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TURBULENT FLOW FIELD PREDICTIONS IN
SHARPLY CURVED TURN AROUND DUCTS

BY

L. Michael Santi
Assistant Professor of Mechanical Engineering

Memphis State University
Memphis, Tennessee

ABSTRACT

In this investigation, two-dimensional turbulent flow of incom-
pressible Newtonian fluids in sharply curved 180° turn around ducts is
studied. Results of an approximate numerical flow field analysis
utilizing an orthogonal, body-fitted, curvilinear coordinate system are
compared to results based on a traditional cylindrical reference frame.
Qualitative indication of general streamfield characteristics as well
as quantitative benchmarks for the planning of future experimentation
are provided. In addition, preliminary results of an augmented k-e
turbulence model analysis, which explicitly accounts for the effects of
streamline curvature and pressure strain in internal turbulent flows,
are presented. Specific model difficulties are discussed and compari-
sons with standard k-e model predictions are included.
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NOMENCLATURE

Symbol Definition

C Q constant (=0.09) in traditional k-e model turbulent
viscosity expression

C spatially variant function in modified k-e model turbulent
viscosity expression (u =C pk2/e) .

C constant in wall function correction (=</C3n'
f), see

equation (13) yU

D duct width
D. . dissipation term in the Reynolds stress transport equations

E east side cell, see Figure 12
F cubic polynomial in /C , see equation (12)

k turbulent kinetic energy
H turbulence length scale
I turbulent length scale for flow over a plane

N north side cell, see Figure 12
P time averaged pressure
P, turbulent energy production rate

P exit plane pressure assumed uniform

P.. production term in the Reynolds stress transport equations

r radial direction coordinate
r. duct inner convex wall radius of curvature

r duct outer concave wall radius of curvature

R duct centerline radius of curvature (=[r.+r ]/2)

S south side cell, see Figure 12
S , So momentum source terms, see equations (5) and (6)

u UQ, u7, "uT Reynolds stress components in cylindrical coordinates

U time averaged streamwise velocity

U cross-stream averaged streamwise velocity
U , Ufl time averaged velocity components in cylindrical

coordinates
W west side cell, see Figure 12
y distance from the duct inner convex surface measured in the

radial direction
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Symbol Definition

3 empirical constant in curvature modified length scale,
see equation (1)

e energy dissipation rate
Eji dissipation term in the Reynolds stress transport equations
ic von Karman constant
U absolute viscosity
Ut turbulent viscosity
ueff effective viscosity (=ut+u)
Hij pressure strain term in the Reynolds stress transport

equations
p mass density
6 angular position measured from the duct entrance plane

BFC body-fitted coordinates
FDP fully developed pipe or duct
SSME space shuttle main engine
TAD turn around duct
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INTRODUCTION

Performance demands of modern machinery require designs exhibiting
both dimensional and operational economy. In applications which require
the motion of a working fluid, these economic considerations have fueled
a proliferation of devices containing complex flow passages through which
fluids travel at extreme rates. Examples include flows in turbomachinery,
nozzles, diffusers, and curved ducts. Of primary interest in this inves-
tigation are flows in sharply curved turn around ducts (TAD's) common in
rocket engine design, including current and projected versions of the
space shuttle main engine (SSME).

Despite the design impetus provided by increased performance
requirements, a detailed understanding of turbulent fluid motion with
significant streamline curvature is inhibited by formidable obstacles to
both experimental measurement and computational study. Since the system
of motion governing equations for turbulent flows is essentially incom-
plete, advances in the computational prediction of turbulent field char-
acteristics are tied to turbulence models requiring a sound empirical
basis. In the case of sharply curved passages and extreme flow rates
prevalent in modern equipment, the experimental basis required for
detailed flow prediction is difficult to obtain with confidence.

