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ABSTRACT

This investigation is an extension of last year's project deal-

ing with the problem of optimal use of ground resources for future

space missions. This problem was formulated as a linear programming

problem using an indirect approach. Instead of minimizing the

inventory level of needed ground resources, we minimize the over-

lapping periods during which the same types of resources are used by

various flights. The model was built upon the assumption that

during the time interval under consideration, the costs of various

needed resources remain constant. Under other assumptions concern-

ing costs of resources, the objective function, in general, assumes

a non-linear form. In this study, one case where the form of.the

objective function turns out to be quadratic is considered. Also,

disadvantages and limitations of the approach used are briefly

discussed.
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1. Introduction

The problem of optimal utilization of ground resources for

scheduling future space missions has been one of continuing interest

and concern in the Program Development Division of NASA. Currently,

planning for efficient use of ground resources is carried out using

"GROPE" (Ground Resources Operations Program Executive). This is a

series of computer programs that works with ,a traffic model and

ground processing time lines as basic inputs. The traffic model is

the specific Shuttle flights in a given year. Requirements for

different ground resources and equipment are determined by the

specific type of each flight, e.g., a Spacelab (pallet or module),

deployed satellites with or without upper stages or Department of

Defense flight. All Shuttle flights require: an Obiter Processing

Facility where Orbiter refurbishment is done and also where

horizontally installed payloads are integrated; and a Vertical

Assembly Building where the solid rockets and external tank are

stacked on the mobile launcher platform, then the Orbiter is

attached to this stack, and a launch pad. Many flights also use the

Vertical Processing Facility for vertically installed payload

processing.

GROPE can be constrained or unconstrained. Constrained means

limited resources are available on limited dates. Here it may not

be possible for all flights to be scheduled within a given year. If

this is the case, those flights that are not placed in the schedule

are moved to the following year and scheduled first. In the

unconstrained case, the entire traffic model is scheduled in the

XXXVI-2



proper year and it includes a complete specification of the various

resource requirements in terms of "quantity" and "need" dates. Our

interest in this project corresponds to the unconstrained case of

GROPE. A precise description of the actual development of the mech-

anics of GROPE is, unfortunately, unavailable. However, it is known

that its development is based mostly on heuristic grounds and lacks

complete mathematical justification, rigor and formality. Due to

the presence of a large number of variables, a complete mathematical

formulation of this problem is no doubt very complex. The problem

is further complicated by the fact that some of these variables are

stochastic in nature. In our last year's report [5], we proposed an

approximate mathematical model to formulate the problem. This form-

ulation was based on assumptions which describe the actual situation

fairly closely. It must, however, be pointed out that we have

ignored a number of variables which have no direct bearing on the

problem and all variables considered are assumed to be non-stochas-

tic. Under the assumption that the costs of resources remain

constant during the period under consideration, using an indirect

approach, the problem was formulated as a linear programming prob-

lem. Under other assumptions for the costs of the resources, in

general, the objective function is non-linear. In this study, one

case where the form of the objective function turns out to be quad-

ratic is considered. Also, in general, disadvantages and limita-

tions of the approach used in this study are discussed.

2. The Model

The model was built and dealt with in an indirect manner.
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Instead of analyzing the problem by minimizing the inventory level

of needed resources, we use an approach whereby the flights are

scheduled in such a way so as to minimize the overlapping periods

during which the same types of resources are used by the various

flights. Associated with each overlap for the use of the same type

of resource by any pair of flights is a penalty cost which depends

upon the number of units of that resource needed by these flights.

Assuming that costs of resources remain unchanged during the whole

period of the traffic model under consideration and that penalty

costs are directly proportional to the lengths of the corresponding

overlaps, the over-all objective function, which is the sum of such

costs, is linear. Associated with the objective function is a

number of sequencing and resource constraints which are also linear

in form. Thus the problem under consideration falls within the

domain of linear programming.

One program involvig use of linear programming for scheduling

flights concerning space mission was prepared by Lockheed Electron-

ics Co. in 1976 in the form of a technical report [1]. However, use

of this program is basically restricted to cases dealing only with a

fixed set of resources and the problem is one of selecting a traffic

model from among various flight candidates which satisfy certain

objectives. In our investigation, we have elaborated and refined

the approach proposed in [6]. Stated below are the basic assump-

tions that concern our investigation.

