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RELIABILITY MODELS APPLICABLE TO

SPACE TELESCOPE SOLAR ARRAY ASSEMBLY SYSTEM

By

S. A. Patil
Professor of Mathematics

Tennessee Technological University
Cookeville, Tennessee

ABSTRACT

A complex system may consist of a number of sub-
systems with several components in series, parallel, or
combination of both series and parallel. In order to
predict how well the system will perform, it is necessary
to know the reliabilities of the subsystems and the
reliability of the whole system. The objective of the
present study is to develop mathematical models of the
reliability which are applicable to complex systems.
The models are determined by assuming k failures out of
n components in a subsystem. By taking k = 1 and k = n,
these models reduce to parallel and series models;
hence, the models can be specialized to parallel,
series combination systems. The models are developed
by assuming the failure rates of the components as
functions of time and as such, can be applied to processes
with or without aging affects. The reliability models
are further specialized to Space Telescope Solar Array
(STSA) System. The STSA consists of 20 identical solar
panel assemblies (SPA's). The reliabilities of the SPA's
are determined by the reliabilities of solar cell
strings, interconnects, and diodes. The estimates of
the reliability of the system for one to five years
are calculated by using the reliability estimates of
solar cells and interconnects given in ESA documents.
Aging effects in relation to breaks in interconnects
are discussed.
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1. Introduction

If events occur in time and the outcomes are count-
able numbers, the outcomes of the process can be des-
cribed by a continuous time discrete stochastic process
N(t). The failures of various components in a complex
system are countable events occurring in time, and hence,
form a continuous time discrete stochastic process.
Let N^(t), N2(t) ..., Nn(t) be the outcomes of various
failure event processes of various components in a system,
and Ti be the random variable denoting the failure time
of the ith component, then the reliability of this
component is denoted by Ri(t) and is defined as the
probability that the component has not failed during time*
t. The reliability of the overall system R(t) is the
probability that the system has not failed during time t.
This reliability R(t) can be determined from the various
mathematical models for the reliabilities of the compon-
ents Ri(t) and possible assembly of the components in
parallel and series combination.

In this report, we shall develop mathematical
models for systems which form continuous time discrete
stochastic processes. We shall obtain the reliability
models for the components of subsystems in which the
failures occur randomly. Using these models, the relia-
bility model for the system is obtained. The models
are obtained for the failure rate A. (t) , which is a func-
tion of time t, and therefore, can be applied to a process
in which failure rate is constant as well as time dependent
failure rate which takes into account any aging effect.
The models are formulated for series and parallel combina-
tion of components for which the reliabilities may be
independent or nested.

The mathematical models developed will be applied
in determining the reliability of the Space Telescope
Solar Array (STSA) System. STSA System consists of two
wings with two blankets in each wing. Each blanket is
made up of five Solar Panel Assemblies (SPA's). The SPA
consists of several strings. Each string,consists of
an array of solar cells in series and parallel, which
are connected by interconnects and diodes. Assuming a
reliability model for the solar cells and diodes, a
reliability model will be built up for the whole STSA
System. The reliability estimates for the STSA will be
calculated for some models using the failure rates
of solar cells and diodes given in European Space Agency (ESA)
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documents. The estimates for the reliability of
STSA System are obtained under different power losses
in the STSA System. Also, the effects of breaks in
solar cell interconnects will be discussed.

2. Stochastic Process, Failure Time and Reliability

A stochastic process is defined in Karlin and Taylor
(1975) as a family of random variables determined by a
process. A realization of a stochastic process is
denoted by N(t), t e (o, °° ). If t denotes the time and
N(t) corresponds to some outcome of the process, then
N(t) is called the time dependent stochastic process.
If the random variable takes on countable values, 0, 1, 2,
3, ... the N(t) process is called a discrete stochastic
process. Many physical processes are time dependent
discrete stochastic processes. If a complex system is
working in time, then the failures of the components of the
system occur randomly and the number of failures form a
time dependent stochastic process N(t). If N(ti),
N(t2) , ... denote the outcomes of a time dependent
stochastic process N (t) , corresponding to a complex
system at times t]_, t2, ... tn« • • then T = tn - tn-1/
is a random variable and T is called the interevent or
interarrival time of the process. If the outcomes of
the stochastic process N(t) corresponds to failure
events of the process then T is called the failure time
of the process and is a random measure of the time
between two successive failures. Since T is random, it
has a distribution function denoted by F (t) and is
defined by