An example of a high rate, strongly curved flow field with little
experimental basis on which to develop adequate turbulence models occurs
in the SSME fuel side turbopump TAD. A simplified two-dimensional
version of this TAD configuration is depicted in Figure 1. Although
several studies of turbulent curved duct flow have been reported [1-7],
none deals with curvatures or rates of the magnitude occurring in the
SSME. The state of turbulence modeling in general is such that little
confidence can be placed in extrapolation of the results of these inves-
tigations to a broader class of curved flows.

The sensitivity of turbulent flow characteristics to even mild
streamline curvatures has been discussed by Bradshaw [8]. In this
extensive review, a curvature modified length scale of the form

(1)

was proposed. In this relation 8 is an empirical constant of order 10,
£0 is a length scale appropriate for plane flow, and subscripts following
a comma indicate differentiation with respect to the specified variable
(e.g., Ufl = 3Ufl/3r). Inclusion of this curvature modified scale into a
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Figure 1. Early SSME fuel side turbopump TAD design.
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general mixing length model of turbulent motion is hampered by the flow
dependence of both 3 and &„• Lack of extensive applicability is charac-
teristic of all mixing length modeling strategies.

Launder et al. [4] have proposed a two equation closure model
with the length scale dependence obtained* from solution of the equations
for turbulent kinetic energy and the energy dissipation rate. The
direct effect of curvature is introduced as a single term in the dissi-
pation equation which is proportional to the turbulent Richardson number.
The required proportionality constant appears as a new empiricism.

Recently, an extended k-e turbulence model, which uses algebraic
approximations for the Reynolds stress transport equations in order to
develop an explicit curvature dependent expression for C in v = C k2/e,

has been reported by Pourahmadi and Humphrey [9,10] and applied to
curved duct flows. The new expression for Cy accounts simultaneously
for effects of streamline curvature and pressure strain with wall
dampening. The development is a formidable task, calling upon a variety
of traditional turbulence modeling approximations [11-15]. The approach
taken by Pourahmadi and Humphrey presents a promising explicit curvature
model with roots, albeit approximate, in the Reynolds stress transport
equations. Unfortunately, previous results based on this computational
procedure appear to be based on a rather fundamental algebraic error
which will be addressed in subsequent sections of this report.

Another approach which has been pursued is to include curvature
effects in a modified wall law [3,16]. This method is well suited for
near wall treatment in coarse grid numerical calculations of turbulent
boundary layers under adverse pressure gradients. Incorporation into
computational procedures involving strongly curved, fully elliptic flow
fields is certainly plausible.

Because of the scarcity of reliable experimental data involving
high rate flows in sharply curved passages, and the difficulty in extrap-
olating turbulent model predictions, none of the above described curva-
ture modified turbulence models can be objectively recommended. Each,
however, presents an opportunity for computational investigation, refine-
ment, and comparison with results of standard turbulence models as well
as experimentation.
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OBJECTIVES

The objectives of this investigation have a dual character. On
one hand, computational predictions of turbulent flow properties in
sharply curved TAD's are sought in order to provide additional infor-
mation on the operational characteristics of devices incorporating such
flows. Of specific interest are TAD flows in the SSME fuel side turbo-
pump. As such, results of this investigation fall into the category of
computational analysis. A second view is more appropriate, however,
with results of the investigation taken as presenting contributions to
the base of computational experimentation needed to improve general
models of turbulent flow with significant streamline curvature. The
data base building aspect of this study is considered to be the primary
goal.

In order to achieve this primary goal, three specific objectives
were established.

1. To estimate the general characteristics of turbulent flows
in sharply curved TAD's using a standard k-e turbulence
model on an abbreviated geometry as displayed in Figure 2.

2. To implement and test a specific turbulence model which
explicitly incorporates the effects of streamline curvature
and pressure strain.

3. To examine the elliptic character of the governing motion
equations by implementing an orthogonal, body-fitted
coordinate reference frame analysis on an extended duct
geometry shown in Figure 3.

Background information concerning each of the three stated objectives
is provided in the following section of this report.
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Figure 2. Simple TAD analysis geometry.
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BACKGROUND INFORMATION

Equations governing the motion of *steady, two-dimensional, tur-
bulent flow of an incompressible, Newtonian fluid in cylindrical coor-
dinates are given below [10].