(1) There are n flights to be launched during some given interval

of time, [0, T].
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(2) The order in which these flights are to be launched is prede-

termined.

(3) Of the n flights, there are p (^n) specific flights with fixed

launch dates. Each such flight may, however, have a launch window

of a certain specified length.

(4) All flights utilize at least one type of ground resource from a

collection of M different types.

(5) Any flight that utilizes say, a type 'k1 ground resource may

require n^ (';>!) units of that resource.

3. Notation and Formulation

Let, t^, (i = l,2,...,n) be a variable denoting the launch

time of the ith flight.

For any flight i that utilizes a type 'k1 resource before its

launch time, skl denotes the length of time in which this

resource is seized before ti and d denotes the corresponding

duration for its use.

For 1 ̂  i < j < n, the non-negative overlap variables are

denoted by O.H1, (k = 1,2,...,M; r = 1,2 3,4).

The variable o- measures the amount of the overlapping

period for use of a type 'k' resource by the ith and jth flights

when the seize times for the resource occur before their launch

times. The variable 0̂ .2 measures the amount of the overlapping

period for use of a type 'k1 resource by the ith and jth flights

when the seize times for the resource occur before t£ for the ith

flight and after t-i for the jth flight. The variables Ok.3 and
J L

*4 are similarly interpreted. In the case of Ok.3, the
y «J
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seize times for the resource occurs after t^ for the ith flight

and before tj for the jth flight. For oM, the seize times

for the resource by both flights occur after their launch times.

Clearly, for a traffic model consisting of n flights and M types

of resources, the launch time variables t̂ ,'t2,. . . ,tn generate

2Mn(n-l) non-negative overlap variables.

The assumption that no two flights are to be scheduled at the

same instant of time leads to constraints of the type

ti+i - ti ̂  d > 0, (i = l,2,...,n). (1)

The provision that there are p specific flights with fixed

launch dates at times, say, tn., (i = l,2,...,n) may have launch

windows yields constraints of the type

tn - '?/ ii i tn ^' li * (i = If 2, . . . ,p ). (2)

Also note that tn ̂  T. (3)

The relationships between the variables oHr and t^,

(1 ̂  i < j 4 n, r = 1,2,3,4; k = 1,2,...,M) are given by the

equality constraints

i J ij ~ ij '

where the constants d̂ .r are defined by

rjkl _ rfkl _ okl . okl
^*l • • "™ \ji • 3 • i^ O * •

"-J c u J '

dk2 = dkl _ skl _ Sk2
tj t «- J '

dk3 _ dk2 + Sk2 + skl^

dk4 = dk2 + Sk2 _ Sk2.
tj i i J

Let n^l and n^2 denote, respectively, the number of

units of a type 'k1 resource utilized by the ith flight when the

seize times for this resource occur before and after ti, n^l
J
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and nk2 for the jth flight are similarly defined. These quanti-
•J

ties are used in the formulation of the cost functions. Under the

assumption that costs of resources remain constant during the period

under consideration, we consider the case where the cost, Ck.r

associated with the overlap variable oHr is given by

ckr = nkr Okr c<
k),

«J <-J U
(1 ̂  i < j £ n; r = 1,2,3,4; k = 1,2,...,M).

Here,

nkl = Min(n
kl, nkl),

y «• J
nk2 = Min(nkl, nk2),
M «• J
and C^k^ is the weight given to a type 'k1 resource based on

cost considerations relative to other types of resources in the

collection. The over-all objective function T, say, is the sum of

costs Ckr over all values of k, r, i and j, (i <. j).

After a considerable amount of straight forward algebra, it can be

shown that mininizing T is equivalent to minimizing TI given by

i -i

n.Kr, (1 <. i C j * n).

Recall that T^ which is linear in t^'s is to be minimized
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subject to linear constraints given by (1), (2), (3), and (4).

4. Some Remarks

In the model developed above, we have assumed that there are p

specific flights out of n with launch dates fixed at times tn, ,
L,

(i = 1, 2, 3, . . . ,p) ; each of which has a launch window of a certain

specified length. Since the order of the flights for any given

traffic model is predetermined, the launch times t^,

(i = l,2,...,n) satisfy

0 *: ti <*. t2 « . . . <tn < t n +| . , , . . . . < tn _( <£

... < tn.| <tn.

