5 Vo Yy T 3 teL-ar Ve
Consider the two terms in v¢ using v¢ = Qr(l - §)
2 2
1 2 _ - _a°r _ g2
> v¢ Qr v¢ = 5 (1 §7)
so that terms of O(MAr) have again cancelled.
Setting Eo = ES we find after some work
3 2 o \8
(29) (1"]\) Vro _ (}_ + 1 ) er \l A =
2 2 2 y-1 2
a a_ z
o o s )
2z {(1 - l—] (1-1) - 23 (2 2 . n} - L
p Zs 2 ] y-1

This reduces to equation (13) in HM with vy = 1 and A = 0
2
provided we replace %:T by the isothermal term a2 inp.
Equations (24) and (29) can be self-consistently
iterated bhetween to find v and Zs using HM's initial
guess, modified for radiati8n

32 (1-T)
Zgr 2y = —> 573 373
s s 143 «a Z, (1-1)

which assumes a2/ao2 s 1, This value for Z_ allows the
calculation of v in (29). The iteration procedure
rapidly converges to a solution.
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C. Optically Thick Fast-Mode Point

2 U
We have shown that for M%_ . >> 1 Vg =%

which together with equation (12) gives

o 372 2
m

e (1 - 2)
SN Ve

v

where v, is the usual Michel velocity, Michel (1969).
LS
(30) Vo —=- so that
m
Vm
(31) v B e

rf (113

In order to calcuate Zer we need to know v which

can be calcuated from (11):

of

v
1-e} =2 (1-558 ~ec1

vrf

v, & {
f r

which is formally correct with or without radiation.

Setting the numerator of (16) equal to zero at Zgs

2

(32) 2a% - ve2/2 (1-T) + v, (v. + 2 (v, - L/r)) =0

6 ¢ ¢

2
The term in v¢ reduces to L_ (1 - 48) to O(MAr
Equation™(32) now redn%es to

_1). to
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a v 1/3
f 2 2 4 2 'm
(33) -a—-—z- Zf Zp Zf (1-T) + a Zp ZA - 2ZA :—5 (1-1a)
o o
where
8
af2 v (l—A)l/3
_ ro
(34) 7 - 2
ao zf Vm

Equation (33) reduces to (17) in HM in the

v 4

isothermal limit with A = 0 except for the term in -EZ .
This is O(MAr—z) and should not appear as other terfle of

the same size have been neglected in calculating Zg.

As 2, appears in the calculation of Zg we must
generate another equation for Z, and Zg. The Alfven
radius is not important except insofar as it is necessary
in the calculation of Z¢. If the wind passes through Zg
and Zg¢, it must of necessity pass through Z,, Goldreich
and Julian (1970).

Setting E = E

o f
2 2 2 2
2 _ 1 M ag /ao 1 Vro
(35) 2" = m—{n =5+ 5 "5
207 2 a 2a
p o) o)
1 1 1
+ = (1 = =) (1-1) + 3
Y2 Zf 2

with
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A good first approximation 'to Zp neglects 1/Zf and
sets afz/ao2 = 0. This allows the calculation of Z¢ in

(33) and the iteration proceeds as usual.
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ITI. CONCLUSIONS

While the results of this study are preliminary,
several important conclusions can be drawn from the
analytical techniques that have been developed. The
strong-magnetic field, optically thick limit of the MHD
equations produces physical solutions through a tractable
technique that shows both how the critical points are to
be treated and gives the values of the velocities at
these points as well as the distances to the critical
points.

The streamline constants are determined once the
solution has been generated at the critical points. 1In
particular, the distance to the slow-mode point and the
radial velocity at the base must be iterated on to
produce physical solutions. Once this is done, the mass-
loss rate can be determined from the value of the density
in the photosphere together with the radius of the star.
Additionally, the total energy/kg is also determined.

The angular momentum/kg is determined after the iteration
procedure to determine the Alfven radius and fast-mode
radius is completed.

Preliminary numerical solutions have been generated
and are being compared to the work of Friend and
MacGregor, 1984, although it is still too early to report
these results. These solutions have been found by using
an IBM-PC and, in principle, could have been done on a
hand calculator.
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