Continuity: U + Uo fl/r + U /r = 0 (2)
* I 1 \J f\J j A

r-Momentum: p[U + UQU 0/r - U|/r]r , r o r,o 0

Sr

0-Momentum: p[U Ufl + U0U0 0/r + U U f l/r]r o,r 0 0 , 0 r o

+ (ueffue,e/r),e/r -
+ 2lJeffUr,9/r2 + S9

In equations (3) and (4) above, the Boussinesq assumption has
been employed to model the Reynolds stresses in terms of mean velocity
gradients and a turbulent viscosity component . The momentum source
terms Sr and SQ are given by the relations below.

Sr = [V(Ue/r)>r]>e/r + (PtrUrjr)>r/r - û /r* (5)

SQ = [ut(2Ur/r , U0>e/r)]>9/r

+ W - Vr)/r

In order to provide and solve for spatial variation of the tur-
bulent viscosity Mt, the k-e turbulence model as described by Launder
and Spalding [17] was employed. This two equation model has been com-
pared favorably to a variety of turbulence modeling schemes [18]. It
has been tested on a wide range of flow configurations, exhibiting some
degree of universality with an acceptable degree of complexity. Fol-
lowing this approach, Ut is determined by the relation

yt = C pk2/e , (7)
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where the turbulent kinetic energy and dissipation rate are determined
upon solving the differential transport equations given below [10,19].

turbulent kinetic energy k:

energy dissipation rate e:

p[V,r + U9£,9 / r ] = (

+ C£lePd/k - Ce2pe
2/k (9)

The production term Pd in equations (8) and (9) is given by the relation

pd = V2f<ur,r>a + (ue,e/r)2 - Vur,e/r + V)/r
+ Vur + 2ue,e)/r2 + ur,eue,r / r ] + <Vr)2 + <ue,r ) 2

+ (U fl/r)
2} . (10)

T , U

The numerical procedure used to solve the discretized form of
equations (2), (3), (4), (8) and (9) was provided by the proprietary
PHOENICS computer code supplied and supported by CHAM of North America.
A discussion of the philosophical and mathematical basis of this code
is provided in reference [19]. A good presentation of the numerical
procedures associated with a large family of CFD codes including the
PHOENICS code is available in the text by Patanker [20].

The standard k-e turbulence model, the basis of which is pre-
sented above for cylindrical coordinate systems, was employed in compu-
tational analyses of simple geometry (Figure 2) TAD flows. A 20 x 30
grid was employed in these analyses as displayed between planes BB and
CC of Figure 3. In all simple TAD configuration analyses, inlet plane
velocity, turbulent kinetic energy, and dissipation rate conditions
were specified. A constant exit plane (CC in Figure 3) pressure was
prescribed and boundary condition closure was achieved by assuming zero
velocity field gradients in the exit plane.

The Pourahmadi and Humphrey [9,10] extension of the standard
model was also implemented. As discussed above, this modified turbu-
lence model incorporates the effects of streamline curvature and
pressure strain in the fluid by using a variety of approximations to
reduce the Reynolds stress transport equations to a set of algebraic
equations. Because of the complexity of the algebraic manipulations
employed, only a brief outline of the model derivation and implemen-
tation is presented below. The reader is referred to the original work
in reference [9] for a detailed development.
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The derivation starts from a high Reynolds number form of the
u^Uj transport equation [9] characterized by the general form shown
below.

D
P. . + e, , + n,, + D,, (11)Dt ~ ij T ij T "ij T ij

The development then proceeds in the following stepwise manner,

1) The u.^ transport equations are reduced to a system
of algebraic equations by invoking a variety of
approximations including

A) Rotta's [12] return to isotropy principle in HJ.J
B) Launder, Reece and Rodi's [13] expression for the

contribution to JIj,- from interaction between mean
strain and fluctuating velocities

C) Daly and Harlow's [14] correction to n^ due to
wall effects

D) Gibson and Launder 's [15] correction to 1^ due to
wall effects _

E) Rodi's [11] assumption that u-u ./k is constant
throughout the flow field.

