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PREFACE

The Pinhole/Occulter Facility (P/OF), whose science and technology are discussed at
length in these proceedings, has recently undergone a Phase A study carried out at the NASA

Marshall Space Flight Center. (For an overview of study results, see the bibliography which
concludes this section.) In anticipation of the succeeding Phase B study, the time appeared
ripe to bring together solar physicists from around the world to re-examine and discuss P/OF as
a research tool. About 60 observers, experimenters, and theorists from across the United States and
from Brazil, France, Japan, the Netherlands, and the United Kingdom gathered in Huntsville,
Alabama, May 8-10, 1985, for a three-day working conference entitled "Workshop on Solar High-
Resolution Astrophysics Using the Pinhole/Occulter Facility." The resulting 25 invited and con-
tributed papers, plus reports on the subpanel discussions, form the basis for this NASA Conference
Publication. The editors would like to thank the participants for giving the interesting papers that
created a stimulating workshop.
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INTRODUCTION

Hugh S. Hudson, 1 Einar Tandberg-Hanssen, 2 Robert M. Wilson, 2 and Joseph R. Dabbs 2

The study of solar activity has progressed through several generations of observing capabil-
ity, originating long ago in visual telescopic observations of sunspots (Galileo) and solar flares

(Carrington). As we have progressed in this sequence of observational capability, we have had a
typical mixture of older problems being solved, along with new questions being raised by the
novel new data. Today many crucial questions remain: for example, is the excess energy needed
to drive the phenomena of activity stored in the corona, or below the photosphere? This
question remains unanswered but of real interest wherever in the Universe magnetic energy release
creates observable astrophysical phenomena.

The Pinhole/Occulter Facility (P/OF) represents revolutionary improvements in solar
observational capability. For X-radiation, crucial to studies of solar activity because of high-
temperature phenomena and ubiquitous particle acceleration, the chief benefits will be in pro-
viding imaging at resolutions better than 1 arc s for hard X-ray and gamma-ray photons. For
visible and EUV observations the P/OF represents a second generation of space experiments. The
large telescope apertures that P/OF makes possible will give much better resolution and sensitivity.
The P/OF concept creates these advantages not so much from sophisticated new technology, as
simply from exploiting space to increase the distance between the observing instruments and the
pinhole/occulter structure. The baseline separation is 50 m in the "strawman" configuration often
mentioned in the papers published in these proceedings.

The papers below combine science with "advocacy." In these proceedings, authors were

asked to consider the fields of science relevant to P/OF and to help the Science Working Group
to reconsider the details of the strawman payload, originally chosen before the Solar Maximum
Mission and Hinotori results became available. The advertising aspects of the advocacy are less
important, because there is general community agreement that P/OF should be developed as soon
as it can be fitted into the NASA program.

It is sometimes difficult to predict the results of new observational capability. There is
usually a solid, anticipated result that justifies the development - in the case of the 5-m Hale

telescope, the detection of individual stars in external galaxies was important. But there are also
unexpected and often even more interesting results - perhaps the discovery of the quasars in

the case of the Hale telescope. The analogous "expected" results for the P/OF X-ray imaging
would be in the structure of the solar-flare impulsive phase, where we expect to find small

structures that will require at least the angular resolution achievable by the initial P/OF.
De Jager's paper in these proceedings discusses the physics of the impulsive phase.

In the papers presented here, the authors have made some substantial efforts to

extrapolate from our present knowledge into the P/OF domain. On the X-ray side, there is much
recent emphasis on rapid bursts and "microflares." There is a striking example of simultaneous
rapid bursting in hard X rays and millimeter waves shown by Kaufmann et al.; see also the example
of a physically large but rapidly variable radio source shown by Dulk. The radio observations

act in some cases as a guide to our anticipated X-ray and coronal observations, and several papers
in these proceedings review and comment upon the physics arising from the radio observations
(see first Pick's article). The P/OF observations will have enormously greater power if simul-
taneous radio observations - over the whole radio spectrum - can be made simultaneously.
1. UCSD.

2. NASA Marshall Space Flight Center.



The ground-based optical spectrum offers a similar example of how observations at differ-
ent wavelengths can work together well in studying the complex physics of solar activity.
Canfield's article in these proceedings describes the modern developments in spatially-resolved

H-c_ spectroscopy, which has been very productive in flare research in the past solar maximum.
The development of numerical models for the heterogeneous structures of solar activity, linking
the tenuous corona with the denser layers, has accompanied technological developments in
ground-based observation. These have re-established the central role of ground-based observations
of the optical spectra of solar flares.

The pioneering X-ray imaging observations from the Solar Maximum Mission and from the
Hinotori spacecraft have given us some further knowledge upon which to base our expectations
from P/OF. In Svestka's article there are probably examples of several new dynamical effects in
the low corona visible through X-ray emission.

Finally, we should point out that the P/OF concept is changing in the light of recent data
and theories. Before the past maximum, we had little knowledge of the solar gamma-ray spectrum.

The gamma rays (and neutrons as well) turn out to be very detectable and quite interesting

physically. The P/OF concept works well for these radiations, and we can anticipate making arc
second images of gamma-ray and neutron sources in solar flares. The community of high-energy
astrophysicists is only beginning to think about the implications of this possibility.

We attempted in this workshop to allow for this evolution by having two subpanel dis-
cussions on high-energy (Lin and Dennis) and low-energy (Munro) instrumentation, respectively.
Because of the restricted time available for these discussions, they are somewhat incomplete - for

example, the potential of gamma-ray and neutron imaging is not really discussed in these pro-
ceedings at all. We can only hope that these subjects, as well as the non-solar astrophysics
enabled by P/OF (see an excellent summary paper by Wood on P/OF X-ray astronomy), will be
given their proper attention as the enabling facility becomes available.
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THE CONCEPT OF THE PINHOLE/OCCULTER FACILITY
(Invited)

Hugh S. Hudson

CASS C-011, UCSD, La Jolla, CA 92093 U.S.A.

ABSTRACT

The Pinhole/Occulter Facility is based upon a simple idea for obtaining high angular
resolution in astronomical X-ray observations, for example for solar flares at energies >10 keV.

The scheme uses a coded aperture device (multiple pinhole camera) with a large separation
between the aperture encoder and the detector. Such an imaging device can have an angular
resolution much better than 1 arc s if desired.

A large structure would also make it possible to have a large external occulter, which
would have powerful applications, notably for high-sensitivity observations of the corona in EUV

and white light. This capability leads to the definition of the Pinhole/Occulter Facility, which
combines both X-ray and coronal observations. The present concept is based upon a 35-m
deployable boom, erected in the cargo bay of the Space Shuttle and pointed in the solar direction
by the Instrument Pointing System of Spacelab.

I. INTRODUCTION

It is possible to make images of high-energy radiations - X rays, 7-rays, and material
particles - by using the coded-aperture method. If the aperture is a large distance from the

detector, such images can have excellent angular resolution, limited only by diffraction if
problems of fabrication and deployment be solved. The simplest example of such a coded-
aperture telescope is the pinhole camera, which forms a real inverted image on any plane behind
the pinhole. More complex aperture patterns can also be used, with a great increase in image
brightness. Hudson and Lin (1978) described the application of these ideas to high-energy
astrophysics.

The idea for a Pinhole/Occulter Facility (P/OF) began during studies of methods for
observing solar hard X-ray emission with high angular resolution. These studies aimed at produc-
ing instruments to be deployed from the Space Shuttle. A Facility Definition Team for Hard
X-Ray Imaging assessed the technology available for such observations, and in the course of these
studies realized that very high angular resolution could be achieved.

This paper reviews the concept of the Pinhole/Occulter Facility from the point of view of
its capability for X-ray observations; the other "half" of the instrumentation planned at present
for P/OF aims at making revolutionary new EUV and visible-light observations of the corona.

Further information appears elsewhere in this volume on the science in these areas of P/OF
(Withbroe, 1985) and from the important phenomena that need both X-ray and coronal
observations.

The non-solar capability of a large-area X-ray detector array with sub-arc-second imaging
capability is great. This aspect too will not be discussed here, but is the subject of a separate
paper by Wood (1985).



II. SCIENTIFIC OBJECTIVES

When dynamical phenomena occur in the magnetized plasma of the solar atmosphere,
particle acceleration results. The mechanisms of this particle acceleration are interesting in them-
selves, but the particles also give us information about the energy release - its timing, geometry,

modality, and magnitude. Thus, since the initial hard X-ray observations of solar flares (Peterson
and Winckler, 1959; for a review, see Kane et al., 1980), we have known that sensitive imaging
observations of the hard X-ray bremsstrahlung production by the accelerated electrons would

make the next major observational step in flare research.

The Pinhole/Occulter Facility takes major steps in improving the angular resolution and
the sensitivity over prior observations. In angular resolution, P/OF will give 0.3 arc s as opposed
to the 8 arc s of the Solar Maximum Mission (Van Beek et al., 1980); in sensitivity, P/OF has a
total area of 1.5 m 2, far larger than any previous solar instrument, or any non-solar hard X-ray
instrument for that matter. Its sensitivity will be great enough to observe many cosmic X-ray
sources as they transit through the solar corona, and thus P/OF will observe solar phenomena at
low flux levels never before observed.

The first major scientific objective is illustrated in Figure 1, which shows microwave and
hard X-ray observations from a flare of November 5, 1980 (Duijveman and Hoyng, 1983). These
data can only suggest relationships between the hard X-ray emissions and the microwave and Ho_
observations but certainly reinforce our ideas about the close relationship between the accelerated
particles and the flare effects that occur at all levels of the flaring atmosphere.

In the corona the situation remains even more obscure. We know that dramatic effects

take place: the launching of coronal mass ejections, the acceleration of "solar cosmic rays," and
rearrangements of the magnetic field that require large amounts of energy. Figure 2 shows the
Hinotori observations of a coronal hard X-ray source accompanying a flare of May 13, 1981, from
which little impulsive emission occurred. Thus it seems as though the coronal particle acceleration
can take place semi-independently of the acceleration on the compact, closed magnetic loops that
flare up in the impulsive phase. The observational requirement here is for sensitivity, rather than
high resolution particularly since the coronal plasma is more tenuous and thus produces
bremsstrahlung more weakly.

III. CODED-APERTURE IMAGING

The basic idea of coded-aperture imaging for high-energy astrophysics was proposed inde-

pendently in different forms by Oda (1965; the modulation collimator) and by Dicke (1968; the
random aperture "t-ray imager). A general discussion of these imaging techniques had already been
given by Mertz (1965), but the first practical application of the methods in astrophysics was with
Oda's ideas: modulation collimators mounted on rocket-borne X-ray detectors succeeded in locat-

ing the bright cosmic X-ray source Sco X-1 well enough so that ground-based telescopes could
identify its optical counterpart (Sandage et al., 1966), the first identified stellar X-ray source
beyond the Sun.

We can now identify three classes of coded-aperture imagers, which have many, two, and

one aperture masks, respectively:

1. Grid collimators (SoUer collimators) in which several grids are placed at specific dis-
tances in front of a detector to define a narrow field of view. The HXIS instrument from the

Solar Maximum Mission (Van Beek et al., 1980) is the most sophisticated example of this type.
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2. Modulation collimators (Oda, 1965) in which two grids - one at the front, and one at
the detector at the back of the instrument - cause shadow bands to sweep across the sky with
the motion of the telescope. Recent variants of this, which we call "Fourier Transform Tele-

scopes," do not require scanning motion (Makishima et al., 1978; Hurford and Hudson, 1985).

3. Coded-aperture imagers (Mertz, 1965; Dicke, 1968) in which a single aperture mask at
the front of the instrument makes an intermediate image on a position-sensitive detector. The
final image is produced by deconvolution, essentially by a correlation analysis. There are specific
aperture codes that result in flat sidelobes (Gunson and Polychronopulos, 1976; Fenimore and
Cannon, 1978), so that complete image information can be obtained.

These three approaches each have merit in specific applications. The third type has the advant-
ages of high throughput and complete image formation, but its angular resolution is limited by
the position resolution of the detector and by the mask-detector separation.

IV. X-RAY CAPABILITY OF THE PINHOLE/OCCULTER FACILITY

The Pinhole/Occulter Facility incorporates two hard x-ray imaging systems: a coded-
aperture imager for sensitive observations of the whole Sun, with moderate angular resolution
(8 arc s FWHM); and a Fourier-transform imager for high-resolution observations on the smallest
scales (0.3 arc s FWHM). Both imagers use tungsten grids (aperture-encoding masks) with precise
patterns of holes used to create the image on a position-sensitive detector.

Table 1 summarizes the tentative parameters of these two X-ray imagers on the Pinhole/
Occulter Facility. We describe each instrument briefly here:

Fourier-Transform Imager. The Fourier-transform approach to image formation divides the

total area of detector into "subcollimators," each one of which measures one Fourier component
of the source angular structure. To make a complete image requires a large number Fourier
components; on the other hand, for a given detector area, the area per subcollimator drops as the
number increases. This presents a tradeoff problem: sensitivity versus image completeness.
Unfortunately this tradeoff depends upon the source angular structure itself, and also is hard to
analyze, so the optimization of the number of subcollimators will require numerical modeling.
Figure 3 shows how the subcollimators produce individual Fourier scans of the source angular
structure.

The field of view decreases as the number of subcollimators increases and their dimensions

decrease. For the 100-subcollimator layout given in Table 1, the field of view is only sufficient

to image a single active region at high resolution. This implies that an "image motion compensa-
tor," an X-Y translation of the detector or of the grids, is required to image a given solar active
region.

Coded-Aperture Imager. The simple coded aperture requires only a single grid, and then
relies upon the position-sensing capability of the detector to form an image. If the pattern of the
aperture code is physically large enough, the field of view can cover the whole Sun. The angular
resolution is limited by the ratio of position resolution in the detector to mask distance, which
corresponds in the data of Table 1 to about 4 arc s (FWHM, assuming oversampling by a factor
of two and a position resolution of 0.5 mm). Figure 4 shows the hole pattern of a typical
"uniformly redundant array" (Fenimore and Cannon, 1978).



V. CORONAL CAPABILITY OF THE PINHOLE/OCCULTER FACILITY

The existence of an occulter at some great distance from a telescope has real advantages
for the observation of faint objects (e.g., the corona) in the presence of bright objects (e.g., the
solar photosphere). The improvement in the diffraction pattern relative to that of a normal
external occulter makes it possible to observe closer to the limb of the Sun. Even more

important, the large shadow of the distant occulter makes it possible to have large-aperture optics;
all previous space-borne coronagraphs have had small apertures with resulting poor angular resolu-
tion and low sensitivity. The Pinhole]Occulter Facility includes one coronal telescope -
essentially an all-reflecting coronagraph - and an EUV spectrometer capable of imaging resonance-
scattered solar light in various EUV emission lines.

VI. OTHER APPLICATIONS

The Pinhole/Occulter Facility has its own scientific program, but there are other potential
applications of the basic idea - the use of large structures in space (or no structures at all) to
create new observational capabilities. For interest, we review some of these ideas here with the

caveat that none of them might have any relr.tionship to the Pinhole/Occulter Facility.

Sun-Grazing Comets. The successful detection of Sun-grazing comets by coronagraphs
(Michels et al., 1982; Sheeley et al., 1982) represents an interesting application of sensitive
photometry of diffuse objects near the solar limb. The low diffracted light level of a remote
external occulter not only reduces the diffuse background light, but also allows one to observe
closer to the limb of the Sun. Both advantages should aid in the detection of comets that
approach or strike the solar surface.

Planetary Detection. A remote external occulter provides a sharp Fresnel diffraction
pattern, and this can aid in suppressing a bright stellar image in a search (for example) for a
planet orbiting a nearby star. Spitzer (1962) may have proposed this originally in the context
of space astronomy, having in mind an independent occulter subsatellite navigating around the
Space Telescope. Elliot (1978) has given an analysis of grazing lunar occultation as a realization
of this idea.

Solar Occultation. Elliot (private communication) has pointed out that sufficient control
of scattered and diffracted light levels, together with high-resolution, stable stellar images from
space, should permit observations of the actual occultation of a star by the outer layers of the
solar atmosphere. This would provide a totally new means for studying atmospheric structure and
also give high resolution.

Interferometric Detection of Gravitational Radiation. The deformation of large structures

in space, or else perturbations of the relative positions of two independent satellites, might
provide a means of detecting gravitational radiation via precise geometrical measurements (Failer
and Bender, 1984).

Stellar Interferometry. At present there are ideas for multiple-component optical inter-
ferometers in space that would use one or more subsatellites (e.g., Stachnik et al., 1984; Labeyrie
et al., 1984). The control of these subsatellties for interferometry resembles the control problem

for X-ray imaging, but is much more demanding since position information at some small fraction
of an optical wavelength would be required.



VII. EVOLUTION OF THE P/OF CONCEPT

A reasonable plan for developing the Pinhole/Occulter Facility would use Spacelab as a

stepping-stone to an eventual deployment on the Space Station. The great sensitivity of P/OF
means that it can obtain interesting results even in its initial brief observations, but the major
fruits will come only from systematic observations as the Sun displays its whole range of
phenomena. Non-solar observations naturally are limited only by the total number of photons
detected, so that the long exposures possible from the Space Station will be essential.

The key technology needed for making coded-aperture telescopes of high resolution lies
in stably defining the geometrical geometric relationship between the components of the instru-
ment. A rigid structure can do this, as it does in a classical telescope. Relying on a rigid struc-

ture may pose problems for the highest resolution, however, since any structure will exhibit
geometrical instability at some level. In "conventional" telescopes such as AXAF (the Advanced
X-Ray Astrophysics Facility), one now finds designs in which some structural flexibility can be
tolerated; essentially the motions of the image are reconstructed and removed after its detection
by using accurate knowledge of the image motion.

In the initial formulation of the Pinhole/Occulter approach we envisioned the use of

separate subsatellites, one carrying the coded aperture and the other carrying the detectors.
Each subsatellite would carry components of a system for determining the pointing direction of
the telescope. This information then would provide the precise knowledge needed to restore the
image after the detection process. The use of such subsatellites in near-Earth orbit would require
considerable maneuvering capability because of the need to maintain non-Keplerian orbits for a
given view direction. This is analogous to the use of subsatellites for optical interferometry

mentioned above, but with less severe requirements on relative position information.

The basic concept of the Pinhole/Occulter Facility offers us a chance to make revolu-
tionary observations in important areas of solar observation without the need for very much
technology development. In a sense the P/OF concept is a "brute force" solution to the problem
of improving observations in this area, simply by having a very long "focal" length. This kind
of idea can be considered in an era when large-scale construction can be done in space. The struc-
tures required are not massive ones, and their alignment is not particularly critical in view of the

possibility of reconstructing an image photon-by-photon in the presence of substantial pointing
jitter. Nevertheless, active damping control by the IPS would be necessary to stabilize the boom
adequately.

On Spacelab, the deployment of the P/OF structure would be by use of a self-extending
boom. On the Space Station, the longer time in orbit and access to the astronauts' aid in
assembling a large structure make it possible to think more imaginatively. A permanent three-
dimensional structure with excellent rigidity but low mass could easily be designed and assembled
in orbit. This should make it possible to have a simpler pointing-control actuator than the IPS.
Finally, one should look forward to the eventual evolution of this concept to include a maneuver-
able subsatellite capable of circulating around the detector array mounted on the Space Station.
Such a facility would make it possible to achieve angular resolution well below 0.1 arc s.

Acknowledgments. This research was supported by NASA under grant NSG-7161.
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TABLE 1. X-RAY IMAGING SYSTEMS FOR P/OF

Fourier-Transform Imager

Angular Resolution 0.3 arc s
Field of View 4 arc min
Total Area 3000 cm 2

Energy Range 2 - 120 keV
Number of Subcollimators 100
Time Resolution < 1 ms

Coded-Aperture Imager

Angular Resolution 4 arc s
Field of View whole Sun
Total Area 12 000 cm 2

Energy Range 2 - 50 keV
Time Resolution < 1 ms

Sensitivity @ 5 keV 0.03/aJy

I
I

~30ooo
km

!

TB = 2.0x 108 K T B --6.3x108 K

TB,L = 5.4x 108 K

VLA 15 GNz TB,R=9.4xlOSK

F-q

•[_LJ I.I
HXIS 16-30keY

Figure 1. Observations of hard X rays (lower panels) and microwaves (upper panels) from a
flare of November 5, 1980 (Duijveman and Hoyng, 1983). The two epochs in the flare
represent (left) an impulsive spike, and (right) the peak of gradual hard X-ray emission.

The dots in the rectangular pixels (8 arc s X 16 arc s) indicate that the spectrum in
those pixels deviated significantly from a single-temperature thermal fit. Thus, this

observation shows - at a marginal level of image quality - that the foot-points
of the flux tube shown by the microwave source tend to show thick-target

hard X-ray emission.
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Figure 2. Hard X-ray coronal source during a flare on May 13, 1981 (Tsuneta et al., 1983).
The lower part of the figure shows a one-dimensional image at 35 GHz. The observations

show that stable trapping of a large population of non-thermal electrons can occur on
extended magnetic loops.
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Figure 3. Principle of Fourier-transform imaging (Hurford and Hudson, 1985). Each
subcollimator, or separate grid area, corresponds to one Fourier component of the

source spatial distribution. A position-sensitive detector of moderate resolution

('10% of the subcollimator dimension) is necessary to read out the image.

X-RAYCAMERA

X-RAY APERTURE RECORDED COMPUTER RECONSTRUCTED
SOURCE PICTURE DECODING IMAGE

PROCEDURE

Figure 4. Example of a "uniformly redundant array" pattern for a coded-aperture
imaging instrument (Fenimore and Cannon, 1978). Such mask patterns have the

property that their autocorrelation function is flat, so that no spurious
sidelobes appear in the resulting image.
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THE SUN AT HIGH SPATIAL RESOLUTION: THE PHYSICS OF SMALL
SPATIAL STRUCTURES IN A MAGNETIZED MEDIUM

(Invited)

Robert T. Rosner

Harvard-Smithsonian Center for Astrophysics
Cambridge, MA 02138 U.S.A.

I. INTRODUCTION

It is astrophysical theory's lot to rarely predict new phenomena, and far more commonly
to be called upon to provide a posteriori explanations for already observed phenomena. I there-
fore find myself in somewhat of an unusual position for a theorist in discussing what has not as
yet been observed. This situation is of course familiar to the experimenter, who wants to build
new instrumentation for studying phenomena at previously unexplored scales or wavelength
regimes, and is in a partial quandry because theory is rarely able to fully justify this step - that,
after all, is the point of serendipitous discovery. In the case at hand, I am fortunately on surer
grounds: although I will be discussing phenomena which may occur on as yet unobserved spatial
scales, there are excellent theoretical reasons for thinking that important physical phenomena can
be studied on these spatial scales. But before delving into the implications of such physical
processes, I would like to briefly review some of the reasons for thinking that there do exist
structures in the solar outer atmosphere with spatial scales smaller than those typically accessible
to present-day instrumentation.