F (t) = Pr { T £ t } . (1)

Here pr { } is abbreviated for probability. The relia-
bility of the system is the probability that the system
will not fail at least until time t, and is denoted by
R(t) and can be expressed by

R(t) = P r { T > t} = 1- F(t) . (2)

Since time T is a continuous random variable, its distri-
bution function F(t) is continuous and also, differenti-
able. The derivative of F(t) is called the probability
density function (p.d.f.) of T and is denoted by f(t).
The p.d.f. f(t) can be written as

f (t) = d F(t) (3)
dt
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For a given distribution of a process N(t), there is an
unique p.d.f. f(t), of T. Hence, the process N(t)
can be characterized by the p.d.f. of T.

The reliability R(t) can be expressed in terms of
f(t) as

R(t) = s" f(t) d t (4)
t

and conversely,

f (t) = - d R (t) . (5)

d t

From (4) the reliability can be obtained from the p.d.f
of T. The theory of reliability and historical prospective
is discussed by Barlow (1984), also in the paper, a
large list of references on the topic is given.

3. Failure Rates

The failure rate A(t) is the rate of failure at which
the components fail and the failure rate can be defined by

A ( t ) = l i m P r ( t < T < t + A t | T > t ) .
dt -»• o

= lim P{ (t < T < t + A t,T > t )} /P(T > t)
dt -»• o

= f ( t ) / ( l -F ( t )} = - d R(t)/ d (t) (6)

R ( t )

From the relation (6),the failure rate can also be expressed
in terms of R(t) as

t _ _ _ _ _ _ _ _ __ _ _ . _
f X (u) d u = -In R(t) (7)o

XXXIV-3



and t
- / X(u) d u

R(t) = e ° (8)

The failure rate is also called the hazard function. The
hazard function may be increasing function, constant
function or decreasing function of t.

3.1 Constant Failure Rate

If the events occur in time randomly and in a short
interval of time, at most one event can occur and the
events in nonoverlapping intervals occur independently,
then it can be shown that the resulting process is a
poisson process and the number of events occurring in
the process in given time, t can be shown to be

n - Xt j
Pr { N(t) < n } = Z e

D=o

In this case, it can be shown that the waiting time for
the process has a gamma distribution and the distribution
of interevent timer T has the exponential distribution
with p.d.f. f(t) given by

- X t
f (t) = X e t >o, X > o . (10)

The corresponding reliability function R(t) is given by

- X t
R(t) = e . (11)

and the failure rate function X(t) reduces to

- X t - X t
In (R(t)> = A

d t
X(t) = d In (R(t)> = X e /e = X.

In this case, the failure rate X(t) is a constant function,

3.2 Variable Failure Rate

The rate of failures in a- small interval may not
be constant, and the failure rate may be either increasing
or decreasing. In the case of system components, the
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components may have an aging effect and the hazard may
increase with time, in this case X(t) is an increasing
function of time and failure may occur more often such
a system is called by Asher (1983) as a "sad" system.
On the other hand, the process may be a learning process,
in this case the hazard rate X (t) is a decreasing function
of t, and the system in this case is called a "happy"
system. There can be many different hazard functions
associated with different phenomena. The failure rate
which varies directly with a power of t can be defined by

B -1
X(t) = XBt , t > o. (12)

For 3=1 the hazard rate is constant, for 3<1 the hazard
rate is decreasing and for B>1 the hazard rate is increasing,
The model with the failure rate given in (12) is called
Weibull model. Using equation (8) the reliability can
be written as

R(t) = e . (13)

and the p.d.f. of T is given by
B

3-1 -Xt
f(t) = A3 t e , t>o, X>o. (14)

It should be noted that the failure rate contains two
parameters X,B. Often 3=2 is used, in this case failure
rate is linear function of t.