2) The resulting system of algebraic equations is solved
for the turbulent stresses.

3) The Boussinesq approximation is then employed, trans-
forming the solution into an algebraic relation for C .

4) The turbulent energy production term is rearranged into
the form

= g(P/e, U/r, ±> .

where g is a complex function of the quantities indicated,
including the various partials of the mean velocity, U^ -.-.

5) The relation for (k/e)Ug r from step 4 is substituted
into the algebraic relation for Cu from step 3. Simpli-
fication of the resulting expression leads to the cubic
polynomial relation

F(v̂ ) = CJ' 2 + 3lCu + a2Cy
 2 + a3 = 0 (12)

where â â a.̂  = a1 ,a2,a3(Pd/e, UQ/r, f, IL .)

6) The wall correction function f presented in reference
[13] and appearing in step 5 is modified to the form
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thereby permitting asymmetric wall corrections to the pressure
strain. In this expression, the asymmetry measure m appears
as a new empirical constant.

7) Following Bradshaw [8], the expression for dissipation at near
wall nodes is modified by a multiplicative factor of
1/[1±$UQ/(UQ r)] in order to introduce the influence of extrad y ,r
strain curvature on the magnitude of the near wall turbulence
length scale. This expression also contains a new empirical
constant, (3.

Suggested values for constants m and 8 are 7.95 and the order of 10 res-
pectively.

Although the complex development terminating at equation (12) is
quite impressive, an unfortunate algebraic error is made in establishing
the roots of this equation. Instead of a single positive real root for
v/Ĉ  as predicted in references [9] and [10], multiple real roots, not
necessarily positive, can (and did) occur in practice. The implemented
version of the Pourahmadi and Humphrey modification included a corrected
method of solving for the curvature dependent values of •û - Adding to
the difficulties associated with this implementation was the need to
prescribe a selection criterion for regions in which multiple roots
occur. This problem was never resolved with complete success as will be
discussed more fully in the next section of this report.

In order to more fully understand the elliptic character of devel-
oping TAD flows, analyses utilizing an orthogonal body-fitted coordinate
(BFC) reference system on an expanded duct geometry were performed. Two
such analyses were performed; one on the full geometry, 20x80 grid
system depicted in Figure 3, and a second on a reduced geometry 20x60
grid depicted between planes AA and CC of the same figure. In each case
the 20 x 30 grid configuration of the simple TAD analyses was preserved
in the region bounded by surfaces BB and CC in Figure 3. In this manner
comparison of results using both simple TAD configurations and expanded
BFC geometries was facilitated.

Numerical computations employing the grid configuration of Figure
3 were performed utilizing the BFC option of the PHOENICS computer code
described in reference [21], Although potentially more accurate non-
orthogonal grid specifications could have been implemented within the
framework of the PHOENICS code, direct comparison with results of simple
cylindrical system analyses would have then become more difficult. An
excellent comprehensive review of methods to numerically generate curvi-
linear coordinate systems with coordinate lines coincident with boundary
segments is given in reference [22],

XXXV-10



RESULTS

Results of this investigation can be separated into three cate-
gories dependent upon coordinate reference frame and turbulence model
employed. Analyses 1, 2, and 6 described in Table I were performed on
simple TAD geometries using a cylindrical coordinate system and a stan-
dard k-e turbulence model [17]. In analysis 3 the modified k-e model of
Pourahmadi and Humphrey [9,10], with the correction discussed in the
previous section, was employed. The simple TAD geometry displayed in
Figure 2 was maintained. Analyses 4 and 5 employed orthogonal BFC refer-
ence systems with a standard k-e turbulence model. The grid system de-
picted in Figure 3 was used in analysis 4. The same grid pattern, res-
tricted to the corresponding analysis geometry, was employed in all
cases. In addition, the flow Reynolds number was fixed at 10° and a
curvature ratio RC/D = 1 was prescribed. These values obviously refer
to a high rate flow with extremely sharp curvature. A complete summary
of the computational analyses of this study is presented in Table I.