II. SOME OBSERVATIONAL HINTS FOR "UNRESOLVED" STRUCTURES IN
THE SOLAR OUTER ATMOSPHERE

Tile current observational evidence for substantial spatial structuring of the outer solar
atmosphere on a host of scales will be extensively and ably summarized by the other speakers,
but I thought it might be useful to set the stage for my more theoretically-oriented talk by
noting the most basic fact about the spatial structure of the solar chromosphere and corona:
there is no evidence whatever that any part of the atmosphere has been fully resolved, no matter
what the wavelength at which observations have been carried out. A rather typical example was
provided several years ago by L. Golub and N. Sheeley, who compared soft X-ray images of an
X-ray bright point with EUV images of the same bright point (taken, respectively, with the S-054
X-ray telescope and the S-082 EUV instrument onboard Skylab). As Sheeley and Golub (1979)
point out, the relatively small difference in nominal resolving power of these two instruments,
which was not an important constraint on resolution for the normal-incidence EUVtelescope),
was nevertheless sufficient to show that the unresolved X-ray bright point in fact consisted of a
set of very small coronal loops, duplicating in miniature the structure of active region loop arcades
(Figure 1).

This suggestion, that the effective volume filling factor of hot plasma above the solar
surface is much smaller than a naive interpretation of available EUV and soft X-ray images would
imply, has received strong support from a succession of differential emission measure studies of the
transition region. For example, in a succession of models of this layer of the atmosphere,
Feldman et al. (1979) and Feldman (1983) have shown that a plane parallel description is entirely
inadequate to describe its structure, a conclusion also reached by Athay (1982: see also earlier
references therein). In a recent summary of these observations, Rabin and Moore (1984)

14



presented a phenomenological model for the lower solar atmosphere in which appeal to highly
localized heating (with < 1% filling factor) was made; whether or not the specific model proposed
by Rabin and Moore really applies, the crucial point remains that unless appeal to highly localized
energy release processes is made, it is difficult to understand the spatially resolved observations.
Given this inconsistency with the most straightforward (i.e., plane-parallel) interpretation of the
resolved observations, it behooves us to ask two questions: first (and most obvious), will higher
spatial resolution observations resolve (in both senses of the word) the structure of the atmos-
phere; second, are there theoretical reasons for understanding why the atmosphere is structured

on presently-unresolved scales, and can theory provide estimates of the likely spatial scales of
this unresolved structure. In the following, I will give my personal perspective on these issues,
based on recent studies of these sorts of problems I have been involved in.

III. THE THEORY OF SMALL SPATIAL SCALE STRUCTURES

The realization that important physical processes in the solar outer atmosphere must occur
on very small spatial scales - certainly far smaller than the approximately 1 arcs (= 720 km)

typically resolved by ground-based observations - goes back to the early work of Sweet (1958)
and Parker (1963) on magnetic field dissipation and reconnection. The key points are, first, that
we know that the solar surface magnetic fields change on time scales as short as minutes; and,

second, that if one assumes the classical (Spitzer) magnetic diffusivity, then the diffusive time
scale for structures of the size scale of solar active regions is of the order of years and longer.
This basic difficulty first arose in the context of explaining the very short time scales associated
with solar flares, but actually arises in understanding virtually any observed change in the resolved
structure of the solar surface. The solution to this problem had to await Petschek's (1964) paper
on neutral point reconnection, which showed that since the dissipative time scale varies with the

square of the gradient scale length of the magnetic field, and only linearly with the inverse
effective electron scattering frequency, it is essential to vastly reduce the spatial scale of magnetic
field variations (even in the presence of other processes - such as scattering of electrons by
electrostatic waves - which increase the effective electron collision frequency); one of Petschek's
key contributions was to provide an explanation of how a sufficient reduction in spatial scales
can come about. Thus, we can conclude that there must be processes which occur on spatial
scales far below those which can be directly observed today (i.e., below roughly 1 arcs), and
which have major consequences for the dynamics of resolved structures.

It remains to ask how small are these dissipative structures. Unfortunately, it is easy to
show that their spatial scales very likely lie far beyond the resolution and sensitivity limits of
planned experiments I am aware of (even if one imagines the effective electron scattering fre-
quency to be vastly increased by, for example, scattering off ion-cyclotron waves). It is then
appropriate to ask whether one expects to discover new phenomena in the spatial scale domain
which we can realistically expect to reach within the next decade or so, that is, on scales of
_0.1 to 1.0 arcs (or _ 70 to 700 km). I believe that the answer is a resounding "yes," and
would like to illustrate the reasons for my optimism with two examples which arise in my own
work. These examples focus on the possible geometric structure of a magnetized fluid from two
rather distinct perspectives: I will first ask whether an initially uniform, magnetized, and current-
carrying radiating plasma is stable; the answer turns out to depend sensitively on the precise
nature of the initial state and, in particular, on what we believe might be the initial state of the
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gas which becomes the observed structured solar chromosphere and corona. I will then turn to a
problem first explored by H. Grad and E. N. Parker, namely, whether such an initially-uniform

(magnetostatic) state can in general remain magnetostatic when subjected to arbitrary perturba-
tions; and, more specifically, what geometric and topological properties such as perturbed
equilibrium might have.

(a) The formation of small-scale structure in a radiating plasma

Although it is by now generally accepted that magnetic fields are largely responsible for

the formation of the Sun's corona (and perhaps its chromosphere as well), it remains puzzling
exactly how the "coronal" state (i.e., a highly spatially-structured, low density but high tem-

perature plasma) is formed. That is to say, prior to asking how or why there is small-scale (e.g.,
sub-arcsecond) structuring, one should be concerned with how spatial structuring into the
ubiquitous coronal "loops" occurs in the first place.

The basic reason why this puzzle arises at all is simply understood by considering the
expansion of the photospheric magnetic fields (which are known to be highly spatially structured

on scales ranging down to the sub-arcsecond level) above the photosphere. It is easy to show that
because the overlying atmosphere is dominated by these magnetic fields, field lines should become
space-filling within a few thousand kilometers of the level of optical depth unity in the
continuum. Hence, if all emerging magnetic field fines were equally loaded with hot coronal
matter ("coronal democracy"), then the corona should not show any major evidence for spatial
structuring in the plasma emissivity (recall that the observed coronal inhomogeneity largely

reflects variations in the local plasma density, rather than in the local plasma temperature). This
is of course not observed to be the case: there does not seem to be coronal democracy, some
(sets of) reentrant field fines being selected out by being relatively more loaded with hot coronal

plasma than others - hence the loop structuring. This selection effect, together with the observa-
tion that any given loop structure is highly variable in its emission level (e.g., highly variable in
the amount of matter loaded onto that set of magnetic field lines), suggests the operation of some
sort of transient or instability which leads to the "filling" of only some flux tubes. As a momen-
tary aside, I might note that it is of substantial interest to discover the plasma conditions along
those field lines which are not loaded with substantial amounts of hot coronal matter: to answer

this question will require imaging instrumentation sensitive to emission from a broad range of
plasma temperatures, as well as high spatial resolution and extremely low sensitivity to scattering
(the latter is essential in order to avoid overwhelming the likely weak emission contribution from
the "unloaded" field lines with the copious emission from surrounding "loaded" field lines, a
problem wellknown at X-ray wavelengths in studies of coronal holes; of. Maxson and Vaiana,
1977).

As an example of the kind of theory which the considerations just discussed give rise to,
I will describe recent work by Ferrari et al. (1982) and collaborators which suggests that this
"loop filling" process is - at least during the initial stage of magnetic field emergence from the
photosphere - the result of a heating instability driven by coronal currents. We know that the
pre-coronal state of coronal plasma - the initial state - must be associated with the relatively
cold gas entrained in magnetic fields as the latter are brought to the stellar surface by processes
such as magnetic buoyancy. The question is then what happens: This plasma, which was initially
entrained by the emerging fields, cools rapidly because it is no longer radiatively heated as it
enters the small optical depth regime. However, because of (for example) accumulated stresses

in the emerging "flux rope," one expects current flows, and hence associated Ohmic heating.
This latter heating rate is not likely to be energetically significant until the plasma density in the
cool emerging "flux rope" has dropped sufficiently that the radiative losses are of order of the
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Ohmic heating rate (because cross-field thermal heat transport is strongly inhibited, the cool

low-density "flux rope" emerges into the hot ambient medium - the chromosphere and above -
energetically relatively insulated). The question is thus whether an equilibrium between Ohmic
heating and radiative losses can be maintained; and if not, what the evolution of the unstable
system leads to. In this view, the hot coronal envelope of a star such as the Sun is therefore

thought of as a metastable configuration evolved from a cold initial equilibrium. To study this
process, one considers a model magnetized atmosphere which is hydrostatically stratified (i.e.,
with gravity and non-vanishing pressure gradients), is in initial radiative equilibrium, and is initially
uniform in temperature; and asks how such an atmosphere responds when subjected to perturba-
tions in local heating rate due to current flows typically induced by photospheric motions
(Heyvaerts, 1974a; Jockers, 1978). In the simplest case, in which gravitational stratification is
ignored, the problem reduces to solution of a straightforward dispersion relation of the form
(Heyvaerts, 1974b; Ferrari et al., 1982).

co = - i(3, - 1) [-(to 11t¢1_ . t_l t_2) (To/Po) + (dh/dT)] ° (To/Po)

- (Jo2/aoPo) (d log o/d log T)] o (sin 2 0 - cos 2 0)] ,

where _:IIand _:i are the parallel and perpendicular thermal conductivities, respectively, h is the

effective radiative loss rate, 0 is the angle between k and B, and the subscript "o" denotes
parameters evaluated in the equilibrium state. Instability requires that the last term in the square
brackets be positive and exceed the two preceding ones in absolute value: thus, the Ohmic
heating term must overwhelm the (always-) stabilizing influence of thermal heat conduction and

the influence of the net (radiative) losses. This mode of interest is the Joule mode, which is
essentially transverse to the magnetic field, is connected with current filamentation, and operates
only in the low-frequency limit in which the plasma can rapidly diffuse across the filaments (thus
avoiding a pressure build-up that would stabilize the mode).

The Joule mode instability can be interpreted physically as follows. The initial spatially-
uniform current density associated with the "non-potential" magnetic fields produced by photo-
spheric motions becomes unstable, leading to the formation of current filaments inside which

Joule dissipation is enhanced. The temperature thus increases within current filaments; and the
local electrical conductivity therefore increases as well. Hence, the local current density within
filaments further increases and, therefore, in order to maintain energy balance with radiative
losses, yet further channelization is required (thermal runaway). This process can occur in the
[total current I = constant] limit because we are in the low-frequency domain in which cross-
field diffusion can occur (see detailed discussion in Ferrari et al., 1982; this constant current

approximation is most appropriate because of the large self-inductance of the magnetized plasma).
The ultimate mechanism for stopping the channelization is not established, but as noted by
Ferrari et al. (1982), the instability may saturate in the nonlinear regime because of enhanced
electron scattering by plasma turbulence (which increases the diffusion rates), or because the
current sheets which form become unstable to the tearing mode (see discussion of this latter point

in Bodo et al., 1985). For example, if the enhanced scattering is due to ion-cyclotron turbulence,
then the effective heating rate will be a strong function of the drift speed, and will act to increase
current diffusion precisely in the region of current concentration.

In order to proceed beyond these calculations, one must deal with the fact that analytical
dispersion relations cannot be obtained for more realistic inhomogeneous (i.e., stratified)
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configurations. Hence, it is necessary to resort to numerical means for solving for oscillatory
perturbations as eigenfunctions of a boundary value problem (Bodo et al., 1985); one can then
investigate the effects of atmospheric gradients and finite loop dimension on the scale of unstable

perturbations. The equations used are the standard MHD conservation equations for mass,
momentum, and energy, together with Maxwell's equations and Ohm's law. Only perturbations
which are symmetric across the top of the loop turn out to be of interest, as antisymmetric
perturbations can be shown to be stable. The basic features of the results obtained by Bodo
et al. can be gleaned from Figure 2, in which is plotted the general dispersion relation of the
Joule mode in the frequency-wave number plane. The physical parameters used in this example

apply to a "classical" stellar atmosphere, without any chromosphere or corona (as may be the
case for a buoyant magnetic loop, as it emerges from the solar interior at the solar surface); the
results shown have greater generality than those obtained from the analytic dispersion relation
written down above because they are obtained without imposing the low frequency limit. In the
context of our discussion, the following features of the results are most noteworthy:

(1) There is a cut-off in the growth rate at small wavenumbers; this cut-off occurs because

the plasma becomes frozen-in at these scales, so that pressure forces lead to stabilization.

(2) A second cut-off (at large wavenumbers) is also present; it is due to thermal conduc-
tion acting across sufficiently-thin filaments, which leads to suppression of local temperature con-
trasts, and hence to stability.

(3) For a large range of horizontal wavenumbers lying between these limits, the growth

rate is roughly constant. Furthermore, this range of dominant spatial scales of the instability lies
just below present limits on spatial resolution from the ground.

Thus, the thermal instability of the kind treated by Bodo et al. can actually affect loops,
or portions of loops, as long as either their spatial extent or their apex densities are not too
large; i.e., it will affect either the apexes of small loops in dense atmospheres, or entire small
loops in rarified atmospheres. Of particular interest to the topic of this meeting is that the
typical scale lengths of current filaments (= 103 - 106 cm for the cases considered) are too small
to be detected by currently available direct observations, but are comparable to the dimensions of
current inhomogeneities (and magnetic gradient scales) invoked in a number of in situ coronal
heating models (Rosner et al., 1978; Hinata, 1980; Benford, 1983); in such models, the require-
ment for spatially-localized current flow is recognized, but the mechanism by which such current
filamentation occurs is not detailed. The results for the thermal instability obtained by Bodo et

al., and summarized here, are distinctly different from those obtained if one had started with an
already existing chromosphere/transition region/corona atmospheric structure as the initial equilib-
rium state to be perturbed (e.g., Heyvaerts, 1974b). In this latter case, high temperature gradients

along magnetic field fines are already present. Hence, a tight coupling between the low and high
temperature portion of a loop is introduced by efficient thermal conduction and, unlike the case
discussed here, the (cold) lower boundary can actively control the thermal evolution of the hotter

overlying layers even in the linear regime (for example, see Peres et al., 1982). Because the
observational evidence suggests that at least some of the coronal structures seen in soft X-rays
(viz., X-ray bright points) arise as a direct consequence of the emergence of magnetic flux above

the photosphere (cf. Golub et al., 1980), I believe that the assumption of a "cold" initial state
for perturbed pre-coronal structures is far more appropriate than assuming an initially hot state
(but note that the question of the stability properties of an already existing hot state is an
important issue in its own fight - and quite distinct from the problem treated here). The
instability process I have briefly summarized here thus provides a natural explanation for the
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sudden "turn-on" of coronal activity for emerging magnetic structures, though not of their sub-
sequent thermal evolution.

As a final note to this section, I point out that the current-driven thermal instability dis-
cussed by Bodo et al. (1985) is complementary to the arguments of E. N. Parker presented in a
recent series of papers (see Parker, 1983, and references therein), who has shown that most 2-D
flows on a conducting surface penetrated by magnetic field lines (such as the photosphere)
inevitably lead to sheared field/plasma geometries which cannot be in magnetostatic equilibrium,
and are likely to be strongly dissipative (this point is discussed further below). The shear layers
which result (where in fact currents of the type required by the calculations summarized here
flow) are indeed also unstable to the Joule instability discussed above; thus, further filamentation
similar to that encountered in tearing may occur, but now driven by thermal effects. In general,
the results of Ferrari et al. (1982) and Bodo et al. (1985) I've just summarized, together with the

arguments presented by Parker (1983) and in the discussion given in the next section, suggest
that magnetized plasma emerging from the solar convection zone becomes highly structured in its
thermodynamic properties transverse to the magnetic field very soon after its emergence. The
observations of arcsecond coronal structuring, such as those reported by Sheeley and Golub
(1979) and discussed above, and the recent observations suggesting transient coronal heating
within volumes having very small filling factors (Martens, Van den Oord, and Hoyng, 1985), may
well be a reflection of just such structuring processes.

(b) The "ordered" versus the "chaotic" magnetized corona

A rather different perspective on the question of sub-resolution structure in the solar

outer atmosphere emerges from a long-standing problem in magnetohydrodynamics: can one
always construct stable magnetostatic (or magnetohydrodynamic) equilibria for specified normal
components of the field on the boundaries. That is, it is unknown wnether such constrained
equilibria (other than the relatively trivial force or current-free configurations) can always be

devised without having some high degree of (coordinate) symmetry (see, for example, Manheimer
and Lashmore-Davies, 1984, for a review of plasma equilibria and their stability properties; also
Parker, 1979). This has led to the conjecture that the known difficulty of finding equilibria
without coordinate symmetries is not just a computational problem, but rather that it is funda-
mental in the sense that the absence of equilibrium states for geometries that have no simple
spatial symmetry is a fundamental property of magnetofluids (Grad, 1967;Parker, 1972, 1979).

This conjecture has recently received theoretical support from several studies. For
example, Parker (1985) has shown for the magnetostatic (force-free) problem that arbitrary
displacements of field line footpoints on the boundaries of a volume lead to field evolution within
the volume which can be described by two independent scalar functions; but that if continued
equilibrium is insisted upon as the system evolves, then one of these scalar functions is over-
determined, and that as a consequence, discontinuities (in the force-free alpha parameter) must

arise. Similarly, Moffatt (1985) has recently shown that for a simple, initially current-free,
magnetostatic configuration, arbitrary displacements of field lines on the boundary lead to current
sheet formation. Finally, of particular relevance to the present discussion is the recent demonstra-
tion that in the absence of rigid boundaries and gravity, symmetric magnetostatic equilibria are
topologically unstable (Tsinganos, 1983; Rosner and Knobloch, 1983;Tsinganos, Distler, and
Rosner, 1984). That is, such equilibria have the property that (except for a special class of per-
turbations of zero measure) when they are subjected to arbitrary perturbations, the perturbed
system is in general not guaranteed to be in magnetostatic equilibrium - pressure surfaces may
no longer coincide with magnetic flux surfaces - so that the system can become dynamic.
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Typically, the symmetry of the original equilibrium can be broken because singular points arise
within the configuration (as discussed by Parker, 1985, and Moffatt, 1985)and, as shown by
Parker (1982, 1983; see also Vainshtein and Parker, 1985), static equilibrium is not possible in
the vicinity of such new singular points. Thus, the imposition of external perturbations on an
equilibrium MHD structure can lead to a situation in which the system locally departs from
static conditions, and local reconnection occurs (cf. reviews by Freiberg, 1982, and Manheimer
and Lashmore-Davies, 1984). In the context of laboratory plasma confinement, this process is
related to the destruction of magnetic surfaces and the formation of magnetic islands; in the

context of heating the solar corona, Parker (1983) has extended this argument to the case for
which the normal component of the magnetic field does not vanish on the surface bounding the
magnetized plasma (e.g., at the photospheric footpoints of coronal magnetic structures). In this
latter case, he has argued that local deviation from magnetostatics and reconnection arise in the
lower solar atmosphere because of the continual deformation of coronal magnetic fields by the
horizontal cellular photospheric flow field. In summary, local nonequilibrium (i.e., lack of local

static equilibrium) can lead naturally to formation of localized reconnection regions and initially
isolated magnetic islands throughout the loop volume.

What are some of the observable consequences of such local destabilization of coronal

plasmas? Recently, E. Antonucci, K. Tsinganos, and I examined one possibility in the context of
observing flare loops. Spectroscopic observations from the Solar Maximum Mission (SMM), P78-1,
and Hinotori satellites have led to a number of qualitatively new observations of solar flares,

perhaps the most striking of which are the data on line broadening observed during the initial
stages of flares (viz., Culhane et al., 1981; Tanaka et al., 1982; Doschek et al., 1985). Thus, the
onset of solar flares is characterized by large non-thermal broadening of helium-like soft X-ray
resonance lines emitted by highly ionized heavy ions, such as Ca XIX and Fe XXV. This effect
is usually attributed to the presence of non-thermal plasma motions (estimated turbulent velocity

amplitudes derived from the presumed Doppler temperature are between 100 to 200 km sec"1),
and may be observed one or two minutes before the impulsive increase in hard X-ray flux (which
traditionally marks the onset of flaring), and before the appearance of high-speed upflows of
chromospheric material heated to coronal temperatures (chromospheric "evaporation," identified
with the appearance of distinct blue wings in the X-ray lines; Antonucci et al., 1982, 1984).,
The excess line widths persist as long as there is observational evidence for energy release in the
flare site. In the decay phase of flares, non-thermal velocities either are not observed, or are
present at very low levels. The turbulence level in the plasma appears to be independent of the
position of the flare on the solar disk. Although a number of interpretations of these data are
possible (the most commonly-accepted of which regard the overall line profile as a superposition
of various Doppler-shifted components resulting from integration along the fine-of-sight of various
distinct, unresolved loop structures, or parts of loop structures), we have suggested an alternative

picture (Antonucci, Rosner, and Tsinganos, 1985), in which the observed line broadening is due
to a superposition of Doppler-shifted line profiles arising from distinct plasma flows originating
within a single loop structure. This hypothesis gives a good account of the data, and turns out
to be a natural theoretical consequence of the lack of topological stability of coronal magnetic

structures just alluded to. Consider the following key features abstracted from analysis of a
large number of flares observed with the Bent Crystal Spectrometer of the SMM Soft X-ray
Polychromator (SXRP; Antonucci et al., 1984; see also the extensive summary of the relevant
data in Doschek et al., 1985):

(a) The non-thermal excess in the line width is symmetric about the line center of the
broadened line for on-disk flares, is larger at flare onset, decreases monotonically during the

impulsive phase, and occurs systematically before the onset of line blue shifts.
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(b) The degree of non-thermal excess appears to be uncorrelated with the position of

flares on the solar disk; i.e., there is no apparent longitude dependence of the isotropic turbulent
flow parameters.

(c) When significant soft X-ray emission is detected before the hard X-ray burst, the non-
thermal line broadening is observed to increase one or two minutes before the hard X-ray burst.