Other failure rate models could be used in different
situations. If the failure rate decreases sharply with
time, then

- Xt
X(t)= e - (15)

is suitable.

If the failure rate decreases initially, then
increases,the failure rate in such situation is dis-
cussed in Shooman (1968) is given by
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K -Kit, o < t£ K0
X(t) = RT

0 K
0 < t < t

K(t-to) , to < t <°° . (16)

4. Reliability Models

Suppose a system S consists of number of subsystems
and each subsystem consists of number of components. The
components may work in series, parallel or combination,
also components may work independently or dependently.
Different models would be used for different situations.
Two types of model are discussed below.

4 . 1 Independent Components

Suppose a subsystem has m components and the
components work independently and the system works
satisfactory if at least k of the m components work. If
all the components are different then from Basu and
Mawaziny (1978) if Ra^(t) is the reliability of aith
component then reliability of the subsystem Rsi(t) can
be written as

m m
Rsi(t) = ? E n^aiCt)) n (l-RaKt)) •

j=k ai i=l i=j+l

Where T. is taken over (.) distinct values of ai.
ai ^

If all the components are identical then R(t) reduces to

m j m-j
Rsi(t) = S C) (R(t)) (l-R(t)) . (18)

j=k J

The system could be called k redundant system, for k=l
the system is called completely redundant or parallel
system, for k=n the system is completely nonredundant
and system works if each component works and the system
reduces to a series system.
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If there are s subsystems in a total system and
the Ri(t) is the reliability of components in ith
subsystem and the subsystems are independent then the
reliability of the system using (18) can be obtained as

s '- s m j m-j
Rs = II Rsi = n {E (,)(Ri(t)) (l-Ri(t)) }. (19)

i=l 1=1 j=k
 J

The subsystems in a system may not be completely indepen-
dent and the system might work with one or more subsystems
working,in this case, the nested model may be useful.

4.2 Nested Model

In the nested models we consider the subsystems
which work independently and the system may work with one
or more subsystems, further, the probability of success
of a subsystem may dependent on sub-subsystems and so on.
Suppose there are y stages of a subsystem connected
in strings,the system could be represented with a tree
diagram. As an example, we consider a system with 3
stages with 2 components in 1st string, 4 components
in 2nd string and 3 components in 3rd string. The
system can be represented by the tree diagram as follows:

2nd Stri

3rd String
3rd String

Suppose the components in each string are identical and
the reliabilities of the upper string depend on the
reliabilities of the lower branches. Suppose the system
works if at least 2 components work in 3rd string, at
least 2 in the 2nd string, and at least 1 in 1st string.
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Then the reliability of the system is determined as

2 2 j 2-j
RS= z (• )RI(I-R!) , (20)

j=i J

4 A J 4-j

R!= £ C) R,9 (1-R19) (21)
j=2 -> -̂  -̂

R12= * < j > R123 (1-R (22)

The reliability Ri23 is either estimated or given then
Rs can be obtained successive using (22),, (21) , and (20) .

More generally, if the system consists of y stages
and there are n^ identical components in ith stage and ith
stage works if at least k^ components work and the system
is completely nested then

RS=

(R12)
J (l-Ri2)

n2~^ . (24)

nv ny -;
y

12 v f1_R

j=k 3 12... y (1 R12...y
} . (25)

The reliability of the system can be completely deter-
mined knowing the reliability of R^2 y an<^ using
equations (25), (24), and (23). Such models are used
often in complex systems. The Space Telescope Solar Array
could be based on such a model. Also, it is noted that if
ki = ni, i=l, 2, y then each subsystem becomes series
model and the whole system reduces model with no loss
allowance.
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5. Estimation of Parameters

In this section we discuss estimation of parameters
which appear in the reliability expressions. We shall
restrict to exponential and Weibull models as these are
the models which are used often and we have given expres-
sions for the reliabilities involving these models. We
consider the maximum likelihood estimators (m.l.e), these
are most widely used and have good statistical properties
like asymptotic normality and consistency.