In Figures 4, 5, and 6 are displayed developing profiles of veloc-
ity, pressure, and turbulent kinetic energy respectively, for the case
of a simple TAD geometry with inlet plug flow. In response to the strong
cross stream pressure gradients evident throughout the flow domain, the
velocity profiles are observed to become increasingly asymmetric. The
most substantial pressure adjustments occur within the final 30° of duct
travel, and in response there is a significant acceleration of flow near
the outer wall with a corresponding deceleration near the inner, convex,
duct wall. The net effect is a nearly linear velocity profile very near
the exit plane reminiscent of a solid body rotation. Quantitatively, the
near exit plane velocity varies from just under 25 % to somewhat over
140% of the average flow velocity. In the entrance region of the duct,
the plug flow characteristic is observed to persist virtually unchanged
past the midplane (6 = 90°) of the duct. The large cross stream pressure
gradient predicted for the TAD inlet region together with the specified
plug flow entrance velocity profile is suggestive of a very large swirl
chamber feed to the TAD. This type of configuration is of course not
prevalent in rocket engine or turbomachinery applications.

The turbulent kinetic energy profiles displayed in Figure 6 ex-
hibit rapid decay in the plug flow core region as expected. An initial
decay in the near wall turbulent kinetic energy is followed by a signif-
icant rise in the accelerating concave wall region, and a continuing
gradual decay in the decelerating convex wall region. Near the exit
plane, the turbulent energy profile develops the knee observed [1,2] and
predicted [10] in previous curved duct investigations conducted at
smaller values of Re and RC/D.
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Table I

Analyses Summary

Analysis
No.

1

2

3

4

5

6

Analyses

Reference Figure 2 Grid
Frame I/O Plane

Cyl.

Cyl.

Cyl.

BFC

BFC

Cyl.

Constants:

BB/CC

BB/CC

BB/CC

AA/EE

AA/CC

BB/CC

Re = 10

Turbulence Inlet Conditions
For Plug Inlet U Profile :

Exit Plane Pressure: Uniform

20x30

20x30

20x30

20x80

20x60

20x30

6 RC/
D

Inlet U
Profile

Plug

FDP

Plug

Plug

Plug

Plane BB
from 5

- 1.0

k/U2 = 0.005

e/(U3/D) = (0.005)3/2/0

across exit plane

Turbulence
Model

k-e

k-e

Modified
k-e
k-e

k-e

k-e

.01
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Results of a simple TAD geometry analysis with a fully developed
turbulent duct flow inlet condition are displayed in Figures 7, 8, and 9.
The general shape characteristics and scale of the pressure profiles in
Figure 8 are similar to the previous plug flow inlet case. The develop-
ment sequence for the velocity profiles is also similar to the analysis
1 case with little profile adjustment prior to the 90° midplane of the
TAD, and significant velocity gradient increases and profile lineariza-
tion in the rapid adjustment exit region. The salient feature displayed
in Figure 7 is the appearance of a recirculation region near the inner
wall of the duct. This region extends back somewhat over 6° from the
exit plane and occupies approximately 4 % of the duct cross section at
the exit plane. The occurrence of a negative velocity region in the
exit plane presents certain difficulties involving computational error
as discussed in reference [21]. Despite this problem, flow separation
from the inner convex wall is predicted to occur between 6 = 171° and
8 = 174°. This phenomena is not observed to occur in less sharply
curved channels with smaller values of the flow Reynolds number [1,2,6],