In summary, observations of individual flares indicate the presence of fairly isotropic flows
during the early part of flare onset; these flows exist in addition to the systematic upward flows
(which are most likely related to the initial "evaporation" of chromospheric material). The lack
of any longitude dependence of both the red and blue wings of the line broadening for different
flares and its symmetry suggests that the broadening is indeed isotropic (and not simply due to
a superposition of Doppler-shifted components which arise within distinct, but unresolved, loops);
the timing of the onset of strong line broadening calls into question its association with the
evaporation process; and the fact that broadening occurs (and is largest) at the very onset of the
flare argues that it is pre-existing (not newly-evaporated) coronal material which is responsible
for the line broadening. Antonucci et al. thus argue the proposition that the observed broadening
appears isotropic not because of accidental superposition of various unresolved flaring loops (and
associated interior convective flows) along the line-of-sight, but because the fluid which gives
rise to the observed emission is indeed isotropically turbulent in any one given loop structure
(i.e., the fluid is, on the dimensions of the loop, locally isotropically turbulent).

What then is the model? The basic conjecture put forth by Antonucci, Rosner, and
Tsinganos (1985) is that a loop system subjected to continual deformations applied to the photo-
spheric footpoints will continue to evolve quasi-steadily (consistent with the field line topology
imposed by the perturbation), leading to island formation and, when regions of overlapping islands
have formed, to the onset of field line stochasticity, strongly enhanced local reconnection and
dissipation, and enhancement of plasma transport coefficients (cf. Freiberg, 1982;in a related
process, proposed in the context of a specific MHD instability, e.g., island overlap of unstable
tearing modes located in distinct unstable tearing layers, has been proposed by Finn, 1975, and
applied to the flare onset problem by Spicer, 1976, 1977). Antonucci et al. (1985) caution that
it is essential to distinguish this succession of events from the destabilizing process previously
suggested by Low (1982a,b) and others, who have argued that solar flares represent the terminal
point of an evolutionary sequence of "nearby" equilibria through which a system evolves as it is
subjected to external perturbations; this terminal point is reached when the sequence of equilibria
ends in the sense that there are no longer any nearby equilibria to which the system could evolve.
The model proposed by Antonucci et al. is distinguished from these earlier studies in that (i) it
does not identify the onset of flaring with the point of termination of a sequence of nearby
equilibrium states, but rather views it as the point at which a topological unstable, quasi-steadily
evolving state (which need not be force-free; compare with Heyvaerts and Priest, 1983) reaches
the stochastic domain; and (ii) the instability does not manifest itself in a global MHD instability,
but rather in a drastic departure from statics throughout the entire volume of the system,
wherever singular field line behavior as a result of island overlap, and local reconnection, occurs.
These localized reconnection events are then expected to occur at the very onset of the flare -
indeed, in this picture, they mark the very beginning of flare onset.

It is of course necessary to demonstrate quantitative, and not only qualitative, agreement
with the observations, and Antonucci et al., indeed show that one can provide a reasonable
"back-of-the-envelope" fit to the data, e.g., reconciling observed temperatures, densities, and
inputed turbulent velocities with the model. In the present connection, one of the most
intriguing results of this comparison with the data is that reasonable agreement with the data only
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follows if one assumes a rather small filling factor for the matter which actually contributes to
the isotropic broadening component: the volume filled by this component must be approximately
5% of the total volume seen by the SXRP in emission. This implies (in the most naive intepre-
tation) an upper bound on the linear dimensions of the emission volume of roughly 10s cm; in
a physically more plausible picture, in which the emission arises within thin structures enlongated
along the background ("guide") field, the dimensions of the emitting regions would be just below
the arcsecond level.

The model proposed by Antonucci et al. to account for the turbulent line broadening thus
has several features which make it interesting from the point of view of "sub-resolution"

structure. First, it predicts rather small filling factors for the regions primarily responsible for the
isotropic component of the line broadening. Second, it is likely that the reconnection sites
invoked to account for the macroscopic plasma streaming will also be sites of localized particle
acceleration. Observational support for this suggestion is provided by the fact that hard X-ray
bursts are observed precisely during the period in which turbulent line broadening is observed:
This timing coincidence is to be expected if the fast particles which give rise to the bursts have
their origin in the many scattered reconnection sites invoked in the flare line broadening process
itself. This would imply that particle acceleration does not occur at just a very few selected
sites within a loop, but rather occurs throughout the loop volume. An especially interesting
possibility is then that particles accelerated in any one such reconnection region continue to be
accelerated in other reconnection regions they encounter as they traverse the loop; such multiple
acceleration encounters can provide the Fermi process called for by the particle spectra deduced
from the SMM hard X-ray and gamma ray observations (viz., Ramaty et al., 1985, and references
therein). A third feature of this model is that it does not sharply distinguish between flare
heating and the far more prevalent low-level "microflaring" (Lin et al., 1984) and other low-level
transient brightening (cf. Porter, Toomre, and Gebbie, 1984) which seems to characterize the
active solar corona and transition region. Indeed, as argued by Rosner and Vaiana (1978), a
stochastic energy release process of this kind naturally gives rise to the observed power law

dependence of the integral number of (hard X-ray) transients on peak flux (or total energy
released; see also Datlowe, Elcan, and Hudson, 1974). Thus, it may be that the transient forma-
tion of dissipative structures in the solar corona is responsible for much of the overall coronal
heating (cf. Parker, 1972, 1979), a process which can only be studied by looking at the Sun's
outer atmosphere with instruments of high (i.e., sub-arcsecond) spatial resolution.

IV. SUMMARY

In this paper, I have attempted to provide a personal perspective on the problem of spatial
structuring on scales smaller than can presently be directly and regularly observed from the
ground or with current space-based instrumentation. I believe that there is abundant evidence
from both observations and theory that such spatial structuring of the solar outer atmosphere is
ubiquitous not only on the observed scales, but also on spatial scales down to (at least) the sub-
arcsecond range. This is not to say that we can anticipate the results to be obtained from
observations on these small scales: quite the opposite. What is clear instead is that many of the
classic problems of coronal and chromospheric activity - involving the basic dissipative nature of
magnetized plasmas - will be seen from a novel perspective at these scales, and that there are
reasons for believing that dynamical processes of importance to activity on presently-resolved
scales will themselves begin to be resolved on the sub-arcsecond level. Since the Sun is the only
astrophysical laboratory for which there is any hope of studying these processes in any detail,
this observational opportunity is an exciting prospect for any student of magnetic activity in
astrophysics.
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Figure 1. An example of structuring of the solar corona, seen at the very limits of spatial
resolution attainable on Skylab over 10 years ago (from Sheeley and Golub, 1979).

ro The images show a coronal bright point resolved into component "loops," much
like the structure of the far larger active region complexes.
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Figure 2: Results of numerical solution of the eigenvalue problem posed by solving for the
thermal stability of cool, pre-coronal loops of finite extent (from Bodo et al., 1985). The

dispersion relation curves show the growth rate ¢oi(---lIm ¢o[) versus transverse wavenumber

kx for loops with To = 5000 K, Bo = 100 G. Curve labeled (i) is for a finite loop

(R = 107 cm) which is gravitationally stratified (Zo/R = 1), with napex = 1012 cm "3

and with Jo balancing radiative losses at the loop apex; curve (ii) is for a finite

loop (R -- 107 cm) which is homogen6ous (zo/R = oo), with n = 1012 cm-3;

curves (iii) and (iv) are infinite and homogeneous cases with different
densities; curve (iii) is for n equal to the base density of case (i). Growth

rates and transverse wavenumbers are expressed in cgs units. The key results

to note are the presence of two wavelength cutoffs (whose physical meaning
is described in the text), and the dimensional values of the inverse wavenumber

in the most unstable range: these results suggest that one ought to see
dissipative structures on spatial scales well below the arcsecond level

reached from ground-based observations.
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THE FLARE KERNEL IN THE IMPULSIVE PHASE
(Invited)

Cornelis de Jager

Laboratory for Space Research, Utrecht, the Netherlands

ABSTRACT

The impulsive phase of a flare is characterized by impulsive bursts of X-ray and microwave
radiation, related to impulsive footpoint heating up to 50 or 60 MK, by upward gas velocities
(150 to 400 km s-z) and by a gradual increase of the flare's thermal energy content. These
phenomena, as well as non-thermal effects, are all related to the impulsive energy injection into
the flare. The available observations are, also quantitatively, consistent with a model in which
energy is injected into the flare by beams of energetic electrons, causing ablation of chromo-
spheric gas, followed by convective rise of gas. Thus, a hole is "burned" into the chromosphere;
at the end of the impulsive phase of an average flare the lower part of that "hole" is situated
about 1800 km above the photosphere. Ha and other optical and UV line emission is radiated

by a thin layer (_ 20 km) at the bottom of the flare kernel. The upward rising and outward
streaming gas cools down by conduction in about 45 s. The non-thermal effects in the initial
phase are due to curtailing of the energy distribution function by escape of energetic electrons.
The single flux tube model of a flare does not fit with these observations; instead we propose
the spaghetti-bundle model. Microwave and gamma-ray observations suggest the occurrence of
dense flare knots of "800 km diameter, and of high temperature. Future observations should
concentrate on locating the microwave/gamma-ray sources, and on determining the kernel's fine
structure and the related multi-loop structure of the flaring area.

I. MAIN CHARACTERISTICS OF THE IMPULSIVE PHASE

There are four main characteristics of the impulsive phase. The impulsive phase of a solar
flare is primarily defined as the period of a few to ten minutes during which impulsive bursts of

hard X rays (>_ 20 keV) and of microwave radiation are emitted. There is a hierarchy of
impulsive bursts, starting with the burst complexes, each of which last for about one or two
minutes (Figure 1). These consist each of a few to some ten shorter lasting bursts, the elementary
flare bursts (De Jager and De Jonge, 1978) which lasts for about 5 to 15 seconds each. These,
in turn, can consist of still shorter lived bursts, the sub-second pulses (Kaufmann et al., 1980;.
Orwig, Frost, and Dennis, 1981) which are observed both in hard X rays and in cm-mm radio-
waves. If observed simultaneously in both wavelength regions they appear to be synchronous
down to the accuracy of the measurements (Takakura et al., 1983).

Imaging observations in X rays by means of the Hard X-Ray Imaging Spectrometer aboard
SMM (Van Beck et al., 1980) have shown that the hard X-ray bursts are emitted by small
localized areas, the footpoints or flare kernels (Hoyng et al., 1981). These footpoints occur often
in pairs, and are then localized at either side of the magnetic inversion line (the "neutral line"),
an observation that supports the flux tube model of a flare. Although the footpoints are
principally visible in hard (> 15 keV) X rays they can also be detected with about the same
intensity in X rays of smaller photon energy (_ 5 keV) if sufficient care is taken to subtract the

gradual X-ray background flux (De Jager and Boelee, 1984; De Jager, Boelee, and Rust, 1984);
cf. Figure 2. Apparently, the footpoints, although not a specific characteristic of the hard X-ray
component, are very significant for the impulsive phase, because they occur only during the
emission of the burst complexes.
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Very characteristic for the early part of the impulsive phase are the upward motions
(Antonucci and Dennis, 1983; Antonucci, Gabriel, and Dennis, 1985) with observed velocity com-

ponents of 150 to 400 km s-_, values derived from X-ray spectral data. The upward motions start
rather suddenly at the very onset of the impulsive phase and they decrease with time, quasi-
exponentially, with a typical e-folding time of one to a few minutes; cf. Figures 3 and 4. These
motions are ascribed to the upward convection of hot gas, originating by ablation of the chromo-
sphere through heating by incident electron beams, or by a hot plasma front.

During the impulsive phase the thermal energy content of the X-ray emitting component
of the flaring region increases steadily (De Jager and Boelee, 1984; Antonucci, Gabriel, and
Dennis, 1985) until the last X-ray burst has terminated; cf. Figures 4 and 5. The burst signature is

absent in the Eth(t) relation which shows that the temporal behavior of the energy input, which

occurs through the impulsive bursts, is smoothed out. We will see later that this is caused by the
way gas is streaming convectively from the kernel into the surrounding area, the flare tongue,
which is the region responsible for the emission of the gradual phase component.

The four aspects listed above: impulsiv e bursts, footpoints, convective motions, and
energy input, are the main characteristics of the impulsive phase.

II. PHENOMENOLOGY AND SCENARIO OF FLARE KERNEL HEATING

An important aspect of the first part of the impulsive phase of flares with essentially one of
at most two impulsive burst complexes is that the Doppler temperature derived from line broaden-
ings of X-ray spectral lines becomes abruptly high at the onset of the impulsive phase (Antonucci,
Gabriel, and Dennis, 1985; Figure 5). Within a minute it appears to rise to about 5 x 107 K or
higher, to decrease slowly, and quasi-exponentially thereafter. With an e-folding time of 1.5 min
it approaches the electron temperature derived from line intensity ratios. The temperature derived
from the count-rate ratios in the medium-energy HXIS channels (_ 16 keV) shows the same

behavior (Figure 6). The Doppler-temperature is an ionic temperature because it is derived from
the thermal, or in any case, from the stochastic motion field of the ions. But it is at the same
time an electron temperature, because the electron-ion exchange time in the kernel plasma is
short, of the order of 0.1 s, so that a thermal energy distribution establishes rapidly. There is,
however, one reserve. The average energy of electrons of 5 x 107 K is _5 keV, while the kernel
area is transparent for electrons with E >_ 15 keV, so that the tail of the electron energy distribu-

tion curve cannot form. The excitation and ionization of the gas ions is determined by the high-
energy electrons, hence by the tail of the electron energy distribution function. This is the reason
why the electron temperature derived from the line intensity ratios, and also the one derived from
count-rates ratios in low-energy (3 to 10 keV) HXIS channels, is lower than the temperature
derived from count-rate ratios around 16 keV, and also lower than the ionic Doppler temperature:
the latter is defined by the main (average) part of the energy distribution curve.

The transparency of the kernel for particles with E _ 15 keV is also the reason why the
high temperature in the early part of the impulsive phase must be due to heating of electrons
with energies _ 15 keV: under standard kernel conditions only these can penetrate through the
kernel and heat the underlying chromosphere.

From an analysis of the X-ray and XUV observations of two flares with essentially one

burst-complex (8 April and 5 November, 1980) the present author (De Jager, 1985b)has derived
a model of a flare kernel as shown in Figure 7. This model describes the flare kernel at the end
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of the ablation process, hence at the end of the impulsive phase: heating of the chromosphere
by bombardment with electron beams with E _> 15 keV causes ablation of the chromosphere.
At the end of the impulsive phase the bottom of the kernal "hole" has decreased to a height
of _ 1800 km above the chromosphere. There, the normal chromospheric particle density is
_101 _ cm -3. At the transition between chromosphere and kernel a thin (._20 km) layer of

particles with Tel _ 104 K forms, emitting Hot and other low energy lines. This layer is heated
to 5 x 107K in about 10 s and is replaced by new material through continuous ablation. The
ablated particles move upward convectively with velocities of _150 to 400 km s"_. Since the
kernel has a depth of _2500 km this heated gas takes 8 to 10 s to reach the "top" of the

chromosphere. During the impulsive phase a "dome" of superhot gas is formed over the kernel.
This dome contains about four times more particles than the kernel proper (see Figure 3), but its

gas content has mainly a horizontal velocity component, with a possible structure as suggested in
the insert to Figure 7. Guided by magnetic field lines, assumed vertical in the kernel, and

fanning out into the "dome" and beyond (the "spaghetti-bundle model") it takes the plasma
about 45 s to cool down conductively to the "_20 MK temperature, characteristic for the gradual
phase component. The conduction time of 45 s is equal to the time gas needs with v = 200 km
s"_ to move along the field lines through kernel and dome.

The kernel model, described here, consistently unites the XRP spectral observations of line
intensity ratios, line broadening and displacement and the data on heating and temperature
derived from HXIS and HXRBS data. As will be shown in Section IV this is also true

quantitatively.

Ill. CORONAL EXPLOSIONS

Coronal explosions are a feature discovered by De Jager and Boelee (1984), and are

further described by De Jager, Boelee, and Rust (1984), De Jager (1985a), and De Jager and Lem-
mens (1985). Figure 2, lower part, shows the explosion observed in the flare of 12 November 1980,
02:50 UT.

The coronal explosion is a density wave originating from a small area near to, or identical
with, the flare's footpoints. The waves propagate with initial velocities of the order of a few
hundred to more than a thousand km s-x, a velocity which normally decelerates rapidly to values
below 100 km s-_. The explosion shown in Figure 2 has an initial lateral velocity component of
200 km s-_ which slowed down to 20 km s-1 in some two minutes. It started just after the last
hard X-ray burst complex, cf. Figure 1.

The most probable explanation for these observations is that the explosion shows the
lateral displacement of the plasma escaping from the kernel, guided by the magnetic field line
pattern emanating from the kernel area, as suggested by the schematic drawing in the insert to
Figure 7.

IV. NUMBERS AND ENERGIES

We summarize some typical values, derived from observations of the flares of 8 April and
5 November 1980.
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Number of particles ablated (De Jager, 1985b):

Per second for the whole kernel: 4 x 10a 6 s-I

During the whole impulsive phase for the whole kernel: 3.5 x 10a 8
During the whole impulsive phase, per cm 2: 3.2 x 1020 cm-2.

Next we summarize values for the time integrated energies over the impulsive phase:

Energy of incident electron beam > 25 keV (Dennis et al., 1985): 6 x 103o erg
Energy of incident electron beam > 16 keV (De Jager, 1985b): 13 x 103o erg
Energy of convective motions (Antonucci, Gabriel, and Dennis, 1985): 7 x 103 o erg
Maximum thermal energy content of gradual phase component (Dennis et al., 1985):

2.6x 103°erg

Energy needed to heat 20 km thick layer (ne = 1013 cm-3) to 50 MK (De Jager, 1985b):
3.6 x 103o erg.

These energy values are internally consistent and support the ablation-convection model.

V. MICROWAVE AND GAMMA-RAY OBSERVATIONS

These may yield important information on the - relatively - high density phenomena in
flares. Microwave observations made at the highest frequencies (90 MHz)by Kaufmann et al. (1985a)

demand an interpretation in terms of source densities of the order of ne _ 1014 cm-3 (Kaufmann

et al., 1985b) and source sizes of _ 800 km diameter. Their temperatures should be high, above
108 K. Also gamma-ray observations suggest source densities of that order (Chupp, 1984).

On the basis of the model shown in Figure 7 we therefore suggest that these sources are
situated just below the flare kemel's base, in the dense parts of the chromosphere, at some 500 to
1500 km above the photosphere. The effects of flare heating by sources at that level need to be
investigated and form an interesting challenge to theorists, as well as to observers who should locate
these sources and determine their precise sizes.

Vl. REQUIREMENTS FOR FUTURE RESEARCH: OBSERVATIONAL AND THEORETICAL

The model of the flare kernel described in Section II is a static model while a kernel is a

dynamic feature. In its very beginning, when the hot (n e = 101 _ cm-3) gas has not yet formed,

heating and ablation of the chromosphere is easier than later. In the course of the ablation process
a high plasma pressure is built up (_ 103 dynes cm "2) which pushes the Ha emitting region down-
ward; this explains the observed downwards velocities in Ha and other spectral lines. In addition,
ablation "bums" a hole into the chromosphere, which, at the end of the impulsive phase, results
in a structure outlined in Figure 7.

A first theoretical problem to tackle is the dynamic time development of the flare kernel.
Another theoretical problem is that of the non-thermal character of the electron energy distribution
in the kernel. Curtailing of the electron energy distribution curve by escaping electrons (as described
in Section II) may lead to a significant difference between the ionic Doppler temperatures and the
electron temperatures derived from low-energy count rate ratios or from line intensity ratios.
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Observationally the solution of the following problems seems essential for further progress in

the understanding of solar flares. The observation that the gradual component of flares is not
confined to a single loop (as assumed in the classical flare picture) but to a large volume with a very

small filling factor (_ 10-2) suggests the "spaghetti-bundle" model for the flare area. This model
must also demand a considerable fine structure of the flare kernel seen from above. Hence it is

worth investigating (a) if the kernel area (_ 108 km 2) has a time structure, and (b)if the gradual
phase component consists of many loops, corresponding to the footpoints in the fine-structure of the
kernel. In addition, it is of importance to examine if the propagation of the density waves related
to the coronal explosions is associated with shock-wave phenomena such as the existence of a thin
layer of temperature enhancement near the shocks.

One of the most important topics for future research seems the observation of the high tem-
perature, high density, flare knots whose existence is suggested by extreme microwave and by

gamma-ray observations. Are these knots really situated below the flare kernel and if so, at what
level; what are their densities and sizes. Solution of this problem may be fundamental for further
progress in our understanding of solar flares.
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Figure l. Impulsive bursts of the flare of 12 November 1980; 02:50 UT. The main burst
complex is at 02:49-:51 UT. There are earlier weaker bursts; those at 02:44 UT and

02:45 UT mark the start of the flare (HXRBS observations, by courtesy of
B. R. Dennis; see De Jager and Boelee, 1984).
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Figure 2. Upper part: even low-energy X-ray observations of flares show the footpoints,
but only at the time of the hard X-ray bursts, and only after careful background
subtraction (De Jager and Boelee, 1984; De Jager, Boelee, and Rust, 1984). The

lower part shows the coronal explosion associated with this flare (see Section III)
in two energy ranges. The lines are isochrones, labeled with the time in minutes

and seconds after 12 November 1980, 02:00 UT. In all four figures the
dashed line is the inversion line. For other data relevant to this flare

see Figures 1 and 5.
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Figure 3. Convective velocities in flare kernels are derived from line displacements in
X-ray spectra. About one-fifth of the hot material shows upward displacement;

the rest is stationary (Antonucci, Gabriel, and Dennis, 1985).
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The upward velocities (v') increase abruptly to high values at the start of the

impulsive phase, to gradually decrease afterwards. Note also the relation

with the impulsive hard X-ray burst complex, and with AT D
(XRP observations; Antonucci, Gabriel, and Dennis, 1985).
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Figure 6. Non-thermal effects in the impulsive phase. At the flare's onset the temperature

derived from line broadening, and the one derived from medium-energy HXIS count rates
(_ 16 keV) rise abruptly to _ 50 MK, to decrease quasi-exponentially thereafter,

with an e-folding time of 1.5 min. The electron temperature, derived from line

intensity ratios, and the temperature derived from low energy HXIS count-rate

ratios increases too, but less. After a few minutes all temperatures are equal.