5 . 1 The Exponential Model

If ti t2, ...tn is a sample from the exponential
distribution with p.d.f. in (10). The m.l.e. for X is
denoted by £ and is given by

n
X = n/I ti . (26)
T

The estimator is biased but is consistent.

However, if the observations are made on the counting
process, if ni.-.n^ are failures in k independent trials
in given time t from the homogenous poisson distribution,
then the maximum likelihood estimator for X can be written as

k
XN = Z n.j/kt _ (27)

This estimator is the minimum variance unbiased estimator
for X and its variance can be found. Both estimators can
be used to find interval estimators for X .

5.2 Weibull Model

If ti,t2-..tn is a sample from the distribution with
p.d.f given in (14), if £ is known, then taking the likeli-
hood of the sample the m.l.e of X can be found as

n 3
A_ = n/Z t . (28)
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If the observations are made on the number of failures,
for given time t , n^,n2 • . . n^ are failures in k independent
trials from the nonhomogenous poisson process with intensity
function X(t) = X3t° then the m.l.e of X can be obtained
as

(29)

If the shape parameter 3 is not known, then the maximum
likelihood estimators of X and 3 can not be obtained
explicitly, however, the estimating equations for X and 3
can be obtained. If ti,t2...tn are n independent failure
time observations from the Weibull p.d.f in (14) then
the m.l.e for ~ is obtained by solving

.

- (E t? lnt.)/(I tf) + (I lnt.)/n = o. (30)

and the m.l.e of X is obtained as

n 3
n/(Z t. ) . (31)

The m.l.e 's of X, 3 and their properties are discussed by
Cohen (1965) .

The confidence interval estimators of X can be obtained
by using distributions of T . Large sample confidence intervals
are discussed by Abernethy et al. (1983) .

Crow (1974) has obtained explicit expressions for m.l.e's
of 3 and X based ordered observations for a repairable
system.

6. Application to Space Telescope Solar Array System

The methodology developed in section 2-5 is now
applied to Space Telescope Solar Array (STSA) System.
First, we describe the STSA System.
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6.1 Description of STSA System

Space Telescope is made up two identical wings. Each
wing consists of two identical blankets. Each blanket
is made up of five identical Solar Panel Assembly (SPA).
There are 20 identical SPA's in STSA System. These
SPA's are connected by 40 connecting diodes with 2 on
each SPA. Each SPA is built up of three strings of
solar cells. Each string has a length of 106 solar cells.
Two end strings have eight cells in parallel and the
middle string has seven cells in parallel. Strings 1 and
3 are built by 848 cells each whereas the middle string
is made up of 742 cells. Each string is further broken
into 7 substrings of 14, 15, or 16 cells so the substring
consists of either 14, 15, and 17 long and 8 or 7 cells
wide. There are seven shunting diodes. Each SPA has
21 shunting diodes and 2,438 solar cells. The cells are
connected by Cell Interconnects (CICs) . There are the
same number of CIC's as the cells. The STSA System con-
sists of 48,760 cells, same number of CIC's, 420 shunt-
ing diodes, 40 connecting diodes and same number of
solders. The description of STSA System is given in a
number of ESA documents. Two of these are GL-SA-B002
and AN-1367-108.

Each individual cell is made up of silicon and 20
mms. wide, 40 mms. long, and generates .349 volts and
carries current .300 amp. at 55°. However, total voltage
at SA/SSM interface is approximately 34 volts and working
current is .27 amps. Approximate power without any loss
of cells diodes and CIC's is 4.18 watts per string.
Since 460 parallel strings in STSA System, STSA produces
approximately 4,222.8 watts. The losses due to solder
and other connectors in current and voltages are not
clear. The estimates mentioned are taken from GL-SA-B002.