In the case where np = n, that is, the last flight is one with a

fixed launch date, the constraint tn * T will be replaced by one

of the form

tn ^lp.

Since all flights are to take place during the interval [0,T], lp

should satisfy the condition

1~ < Tp — •*• •

Similarly, in the case where n^ = 1, we have the condition

tl * II

with li ̂  0.

5. Other Cost Functions

In the model developed above, due to the assumption that costs

of various resources remain constant, the objective function turned

out to be linear. If this assumption is relaxed, in general, the

objective function is non-linear and this would considerably

increase the degree of difficulty of the problem. Below we consider

the case where the objective function assumes a quadratic form.
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Here, we assume that the cost of each type of resource increases

linearly with increasing time. Specifically, we assume that the

cost C*k* for the kth resource at time t£ is

C<k> = ak + bkti,

and the penalty cost C^F associated with the overlap variable

oKr is given byLJ
ckr = (C.(k) - c.<

k)) nk.r oH.r
j t tj t-j
= bk (ti - ti) n

kr Ok.r,
KJ <-j

(r = 1,2,3,4; k = 1,2,...,M; 1 ^ i <j ^n).

The overall objective function is thus

T = Ck.r,

where the sum is to be performed over all values of r, k, i and j,

(1 ^ i < j < n).

After a lengthy but straight forward algebra, it can be shown that

ij<ti - tj)2 +

where each sum is to be performed over the set

•± i ^ j *=. n \ , and

M H
^̂ \ NT-1

1 i •; = - x y n** bv,3 4̂  4̂  LJ
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Further simplification reduces the objective function to the form

r\

T =

where

~ X
_̂

The form of the objective function T does not in any way alter

the form of the constraints and hence T is to be minimized subject

to the same constraints given by (1), (2), (3), and (4). In terms

of matrix notation, the objective function can be written as

T = &? + tLtv ,

where

L = (lij) is a symmetric n X n matrix,

t^ = ( t^,t2f . . . ftn),

£ = (PlfP2/- • • fPn>/

and t* and pN are column vectors corresponding to _t and p_.

6. Discussion and Conclusion

At the present time, there are some convincing arguments that if

we are dealing with a relatively short interval of time, (e.g., one

year), the costs of resources could very well remain constant.

Thus, in such a case, the formulation of the problem as a linear

programming problem is well justified. Furthermore, this assumption
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does lend itself to easier treatment both from the mathematical and

computational aspects of the problem. Other assumptions for the

cost function, in general, considerably increase the complexity of

the problem especially from the computational point of view.

As mentioned earlier, for a traffic model with n flights, in

addition to the n launch times, variables, in general, there are

2Mn(n-l) overlap variables and the number of constraints is n + 2p +

2Mn(n-l). Thus, if there are no flights with fixed launch dates,

the number of variables is the same as the number of constraints.

An increase in the number of resources by one may cause an increase

of as many as 2n(n-l) variables. In actual practice, the number of

variables actually needed may be reduced if, for example, we know

that the duration for use of any resource is short relative to the

interval under consideration. On the other hand, for any flight

type, there would be a minimum of about 15 ground resources where

cost considerations should not be ignored. Thus, even if we have as

few as 20 flights per year, the number of variables involved may be

as many as 20 + 2(15)(20)(19) = 11420, a very large number indeed.

The recent findings of Karmarkar [2] concerning an algorithm for

large scale linear programming problems when available will, hope-

fully, prove useful to our problem. So far his approach exists only

in what has been described as rougher computer code and, perhaps, it

has not been tested on a' wide range of problems.

In the analysis of the problem, we have used an indirect

approach to optimize the use of needed ground resources. This

approach provides us with launch times for scheduling flights of any
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given traffic model. However, note that it does not directly lend

itself to the computation o-f the total cost b'f re'sources needed. In

order to find the total cost corresponding 'to any "solution

(t-l/t 2». . . /tn) of the launch tames, the peak requlrem'ent for

each resource will have to be determined -in each case.
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