The lower part of the figure shows the count rate in HXIS channel IV

(11 to 16 keV), to give an impression of the time-development

of the impulsive phase (De Jager, 1985b).
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X-RAY IMAGING OF FLARE LOOPS AND CORONAL ARCHES

(Invited)

Zdenek Svestka

Laboratory for Space Research, Utrecht, The Netherlands

ABSTRACT

This paper summarizes HXIS results related to preflare, flare-decay, and post-flare phases
in the solar corona. Particularly discussed are miniflares, long-lived X-ray enhancements along
filament channels, flare precursors (some signifying the flare position, others possibly related to
the onset of mass ejections), growth of post-flare loops, images of sites of field-line reconnections
late in the flare development, giant post-flare coronal arches with energy contents comparable to
coronal transients, and hot loops interconnecting active regions. The extremely low HXIS back-
ground, in particular, made it possible to discover many new, previously unknown features in the
solar corona. Also emphasized are some problems that have appeared during the evaluation of
HXIS data, for the benefit of those who plan future hard X-ray imaging experiments.

I. INTRODUCTION

The original aim of HXIS was an imaging of sources of hard X-ray bursts during the
impulsive phase of flares. From the previous talk you could see and judge how well this task has
been accomplished. During the eight months of its operations, however, HXIS was able to image
many other phenomena of the active Sun in the energy range of 3.5 to 30 keV, and these addi-
tional results are the topic of my talk.

Only the two highest energy channels of HXIS, 5(16-22 keV) and 6(22-30 keV) really
image hard X rays. The channels 3(8.0-11.5 keV) and 4(11.5-16 keV) represent intermediate
energies, and the lowest two channels, 1(3.5-5.5 keV) and 2(5.5-8.0 keV), image soft X-ray
emission from the Sun. However, it is important to realize that even the softest HXIS images
are by almost one order of magnitude harder than the soft X-ray images of the Sun made on-
board the Skylab. Thus, even in soft X rays, HXIS has been able to yield essentially new informa-
tion about many active phenomena on the Sun.

One of the great advantages of HXIS has been its extremely low background which made
it possible to integrate X-ray fluxes for tens of minutes and eventually during the whole (up to
60 rain-lasting, sun-lit) orbit if necessary. Table I (Schadee et al., 1983) demonstrates how
extremely weak X-ray fluxes can be imaged with statistical significance better than 30 in the
HXIS band 1 for different integration times.

Since the background is the same for every pixel, and the area of one pixel of the coarse

field of view of HXIS equals the areas of 16 pixels in the fine field of view, this advantage could
be used particularly well in the coarse field. It led to discoveries of completely new structures
in the solar corona, undetectable in the high-background Skylab pictures at lower energies. These
discoveries were not at all expected when HXIS was launched and are an extra product of the
excellent performance of this instrument (for its description cf. Van Beek et al., 1980).
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There are many more excellent characteristics of HXIS; for example, its relatively high
spatial resolution of 8 arc s in the fine field of view which, after deconvolution (J. Schrijver in
Svestka et al., 1984) could be still greatly improved for point-like sources; the capability of HXIS
to record X-ray flux variations within each individual pixel, which made it possible to study
velocity fields in flares (De Jager, 1985) and in post-flare corona (Svestka, 1984b), among others;
the possibility to construct temperature maps of the solar corona which, for example, have led to
the detection of rising thermal waves after two-ribbon flares (Svestka, 1984a; Svestka and Hick,
1985).

Nevertheless, and quite naturally, HXIS also had deficiencies. Since this Workshop aims
at the preparation of future X-ray-imaging instruments, I consider it particularly important to
mention all these deficiencies carefully and in full detail, since one can learn a lot from them.
Therefore, while presenting the HXIS results, I will also emphasize all the difficulties and prob-
lems we have met when evaluating the data. While doing it, however, I ask the reader to kindly
keep in mind that HXIS was an excellent instrument, one of the best flown onboard the SMM;
let me, on behalf of all those who have benefitted (and will still benefit) from its data, congratu-
late Frank van Beek and his co-workers on the invention and construction of HXIS, and the

Principal Investigator, Kees de Jager, on its performance and on the fruitful evaluation of HXIS
data.

II. POST-FLARE LOOPS

The most important class of flares (since essentially all major flares belong to it) is the
two-ribbon flare: two bright ribbons in the chromosphere as the site of footpoints of an arcade
of loops which extend high into the corona. New higher loops are sequentially excited, or
formed, in the corona, and at the same time their footpoints (the chromospheric ribbons)
gradually separate.

This class of flares has been known for about three decades, from Hot observations. How-
ever, the "post-flare loops" seen in Hot are only the cooled remnants of the hot coronal loops,
formed (or excited) minutes or tens of minutes before. The enormous advantage of X-ray obser-
vations is that we image here the new hot loops close to the time of their excitation or formation
and can thus directly study the process of the heating of the loops (energy release) in the corona.

Figure 1 shows in its upper part HXIS images of the system of growing flare loops on
21 May 1980 - this is the flare where Hoyng et al. (1981) first gave the evidence of two hard
X-ray footpoints during the impulsive phase (cf. the preceding talk by De Jager). The flare loca-
tion was in the SW sector of the Sun so that the gradual extension of the X-ray emission to the
south means a growth of the flare loops (brightest at the top) upwards in the corona (Svestka
et al., 1982a).

At the bottom of Figure 1 we show the growth of the distance d of the brightest portion

of the loops from the HII = 0 line (Svestka and Poletto, 1985). For radial loops the real altitude

would be 3.0 d. One can see that the growth of the flare loops in altitude was not continuous:
the tops of the loops stay for minutes at a given altitude before, quite abruptly, other loop tops
begin to appear above them. A similar observation was made by Hinotori on 13 May 1981,
when the tops of flare loops stayed at the same altitude for 12 min (Tsuneta et al., 1983). No
Hinotori data are available before, or after, this period so that no abrupt jump could be verified;
but it is clear from Figure 1 that, quite analogically, 12 min of stationary altitude could have
been seen by Hinotori if it had observed the 21 May 1980 flare.
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A similar phenomenon, a growth of loops through abrupt jumps, was seen before in some
Hot movies of post-flare loops. Whereas, however, the jumps seen in Hot might have been due to

effects of differences in the cooling of plasmas at different initial densities, the X-ray jumps are
clearly related to the loops excitation or formation. It is of interest that Forbes and Priest (1983)
theoretically predicted the existence of multiple X-type neutral lines at different altitudes above
two-ribbon flares, where distended field lines may subsequently reconnect and thus produce new
sets of loops at different altitudes.

Figure 2 shows an enlargement of the abrupt rise in altitude that is seen in 21:12 UT in
Figure 1. If the loops were radial, the rise would represent a jump from 26 000 to 43 000 km

altitude. Figure 2 demonstrates that the rise was first seen in the highest energy channel (22 to
30 keV) with a later follow up at lower energies. This can be interpreted as a new release of
energy in a very small volume of plasma at extremely high temperature (Svestka and Poletto,
1985). For an illustration, let us enhance the temperature of a small volume in the corona from

20 x 106 K to 50 x 106 K. Then the X-ray flux from this volume rises by a factor 2200 in the
hardest HXIS band 6, but only by a factor of 3 in the softest band 1. Therefore, we can see the
source in band 6 in spite of its small dimensions, whereas in lower-energy bands we must wait
until its emission measure substantially increases. An obvious candidate for the process we
observe here is the reconnection of field lines, in apparent agreement with the Kopp and
Pneuman (1976) model of the formation of post-flare loops (in the basic configuration suggested
by Sturrock (1968), and with the multiple neutral lines deduced by Forbes and Priest (1983)).

One has to be aware of the fact that the collimating techniques of HXIS may be partly
responsible for the observed jumps in altitude: if the loops were thin, we would see them

emitting in one HXIS pixel as long as they travel through this pixel, and "jump" in another pixel
when leaving it. Broader loops will smear this "pixel-effect." On the other hand, it is of interest
to note that the spatial resolution of Hinotori deteriorates with the growing size of the imaged
source: thus moving loops must be quite extensive to be seen by Hinotori at a "constant"
altitude for 12 rain. Thus moving loops would be seen by HXIS at a fictitiously constant altitude
if their real thickness was << 8 arc s, and by Hinotori if their thickness was >> 8 arc s. This

difference in imaging tends to support the supposition that the observed jumps in altitude were
real.

In any case, new loops appeared at "21:12 UT at a higher altitude and were first seen in
the highest energy band of HXIS. A unique set of parameters of the new source of energy
release cannot be deduced from the available data. However, a reasonable agreement with the
observation is found for a source with temperature of 50 x 10 6 K between 21:08 through 21:13
UT, growing in size (supposedly as an arcade of loops was formed) and reaching emission measure
of 3 x 104s cm-a at the end of its development. Then the source cooled, and its emission
measure was fast increasing (possibly through evaporation of chromospheric material into the new
loops) to 3 x 1047 cm "3 at 21:17 UT, i.e., by two orders of magnitude during 4 min. Table 2
gives the estimated size of the new source of energy release at 21:13 UT for various (unknown)
electron densities.

Figure 3 shows images of the flare from 21:09:17 UT onwards, in the six energy bands of
HXIS. The image in band 4 at 21:09:17 presents the typical situation seen in all bands at earlier

times: a maximum of brightness at a distance d -_ 9000 km from the HII = 0 line, marked here
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approximately by the active region filament. In band 6, at that time, we see already an exten-
sion of the flux-contours to the south. This extension is more pronounced at 21:10:38, and

finally a new maximum is formed, more to the SW, i.e., at a higher altitude, at 21.12:00 UT
(marked by A in Figure 3). This is the site we begin to see at d _ 15,000 km in Figures 1 and
2. At lower energies this new brightening occurs successively later, as we have indicated by

arrows in Figure 3.

The new brightening at A occurred 23 min after the flare onset and 17 min after the
maximum in the hard X-ray burst. Thus it represents an energy release late in the post-maximum

phase of the flare, which gives direct evidence that, in two-ribbon flares, energy is still being
released after the impulsive phase is over.

(a) Pixel gain

Figure 3 can also be used for a demonstration of one of HXIS deficiencies: inhomogenei-
ties in the gain of HXIS pixels; the gain G of a pixel is defined as the ratio between the outgoing
signal and the energy of an incoming photon.

Most pixels do not deviate by more than 3% from the nominal gain G = 1.00. However,
there are 20 pixels in the HXIS fields of view (out of 400) for which either G /> 1.05 or G _<
0.95. A difference in gain changes the effective energy band boundaries from E to E/G. How
serious this effect can be is apparent from the pixel marked B in Figure 3. With G = 1.05 it
images in HXIS band 6 X rays between 20.9 A and 28.6 A (instead of 22.0 A and 30.0 A) and
thus creates a fictitious maximum in the brightness contours. As Figure 3 shows, the effect is
most serious in the high-energy channels, but it has to be considered at the low energies as well
when temperature maps are made (cf. Section III).

III. POST-FLARE ARCHES

The very low background of HXIS made it possible to detect large arch-like structures
in the solar corona, which are formed, or become enhanced, after two-ribbon flares. Flares of
other kinds do not affect them. These arches are seen in >3.5 keV X-rays for 10 hours or more,

and temperature in them may exceed 20 x 10 6 K. Some appear to be stationary, while others
show moving maxima of brightness associated with thermal disturbances propagating upwards
with speeds of _10 km/s. It appears that essentially every arch forms the base of a type I radio
noise storm which developed from a stationary radio type IV burst initiated by the flare.
Machado et al. (1983) imaged a similar structure in 3.5 to 5.5 keV X-rays above a type I noise
storm source during its whole transit across the solar disc.

(a) Stationary arch of 21/22 May 1980

Figure 4 shows 3.5 to 5.5 keV images of the coronal arch seen after the two-ribbon flare
of 21 May 1980, 20:52 UT (Svestka et al., 1982a; Svestka, 1983). These are half-an-hour inte-
grations of an extremely weak coronal structure: the count rate of the peak in the last image,
at 06:36 UT, only slightly exceeds 1 count/min; yet, this is still four-times more than the average
background.

One can see that the brightest part (apparently the top) of the arch stayed in the same

position since 03:20 UT (6.5 hours after the flare) until the end of the HXIS imaging. Unfor-
tunately, SMM did not look at this active region for two orbits preceding 03:30 UT. Last images
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prior to that are from 23:07 UT on 21 May when the post-flare loops still fully dominated the
field so that it was extremely difficult to distinguish the much weaker coronal arch. Neverthe-

less, a careful analysis succeeded to separate the arch from the loops and the results are shown in

Figure 5 (Hick and Svestka, 1985): since 23:02 UT the top of the arch was in the same position
as in the much later images of Figure 4. Prior to that, from the beginning of the orbit at 22:28
UT, the maximum was in a neighboring pixel, but still at about the same altitude above the flare.
If one follows the time development of the X-ray flux in these two pixels (and that is another
great advantage of HXIS that it allows such local (8 x 8 arc s) photometry) one finds that the
flux in the first pixel peaked at _22:56 UT, whereas the other pixel peaked some 10 rain later
and since then stayed to be the brightest pixel in the field (Figure 6).

(1) Spatial resolution

These extensive coronal structures could be seen in the coarse field of view only, because
of its lower effective background and much larger covered area on the Sun. For these advantages
of the coarse field, however, we pay with very low spatial resolution of 32 arc s (FWHM). It is
clear from Figure 4 that very little can be said about the real structure of the detected coronal

arch. But sometimes indirect information gives some insight into the unresolved formations, like
in Figures 5 and 6; e.g., one can tentatively conclude that the arch consisted of (at least) two
separate arch-like structures, since they peaked in brightness at slightly different times.

Another restriction, caused by the low spatial resolution, applies to observations of any
motions. A "stationary" source, seen for one hour in the coarse field of view, still could move

by up to 0.53 arc s per minute ("6.5 km/s in projection on the disk) without its motion possibly
being recognized. In our case, we saw the top of the arch in stationary position for 8 hr 20 min,
which allows for a maximum motion of 0.78 km/s in projection. Thus, in this case we may
really safely conclude that the arch was a stationary structure.

(2) Flare mode

A great obstacle in the study of these coronal structures near the time of their origin was
the flare mode of HXIS operations: as soon as there was a flare (or the X-ray flux exceeding a
certain limit), HXIS changed its normal observing interval of 7.5 s to 1.5 s and compensated for
the lost time by omitting the imaging of weaker pixels. The aim of this special mode was to
enhance the time resolution during flares and, of course, the main part of the flare was always
imaged. However, any weaker features, including the coronal arches and potential X-ray counter-
parts of flare-associated radio bursts, disappeared from the images. This contributed to our diffi-
culty to obtain the arch images in Figure 5 (when HXIS was in flare-mode 2 with time resolution

of 4.5 s) and made it completely impossible to see anything from the arch in the orbit before,
when the flare began (when HXIS was in flare-mode 1, with time resolution of 1.5 s). It is very
regrettable that HXIS was suppressing data since we are unable to get any information whatever
about the origin of this kind of post-flare coronal structures.

(b) Reviving arches of 6/7 November 1980

Another example of a post-flare coronal arch was recorded on 6 November 1980, after
a major two-ribbon flare at 03:04 UT (imp. X9), which had not been seen by the SMM, but the
spacecraft pointed to the flaring active region since 06:20 UT. This arch (or post-flare coronal
cloud, since we have no direct evidence in this case, projected over the solar limb, that it was an
arch structure) had many features common with the event of 21122 May (Svestka et al., 1982b).

45



However, there was a very significant difference: the maximum of brightness was not in a
stationary position, like in 21/22 May, but it was rising in the corona, as Figure 7 clearly demon-
strates. Before this arch completely disappeared, it was revived, at 14:40 UT, after the occurrence
of another two-ribbon flare in the same active region, and we saw again the same rise of the

maxima in brightness as at the flare before (Figure 7). The two events were quite homologous

(Svestka, 1984b).

This rise of a coronal disturbance after the flare can also be demonstrated in another way:

Figure 8 shows a series of temperature maps, constructed from the flux ratio of HXIS bands 1
and 2, in the fine field of view of HXIS (Svestka, 1984a). One can see that shortly after the flare
(the upper times in each frame) an extended region of high temperature was formed (with T >
20 x 106K) which moved upwards across the solar limb and eventually disappeared from the fine
field of view of HXIS some 2 hr 15 min after the flare. The continuation of this rise, in

brightness of the arch, can then be further followed in the coarse field, as shown in Figure 7.

The arch revived once again at "-04:40 on 7 November, and it is very likely that already
the first appearance of the arch (the upper row in Figure 7) was a revival, since a major two-
ribbon flare at 13:41 UT on 5 November (not seen by the SMM) was probably the source of the

first arch formation. Our present interpretation is (cf. Svestka et al., 1982a) that the post-flare
arch is the upper product of the reconnection process which forms the post-flare loops below.
The first arch is formed fast near the onset of the flare (Hick and Svestka, 1985) and the

maximum stays in a constant position since its formation. When an arch revives, however, the
new arch meets an obstacle at its formation - the pre-existing arch - and this leads to the

gradual rise of the arch excitation seen in Figures 7 and 8 (Svestka, 1984b).

We have studied in detail the second arch on 6 November (following the flare at 14:40

UT), since this is the only arch we could observe during its whole development. Figure 9 shows
the results: the arch began to brighten, and its temperature began to rise, from the very onset of
the two-ribbon flare. The temperature reached its maximum about 1 hr later, the brightness in
3.5 to 5.5 keV X-rays peaked about 2.3 hr, and the emission measures more than 3 hr after the
flare onset. It looks like a flare, with both the size- and time-scale enlarged by an order of mag-

nitude. The physical characteristics deduced for this revived arch are summarized in Table III.
One can see that the energy contents and mass are comparable to an average coronal transient
(cf. the paper by N. R. Sheeley in these proceedings).

(1) Temperature measurements

When determining temperature from HXIS data (Mewe et al., 1985), we have encountered
serious difficulties in the calibration of the energy band 2 which contains the helium-like complex

of iron (Svestka and Poletto, 1985). As soon as temperature exceeds 20 x 106K (or during the
impulsive phase, whichever statement is correct), the emission in band 2 is clearly overestimated,
since T(2/1) results higher than T (3/2). The reason for this may be an incomplete knowledge
of satellite iron lines which begin to become important for T > 20 x 106 K, or perhaps an excita-
tion by particle streams, whereas the calibration assumes Maxwellian distribution of velocities.
In any case, one should avoid band 2 in temperature measurements if T exceeds 20 x 10 6 K.
That is the reason, for example, why we have determined T from the bands 1 and 3 and not 1
and 2 (with better statistics) in Figure 1.
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(2) Temperature maps

This uncertainty in the calibration of HXIS band 2 does not have much influence on the
studies of coronal arches, since temperature in them is generally lower. However, other disturbing
effects appear when constructing the temperature maps of the corona, and one has to be par-
ticularly cautious when preparing them.

First, there are ghost images produced by the collimator which appear towards the NS and
WE directions from a bright source. They are extremely weak and usually do not play any
disturbing role in the X-ray images. However, the ghosts are more intense at high energies; since
temperature is determined from the flux ratios, irrespective of the flux intensity involved
(provided there are enough counts to make the ratio statistically significant), these ghosts clearly
appear as fictitious maxima in the temperature maps.

This effect of ghosts had been known before the launch and can be corrected if necessary.
However, there is another effect which had not been expected, and which puzzled us for quite
some time: if there is a bright flare source, we can see not only the ghosts in the temperature
maps, but also temperature maxima elsewhere around the flare, sometimes producing almost a
circle, or a semi-circle with the flare close to its center. First we thought, and Harrison and

Simnett (1985) still believe that it is at least partly true, that we saw here the X-ray light from
I J

the source backscattered on the photosphere. However, Farnik (private communication) has
found cases when such temperature maxima were seen also above the limb. Therefore, we are
now convinced that the effect is mostly, and possibly completely, due to an instrumental effect:
the FWHM of the HXIS pixels increases with increasing energy. Thus wherever the gradient of
X-ray flux is high (like at a certain distance around the flare), the outlying pixels have a larger
contribution from the high energy bands, which leads to a fictitious enhancement of temperature

along the high-gradient boundary around the flare. A weak example of it can be seen in the first
image in Figure 8, at 3 min 46 s before the peak of the impulsive phase of the flare (compare
it with the flare position in the lower central frame of Figure 8). The effect is slightly visible in

the other upper-row maps as well.

Therefore, we must always carefully check whether there is any instrumental effect (ghost,
high gradients of flux) potentially responsible for maxima detected in temperature maps. Note
that the accumulated isophotes at the left-hand side of the upper images in Figure 8 do not mean
a high gradient of flux; they only mark the boundary where the flux ratio exceeds the statistical
significance of 3o. So the maxima in Figure 8 are real temperature enhancements traveling across
the limb.

Also the inhomogeneous gain of HXIS pixels (cf. Section II) can produce false maxima
in temperature maps similar to that one in flux demonstrated in Figure 3, even at lower energies
(Svestka and Hick, 1985). Since, however, the gain for different pixels is known, this effect can
be easily recognized and to a great extent eliminated.

IV. INTERCONNECTING LOOPS

/ /
After the discovery of the reviving postflare arches on 6 November 1980, Farnik et al.

(1985) became interested in the further behaviour of this active region which was followed by the
SMM up to its disappearance behind the western limb on 20 November. First they found another
revival of the arch, late on 7 November and on 8 November (Figure 10), but the situation com-
pletely changed on 9 November. On that day another coronal structure appeared (Figure 10,
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right-hand picture) which extended towards the SE, instead of SW. Since this structure firstJ

appeared after a major flare in another active region 17 251 (cf. Figure 10), F_rnik et al. have
assumed that HXIS imaged here a big loop interconnecting the observed region 17 255 with the

(invisible for HXIS) region 17 251.

The two structures shown in Figure 10 definitely differ in their nature. The arch (to the
SW) always revived after a two-ribbon flare in the region below it. The structure towards the SE
behaved in relation to flares in a way very similar to that found for interconnecting loops during
Skylab (Svestka and Howard, 1979): some flares (in both active regions) seem to enhance it;
these definitely need not be two-ribbon flares; other flares have no impact upon the structure,
and sometimes the structure brightens without any obvious flare association.

A very similar coronal structure, with the same loose association with flares, was also
detected by Harrison et al. (1984) on 29 June 1980. Images of this interconnecting loop on the
limb are shown in Figure 11 (left). The interconnecting loops could not be seen on the disk,
but simultaneous X-ray brightenings in both the regions, like in the right-hand image of Figure 11,
on 24 June, had suggested the existence of a coronal interconnection already on that day
(Simnett et al., 1984).