6.2 The Reliability of STSA System

The reliabilities of photovoltaic devices and system
are discussed in a special issue of IEEE Transaction (1982)
Vol. R-31. The papers of some interest on the topic are,
"Photovoltaic Module Reliability Improvement Through
Application Testing and Failure Analysis".by Dumas and
Shumk (1982). "Reliability Terminology and Formulae
for Photovoltaic Power System" by Lauftenburger and
Anderson (1982), and "A Methodology for Photovoltaic
System Reliability and Economic Analysis" by Stember Huss
and Bridgman (1982).

The reliability of STSA System depends on the relia-
bilities of the various components in the system, the
design of the components, the definition of the failure,
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and the mathematical models used in determining the
reliabilities of the components. Most of the estimates for
failure rate are based on the constant failure rate,
which arises out of the exponential models as these models
have been used by ESA. However, estimates based on Weibull
model could be obtained if some estimates or knowledge
of shape parameter is assumed.

First, we discuss the reliabilities of blocking
and shunted diodes. For connecting diodes, since there are
40 blocking diodes, if all of them have to work, then
we find

R - (R_ >4°*0 ~ 11W ' (32)

R-, is the reliability of individual connecting diode.

If the success is defined with k (k is an integer
close to 40) diodes working the R-, reduces to

R = Z° (40) R,j (1-R, )40~J (33)
j=k D D

For shunting diodes, the reliability, when each
diode is working, is

R, = (R̂ ) m (34)

For k diodes working, the reliability reduces to

420
Rl = Z (4?0) (RSD)J(1-R^42°"J- (35)

-i=k -I "U '-'D

The reliabilities Rgp for the exponential for given
time t can be evaluated by

-A,t
RSD= e I '

Where X-, is the failure rate of the diodes to be evaluated
from the data.

Next, we consider the reliabilities associated with
CIC. Since there are 20 SPA1s and each SPA has 3 strings
with width 8 and 1 with width 7. Here, for calculating

XXXIV-12



reliability, we assume width 8. Each string has 106
CIC's in series. The reliabilities of CIC's by nested
design can be written as

v° /60X Bj ,, B .620-j ,,c.Rcic = L, ( J} Ri (1-Ri) ' (36)

8 R - fi_.
R, = E (?) R^9 (l-R19)

b D, (37)
X *i I JL £• J- ̂3=k2

and
i nf

(38)

Here k, , k- are integers close to upper limits and R,
is the reliability of interconnect can be obtained from

R123 = e C '

Ac being failure rate of an interconnect.

We now discuss the reliability models associated
with the solar cell arrays. In the first model, we assume
that a substring consists of an average of 15 cells in
series and each string has 7 substrings and there are 8
parallel strings associated with each string. Since
there are 3 strings per SPA, out of 21 subgroups any
number of subgroups might fail, a nested model could
be used. Let R = R be the reliability of a cell, thenc 1234

R123 = R1234 """s tne rel:"-abi1:'-ty of a substring, and

R12 = l (2) ( R ) j d-R) 2 1~ J • 09)

R, 2 gives the reliability with k^ substrings working.
Since there are 8 strings in parallel, if some of these
fail, then the power of the system would be affected.
Hence, using k_ parallel strings working the reliability
of SPA is determined by

Rl = RSPA = Z (} (R12) (1-R12)" ' (40)
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Since there are 20 SPA's, the reliability of STSA
System from cell failures can be reduced to

R_ = E (20) R} (l-R1)
20~j . (41)

•i-k J~k

If there is no loss of power due to any cells in the
entire system, then the reliability of the system reduces to

Rs = (Rc)
4876°. (42)

There are other models considered for the reliability
of solar cell system. In AN-1367-108, it is suggested
that each string should be considered as one unit. Since
there are 460 strings of 106 cells long in the STSA System,
the reliability Rc can be written asj

Rs = I (46°) RJ (1-R,)- , (43)
S j=k D X L

where R, is the reliability of the string and is
given by

R, = R*06 . (44)

R is the reliability of a single cell and is determined
from

in the exponential case and for Weibull case R is given by

o
Xct

p could be determined from a set of data.