The turbulent kinetic energy profiles depicted in Figure 9 differ
substantially from the plug flow inlet case both in shape and develop-
ment history. The initial profile shape is symmetric and of the same
magnitude as displayed for the analysis 1 entrance profile. Because of
the entrance cross stream velocity gradients present in the FDP entrance
case, however, the turbulent kinetic energy is predicted to increase
significantly in the flow direction away from the convex wall. This is
in sharp contrast to the rapid post entrance decay of k exhibited in
Figure 6 for the plug flow inlet case. Near the exit plane, cross
stream velocity gradients and the energy dissipation rate away from the
convex wall increase rapidly in the flow direction, and the increase in
turbulent energy is arrested. In the vicinity of the convex wall there
is a substantial adverse pressure gradient leading to deceleration and,
as the exit plane is approached, flow separation. This is accompanied
by a sharp decrease in the inner wall region values of k.

Direct comparison of the downstream velocity and pressure pro-
files predicted in analyses 1 and 2 are displayed in Figures 10 and 11.
The similarities in each of the profile pairs is obvious. The near exit
plane pressure adjustment is predicted to occur more suddenly in the
case of plug flow inlet conditions. It is evident that the inner wall
characteristics of the near exit plane flow are substantially affected
by changes in the inflow boundary conditions.

In the third analysis of the computational sequence, the modified
k-e model of Pourahmadi and Humphrey [9,10] was implemented in the user
definition section of the PHOENICS routine. Severe difficulties were
initially encountered in attempts to obtain reasonable solutions. Fur-
ther investigation revealed the equation (12) rooting error described
previously.

In the context of the PHOENICS implementation, the Pourahmadi and
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Humphrey [8,10] modification for a specific finite difference cell P re-
quires manipulation of the staggered grid velocity vectors indicated in
Figure 12. In addition, grid distances from each of the indicated neigh-
boring cells to the P cell boundaries are needed together with estimates
of k and £ at P. The entire manipulation is computationally intense,
often tripling the clock time of analysis.*

Despite the increased computational effort, convergence diffi-
culties were repeatedly encountered. The source of the problem was the
behavior of the polynomial F(/C~), the roots of which indicate candidate
values of Cy. Typical F(v/Cy~) loci are depicted in Figure 13. These
polynomial traces were arrived at by computationally testing the modified
k-e turbulence model on a simple TAD geometry, plug inlet flow problem.
Analysis 3 as described in Table I was initiated at the standard k-e
model solution value of analysis 1. An intermediate flow field result
was determined by arbitrarily selecting the principal theta transfor-
mation root of the cubic polynomial F(/Cy) whenever multiple roots oc-
curred. The trigonometric or theta transformation method for determining
roots of a cubic polynomial is described in most mathmatical handbooks
(see e.g. [23]).

It is evident from Figure 13 that for 9 =168°, the near concave
wall behavior of F was that of a cubic polynomial with multiple real
roots. This behavior was not isolated, occurring irregularly throughout
the flow field and frequently in near wall regions. Unfortunately it is
in these near wall regions that the modified k-e model was expected to
yield its most meaningful results [9,10]. The behavior of the F(/Cy~)
polynomial at y/D = 0.9875 (the node closest to the concave wall) was
particularly disturbing. As indicated in Figure 13, the trace of F was
virtually colinear with the Cy axis for -0.2<Cy<0.2. Three distinct real
roots were determined at this nodal position, however, the ill natured
character of F is apparent, making the computational process extremely
susceptible to even small numerical errors.

Near exit plane values of Cy were determined as shown in Figure 14
It should be noted that the line of Cy = 0.09, the standard k-e model
value, occurring at 0=150° was an assigned default value selected when-
ever the cross stream velocity gradient became small. Small values of
Ufl _ led to extreme variation of the F(yC7~) polynomial, hence the default
selection in these regions. Pourahmadi and Humphrey [9,10] also note the
ill behavior of Cy in the core region of the duct. They attribute this
behavior to a breakdown in the assumption that u-^u-j/k is constant in this
region. Their reasoning is less than compelling. It is entirely possible
that the problem of determining reasonable values for Cy is completely
numerical, and that consideration of a more primitive implicit form of
the Cy relation might yield stable results across the entire duct cross
section.