Another difference between the SW arch and the SE structure in Figure 10 was the cool-

ing time of the X-ray brightenings. The life time of the enhancements of the SW arch was 14 hr
or more, whereas all enhancements of the SE structure were relatively short-rived; the SW arch
shown in Figure 7 cooled for "% hr from T = 14 x 10 6 K to T -- 8 x 10 6 K, whereas in the

strongest brightening of the SW structure on 11 November the same temperature decrease was
accomplished within 80 minutes. With the densities deduced (of the order of 109 cm-3) this
indicates that the heat conduction was inhibited in the SW arches, but active in the SE structure.

This is to be expected with the complex magnetic structure of the arch, originating through a
long-lasting sequence of reconnections and possibly even detached from the surface, in comparison
to a simple-structured loop that interconnected two active regions.

(a) The fieM of view

Though there are strong arguments supporting the suggestion that the structure seen on
9 November and later on was an interconnecting loop, one can never be sure of it, since the other
interconnected region was out of the field of view. This is only one demonstration of the dis-
advantages of the restricted field of view used by HXIS and other SMM instruments. In Figure 1
we could not study the thermal wave (analogic to Figure 8), because it was out of the fine field
of view. The westem footpoint of the arch of 21122 May 1980 was out of the coarse field of
view (Figure 4). The thermal wave disappeared from the fine field of view in Figure 8 and both
the arches in the moming and afternoon of 6 November extended out of the coarse field of view

(Figure 7). Besides, lots of interesting events (e.g., all T-ray flares) were missed by the SMM and
HXIS in 1980, because the spacecraft was pointed to another region on the Sun.

V. PRE-FLARE ENHANCEMENTS

Another unexpected discovery made by HXIS were X rays emitted by hot plasma in
absence of flares. Schadee et al. (1983) have found that some active regions are characterized by

long-lived X-ray enhancements above 3.5 keV along the filament channels. These sources are
"_10 4 times weaker than a flare, can last for several hours, and some possibly mark the sites
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where a major flare will occur many hours later. The temperature deduced for them from the
HXIS bands 1 and 2 exceeds 10 x 10 6 K.

The low resolving power of the coarse field of view of HXIS makes it impossible to decide
whether there is really an exact coincidence in position between these pre-flare enhancements and
the coming flare. Only in the "Queens' " limb flare of 30 April, 1980 (De Jager et al., 1983),
these pre-flare enhancements could also be seen in the fine field of view; most of them were then
not in exact coincidence with the position of the flare; however, for 26 min prior to the flare an
enhancement, faint but distinct, coincided exactly (within the resolution of 8 arc s) with the flare
position. Also its shape was similar to the shape of the coming flare event.

Other active regions show a high number of short-lived X-ray variations, about 10-3 times
weaker than a flare, which probably are X-ray mini-flares. Galzauskas, Schadee and Martin
(private communication) succeeded to associate a few of them with tiny Hot brightenings.

An extremely interesting observation has been reported by Simnett and Harrison (1984)
and Harrison et al. (1985): They claim that at a time consistent with a coronal mass ejection
onset at the very early phase of a flare there is a small, soft X-ray burst (a precursor) which may
signify the origin of the coronal transient. Figure 12 shows an example of such an event. The

images of the preflare brightening at times marked a, b, c in Figure 12 are shown in Figure 13.
The preflare structure really seems to rise near the time when an accelerating mass ejection might
have started.

Vl. CONCLUSIONS

We have tried to demonstrate that the hard X-ray imaging can yield data on many more

coronal phenomena than just the impulsive (hard X-ray burst) phase of flares. There are X-ray
enhancements in non-flaring active regions corresponding to mini-flares, long-lived high-
temperature disturbances along filament channels, and flare precursors. Some of them may signify
the origin of mass ejections prior to flares. Others perhaps indicate the site where the coming
flare may occur. After the impulsive phase of a flare, X-ray images show post-flare loops in the
shape close to their formation and may reveal new sites of field-line reconnections. After two-

ribbon flares, giant post-flare coronal arches are imaged in X-rays, and their energy contents are
comparable to the energy contents of coronal transients. They appear to be an important com-

ponent of the post-flare corona and represent X-ray counterparts of stationary type IV bursts
and type I noise storms. Also a few loops interconnecting active regions could be imaged by
HXIS.

In the future hard X-ray experiments one should try to image the whole Sun (or at least,
large fields of view on the Sun), since the limited fields of view used onboard the SMM caused

lots of problems in the evaluation of the data, and many important data were missed. One
should not omit lower energies ('_3 keV), since some important coronal features seem to be
prominent at these wavelengths. High spatial resolution is essential, as one can see from many
illustrations in this contribution. High time resolution did not prove to be of real significance
for HXIS, but this will surely change if, at the same time, also the spatial resolution greatly
improves. Nevertheless, the HXIS experience speaks strongly against the use of any suppression
of data (flare modes): the gain of this suppression (of which the author admits to be one of the

initiators) was essentially nil whereas the losses (no images of type IV, type II, type V radio
bursts, no knowledge about the early phase of the post-flare coronal arches) had been very
harmful.
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In summary, HXIS has been an extremely successful experiment. Its unbelievably low
background permitted many new discoveries which had not been expected before the launch.
The used techniques had some deficiencies, but these actually became important only at the
occasions when we tried to evaluate data very close to the extreme limits of HXIS sensitivity.

The present review has tried to summarize all the known pros and contras of the used collimating
techniques, for the benefit of those who plan hard X-ray imaging experiments for the future.
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Figure 1. Top: Images of the flare of 21 May 1980 in 3.5 to 8.0 keV X rays. Center: Temperature and emission

measure determined from the ratio of HXIS bands 3 and 1, for the four brightest pictures in band 1.
(Emission measure Y pixel of fine field of view.) Bottom: The distance of the brightest part of

the flare (tops of the loops) from the H II= 0 line, d, in projection on the disk, as determined
from HXIS bands, 2, 4, and 5 + 6.
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Figure 2. A detail of the variation of d in HXIS channels 1 to 6 during the jump in altitude
_o which occurred at 21:12 UT (cf. the bottom part of Figure 1).
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Figure 3. Images of the flare of 21 May 1980 in HXIS bands 1 to 6 during the period from 21'09 through

21:18 UT. The H II= 0 line is marked in all the images. North is up, west is to the right. Feature A
is a real new maximum; feature B is an artifact (cf. Section II).
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Figure 4. X-ray contours of integrated images of the post-flare coronal arch observed on 22 May 1980. Energy

range: 3.5 to 5.5 keV. HXIS coarse field of view, resolution 32 arc s. The given times are mean times of
1525 s integrations. The position of the parent flare at 20:52 UT on 21 May is marked by dotted
contours in the upper central image. The insert shows the relative position of the X-ray arch and

three radio images of the stationary type I noise storm as seen at Culgoora at 03:20 UT on 22 May.



23:01:49
74 cts/m

-, 70 cts/m

Figure 5. X-ray contours in the SMM orbit next to the flare occurrence at 20:52 UT on
2] May. HXIS coarse field of view, energy band 3.5 to 5.5 keV. The upper and lower

images at the left-hand side were recorded at respectively the beginning and end of
the SMM orbit. The other three images show the shift of the maximum of

brightness in the arch from pixel 91 to pixel 103 at 23:02 UT.
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Figure 8. Temperature maps of the early phase of the arch imaged in the lower part of Figure 7. HXIS fine field of view
(8 arc s resolution). The contours correspond to I0, 12, 14, 17and 21 x 106 K, as determined from the ratio of counts
in HXIS bands 2 (5.5 to 8.0 keV) and 1 (3.5 to 5.5 keV). Only ratios with >3a statistical significance have been

used for these plots. Time data give the UT (below) and time difference from the maximum of the
flare impulsive phase (above).
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Figure 9. Time development of the arch brightening shown in the lower part of Figure ?. Above: counts/s in 3.5 to 5.5 keV
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Figure 10. Top: 3.5 to 5.5 keV contours in the coarse field of view of HXIS. Left: the last

(probably fifth) revival of the arch shown in Figure 7, on 8 November, 01:50 UT (1008 s

integration, maximum count rate 0.7 counts/s). Right: a new structure seen on 9 November,
at 04:38 UT (383 s integration, maximum count rate 7.1 counts/s). This new structure

may be a loop interconnecting active regions 17255 and 17251, the position of
which on the solar disk is shown below.
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Figure 11. Left: Two X-ray contour plots (3.5 to 5.5 keV) showing the largest of the coronal loops interconnecting AR 16931
and AR 16923 on the western solar limb on 29 June 1980. Right: Five days earlier, on 24 June, simultaneous

X-ray brightenings were seen in both these (supposedly interconnected) regions.
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Figure 12. 3.5 to 5.5 keV intensity time profile for the flare at 02:33 UT on 29 June 1980, and its precursor (note the
scale change at 02:30 UT). Superposed onto this are the altitude histories of the white-light coronal mass ejection

_o (crosses) and an X-ray transient (a, b, c) which is shown in Figure 13.
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Figure 13. The X-ray transient seen in the precursor phase of the flare of 29 June. Maximum intensity contour

corresponds to 0.28 counts/s. The altitudes of the three crosses are plotted in Figure 12 (labeled a, b, c).



Table 1. Average count rate per pixel, F(k) in the 3.5 to 5.5 keV energy band for various

exponents k in equation F(k) = 2k]2 FB, where F B is the average background flux, and

the integration time (n seconds) needed for a 30 statistical significance in nF(k).

F(k) n for S = 3.0 _. This corresponds
k (counts s"I ) (s) in coarse FOV to

1 0.00645 3368 "-limit of detection

2 0.00912 1974

3 0.0129 1191 "_10"4 a flare count

4 0.0182 740

6 0.0365 308

8 0.0730 139

10 0.146 65.5 "_10"3 a flare count

15 0.825 11.0

20 4.67 1.93

25 26.4 Subflare

30 149.4 Flare

35 845 Major flare

Table 2. Size of the new source at 21: 13:19 UT for various electron densities

77e Volume Radius (if source spherical)

109 cm "3 3.4 x 10z7 cm a 9330 km

10 lo 3.4 x 102s 2010 km

1011 3.4 x 1023 430 km

1012 3.4x 1021 90km
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Table 3. Physical parameters of the post-flare arch revived at 14:45 on 6 November 1980.

14:09 UT PREFLARE: T2/1 = 7.2 x 106K

ne=6.8x 108cm "3

14:44 UT FLARE ONSET

15:47 UT MAX. TEMPERATURE T2/1 = 14.0 x 106 K

17:25 UT MAX. ENERGY DENSITY 11.2 erg cm "3

18:05 UT MAX. DENSITY ne = 2.4 x 109 cm -3

TOTAL VOLUME 1.1 x 1030 cm 3

MAX. ENERGY CONTENT 1.2 x 1031 erg

TOTAL MASS 4.4 x 1015g
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ABSTRACT

The major results from SMM are presented as they relate to our understanding of the
energy release and particle transportation processes that led to the high energy X-ray aspects of
solar flares. Evidence is reviewed for a 152- to 158-day periodicity in various aspects of solar
activity including the rate of occurrence of hard X-ray and gamma-ray flares. The statistical pro-
perties of over 7000 hard X-ray flares detected with the Hard X-Ray Burst Spectrometer are
presented including the spectrum of peak rates and the distribution of the photon number
spectrum. A flare classification scheme introduced by Tanaka is used to divide flares into three
different types. Type A flares have purely thermal, compact sources with very steep hard X-ray
spectra. Type B flares are impulsive bursts which show double footpoints in hard X-rays, and
soft-hard-soft spectral evolution. Type C flares have gradually varying hard X-ray and microwave
fluxes from high altitudes and show hardening of the X-ray spectrum through the peak and on
the decay. SMM data are presented for examples of Type B and Type C events. New results

are presented showing coincident hard X rays, O V, and UV continuum observations in Type B
events with a time resolution of _< 128 ms. The subsecond variations in the hard X-ray flux
during ;_10% of the stronger events are discussed and the fastest observed variation in a time of

20 ms is presented. The properties of Type C flares are presented as determined primarily from
the non-imaged hard X-ray and microwave spectral data. A model based on the association of
Type C flares and coronal mass ejections is presented to explain many of the characteristics of
these gradual flares.

I. INTRODUCTION

This paper is a personal review of some of the major results from the Solar Maximum
Mission (SMM) with a strong emphasis on the hard X-ray observations, with which the author is
most familiar from his role as Principal Investigator of the Hard X-Ray Burst Spectrometer
(HXRBS). A much broader and deeper impression of the current state of solar flare physics can
be obtained from the several chapters of the report from the three SMM workshops held in 1983
and 1984 at Goddard Space Flight Center (Kundu and Woodgate, 1985). No attempt has been
made to ensure that this review is complete or comprehensive. In particular, the gamma-ray line
and neutron observations are not discussed (see Chupp, 1984a), results from the Coronagraph/
Polarimeter (C/P) and the Active Cavity Radiometer Irradiance Monitor (ACRIM) are not men-
tioned, and the major findings of the Hard X-Ray Imaging Spectrometer (HXIS) are left for the
companion review papers by De Jager and Svestka.

SMM was launched in February 1980 and operated successfully until 22 November 1980,
when the attitude control system failed. During those first nine months of operations, most of
the new results, particularly those on the impulsive phase of flares, were obtained with the full
complement of instruments. Some 1750 events were detected with HXRBS, 450 events with
HXIS, and 700 with the Bent Crystal Spectrometer (BCS). After November 1980, the spacecraft
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was maintained in a spinning mode with the instrument axes coning about the direction to the
Sun with a typical offset angle of 10 to 15 deg. Consequently, only ACRIM intermittently and
the wide-field instruments, the Gamma Ray Spectrometer (GRS) and HXRBS, could obtain
useful data. By the time of the SMM repair in April 1984, HXRBS had detected over 7000 flares

above 30 keV, GRS had detected over 140 flares above 300keV, and a 152-to 158-day periodicity
had been revealed in the rate of occurrence of these flares (Rieger et al., 1985; Kiplinger et al.,
1985). After the replacement of the attitude control system and the C/P electronics, pointed
observations were resumed and, almost immediately, on 24April 1984 the biggest flare ever
recorded by SMM occurred (Chupp, 1984b). The subsequent reduced level of solar activity has
eased the problem of deciding where to point to catch the next flare and has allowed UVSP to
make long-postponed, quiet-sun observations. Currently, all instruments are fully operational
with the exception of HXIS, which failed in 1981 and could not be repaired, and UVSP, which
has had intermittent wavelength drive problems since the repair. HXRBS has recorded its 7800th
flare.

II. STATISTICAL ANALYSIS

One of the first things that can be done with the large number of events recorded with
instruments on SMM is to determine the global properties of flares including the rate of
occurrence, the spectrum of sizes, rise times, durations, spectral parameters, etc. Several
catalogues of SMM events have already been prepared and distributed. These include the SMM
Event Listing for 1980 (Pryor et al., 1981) and the HXRBS Event Listing for 1980-82 (Dennis
et al., 1983). A comprehensive catalogue of data on all SMM events is available on the VAX
computer at the SMM Data Analysis Center and plans exist to issue, in the near future, a revised
version of the 1980 listing, a complete listing of all HXRBS events, and a new listing of all SMM
events recorded since the repair.

(a) The 152- to 158-day periodicity

The most notable result from this statistical analysis is the discovery of a 152-to 158-day
periodicity in the rate of flare occurrence during this solar cycle, cycle 21. This periodicity was
first noticed by Rieger et al. (1985) in the tendency of 139 solar flares detected with GRS above
300 keV to occur in groups with a mean spacing of 154 days.

A much larger sample of 6775 hard X-ray flares detected with HXRBS above "_30 keV
was used by Kiplinger et al. (1985) to reveal a similar periodicity illustrated in Figure 1. The
number of flares detected per day by HXRBS is plotted versus time from launch in 1980 until
the middle of 1984 with corrections made for the SMM duty cycle. A power spectrum analysis
of the data plotted in Figure 1 was carried out using a Fourier transform routine that allows for
the data gaps (Deeming, 1975) and this confirms the existence of a strong Fourier component
having a period of 158 days and a semi-amplitude of approximately 40% of the mean flare rate.
The sine wave superposed on the data in Figure 1 represents this Fourier component plus the
first-order trend. Eight peaks can be seen in the flare rate at the expected times given by the
sine wave up to June 1983. The expected peak in the fall of 1983 was not present but a ninth
strong peak was observed in April/May 1984. Subsequently, no increase in flare rate was observed
in the fall of 1984 but some weak activity was observed in January/February 1985.

A similar periodic component is present in an analysis of 6102 events with X-ray emission
that does not exceed 140 keV. The power spectrum of this data set shown in Figure 2 also
shows a strong peak at 0.0633 days -1 corresponding to a period of 158 days. Hence, the
periodicity is present for a subset of flares that is independent of the 139 gamma-ray flares used
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by Rieger et al. (1985). A periodicity of 152 days is also present in the rate of GOES events
with a classification above M2.5 (Rieger et al., 1985), and Bogart and Bai (1985) report a 157-day

periodicity of flare occurrence in the microwave data.

The interpretation of this 152-to 158-day periodicity in the solar flare rate during cycle
21 is still uncertain. The most complete theory has been developed by Wolff (1983) based on

the rotational spectrum of g-modes in the Sun. He carried out a Fourier analysis of the variation
of the mean monthly sunspot number in the years from 1749 to 1979 and found narrow but
weak peaks in the power spectrum at a set of frequencies consistent with his model. The most
prominent period found by Wolff below 200 days is 155.4 days, remarkably close to the period
found for the flares in cycle 21. This period, according to Wolff's model, results from the beating
between the rotation of an £ = 2 mode and an £ = 3 mode where £ is the spherical harmonic

index. An attempt has been made to match the beat frequencies of other £-modes to the other
peaks in the power spectrum obtained from the HXRBS event rate but without success (Kiplinger,
private communication).

In concluding this section, it is clear that there is compelling evidence for a periodicity
in the rate of occurrence of solar flares during cycle 21 with a period of 152 to 158 days. It is

impossible to say, at present, if this is a manifestation of the interacting g-modes as suggested by
Wolff (1983). However, the possibility that this may be the case and the unique information
concerning the solar interior that could then be determined lends great importance to this result
and to the continued long-term accumulation of data.

(b) The spectrum of peak rates

A second result which has been obtained from the large number of flares recorded by

SMM is an accurate spectrum of peak rates involving over 6000 flares recorded with HXRBS.
This differential spectrum shown in Figure 3 was obtained from all complete events recorded with
HXRBS above _'30 keV between launch and the beginning of 1985 and it can be well represented

by an expression of the form

N(P) = 10-7 p-1.8 flares (counts s"1 day) "1

where N(P) is the rate of flares detected with a peak rate P above background measured with
HXRBS as the sum of the rate in all 15 channels. This expression fits the data over more than
three orders of magnitude; the turnover below a peak rate of _40 counts s"_ almost certainly
results from the reduced efficiency of f'mding events in the HXRBS data that result in a less than
doubling of the HXRBS background rate.

This differential spectrum of peak rates shown in Figure 3 is not directly comparable to
the spectrum reported by Datlowe et al. (1974) and renormalized by Lin et al. (1984). Their
integral spectrum is for the peak photon flux at 20 keV. It can be related to Figure 3 by noting
that for a typical power-law photon spectrum with an index of 5, a peak HXRBS rate above
background of 1000 counts s"x corresponds to a photon flux at 20 keV of _30 photons cm"z
s-1 keV "1. This is the highest flux included in Datlowe et al.'s spectrum. Thus, Figure 3 extends
the spectrum some two orders of magnitude to larger events. This is possible because the effects
of pulse pile-up were less severe in HXRBS than in the OSO-7 detector (Datlowe, 1975) as a result
of the "_0.06 cm thick aluminum window and the "0.01 cm thick dead-layer on the HXRBS

CsI(Na) crystal. In spite of these relatively thick absorbers, pulse pile-up is still a problem for
HXRBS when the total counting rate greatly exceeds 104 counts s"_, especially when the photon
spectrum is steeper than "E -s.
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There is no indication that the spectrum of peak rates changes shape as a function of time.
When separate spectra are obtained for each of the 5 years from 1980 to 1984, all are consistent with
the same slope as that shown in Figure 4. Furthermore, the power-law slope of-1.8 is consistent

with the slope of-0.8 obtained for the integral spectrum in 1971/72 by Datlowe et al. (1974) and
-0.9 obtained for the integral spectrum in 1969/71 using the detector very similar to HXRBS on
OSO-5 (Dennis, unpublished).

(c) Distribution of spectral index

The HXRBS observations allow a counting rate spectrum to be obtained every 128 ms.
From each such spectrum or from spectra accumulated over longer intervals, the spectrum of the
incident photon flux can be determined as a function of time throughout the flares of interest.
Unfortunately, as with all scintillation spectrometers such as HXRBS, the relatively poor energy
resolution and the other factors contributing to the non-diagonal elements of the instrument
response matrix, make it necessary to assume a form for the incident spectrum before the instru-
ment deconvolution can be carried out. A power-law spectral form is commonly used and this
can be expressed as follows:

N(E) = A E"7 photons cm"2 s"1 keV "1

where N(E) is the photon flux (strictly flux density) in units of photons cm"2 s"1 keV -1 at an

energy E in keV that is incident on the detector. The parameters A and 3' are determined from
the observations using the technique described by Batchelor (1984).

The power-law spectral analysis has been carried out for many HXRBS events and the
results have been used to determine the spectrum and energy content of the electrons producing
the bremsstrahlung X rays (Wu et al., 1985). In Figure 4 we show the distribution in the value
of 7 determined at the time of peak HXRBS counting rate for all complete flares recorded in

1980 where that peak rate was greater than 1000 counts s"1. The value of 3' is seen to range
from slightly less than 3 to as high as 10. It must be realized that, again because of the poor
energy resolution of scintillation spectrometers, spectra steeper than E"7 cannot be accurately
measured, and consequently, any value of 7 greater than _7 in Figure 4 should be considered
as a lower limit at 3' = 7. Corrections were applied for the effects of pulse pile up using the
technique described by Datlowe (1975, 1977) so that we believe that the variation in the mean

value of 3' with the peak rate is real. This may be a further manifestation of the Big Flare
Syndrome (Kahler, 1982) such that bigger flares tend to have harder spectra. Figure 4 also shows
that flares that are relatively microwave rich and those that produce gamma-ray lines also have
harder X-ray spectra (Bai et al., 1985).