7. Estimates of Reliabilities

In this section, we calculate the reliabilities asso-
ciated with diodes, CIC's and solar panels. These relia-
bilities are then used to calculate the reliabilities of
STSA System. In calculating the reliabilities, we are
using various models proposed in section 6. The estimates
are based on failure rate estimates given in ESA documents.
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Since these estimates are based on the exponential models,
we have to resort to these models. The reliabilities are
calculated from one to five years and presented in a
tabular form as well as in graphical form. First, we
calculate the reliabilities of the diodes.

7.1 Reliability Estimates of Diodes

For blocking diodes, the failure rate given in TN-SA-
B147 is X = 1.2 X 10~9/hr.. hence, the reliabilities are
calculated from R (t) = e . Since there are 40 diodes,
if all of them have to work reliabilities are calculated
from

iyt) = (RBD)
4° . (45)

If we allow one of them to fail then

API TQ
Rl(t) = (RBD)

4° + 40 (RBD)
39 (1-RBD) (46)

Using these formulae, we find the reliabilities assuming
one year is 8,760 hours. The results are presented in
table I.

Table I . Reliabilities of Blocking Diodes

Time t (in years)R (t) R (t) R, (t)
BD ° x

1
2
3
4
5

Next, we find the reliabilities for the shunting diodes
Since there are 420 shunting diodes and failure rate of
each diode is X = 1 X 10~9, the reliabilities for all
diodes working are obtained from

.99998948

.99997897

.99996846

.99995795

.99994744

.99957961

.99915939

.99873935

.99831949

.99789981

.99999991

.99999965

.99999922

.95999862

.99999785

R0(t) =

If we allow in our success criteria one diode to
fail, then the reliabilities are calculated from
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RSD(t)

99999124
99998248
99997372
99996496
99995620

R0(t)

.99632760

.99266860

.98902309

.98539096

.98177217

R-^t)

.99999328

.99997314

.99993969

.99989302

.99983327

Rl(t) = (RSD) + 420 (RSD)
419(1-RSD). (48)

The reliabilities for different years are given in
table II.

Table II. Reliabilities of Shunting Diode

Time t (years)

1
2
3
4
5

7.2 Reliability Estimates of Solar Cells

We now discuss the reliabilities of solar cells.
First, we use the nested model discussed in section 6.
For the series model

R0(t) = Rs = (Rc)
4876° . (49)

Also, taking K., = 21, K2 = 8 and K, = 20 in equations
for solar cells in section 6, we find

R = R 15123 C . (50)

R12 = R123 + (21) (R123)2° (1~R123)> (51)

RSPA = R12 + 8 R12 (1~R12)' (52)

R1(t) = R, = R
20 . (53)

This model allows a loss of up to 1 substring and up to
1 parallel string to fail in each of the 20 SPA's. This
amounts to 4.9% power loss in STSA System. The loss figure
is taken from TN-SA-B151.

Alternative model with .22% of power loss is con-
sidered. This is based on 460 total strings (counting
parallel strings) in the STSA System. The loss corre-
sponds to a loss of one string of 106 cells in series.
The reliabilities are obtained by taking K = 459 in
equation (43). The reliability of STSA System is cal-
culated from

(54)
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+ 460
4RQ

(55)

For the cell, the failure rate from TR-STSA-42
is 1 X 10~9/hr. Using this estimate and the above
equations for_ various t's, the reliabilities R (t) ,
R,(t) , and R'(t) are calculated and presented in table III.

Table III. Reliabilities of Solar Cells in STSA System

Time t

1
2
3
4
5

Rc(t)

.99999124
,99998248
,99997372
,99996496
,99995620

Rn(t) R
O J. J.

(Zero Loss) (1 String Loss) ('.22% Loss)

.65237696

.42559154

.27764476

.18112816

.11816326

.99999999

.99999989

.99999941

.95999815

.99999550

.93115794

.78950169

.63391835

.49117021

.37110988

The reliabilities of the CIC's could be calculated from
the formulae for CIC's. However, the reliabilities for a
CIC as functions of time are not available. Since
there are the same number of CIC's as the cells and their
configuration is similar to those of the cells, it is
possible to combine the reliabilities of CIC's and cell
and find the reliabilities of CIC's with cells in STSA
System. The estimate of reliability for a CIC from
AN-1367-108 is R= .9999976714. The reliability of CIC
and cell is given by

= (.9999976714) eXt (56)

We use this formula^to calculate Rr and the formulae
R (t), R,(t), and R,(t) given in equation (49) to
equation (55). The reliabilities for different t are
given in table IV.