Recognizing that the analysis 3 results are only intermediate,
lacking a completely acceptable method of selecting C , it is useful and
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interesting to observe position dependent characteristics of the vari-
ant Cy . In Figure 14, for 8 = 174°, Cy is observed to take on values
substantially less than the standard value of 0.09 in near wall regions,
rising to nearly 0.09 just outside the convex wall region and then fall-
ing to near zero in the flow core, rising again to near the standard
value and well beyond just outside the concave wall region. Figure 15
displays the near concave wall behavior of Cy throughout the flow domain.
It is evident that the near wall node value of Cy remains essentially
constant at around 0.03 throughout while the adjacent node value of Cy
took on default values near the TAD entrance, rising dramatically to a
value of nearly 0.4, and then falling steadily to a value in excess of
0.1 before rising dramatically near the duct exit. The turbulent kinet-
ic energy profiles displayed in Figure 16 exhibit the same qualitative
character as the unmodified k-e model profiles of Figure 6 except that
near outer wall k values are greatly magnified and exhibit a knee as the
wall is approached. Details of the near convex wall comparisons of tur-
bulent kinetic energy are shown in Figure 17. Both the standard and
modified k-e models predict the same k values at the adjacent wall node,
however, modified model kinetic energy predictions were somewhat smaller
than standard at the neighboring y node near the duct exit. Estimated
velocity and pressure profiles obtained using the modified k-e model
were virtually identical to standard model results.

Two separate BFC computational analyses were performed in order
to explore the elliptic character of the TAD flow field. These are
described in Table I, analyses 4 and 5. Before describing results of
these studies, several general observations are warranted. First, the
early version of the SSME TAD geometry depicted in Figure 1 suggests a
computational model with a short entrance region and a relatively long
straight exit region. In Figure 3 this would indicate flow entrance at
plane EE and exit at plane AA. Several attempts at such an analysis
using the BFC option of the PHOENICS computer code were unsuccessful.
This does not necessarily indicate a shortcoming in the PHOENICS/BFC
solution technique. It is likely that more extensive experience with
judicious selection of the relaxation factors and other heuristic tuning
parameters inherent in the PHOENICS code, and indeed any CFD code with
like capabilities, would have led to solution convergence with the flow
orientation described above. Because of the limited time available to
gain computational experience, and because it was found that extension
of the straight duct inlet zone greatly enhanced convergence character-
istics, the suggested SSME TAD flow orientation was reversed, with the
inlet prescribed at plane AA and exit at plane EE.

A second observation concerning the BFC computations involves
the degree of solution convergence at analysis termination. Using the
absolute residuals sum criterion described more fully in the PHOENICS
documentation, the convergence rate at termination had slowed to approx-
imately 0.1% of total absolute residuals sum per solution sweep. This
rate was achieved after approximately 30 clock hours of computation on
the Perkin-Elmer 3220 computer system utilized during this study.
Although clock run time is a poor absolute measure of computational
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efficiency, relative to simple TAD configurations, the BFC analyses re-
quired an order of magnitude more clock run time and at best achieved
an absolute residuals sum convergence measure a full order of magnitude
larger than the simple TAD analyses. Noting that the BFC grid patterns
were approximately three times the size of the simple cylindrical system
TAD grids, it is obvious that the BFC analyses were relatively high
overhead computations. In addition, because calculation was interrupted
before achieving a proportionately small convergence measure, results of
the BFC analyses are considered to yield only qualitative predictions of
flow field characteristics.