Figure 4 can be compared to the distribution of 7 given by Datlowe et al. (1974) with
the understanding that they were looking at smaller flares with observations extending down
to lower energies: 10 keV as compared to 25 keV for HXRBS. The values of 3' obtained by
Datlowe et al. (1974) extend from 2 to 7 with a median value of 4.0. This is clearly at least
1.0 lower than the median value of the smallest events in Figure 4. A median value of "_5.0

was obtained by Kane (1974) using OGO-5 data. Thus, it is possible that the generally steeper
spectra found here is a result of the average spectrum being flatter from 10 to 25 keV and steeper
at higher energies. This would agree with the sometimes better fit obtained at the peak of some
flares to an exponential function expected for thermal bremsstrahlung (Dennis et al., 1981;
Kiplinger et al., 1983b).

70



III. FLARE CLASSIFICATION SCHEMES

It has long been known that not all flares are alike, and various classification schemes have
been proposed based on the appearance of different flares in certain wavelength or energy bands
and different phases. These schemes have suffered from the difficulty of relating them to one
another and in determining if the different classes were merely phenomenological or actually
indicated the occurrence of different physical processes. It is vitally important to determine if
different processes are occurring to produce the different types of flares. It has been one of the
frustrations of solar flare physics that any generalization about flares that one tries to make is
immediately met with many counter examples. If the counter examples can be shown to be
different types of flares with a different process producing the particle acceleration, for example,
then that would be an important step forward in understanding flares.

Pallavicini et al. (1977) developed a useful classification scheme based on soft X-ray images
of limb flares made from Skylab. They identified three principal groupings: (A) flares charac-
terized by compact loops, (B) flares with point-like appearance, and (C) flares characterized by

large and diffuse systems of loops.

Considerable advances have been made in classifying flares as a result of more recent obser-

vations. This is best exemplified by the scheme introduced by Tanaka (1983) and used by
Tsuneta (1983), Ohki et al. (1983), and Tanaka et al. (1983). This scheme is based on the hard
X-ray imaging results from Hinotori but has found widespread value in coordinating other obser-
vations. Tanaka (1983) also divided flares into three classes referred to as Type A, B, and C, but
it appears that the Pallavicini et al.'s A and B groups may correspond to Tanaka's Type B and A
flares, respectively. Some flares, particularly the larger ones, can show characteristics of more
than one type during their different phases. The three different flare types have the following
distinct properties:

Type A Flares - hot thermal flares with T "_ 3-5 x 107 K, compact, <5000 km, low
altitude.

Type B Flares - typical impulsive bursts, double footpoints seen in hard X rays, highly
sheared loop with lengths _2 x 104 km, possible existence of electron beams producing hard

X rays in thick-target interactions.

Type C Flares - high altitude X-ray sources, "_ 5 x 10 4 km, gradually varying X-ray and
microwave fluxes, X-ray spectral hardening and microwave delay suggesting trapped non-thermal
electrons and/or continuous acceleration.

In this review I shall concentrate on discussions of SMM observations of Type B flares

obtained mainly during 1980 and on Type C flares observed mainly after 1980. I will not discuss
any observations of Type A flares since no good examples have been reported in the HXIS data
set. The reader is referred to papers by Tsuneta (1983) and Tsuneta et al. (1984a) for discus-
sions of Hinotori observations of this type of flare. There is some statistical evidence that Type
C flares tend to occur preferentially during the decreasing phase of the solar cycle, and this may
explain the difference between the 1980 results from the SMM Hard X-Ray Imaging Spectrometer
(HXIS) in 1980 and the initial 1981 results from Hinotori. It appears that primarily Type B
flaresweredetected with HXIS whereas the Hinotori team initially reported observations of Type C
flares.
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IV. PROPERTIES OF TYPE B FLARES OBSERVED WITH SlMIM

(a) The 5 November 1980flare at 22:32 UT

The best example of a Type B flare in the SMM data set is the flare on 5 November 1980

starting at 22:32 UT. The soft and hard X-ray time profiles are shown in Figure 5, where the
earlier flare at 22:26 UT can also be seen. Although the first flare was observed at 15 GHz with

the Very Large Array (Hoyng et al., 1983), it was a factor of ten less intense in X rays than the
second flare and the statistical significance of the HXIS images in the highest energy bands (16

to 30 keV) is poor. Hence, the second flare has been the subject of more extensive study than
the first flare (Duijveman, Hoyng, and Machado, 1982; Duijveman and Hoyng, 1983; Rust,
Simnett, and Smith, 1985; MacKinnon, Brown, and Hayward, 1984; Wu et al., 1985; and Dennis
et al., 1985).

As shown in Figure 5, the hard X-ray time profile of this second flare was relatively

simple, with a single, relatively smooth and intense spike lasting for 17 s (FWHM) followed some
90 s later by a second, less intense peak. The detailed spectral evolution of the first peak can be
seen in Figure 6 where the HXRBS counting rates in three different energy ranges and the value
of the power-law spectral index 3, determined from the 34 to 405 keV HXRBS data are plotted
on an expanded time scale. The value of 3' decreases from 6 near the beginning of the event to
3.5 at the time of the peak rate and increases back to >/6 on the decay. This soft-hard-soft

spectral evolution was first reported by Kane and Anderson (1970) and is considered typical for
impulsive flares. Some impulsive flares, however, show high energy tails on the spectrum above
50 to 100 keV that remain hard or become harder after the peak (Crannell et al., 19518; Dennis

et al., 1981). Indeed this is also true for the 5 November peak above "_100 keV. It is not
clear if this early indication of spectral hardening after an impulsive spike is the beginnings of a
Type C flare as discussed below. It is possible that there is a continuous progression from purely
impulsive Type B events with no spectral hardening after the peak to purely gradual Type C
events with continuous spectral hardening through the peak. There are some events observed with
HXRBS that clearly show Type B and Type C characteristics on different peaks within the same
flare. Hence, events classified as Type B or Type C may just represent the extreme cases; impul-
sive and gradual phases may occur in all flares at some intensity and/or energy levels. It would
seem, however, that the relative importances of these two phases must differ by several orders
of magnitude for flares now classified as Type B and Type C.

The HXIS 16 to 30 keV images show three well resolved bright patches during the first

impulsive peak in the second flare on 5 November 1980 at 22:33 UT (Fig. 7). Two patches
labelled A and B following Duijveman, Hoyng, and Machado (1982) are separated by 1.6 x l0 s

km and a third patch labelled C is separated from B by 7 x 104 km. Comparisons with Ha
images and magnetograms suggest that the bright patches were at the footpoints of two magnetic

loops joining A and B, and B and C. Duijveman et al. (1982) claimed that the footpoints B and
C started to brighten simultaneously to within "5 s implying a velocity of >1 2 x 109 cm s"1

along the assumed semicircular loop. They showed that for this velocity to be interpreted as an
Alfven velocity, the magnetic field in the loop must have been >_900 G, implausibly high for such
a large loop. They concluded that the most likely explanation for the simultaneous brightening
was a beam of fast electrons traveling along the loop and producing X rays in thick-target inter-
actions at the footpoints.

MacKinnon, Brown, and Hayward (1984) have shown that only a small fraction of the

hard X rays in the HXIS 16 to 30 keV images come from the pixels that define the bright patches
A, B, and C. They claim that the remainder come from a diffuse region around A and B although
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the interpretation of the 2 or 3 images at the time of the first hard X-ray burst is complicated

by the presence of a diffuse background resulting from the leakage of high energy photons
through the walls of the instrument collimator. This conclusion that only a small fraction of the
photons come from the footpoints is supported, however, by an extrapolation of the HXRBS spec-
trum above 30 keV down to the 16 to 30 keV HXIS energy range. Good agreement is found
between this extrapolated spectrum and the total HXIS counting rate integrated over the whole

fine field of view. When the counts in only the fine field of view pixels that define the three
bright patches are summed, however, the resulting flux is an order of magnitude below the
HXRBS extrapolation. If the spectrum of only the impulsive component is used; i.e., the more
gradually varying component is subtracted from the fluxes in each energy band, then the spectrum
becomes flatter at energies below 50 keV, E"3 compared to E-_'9 for the spectrum of the total
flux. This reduces the discrepancy and suggests that the impulsive component comes primarily
from the footpoints whereas the more gradually varying component comes from a larger area.

Rust (1984) has also suggested that the total energy in electron beams in the 5 November
flare was _<10% of the total energy released and that the remainder appeared as a high tempera-
ture source. Evidence from HXIS images in bands 1 and 2 for a thermal conduction front travel-
ing to point C is given in Rust, Simnett, and Smith (1985) but the interpretation of the moving
contour lines is ambiguous. An equally valid interpretation would be one where the emission
from loop BC increased uniformly along the loop as the plasma in the loop was heated by fast
electrons traveling along the loop.

Later on in the same flare at 22:34:30 UT, a second hard X-ray peak occurred with an
E"7 spectrum, much softer than the E-4 spectrum of the first peak. Furthermore, at the time of
the second peak, the HXIS images show that the 16 to 30 keV X rays came predominantly from
a location between the original bright patches A and B. The soft X-ray flux shows a second
increase at about this time, as indicated in Figure 5, suggesting that almost the same amount of
energy was released as during the first impulsive peak. The simplest explanation of these observa-
tions is that this second energy release served mainly to heat "the plasma injected into the loop as
a result of the first non-thermal energy release. Such a transition from an essentially non-thermal
model to a thermal model during the impulsive phase of many flares has been proposed by Smith
(1985) and by Tsuneta (1985). Smith (1985) proposes a dissipative thermal model, a term
originally suggested by Emslie and Vlahos (1980), and he suggests that an increase in the ratio of
plasma to magnetic pressure (the plasma/3) at the energy release site later in the flare results in
this transition from a non-thermal to a thermal model. It must be pointed out, however, that the
blue shifts in the Ca XIX lines observed with the Bent Crystal Spectrometer (Acton et al., 1980)
persist into the later stages of the impulsive phase of the 5 November 1980 flare indicating con-

tinuing chromospheric evaporation with upward velocities of "_200 km s-_ even during the second
hard X-ray peak (Antonucci, Gabriel,and Dennis, 1984).

(b) Simultaneous UV and hard X-ray emission

Another way to differentiate between the different flare models is to look at the timing
relationship between UV and hard X-ray emission during impulsive flares. The simultaneity to
within 1 s of UV and hard X-ray emission has been known since the observations of sudden
ionospheric disturbances (SIDs) in conjunction with hard X-ray bursts (Donnelly and Kane, 1978;
Kane et al., 1979). SIDs are caused by bursts of solar UV radiation between 10 and 1030 Pt

coming primarily from the transition region and low corona. The combined UVSP, HXIS, and
HXRBS observations have now provided the required spatial information to allow the simultaneity
of the UV and hard X-ray emissions to be used to significantly constrain the flare models.
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Poland et al. (1982) and Cheng et al. (1981) have shown that the transition region line
radiations - O V at 1371 A, Si IV at 1402 )k, and O IV at 1401 )k - are strongly concentrated

at the footpoints of magnetic loops. Woodgate et al. (1983) have shown that the simultaneity
of the O V emission and the 25 to 300 keV X-ray flux to within 1 s for several impulsive flares
observed on 8 November 1980. Here we show in Figure 6 the UV and hard X-ray observations
for the 5 November 1980 flare at 22:33 UT from Dennis et al. (1985). The total O V emission
summed over all nine UVSP pixels near footpoint B shown in Figure 7 is plotted in Figure 6 on
the same time scale as the hard X-ray counting rate recorded by HXRBS in three energy ranges.

This is a particularly clear example of the simultaneity to _ 1 s of a hard X-ray peak and the
increase in the O V emission from a footpoint. It supports the conclusion reached by Woodgate
et al. (1983) that the lack of any detectable time delay is inconsistent with flare models in which
the hard X rays are initially produced at the loop top followed by the formation of thermal con-
duction fronts which travel to the footpoints where the UV burst is produced by heating. Models
in which both X rays and UV radiation are both produced at the footpoints, or an electron beam
transmits energy between the loop top and the footpoints in less than 1 s are allowed by these
observations.

Attempts to quantify the expected O V flux for a given electron beam intensity have met
with limited success. The theoretical problem is complicated by the fact that there are two com-
peting effects of an electron beam incident from the corona. One is the depression of the transi-
tion zone to a lower altitude and higher density. This tends to increase the amount of material
at the O V emitting temperature around 2.5 x l0 s K suggesting that the O V flux should increase

rapidly. The other effect suggests the opposite, however, and that is the steepening of the tem-
perature gradient in the transition zone. This tends to reduce the amount of 2.5 x 10s K
material and suggests that the O V flux should decrease. Thus, it is important to accurately model
the transition zone in any theoretical calculation of the expected O V flux and this typically is
difficult to do in the computer simulations because of its extremely small scale height. Poland
et al. (1984), Emslie and Nagai (1984), and Mariska and Poland (1985) have carried out some
exploratory model calculations to study the relationship between the energy emitted in hard
X rays and in the O V line assuming that both result from an electron beam. Poland et al.
(1984) find from the observations of individual flares that there is a definite relation between
hard X-ray and O V emission throughout a given flare but that the flux ratio is different in
different flares. They attribute these differences to the initial conditions in the flaring loops and
their model calculations support this conclusion.

More recent observations made after the SMM repair have shown simultaneity of UV
continuum and hard X-ray features in an impulsive flare to within 0.25 s (Woodgate, 1984).
In a flare on 20 May 1984 at 02:59 UT, UVSP was recording at around 1600 )k with a time
resolution of 75 ms in one pixel and HXRBS was recording the counting rate above 24 keV with
10 ms time resolution. (The UVSP wavelength drive was not working at this time so that the
exact wavelength of the UV observations is not known nor is it known for certain if it was
recording fine or continuum emission. However, the two detectors separated by 17 A recorded
very similar rates and consequently it is believed that they were both in the continuum with little,
if any, contribution from line emission.) The overall time profile of the impulsive phase of the
event in UV and hard X rays is shown in Figure 8 and the first feature is shown on an expanded
time scale in Figure 9. There are clearly significant differences between the overall UV and hard
X-ray time profiles but the similarities are striking. In particular, the sharp feature at 02:59.23
UT shows up clearly in both time profiles with the start and peak times coincident to within
0.1s.
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If we assume that the detected UV emission for this event was continuum at "1600 A,
then it was probably emitted low in the chromosphere at a temperature of "_5000 K according
to Cook and Brueckner (1979). Thus, it is difficult to see how an electron beam incident on a

footpoint from the corona could result in the measured 0.1 s simultaneity since electrons cannot
reach deep in the chromosphere (Woodgate, private communication). The possibility of the
energy release itself occurring in the chromosphere would, of course, alleviate the problem.

Even more recent coincident UV and hard X-ray observations with 128 ms time resolution

should ultimately help to differentiate between the different possible models. An impulsive flare

on 24 April 1985 at 01:48 UT was recorded by both UVSP and HXRBS. UVSP was recording
separately the emission in both the O V line and the continuum 17 A from the line with a time
resolution of 128 ms. Thus, the time profiles of the emission from the transition zone and from

the lower chromosphere were obtained at the same time as the hard X-ray profile above 25 keV.
The three time profiles are shown on the same time scale in Figure 10, where the rich detail is

evident in this flare. It is too early in the analysis of these data to make any definitive statement
about the relative timing, but it does appear as if the first peak in hard X rays and in the con-
tinuum emission are coincident to within 1 s. The O V emission, however, seems to reach its first
peak a second or so later. This surprising result, if it can be verified, would support the idea
that at least the initial energy release occurs in the chromosphere and not in the corona.

(c) Rapid fluctuations in the hard X-ray flux

The impulsive phase of solar flares is characterized by rapid variations in the hard X-ray
and microwave flux. This must reflect the variations in the rate of energy release in the flare
and the production of energetic electrons but the propagation of the electrons from the site of
energy release to the location is also a factor in determining the observed variations. A detailed

analysis of the most rapid variations that are observed has proved to be a useful tool to place
limits on the models for the production and propagation of fast electrons.

Before 1980, observations of hard X rays had revealed variations on time scales as short as
1 s but as soon as better time resolutions become available, variations on time scales as short as

a few tens of ms were observed (Orwig et al., 1981 ; Kiplinger et al., 1983a; Hurley et al., 1983).

One of the fastest variations observed with HXRBS is shown in Figure 12, where two
seconds of the counting rate are plotted with a time resolution of 20 ms for an impulsive event
that occurred on 6 June 1980. The most dramatic variation is the large, unresolved rise from 20
to 53 counts per 20 ms at 23:34:45.7 UT. Numerous other fast variations (not shown) occurring
within 10 s of the plotted interval support the reality of this rapid fluctuation.

It must be remembered that only about 10% of all flares detected with HXRBS with a

sufficiently high counting rate to see variations on a sub-second time scale, in fact, showed such

rapid variations (Kiplinger et al., 1983a). Thus, sub-second variations are not a common phen-
omenon. Nevertheless, they can be used to constrain models for energy release and propagation.
The short time scales involved are upper limits to the time scales of the acceleration process itself.
Although both thermal and non-thermal interpretations of sub-second variations are viable,
Kiplinger et al. (1983a) have shown that a thermal interpretation has no energetic advantage over
a non-thermal interpretation for the production of hard X rays. Furthermore, Kiplinger et al.
(1984) have shown for a particularly well resolved sub-second spike, that the observations allow
constraints to be placed on the loop length and on the electron pitch-angle distribution assuming
a non-thermal interpretation.
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V. PROPERTIES OF TYPE C FLARES

The canonical Type C flare identified in the Hinotori data is the flare on 13 May 1981
(Tsuneta et al., 1984b). A part of the time profile of this event as determined with HXRBS is
shown in Figure 12 together with the evolution of the power-law spectral index 3'. We see imme-
diately two differences between this event and the 5 November 1980 event shown in Figure 5 and
6. First of all, the 13 May 1981 flare is a much more gradually varying event with the hard X-ray
peak lasting for "8 min (FWHM) compared to 17 s for the major peak on 5 November. The
beginning of the event was not seen with HXRBS since SMM did not emerge from spacecraft
night until 04:08 UT, but Tsuneta et al. (1984b) report that this event showed no impulsive
component in either hard X-rays or microwaves. The second difference is that for the 13 May
event the hard X-ray spectrum gets progressively harder (3" decreases) through the peak in contrast
to the soft-hard-soft spectral evolution of the 5 November event shown in Figure 6. The soft-
hard-harder spectral evolution is also evident in Figure 13 where individual spectra are plotted for

specific times on the rise and decay of the hard X-ray peak. The photon flux density was deter-
mined as a function of photon energy from the 15-channel HXRBS counting rate data using the

technique described by Batchelor (1984) and a power-law fit was made to the points correspond-
ing to channels 3 to 14. The lower two channels were excluded because there is a steep, low-
energy component to the spectrum near the beginning of the rise and towards the end of the
decay of the event as shown in Figure 13. Clearly, it is the spectrum above "60 keV that par-

ticipates in the spectral hardening with time. The steep spectrum at lower energies is most
probably a high temperature thermal component similar to that reported by Lin et al. (1981).

The most striking result concerning the 13 May flare, however, is that the altitude of the

X-ray and microwave source was "4 x 104 km above the photosphere (Tsuneta et al., 1984b).
This result was obtained from the 14 to 38 keV image in Figure 14, which shows that the X-ray

source was displaced by "_1 arc rain towards the limb from the two-ribbon Ha flare. Considering
the location of the Ha source at N9-13 E54-58 (Solar Geophysical Data), this displacement

corresponds to the altitude indicated above. This is again in marked contrast to the Type B
flares, where at least a large fraction of the hard X rays are believed to come from low altitudes
at the footpoints of magnetic loops.

Since hard X-ray imaging has not been available for many flares, attempts have been made

to select Type C flares based on their more readily available properties. Cliver et al. (1985)
have selected ten gradual hard X-ray bursts (GHBs) including the 13 May 1981 event that all
show the following similar characteristics:

(1) The X-ray spectrum is harder than average (see Figure 4) with a typical value for 3"
of between 3 and 4.

(2) The hard X-ray spectrum systematically hardens (or at least does not soften) through
the peaks and on the decay.

(3) The GHBs are often preceded, by as much as 60 min, by an impulsive phase although
sometimes, as in the case of the 13 May 1981 event, no impulsive phase may be seen at all.

(4) The GHBs occur in the later, parallel-ribbon phase of major flares.

(5) A coronal mass ejection was observed, or inferred, in association with at least nine of
the ten GHBs.
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(6) The associated microwave bursts were also very gradual and peaked sometimes many
minutes after the hard X-ray peak as shown for the 26 April 1981 flare in Figure 15.

(7) The GHBs were typically microwave rich in comparison with the hard X-ray flux as
shown in Figure 16 and had relatively low peak frequencies suggesting a low density source and
weak magnetic fields.

(8) The GHBs are associated with long duration soft X-ray events suggesting continuous
energy release for up to several hours.

These properties of GHBs led Cliver et al. (1985)to propose that these events result
from particle acceleration by magnetic reconnection following coronal mass ejection. This

simplified picture of such an event shown in Figure 17 was first proposed by Cliver (1983). In
this model, the magnetic field lines are envisioned as being stretched as the coronal mass ejection
moves out. Magnetic reconnection takes place below the ejected material and it is at this point
that the electrons are accelerated. Electrons moving upwards produce the associated radio Type
IV emission; electrons moving downwards are trapped in the low density loops below the recon-
nection point and produce the hard X rays and microwaves.

It is not certain if the observed spectral hardening can be attributed to the decrease in
energy loss rate with increasing electron energy in the trap or to the time dependence of the
electron acceleration process itself. The density of the X-ray emitting source for the 13 May
1981 flare has been estimated by Tsuneta et al. (1984b) to be 3 x 10 _° cm 3 from the soft
X-ray observations. The decay time for 100 keV electrons in a trap with this density would be
"_1 s assuming only Coulomb losses. Bai and Dennis (1985) give this argument and others in
favor of the so-called second-step acceleration interpretation (Bai and Ramaty, 1979), in which
protons are accelerated to >1 MeV and electrons to relativistic energies using particles accelerated

by the primary (or first-step) mechanism as injection particles. For other flares where density
information is not generally available, a combination of both continuous acceleration and energy
losses may well be important.

VI. CONCLUSIONS

We have reviewed some of the more important results from SMM that have contributed
greatly to our understanding of the processes that led to the high energy X-ray aspects of solar
flares. The 152-to 158-day periodicity in the rate of occurrence of hard X-ray flares and other
manifestations of solar activity may prove to be important in determining the dynamics of solar
rotation as Wolff (1983) believes but only further analysis and more extensive data sets will
resolve that issue. The classification of flares into three different types suggests that we are
beginning to be able to distinguish between the three basic models for X-ray production: the
purely thermal emission from Type A flares, the thick-target interactions at the footpoints in the

impulsive Type B flares, and the coronal thin-target interactions in the gradual Type C flares.
This interpretation is still controversial and many flares exhibit characteristics of all three types.
Nevertheless, the fact that in certain flares we have begun to distinguish between the different
models for X-ray production has allowed us to refine the constraints on the basic flare energy
release mechanism or mechanisms.