Table IV. Reliabilities of Solar Cells With CIC in STSA

Time t
(in yrs.)

1 yr.
2 yrs.
3 yrs.
4 yrs.
5 yrs.

Rc(t)

99998891
99998015
99997139
99996263
99995387

R0(t)
(Zero Loss)

.58234352

.37990379

.24784048

.16168463

.10547829

Rl(t)
(1 String Loss)

.99999998

.99999982

.99999917

.99999760

.99999445

Rl(t)
(.22% Loss)

.89739874

.74797591

.59409527

.45687567

.34330636
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7 .3 The Reliabilities of STSA System

The STSA System consists of diodes, CIC's and solar
cells. The reliability of STSA System R is calculated
from

R (t) - R (t) RS
t)

RS( ' ~ D "Cell
(57)

For zero loss R_ (t) is calculated by multiplying RQ(t)
o

from tables I, II, and IV. For .22% power loss Rc (t) is
bl

tabulated from R, (t) in tables I and II and in table

IV, and these are tabulated in table V. Also, at the
beginning there is no loss, hence, at time 0, the
reliability is 1.

Table V. STSA System Reliabilities

Time t R0 ( t )( No Power Loss) R (t) (.22% Power Loss)
So Sl

0
1
2
3
4
5

.57996100

.37680155

.24481094

.15905482

.10333816

.89739874

.74795555

.59405897

.45682516

.34324838

The graphs of the reliabilities of STSA System are
presented for zero power loss and .22% power loss.

8. Discussion and Conclusion

After a search of literature on the failure rate
estimates and reliabilities of solar cells, most of the
identifiable sources on the subject were found in the ESA
documents. However, none of the documents contained any
original data. The failure rate of the solar cells was
determined from the failure rate of the solar cell diodes.
The failure rate of solar cells is taken as the same as
that of the diode (STSA B151) because both have the same
base material, doping, contact system, cover slides, and
adhesive. The data on failure rate of diodes is also
not available. It appears that the failure rate of
diode is determined from the estimates of the components
in the diode. The-failure rate on CIC's is estimated
from a confidence procedure on the binomial distribution,
which is independent of time.
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0.01

.22% POWER LOSS

ZERO POWER LOSS

4 5 6
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8
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There are no explicit results available on the
effect on the failure rate due to the temperature change
of the solar cells, although the cells go -through a
change of temperature from -80° to 180° centigrade. The
effect of temperature on the cell voltage is discussed
by Rajeswaren et al . (1982). Also, Anderson and Kim
(1978) give the relation between open voltage and tempera-
ture. There may not be an immediate impact on the per-
formance of the solar cell, but long term effect is not
known. In the (1978) paper Anderson and Kim s'tate that
there was a degradation after the crack appeared in the
cell. This suggests that the constant failure rate
models may not be suitable for systems working for a
long time.

Also recently, Alexander (1985) has run some tests
on the solar cells. The tests were run on only 12 cells.
In the study, he found some breaks in the strands on
interconnects. The total number of unbroken strands on
the interconnects is not clear. Also, there were not
any complete breaks in interconnects. It is difficult
to determine failure rate on the interconnects.

Although general models applicable to STSA System
are developed, the models are not tested for any other
model except the constant failure rate model. There is
a need to test aging models. From the available failure
rate estimates, the reliability estimate of STSA System
is obtained based on the maximum likelihood estimators
of A. The maximum likelihood estimators of the relia-
bility are biased, hence, the biases and variances need
to be investigated. And the confidence intervals on the
reliabilities need to be developed to gain further infor-
mation on the reliability of STSA System.
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