Figures 18, 19, and 20 display results of the analysis 4 BFC com-
putations for TAD inlet/outlet velocity, pressure, and turbulent kinetic
energy profiles respectively. These calculations were performed using
the full grid pattern displayed in Figure 3 with flow inlet at plane AA.
It is evident in Figures 18 and 19 that BFC calculated TAD inlet flow
field features are radically different from the inlet boundary assump-
tions of the simple duct analyses. The inlet velocity profile resembles
the 1/r proportionality of ideal fluid flow except in the near wall re-
gions while the outlet profile appears very much like a fully developed
turbulent duct flow. Obviously the antisymmetric character of the pre-
dicted TAD outlet pressure profile is quite different from the assumed
uniform exit plane distribution of the simple geometry analyses. Be-
cause of the centrifugally induced cross-stream pressure gradient at the
TAD exit, the duct like flow profile at plane CC developed into the
stretched, r proportional profile reminiscent of rigid body rotation in
the 2xD straight exit duct. Predicted developing velocity profiles in
the exit duct are displayed in Figure 21. In the exit section, the pres-
sure adjusts to the assumed uniform condition at exit plane EE. The
core of the TAD exit plane k profile shown in Figure 20 resembles the
core suppressed profile of the simple geometry analysis with plug flow
inlet conditions displayed in Figure 6. No inner wall knee is observed
in the BFC k predictions, however, outer wall turbulent kinetic energies
are reduced in the BFC analysis.

In order to reinforce the extended geometry predictions of analy-
sis 4, a comparison test was devised. BFC analysis 5 was run on the re-
duced configuration between planes AA and CC. Plug flow inlet conditions
were prescribed at plane AA and uniform exit plane pressure was assumed.
Results of this computational procedure at the TAD entrance plane BB were
used as boundary conditions for a simple geometry analysis using a cylin-
drical system with the same uniform exit plane pressure assumed. Pre-
dictions of analysis 5 and 6 should have been identical, at least theo-
retically. Unfortunately, there was a substantial discrepancy in the
predicted flow field characteristics as demonstrated in Figures 22 and
23. Even considering the qualitative nature of the BFC analysis, the
comparisons were disturbing. Cylindrical system predictions of cross-
stream velocity gradients at the exit plane were generally much larger
than results using BFC analysis as is evident in Figure 22. In addi-
tion, a rather large recirculation zone was predicted using the tradi-
tional cylindrical coordinate system analysis. Inner wall flow
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separation was predicted approximately 24° from the exit plane, with the
counterflow velocity zone extending into the fluid over 7.5% of the duct
width at the exit plane. By contrast, the near inner wall node velocity
at the exit plane, obtained using BFC conputations was over 40% of the
average velocity. Pressure profiles from the two analyses at the TAD
entrance plane were not even similar in character, as displayed in Fig-
ure 23.

If the standard cylindrical system analysis is presumed correct,
based on an extensive history of computational success and better con-
vergence characteristics, then the reliability of the current PHOENICS
BFC option must be suspect. This conclusion must, however, be tempered
by the fact that acceptable convergence was attained with cylindrical
system analysis while only run time constrained convergence was achieved
using BFC's. In addition, in order to prevent divergence of the
PHOENICS based computational procedure involving BFC's, it was necessary
to neglect certain curvature contributions in the finite difference ap-
proximations. The rationale for neglect of these terms is more fully
described in the PHOENICS BFC documentation [21], however, for curvature
dominated flows, such as that occurring in the SSME TAD, neglect of such
contributions is dissatisfying. Only by further computational study and
experimental comparison can deficiencies in the approximation procedure
be adequately quantified.
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CONCLUSIONS

1. The curvature modified k-e turbulence model developed by Pourahmadi
and Humphrey [9,101 cannot be utilized as presented due to algebraic
errors in the F(v̂ CT) rooting scheme.

2. A corrected version of the Pourahmadi and Humphrey [9,10] curvature
modified turbulence model has potential if an adequate method of
selecting the multivalued root v/CT can be determined.

3. Neglect of curvature related terms within the BFC option of the gen-
eral purpose CFD code PHOENICS yields results inconsistent with the
predictions of standard orthogonal system analyses for sharply
curved internal flows.

4. Construction of an acceptable turbulence model for use in the anal-
ysis of sharply curved internal flows must await the availability of
adequate experimental data, and will require a systematic program
of computational verification.
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