Higher resolution hard X-ray images with better time resolution and extending to higher
photon energies will allow us to improve the identification of the correct X-ray production models
in any specific flare. The simultaneity of footpoint brightening on time scales of fractions of a
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second is a very powerful indicator of the existence of electron beams. The detection of the
thin-target emission from such beams in the loop would also give a clear picture of where the
particles are accelerated in the loop and with what pitch-angle distributions. Imaging to energies
above the 30 to 40 keV achieved with SMM and Hinotori is necessary to clearly separate the

thermal emission of the 10 - 30 x l0 6 K plasma from the higher energy X-ray component.
Furthermore, higher spectral resolution than is possible with scintillation spectrometers is required
to resolve the very steep spectra of this thermal emission.

These requirements for future observations are well within the capabilities of new instru-
ments being proposed for flights during the next solar maximum. Thus, the opportunity exists
to build on our successes during this cycle 21 of solar activity and to achieve even more dramatic
advances in our understanding of the fundamental flare processes during cycle 22.
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Figure 1. Plot of the weekly averaged rate of flares detected with HXRBS (corrected for the duty cycle) as a function of time

from launch in February 1980 until after the repair in April 1984. The sine wave superimposed on the data is the
oo Fourier component with a period of 158 days determined from the power spectrum analysis. A total of 6775

flares were included in the analysis. The energy threshold varied from 25 keV at launch to 33 keV in 1984.
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Figure 2. Power spectrum of the rate versus time of HXRBS low energy events. Only the HXRBS events detected at

energies not exceeding 150 keV were used in the analysis so that the data set would not include the gamma-ray
flares used by Rieger et al. (1985). A total of 6102 events detected from launch through 31 July 1985

were used in the analysis. The peak in the power spectrum at 0.0633 days "l confirms the existence
of the 158-day periodicity in this independent data set.
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Figure 3. Peak rate spectrum of all complete events detected with HXRBS from launch to February 1985. The
straight line through the data corresponds to the power-law expression given in the text with aoo

_o spectral index of-1.8.
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Figure 5. Soft and hard X-ray emissions as functions of time for the two flares on 5 November 1980. The soft X-ray
counting rate is the sum of the counts in the HXIS band 1 in selected pixels of the coarse field of view.

oo
The hard X-ray rate is the sum of counts in HXRBS channels 1 and 2.
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Figure 6. An expanded plot of the major hard X-ray peak shown in Figure 5 for the 5 November
1980 flare at 22:33 UT. The bottom three graphs show the HXRBS counting rates as functions
of time in three different energy ranges. The middle plot shows the variation of the power-law

spectral index 3' obtained from the 34 to 405 keV HXRBS counting rate data (channels 2 to
14) on the same time scale. The top plot shows the time variation of the UVSP counting
rate in O V summed over all 9 pixels shown in Figure 7. More than 90% of the counts
came from the three southern-most pixels (Dennis et al., 1985). The error bars on all

the plots represent -+la uncertainties based on the Poisson fluctuations alone.
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Figure 7. Contour plot obtained from the sum of three HXIS images showing the location of the soft and hard X-ray
emission at the time of the most intense hard X-ray peak on 5 November 1980. Accumulation of the first image

began at 22:32:53 UT. Each image had an accumulation time of 4.5 s with a 4.5 s gap between images.
The contour lines were obtained from the 3.5 to 8 keV data with the collimator response deconvolved

according to the method given by Svestka et al. (1983). The contour levels are at the following

counts/pixel: 25, 50, 100, 200, and 400; the deconvolved peak rate was 902 counts/pixel. The
cross-hatched areas labeled A, B, and C were obtained from the 16 to 30 keV data similarly

deconvolved. The outer edge of these areas corresponds to a contour level of 40 counts/pixel
for A and B and 20 counts/pixel for C with a deconvolved peak rate at 53 counts/pixel. The

oo 3 x 3 array of 10 x 10 arc s squares represents the 9 UVSP pixels used for the OV

-a observations shown in Figure 6.
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Figure 9. The first major feature of the flare on 20 May 1984 shown in Figure 8 plotted on an expanded time scale. The
UVSP detector 1 time profile is believed to be for continuum emission at approximately 1600 A and has a time resolution

of 75 ms. The large scatter in the hard X-ray counting rate reflects the statistical uncertainty resulting from the mean
oo rate at 02:59:20 UT of 115 counts per 50 ms interval. The feature at 02:59:23 UT is, however, clearly

significant in both the hard X-ray and UV time profiles.



SMM UVSP & HXRBS COMPARISON

o

:3000

APRIL 24,1985

f'_ HXRB$ R5-220 KEU
Z
0 0000
0
ILl

fT" UUf,P COMTIHUUP1
III UUSP OU (X.08)
13. (X.Ol)

I--- lOO0
Z
E3
0
0

0148¢00 0148120 014a$40 0149¢00 0149ta0 0149s40

UNIVERSAL TIME
Figure 10. UVSP and HXRBS time profiles for the flare on 24 April 1985 at 01:48 UT. The top profile is the hard X-ray

counting rate between 25 and 220 keV, the center profile is the counting rate in the O V line, and the bottom profile
is the counting rate in the continuum ] ? A from the O V line. The time resolution for all three profiles is ] 28 ms.



28 keY -- 482 keY

0 I
23:34:44.5 23:34:45.0 23:34:45.5 23:34:46.0

UNIVERSAL TIME

,o Figure I 1. Two seconds of HXRBS memory data showing very rapid X-ray variations in a solar flare which occurred on
6 June 1980. The counting rate is plotted at a time resolution of 20 ms per point with -+1o statistical error bars.
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Figure 12. The bottom trace shows the variation of the HXRBS 30 to 59 keV (channels 1 and
2) counting rate versus time for the major peak of the 13 May 1980 event. The upper trace

shows the value of the best fit power-law spectral index 3, as a function of time. The

spectral fits were made using the HXRBS counting rates in channels 3 to 14 (59 to
419 keV) to show the spectral hardening through the peak and on the decay.
Individual spectra at different times during the event are shown in Figure 13.
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Figure 13. Hard X-ray spectra at five different times during the major feature of the 13 May
1981 event shown in Figure 12. The data points were derived from the HXRBS counting

rates assuming the indicated least-squares power-law fit through the points for channels
3 to 14. The vertical lines through the data points are +-1o error bars based on the

statistical uncertainties alone. The horizontal lines through the points are not
error bars but indicate the widths of the HXRBS channels.
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Figure 14. Overlay from Tsuneta (1983) of the Hinotori hard X-ray image of the 13 May 1981
Type C flare with an Ha photograph taken 26 rain later. The one-dimensional microwave

brightness distribution at 35 GHz is oriented to show that the bulk of this emission
was from the same high altitude location as the X-ray source (Kawabata et al., 1983).
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analyzed by Cliver et al. (1985). For comparison, the data points for "130
impulsive events observed both by SMM and Toyokawa Observatory during

April, August, and December 1981 are also plotted (e). For the comparison
sample, we considered events to be impulsive if the 9.4 GHz emission peak
occurred within +0.5 rain of the HXRBS > 30 keV maximum. The _40
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INTERPLANETARY ENERGETIC PARTICLES, CORONAL FLARES,
AND HARD X-RAY MICROFLARES

(Invited)

Robert P. Lin

Space Sciences Laboratory, University of California, Berkeley, CA 94720 U.S.A.

ABSTRACT

We review solar electron phenomena which can produce low levels of hard X-ray emission
at the Sun. Small "_2 to 100 keV solar electrons events, the most common type of impulsive

solar particle emission, appear to originate in flare-like bursts high in the corona. These events
often are accompanied by "_1 MeV/nucleon 3He-rich particle events in which lower energy ions
are apparently accelerated as well. Long-lived (many days) streams associated with large flares
or interplanetary shocks dominate the interplanetary electron fluxes, but even at the quietest
times a significant outflow of non-thermal _>2 keV electrons occurs. These electron phenomena
are accompanied by coronal and interplanetary radio emission. High sensitivity hard X-ray
measurements show that microflares, bursts with peak >20 keV fluxes 10 to 100 times smaller

than observed in small solar flares, may occur as often as once everY 5 min near solar maximurri.

The proposed Pinhole/Occulter Facility hard X-ray instrumentation provides the increase in sensi-
tivity required to image these phenomena for the first time.

There is a wide variety of energetic electron phenomena of solar origin, observed directly

in the interplanetary medium or indirectly via metric and decametric radio emission, which will
produce hard X-ray emission at the Sun via electron-ion bremsstrahlung. Because of the rela-
tively small numbers of energetic electrons involved or the low density in the corona where some
of these phenomena originate, the hard X-ray fluxes are very low and up to now have not been
accessible to study. Recently balloon-borne observations of very high sensitivity have discovered
hard X-ray microflares, bursts with peak >20 keV fluxes a factor of 10 to 100 less than normal
small flares. The relationship of these microflares to the coronal and interplanetary phenomena,

if any, is unknown.

The Pinhole/Occulter Facility X-ray instrumentation will provide several orders of magni-

tude improvement in sensitivity as well as vastly improved spatial resolution over present-day
instrumentation. The leap in sensitivity makes it possible for P/OF to study coronal phenomena
in hard X rays and thus to provide the connection between phenomena'observed in the inter-

planetary medium and at the Sun, and also to study the characteristics of hard X-ray microflares
and extend their distribution to even lower flux levels. In addition it may well be possible to

observe directly the region of acceleration of the electrons in flares, which presumably occurs
in the low density corona. Below we discuss the various interplanetary and coronal phenomena
of interest, as well as microflares and flare-related phenomena.

I. INTERPLANETARY PHENOMENA

Impulsive 2 to 100 keV Electron Events

Observations show that energetic 2 to 100 keV electrons of solar origin are continuously

present in the interplanetary medium in the years near solar maximum. Small non-relativistic
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solar electron events appear to be the most common type of impulsive particle emission. Figure
1 shows an example of an impulsive solar electron event (Lin, 1974; Potter, Lin, and Anderson,
1980) observed by the University of California, Berkeley, particle experiment on the ISEE-3
(International Sun Earth Explorer) spacecraft. At the time of this event the spacecraft was
located in a halo orbit about the L1 Lagrange point about 10 6 km upstream of the Earth.

Several important characteristics are illustrated by this figure. There is clear velocity dispersion
with the fastest electrons arriving earliest, consistent with the simultaneous injection of the elec-

trons at the Sun and nearly scatter-free propagation along the interplanetary Archimedean spiral
field line to 1 AU. The rapid rise and decay at all energies confirms the lack of significant
scattering. The electron distributions are highly anisotropic and beamed along the magnetic field,
especially at low energies, so dips in the electron fluxes (cf. _1140 UT in Figure 1) are observed
when the magnetic field swings out of the field of view of the detector. The electron energies

extend up to >50 keV and down to 2 keV. Since electrons of low energies are easily lost by
Coulomb scattering in the solar atmosphere, the presence of "2 keV (the lowest energy measured)

electrons indicates that most likely the coronal source of these particles is _>0.5 to 1 Ro high in
the solar corona, although there is also the possibility that significant energy changes have
occurred for the electrons in their propagation from the Sun to 1 AU.

A total of 326 impulsive electron events were observed by ISEE-3 in the "15 month
period from August 1978 to November 1979. These events appear to fill "60 deg in solar longi-

tude in the interplanetary medium, so "130 events/month must occur over the full Sun. Because
the interplanetary medium is often filled with long-lived intense fluxes of electrons at these
energies, small impulsive events will often not be detected. Thus the rate of occurrence of these
events is probably significantly greater than estimated here.

About half of all the electron events detected do not extend in energy above "15 keV,
but almost all are observed to extend smoothly down to 2 keV, the limit of the measurement.
Almost all impulsive electron events are accompanied by a solar type III radio burst observed in
the interplanetary medium, i.e., at frequencies of "_30 kHz to a few MHz. On the other hand,
only _'50% are associated with metric/decametric type III bursts and a minority (40%) appear to
have an associated Hot flare (Solar Geophysical Data) or microwave bursts at _3000 MHz (18%).
ISEE-3 solar hard X-ray observations show that only 29% were associated with a detectable hard
X-ray burst. These associations also suggest that many of these impulsive electron events probably

originate at heights of "_0.5 to 1 R o. We estimate the total energy released in electrons above
2 keV is on the order of 1025 ergs and the release occurs on time scales of less than a few
minutes.

3He-Rich Events

Recently, Reames, von Rosenvinge, and Lin (1985) reported that virtually all solar 3He-rich
events are associated with impulsive 2 to 100 keV electron events. Solar aHe-rich events
(reviewed by Ramaty et al., 1980) represent one of the most striking composition anomalies
among the observed populations of solar and interplanetary energetic particles, with 3He/4He
ratios of order unity, while the typical ratios for the solar atmosphere or solar wind are a few
times 10-4 (Geiss and Reeves, 1972). The solar wind 3He/4He ratio varies but always remains
below 10-z, and it is uncorrelated with the occurrence of solar 3He-rich events (Coplan et al.,
1983). Other properties of 3He-rich events include reduced XH/4He ratios and enhanced abun-
dances of Fe and other heavy elements, and a tendency to larger 3He enhancements in smaller
events.
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With the high sensitivity of the ISEE-3 energetic particle telescopes it is possible to obtain
temporal profiles with good resolution (<_1 hr) of the 3He fluxes at _1 MeV/nucleon energy for
the small 3He-rich events. Figure 2 shows the 17 May 1979 events where velocity dispersion can
be seen in the 3He fluxes. In the lower panel the associated 2 to 100 keV impulsive electron
event with its velocity dispersion can be seen. The timing of the particle onsets and maxima is
shown in Figure 3, where we have plotted those times versus 1//3 (the particle velocity v =/%). If

particles of all velocities were released at the same time, to, and traveled the same distance, L,
their arrival times would be related by t = to + L/t3c, which would be a straight line on Figure 3.
The observed onset time depends upon the relative instrument sensitivity, the rise time, and the

event amplitude. The 3He onsets lag the time that would be expected from the electron measure-
ments by no more than about 10 to 15 min. The traversal distance implied by the onset time of
the lowest velocity 3He is "1.3 AU. This compares with "1.25 AU for the electrons. The times
of maximum of 3He are also consistently later than those of electrons of the same velocity,
implying a greater degree of scattering for 3He in the interplanetary medium. The mean path
lengths implied by the 3He times of maximum are "1.8 to 2.0 AU compared to _1.45 AU for the
electrons.

Energy spectra for the two species are shown in Figure 4. The spectral indices for the
least-squares fits to a power law are 2.7 + 0.1 and 2.7 + 0.3 for electrons and 3He, respectively.
For electrons, only the region from 2.3 to 60 keV was fit because of apparent spectral changes at
higher and lower energies. Note that 3He and electrons have the same spectral slope over ranges
of comparable particle velocities.

In the 15-month interval in 1978-79, about a dozen 3He-rich events were observed with
sufficient statistics to provide good temporal profiles. All of these events were accompanied by
an impulsive 2 to 100 keV event with a temporal relationship similar to that shown in Figure 3.
The solar associations for these 3He electron events are essentially the same as for electron events

in general: close association with kilometric wavelength type III bursts, small Ha subflares or no
reported Ha association, very few hard X-ray bursts, and small or no soft X-ray bursts.

The close temporal associations and similar spectral slopes suggest that the same accelera-
tion process is probably responsible for both electron and 3He acceleration. The solar associa-
tions and the presence of low energy, 2 keV, electrons suggest that this acceleration probably
takes place in the high corona.

A preliminary search indicates that ions of a few hundred keV total energy are accelerated
at the same time as the "_1 MeV/nucleon 3He and the electrons. These low energy ion fluxes are
difficult to associate with an impulsive injection at the Sun because the travel time for the Sun to

1 AU is long, _>6 hrs, and the flux increases for 3He events are small. Furthermore, there are
many variations in the low energy fluxes on these same time scales, due to local interplanetary
effects. Even so, for many 3He impulsive electron events there are increases in the few hundred
keV ion fluxes at the right time for releases simultaneous with the electrons (Figure 5). At these
energies we have no information on the composition of the ions.

Thus 2 to 100 keV electrons, _1 MeV/nucleon 3He, and even lower energy ions may be

accelerated together in coronal flare or flare-like events which occur at heights of 0.5 to 1 R®.
This type of acceleration differs from large flare events, where ions are accelerated to >10 MeV
energies and electrons to relativistic energies, with no 3He enrichment.
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Long-Lived 2 to 100 keV Electron Fluxes

The ISEE-3 spacecraft observes 2 to 100 keV electron fluxes to be present in the inter-

planetary medium at all times. Figure 6 shows the daily minimum flux in three energy intervals:
2 to 2.3 keV electrons, 19 to 45 keV electrons and protons (but primarily electrons), and >272
keV protons. This type of plot excludes the impulsive electron events discussed above since

their time scales are typically less than a few hours. It can be seen that these particle fluxes are
dominated by streams which last many days. Many of these streams arise from a large solar
flare event or series of such events from a single active region (Anderson, Lin, and Potter, 1982).

Others appear to be dominated by the passage of an interplanetary shock (Tsurutani and Lin,
1985). Still others, generally lower intensity ones, appear to be related to type III radio burst
storms observed at hectometric and kilometric wavelengths (Bougeret et al., 1985). Even at the
times of the lowest counting rates the fluxes are still well above detector background, and the

electrons are still streaming outward away from the Sun along the interplanetary magnetic field.
Thus the Sun must be a continual source of energetic _>2 keV electrons. These flux levels are
many orders of magnitude above the tail of the thermal 1 to 2 x 10 6 °K coronal electron distri-

bution, so some non-thermal process must be the source. One exciting possibility is that these
electrons might be a by-product of the processes which heat the solar corona.

II. OBSERVATIONS OF THE SOLAR CORONA

It is well known from radio observations that a wide variety of energetic, non-thermal
phenomena occur in the solar corona. These phenomena include electron streams, both escaping
(type III radio bursts) and trapped (type V and U bursts); shock wave electron acceleration (type
II); acceleration and trapping of mildly relativistic electrons (type IV); and continual acceleration

and storage of low energy electrons (type I bursts and continuum) (see reviews in Newkirk, 1974;
Wild, Smerd, and Weiss, 1963; Kundu, 1965, 1982). Radioheliograph observations have shown that
these phenomena may be highly complex, with source sizes ranging from a few arc minutes (about

the resolution limit for the radio measurements) or less for type III or type I bursts to tens of arc
minutes for large type II bursts. The energetic electrons that produce the radio emission will

also produce hard X-ray emission via bremsstrahlung collisions with the solar coronal gas. Because
the bremsstrahlung emission process is quantitatively well understood and the propagation of hard
X rays through the corona is essentially unaffected by scattering and absorption, observations of
coronal hard X rays can give quantitative information on the energetic electron populations in the
solar corona, provided the ambient gas density in the X-ray source is known (see Brown, 1973;
Lin, 1974).

Simultaneous spatially resolved hard X-ray and radio observations complement each other

particularly well. Solar radio emission from the corona is believed to be generated primarily by
two processes, synchrotron emission by electrons spiraling in a magnetic field and a two-step
plasma wave emission process (Ginzburg and Zheleznyakov, 1958). The latter process appears to
be responsible for the more common types of metric radio emission, types I, II, III, U, and
possibly V. In the plasma process energetic electrons produce Langmuir plasma waves at the
plasma frequency, fp = 9 x 103 n½ Hz, where n is the plasma density in cm"a. These waves
then scatter off ion density fluctuations or low frequency waves, or off other Langmuir waves to

produce electromagnetic radiation at the plasma frequency, fp (fundamental), or twice the plasma
frequency, 2fp (2nd harmonic), respectively. The production of radio waves depends on the
details of the energetic electron distribution function - whether it is unstable to the coherent

generation of plasma waves - and also on the plasma wave to electromagnetic wave conversion
process. The intensity of the radio emission, its apparent size, and its location in the corona will
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be modified by scattering and absorption in the corona. It is difficult, therefore, to obtain
quantitative information on the energetic electron population from the radio emission. On the
other hand the ambient coronal density is closely related to the frequency of the observed radia-

tion in the plasma wave emission process. Furthermore, radio waves, whatever the generation
mechanism, cannot propagate through the coronal plasma unless their frequency is above the
local plasma frequency. Thus, radio observations can provide the coronal density information
needed for quantitative interpretation of the hard X-ray observations.

Hard, >20 keV, X-ray bursts are commonly observed during the impulsive phase of flares,
but this emission most likely originates in the high density, n _> 10l° cm -3, chromosphere (see

Kane, 1974, for review). A few hard X-ray events have been interpreted as X-ray emission from
the corona because the associated flare was believed to be well behind the solar limb (Hudson,

1978; Hudson, Lin, and Stewart, 1982). Most coronal phenomena will produce a level of brem-
sstrahlung X-ray fluxes too low for detection by present-day solar hard X-ray instrumentation,
because both the ambient densities in the solar corona and the number of energetic electrons

involved are low. P/OF, with its coronagraph and hard X-ray imaging instruments, together with
ground-based radioheliographs, would be ideal for quantitative studies of the coronal phenomena.
Below we describe a few of the many scientific topics which can be investigated.

Type III Bursts

Type III radio bursts are the most common type of impulsive non-thermal phenomena at the
Sun. They are characterized by a rapid frequency drift from high to low frequencies (Wild, Smerd,
and Weiss, 1963). Simultaneous in situ particle and low-frequency radio observations from spacecraft
at 1 AU have shown that type III bursts are excited by _2 to 100 keV electrons which escape from

the Sun following an impulsive acceleration (Lin, Evans, and Fainberg, 1973, 1981a). The observed
starting frequencies for type III bursts extend down to _100 to 500 MHz or greater, corresponding
to initial ambient densities, n, of _10 s to 109 cm -3. Most type III bursts are unaccompanied by
flares or soft X-ray increases (based on OSO-7 soft X-ray observations). Hard X-ray emission has
been observed for some flare-associated type III bursts, but these tend to occur for only "_25%
of the most intense bursts with very high starting frequencies (i.e., high densities). In these the

X-ray and radio emissions sometimes show coincident time structure (see Figure 7). The inter-
planetary measurements indicate the energetic electron spectrum for type III events extends down
to _2 keV (Figure 4). The total number of electrons escaping into the interplanetary medium is
estimated to be N(>5 keV) _ 5 x 1034 in a typical type III event. At the Sun the radio event

may comprise a number of individual bursts, quasi-periodically spaced.

As art example we calculate the X-ray emission for a type III burst under the model
assumption of instantaneous acceleration of the electrons and escape from the Sun without
significant losses. Suppose at t = 0, N(>Eo) electrons were accelerated with a power-law energy
spectrum, dN/dE = AE -8, and released from a region of ambient density no. The ambient density
n(cm -3) of the region the electrons pass through is given by the frequency f(MHz) of the type III
emission, if we know whether the emission is at the fundamental or the 2nd harmonic emission.
The observed frequency drift rate then determines the change in ambient density as a function of
time. Alvarez and Haddock (1973) find that between 550 MHz and 75 kHz the average df/dt =
0.01 fl.84 MHz/s. Integrating, we obtain f(t) and therefore n(t):

n(t) = no(1 + atno°'42) "2"3s

where a = 2.9 x 10-4 for harmonic and 1.6 x 10-4 for fundamental emission. The X-ray emission

is then given by
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dJ A ni(hv) "6"1A

d(hv) 1.2 x 1042 (6 + 1/2) (6 - 1/2) 2 B(6, 3/2) '

where B is the beta function. The computed temporal variation is given in Figure 8 for a variety
of no and fundamental and harmonic radio emission.

For typical type III events the detailed temporal and spatial structure can be resolved by
P/OF. These observations will provide information on:

(i) The characteristics of the acceleration processes and the location of the acceleration

region relative to other coronal structure. Comparison of type III and flare events should help
determine whether two different acceleration processes are involved.

(ii) The characteristics of electron propagation in the solar corona. This is important
because energetic electrons appear to fill an "60 deg FWHM cone at 1 AU while type III burst
sizes are much smaller near the Sun.

(iii) The magnetic field structure of the corona. The type III electrons are tracers of the

magnetic field lines. For most type III bursts the radio location appears close to the flare or
active region (Duncan, 1977) so these observations may show how magnetic fields from different
areas of the Sun intermix in the corona.

(iv) The characteristics of the type III emission mechanism. Is the emission generated
only in favored "core" regions (Smith and Nicholson, 1978)? Is the near-Sun emission at the

fundamental or harmonic or both (Rosenberg, 1975)? Do the electrons begin generating radio
emission immediately or must they travel some minimum distance to obtain an unstable distribu-

tion from velocity dispersion? Do the electrons lose energy rapidly through beam-plasma inter-
actions near the Sun?

Other Coronal Radio Phenomena

Type I, V, and U bursts also occur very commonly. The origins of these phenomena

are less well understood than type III bursts. Type I radio bursts are superimposed on noise
storm continua. They often show frequency drifts in both senses with drift rates "1/4 to 1/2 of
type III's. Thus it is hypothesized that electrons of a few to 10 keV energy are the exciters of

this radiation via the plasma mechanism. Type V and U's appear to be closely related to type III
bursts, possibly just due to the electron stream traversing peculiar magnetic field configurations.
Type V bursts follow type III bursts, and III-V bursts are closely correlated to observed flare hard
X-ray impulsive bursts (Stewart, 1978).

Type II and IV bursts are rarer, occurring an average of several times per month. These
phenomena are particularly interesting in that they appear to be associated with coronal accelera-

tion of ions and relativistic electrons which occur for some large flares. The hard X-ray emission
from type II bursts may have been observed for some flares beyond the solar limb (Frost and
Dennis, 1971; Hudson, 1978; Hudson, Lin, and Stewart, 1982). Type IV bursts are apparently
due to synchrotron radiation. Comparison of radio and X-ray spatial observations can be used to
obtain information on the magnetic field in the corona. Type II radio bursts are associated with
shock waves, but it is not clear how the emission is produced. One hypothesis is that electrons

accelerated at the shock generate the radio emission via the plasma-wave process. Supporting this
hypothesis is the observation of "herringbone" structure, fast drift bursts similar to type III's
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which appear to originate at the shock. These III-like structures are observed to extend to low

frequencies (Cane et al., 1981). Simultaneous coronal X-ray and radio observations would be
useful for studying the acceleration processes in the shock.

Particle Storage and Continual Acceleration in the Corona

There exists substantial evidence for the continual acceleration and/or storage of energetic
electrons in the corona. Radio continua at meter wavelengths, such as noise storms and stationary

type IV events, last hours to days (see Kundu, 1965, for review). The interplanetary medium,
even at the quietest times, contains a population of 2 to 100 keV electrons, presumably of solar
origin. Much more intense fluxes of electrons appear in active region-associated particle streams
which can last for several solar rotations (Anderson, 1969). Electron and proton fluxes from large
solar flare events last for several weeks even though the time scale for the solar wind to sweep

these particles out of the inner solar system is "_4 days (see McCracken and Rao, 1970, for
review).

Coronal X-ray observations can answer several important questions:

(i) Are energetic electrons being stored in the corona? Where and for how long? What
are the loss processes for these particles?

(ii) Is there acceleration of electrons in the absence of flares or other transient
phenomena? Perhaps the same processes which heat the corona also continuously accelerate
electrons.

(iii) Are energetic electrons stored in the corona a viable energy source for flares?

Using the electron energy loss rate in ionized hydrogen (Trubnikov, 1965) we find that the

e-folding energy loss time is given by

te_ l0 s E3] 2 n-a

Thus electrons of 5 and 20 keV energy must be stored at densities of n = 104 to l0 s cm -3,
respectively, for 1-day e-folding loss times. Spatial and spectral observations of storage regions will
give detailed information on the continual acceleration, storage, and loss processes. For example,
if Coulomb collisions are the dominant loss process, the electron energy spectrum will harden
between fresh accelerations. By utilizing interplanetary particle observations to estimate the electron
escape term and solving the continuity equation for simple models, it may also be possible to obtain
information on continuous acceleration processes in the absence of flares.

It is estimated that "-103s to 1036 > 10 keV electrons are accelerated during flares. If the

observed flare impulsive hard X-ray emission is produced by thin target processes, i.e., without
significant losses for the electrons (Datlowe and Lin, 1973), then these electrons must be stored
high in the corona since fewer than 1% are observed to escape. The stored electrons presumably
produce X-ray emission at a level too low to be observed by present-day instrumentation, but
this level of X-rays should be easily observed and imaged by P/OF. Since a small flare has a total
energy output of ""1029 ergs, equivalent to "1036 keV electrons, P/OF can provide conclusive
evidence for or against the hypothesis that energetic particles slowly accelerated and stored in the
corona are a viable energy source for flares (Elliott, 1969).
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III. MICROFLARES

The Sun exhibits a broad spectrum of transient phenomena with total energy release sub-
stantially less than flares. Transient soft X-ray brightenings are observed in a continuum of
intensities from flares down to tiny X-ray bright points. It is not known how similar these less

energetic transient phenomena are to flares - whether they also involve significant particle
acceleration or whether below some total energy released they are basically thermal in character.

High sensitivity hard X-ray observations of the Sun, made with balloon-borne instrumenta-

tion designed for detecting cosmic hard X-ray sources, provide an indication of what might be
observed and imaged by P/OF. On 27 June 1980 the Sun was observed for "141 min by a com-
bination of a 300 cm 2 NaI/CsI phoswich scintillator and 50 cm 2 array of germanium detectors,
both collimated and surrounded with active anticoincidence shields (Lin et al., 1981b; 1984).
Figure 9 shows 16.384 s averages of the 22 to 23 keV count rate of the balloon phoswich scin-
tillator for the solar observing periods. To provide a measure of the sensitivity of this detector,
we note that the Crab nebula increases the 22 to 33 keV count rate by "_5 counts/s. The count
rate of the 5 to 6 keV channel of the soft X-ray proportional counter detectors of ISEE-3 is
shown above.

Besides the large flare (1614 to 1632 UT) there are at least four clearly recognizable bursts
with count rate increases of_5 counts/s (1559, 1950, 1958, and 2032 UT). These tend to occur
on the rising portion of their associated soft X-ray bursts, as is often observed for flares. On

closer examination, many smaller bursts can be seen, for example, at 1532, 1545, 1605, 1939,
1953, and 2058 UT. We have made a detailed search for additional small bursts. In 141 min of

solar observing, a total of 25 separate increases, including those listed above, were detected above
the 3a level. This compares with three to four events expected for this period of time from
purely statistical fuctuations. Most of these hard X-ray microflares detected above the 3a level

in the solar observing periods appear to have an associated 5 to 6 keV soft X-ray burst and vice
versa; however, the ratio of 22 to 23 keV flux to 5 to 6 keV flux varies by more than one order
of magnitude.

The temporal structure of the four largest microflares is shown in Figure 10. There is
some evidence that these small bursts are composed of smaller, more "elementary" bursts. The
events at 1950 and 1958 consist of individual bursts of 1 to 2 s FWHM duration. The bursts at

1559 and 2032 UT could be deconvolved into groups of elementary bursts of the same 1 to 2 s
FWHM duration.

Accurate energy spectra, as measured by the germanium detector array for the four largest
microflares, are shown in Figure 11. The spectra are best fit by power laws,

dJ/dE = AE_ ,

with slopes 3' m 4 to 6. The spectra extend out to "70 to 80 keV for the largest events. Pre-

liminary comparisons with the ISEE-3 soft X-ray data indicate that the power-law spectrum often
extends down into the energy range (5 to 14 keV) of the proportional counter detector.

Figure 12 shows the integral distribution of events versus the maximum 20 keV flux in the

burst. For comparison, the distribution obtained in the previously published survey (Datlowe,
Elcan, and Hudson, 1974) is also shown. We emphasize here that the balloon data on occurrence
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rates are based on only "2 hours of observation, at a time close to solar maximum, while the
OSO-7 observations span an 8-month period several years after solar maximum. The slopes of the
two distributions can be seen to be the same, about -1; however, the balloon data extend the flux

range down by more than one order of magnitude. There is no evidence for flattening of the
distribution down to flux levels of 10-2 (cm 2 s keV) -l. The rate of occurrence during the balloon
observations is about a factor of 3 greater than the OSO-7 average rate.

During this observation period solar hard X-ray bursts occurred at a rate far higher than

that for reported Ha flares of radio bursts. Furthermore, the integral number of bursts continues
to increase with decreasing flux, indicating that with a lower threshold even more bursts would
be observed. Already at this threshold level the numbers of hard X-ray and soft (_5 keV) X-ray
bursts are essentially comparable. These observations suggest that a common property of transient

energy releases by the Sun is the acceleration of electrons to energies above "20 keV.

The total energy combined in these electrons can be computed under the normal assump-
tion of thick target, i.e., that the electrons lose their energy primarily through Coulomb collisions

(Brown, 1973; Lin, 1974). The total energy in >20 keV electrons ranges from a few times 1026

to _10 z 8 ergs for the four largest events shown in Figure 2. The average rate of energy deposi-
tion by greater than 20 keV electrons from all the bursts above a flux threshold of 10-2 (cm 2 s
keV) "1 is "_102a ergs/s. These energy figures will increase by about one order of magnitude for

every factor of 2 lower in energy the power-law electron spectrum extends. Preliminary analysis
of the ISEE-3 data suggests that the electron spectrum extends to at least "10 keV, and perhaps
5 keV. Furthermore, the number of events continues to increase as the flux threshold decreases.
Thus the total rate of energy released in electrons producing these small hard X-ray bursts may be

substantial, perhaps even comparable to the 1027 ergs/s rate of heating of the active corona.

IV. P/OF HARD X-RAY OBSERVATIONS

We have used the estimates of the numbers of electrons (vertical scale of Figure 13) from

the interplanetary observations as a basis for computing the hard X-ray emission from the corona
for various phenomena. The numbers of electrons observed at 1 AU will constitute a lower limit
to those at the Sun since electrons could be lost by various processes in propagating to 1 AU.
The electrons will produce X rays via the electron-ion bremsstrahlung process in the solar corona.
Since bremsstrahlung is a collisional process the X-ray flux will depend on the ambient ion density

(horizontal scale of Figure 13).

For the long-lived streams the electron population in the corona are estimated assuming a
steady-state outflow into a region whose cross section expands as r 2. The time scale for each
phenomenon is also indicated. Those phenomena such as flares or microflares, which have been
observed in hard X rays, are indicated by the diagonal regions. An estimate of the sensitivity of

the proposed hard X-ray imaging instrumentation for P/OF is superimposed. It can be seen that
essentially all the microflare and flare phenomena can be imaged by P/OF at appropriate time
scales. P/OF will also provide a first look at coronal phenomena from long-lived streams to flare-
related impulsive phenomena.

Finally it should be emphasized that P/OF may be able to locate and image the region of
acceleration of electrons in flares, rather than the region where the electrons lose most of their

energy. Presumably the acceleration occurs in a low density, ni % 109 cm"3, coronal region,
perhaps at the top of the flare loop. If the loop length is a few x 104 km, then electrons will
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travel to the footpoints in a few tenths of a second. With the sensitivity of P/OF it may be

possible to image the acceleration region and follow the propagation of the energetic electrons in
the flare loop in the few tenths of a second prior to the impact of the electrons in the footpoints.

The identification of the acceleration region would then permit the determination of the physical
parameters in the region by other instruments such as the coronagraphs and soft X-ray telescopes.
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Figure l. An impulsive solar electron event observed by the ISEE-3 spacecraft. Note the

rapid-rise rapid-fall profiles and the clear velocity dispersion. The top panel shows the
angle of the interplanetary magnetic field direction to the ecliptic plane.
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Figure 2. Time histories of the intensities of 3He and electrons of the indicated energy during 17 May
1979 (from Reames, von Rosenvinge, and Lin, 1985). The appearance of the plots differs partly

because of the absence of continuous background fluxes for 3He. The lowest isolated points for each
energy of 3He represent one particle per 15-min averaging period. The rapidly varying bursts

(at "_0400 UT and _1200 UT) observed in the higher, >19 keV, energy electron channels
are due to particles from the Earth's bow shock. The 53 to 104 keV channel also responds
to solar X-rays ('-43130, 1630 to 2030, and 2330 UT). The dashed vertical line indicates

the time of the Type III solar radio burst. Intensity scale factors are shown to the
right of the energies.
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Figure 4. Event-averaged energy spectra for electrons and 3He in the 17 May 1979 event
(from Reames, yon Rosenvinge, and Lin, 1985). Lines through the data are least-squares
fit lines to power-law spectra with resulting spectral indices 2.7 + 0.1 for electrons and
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Figure 5. A pair of impulsive electron events which are closely associated with 3He increases.
The bottom trace shows >272 keV protons. The two barely visible small increases about

6 hours after each electron injection may be due to a few hundred keV ions also
accelerated at the same time. A calibration cycle occurred at 1700 to 1800 UT

on 14 August.
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two solar observing periods is shown here together with the soft X-ray count rate for the

ISEE-3 spacecraft (from Lin et al., 1984). Between 1618 and1631 UT, the 33 to 60
keV count rate (thick line) is shown as well.
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Figure 1l. Photon energy spectra from the planar germanium detectors, integrated over each
of the four bursts of Figure 10, are shown here (from Lin et al., 1984). The spectra

are well-fitted by power laws dJ/dE = AE'3' with "r _ 4 to 6.
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ABSTRACT

During the recent solar maximum the combination of imaging and spectroscopy in the

visible part of the spectrum became a powerful tool for observational study of flares primarily
because of the development of two-dimensional charge-coupled-device (CCD) arrays. In com-
bination with appropriate new operational methods, this has led to the ability to observe, for
the first time, the preflare and impulsive-phase physical processes associated with spatially resolved
features of flare loops. As a result of concurrent theoretical developments, modeling progressed
from an empirical to a physical level. This made it possible to interpret imaging spectra in terms
of coronal pressure and heat flux, particle beam heating, chromospheric evaporation, and explosive
chromospheric dynamics at the footpoints of flare loops.

There is clear potential for further advances in the near future, taking advantage of
improvements in digital recording speed ("-10-fold),number of photosensitive elements per array
(_10-fold), real-time data pre-reduction (potentially 10- to 100-fold), and using multiple CCD
arrays. By the time of the next solar maximum I expect imaging spectroscopy to achieve spatial

resolution _<1 arc s, temporal resolution <_5 s, and simultaneous critically-sampled spectroscopy
of several lines and continua. As a result, we can anticipate continued increase in our under-

standing of the physical processes and configurations of solar flares in the chromosphere, tem-

perature minimum region, and photosphere. Even greater progress toward a more global under-
standing of flares will obviously come about when we have simultaneous optical, X-ray, and
3,-ray imaging spectroscopy.

I. INTRODUCTION

Spectroscopy is much easier in the visible part of the spectrum than in other energy
ranges. High photon flux and detector efficiency allow high spatial and temporal resolution.
In addition, the optically thick nature of the visible solar atmosphere permits studies of the
variation of physical conditions along a line of sight. Array detectors are presently leading to a

quantum jump in our ability to utilize these advantages. We are seeing the merging of the mor-
phological information contained in monochromatic Ha filtergrams and the physical information
contained in spectra, in the form of what is called optical imaging spectroscopy. In this paper
I willreview the technological and operational advances that have enabled this advance, some of

the physical understanding that has come about as a result, and the possibilities for the future.
I will deliberately not describe some of the alternate uses of CCD arrays that are also attractive,
such as their use with monochromatic filters to achieve high spatial or temporal resolution, at

the sacrifice of spectroscopy.
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II. OBSERVATIONAL METHODS

The observational methods of imaging spectroscopy are very simple. A two-dimensional
array is placed at a focal plane of a slit spectrograph. One of the two dimensions of the array is
oriented parallel to the spectrograph slit, so the pixels in this dimension sample a line of solar
image elements, i.e., spatial variations. The other dimension of the array is then parallel to the
spectral dispersion, and thus samples a line of spectral elements, i.e., the spectral line profile of a
single spatial image element. The array is exposed, read, digitized, and recorded, producing an
observation with one spatial and one spectral dimension; all samples from a single exposure of
the array are simultaneous. A second spatial dimension is built up, in the manner of a traditional
spectroheliogram, by scanning the solar image perpendicular to the spectrograph slit. Observations
of the preflare and impulsive phases are ensured by taking data continuously in this manner,
saving the data only if a flare occurs within the scan area.

Of course, reality forces various unsatisfying tradeoffs, which are well illustrated by the

Hot imaging spectroscopy program Todd Gunkler and I carried out in 1980 at the Vacuum Tower
Telescope at Sacramento Peak, in coordination with the Solar Maximum Mission (Acton et al.,
1982; Gunkler et al., 1984). The worst bottleneck in our 1980 observing setup was real-time

digital data recording on conventional 1/2 in. magnetic tape. To deal with this relatively slow
data recording it was necessary to record only 50 x 100 elements of the array and to slow the
observational cadence to four slit-position/read/write cycles per second. This, coupled with the
need to cover a reasonable area to ensure preflare converage of the flare site, forced rather coarse

spatial resolution, onl_¢ _2.5- arc s per pi:<el. A sqt_are 50 x 50 pixel spatial image, corresIJ0nding t8

50 slit positions, required 12.5 s to record; slewing back to the starting point for the next scan
brought the full cycle time to 15 s. Though this cycle time was much longer than desired, it at
least permitted a few samples during the impulsive phase of a typical hard X-ray flare.

Our observational approach has placed strong emphasis on spectra, at the expense of
imaging. All 100 spectral data points in each spatial pixel were sampled simultaneously. Also,

though our spatial and temporal resolution were far less than optimal, our spectral resolution
was quite sufficient; each spectral pixel was "100 mA wide, which compares favorably with the
283 mA thermal Doppler width of Hot at 104 K. This emphasis on spectroscopy produced a
unique new perspective on a variety of flare processes in the chromosphere, including the effects
of coronal pressure, electron-beam heating, chromospheric evaporation, and flare dynamics.

III. USING CHROMOSPHERIC Hot PROFILES TO MEASURE
CORONAL PRESSURE

Theoretical calculations have shown that the profile of the Hot line from hydrostatic model
atmospheres is a useful diagnostic of coronal pressure (Canfield, Gunkler, and Ricchiazzi, 1984,
henceforth CGR). The top panel of Figure 1 shows four different theoretical Hot profiles,
computed from physical model atmospheres based on four different values of coronal pressure, Po,
in an idealized case in which the electron-beam heating, F 2o, and transition-region conductive heat
flux, Fs, are artificially held fixed. As pressure increases, both the total amount of Hot emission
and its profile change. The total amount of emission increases with pressure both because there
are more H atoms in the chromosphere and because the amount of Hot radiation per H atom
increases. The line loses its central reversal because at high pressures, more frequent collisions of
H atoms with free electrons tie the line emissivity more closely to temperature, which increases
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monotonically outward in the chromosphere. CGR showed that although the total amount of
emission is not a unique signature of coronal pressure, the relative strength of the central reversal
is; only high coronal pressures (_>103 dynes cm "2) produce Ha profiles that are not centrally
reversed.

A typical observed spectroscopic manifestation of the increase to high values of coronal
pressure in the course of a flare is seen in Figure 2, which shows time sequences (15 s apart) of
observed Ha profiles of two interesting pixels of one of the two 1980 flares that were well
observed (i.e., imaging spectroscopy in Hot, soft X rays, and hard X rays) from both SMM and
Sacramento Peak (the flare of "_1522 UT, 14 June 1980; Gunkler et al., 1984). The north pixel
is typical of the impulsively-brightening north region of this flare, and the strand pixel typifies
an Hot ribbon. The times of Hot observations during the period of impulsive hard X-ray emission
are underlined; 28 to 54 keV X rays peaked at "_1523 UT. Comparison with the CGR theoretical
Hot profiles suggests that, in the north pixel, the value of the pressure increased throughout the
impulsive phase and remained at a high level, between 102 and 103 dynes cm -2, immediately
afterward. In the strand pixel, the comparison suggests that pressure was already at a high value
by the time of hard X-ray peak, and also remained at such values ("-103 dynes cm -2) immediately
thereafter.

Comparison of pressure values at the times of maximum thermal X-ray emission measure
of both well-observed 1980 flares (1456 UT, 7 May and 1522 UT, 24 June) has demonstrated
pressure equilibrium between the coronal parts of flares and their chromospheric footpoints, as
one would expect from a loop flux-tube visualization of flare geometry (Gunkler et al., 1984;
Canfield and Gunkler, 1985). Puzzling earlier indications of pressure imbalance between the
chromosphere and corona (Acton et al., 1982) were shown by Canfield and Gunkler (1985) to be
invalid, due to the use of physically incomplete empirical models rather than physical models for
the theoretical interpretation of the observed Hot profiles.

IV. CHROMOSPHERIC FOOTPOINT PENETRATION OF
NONTHERMAL ELECTRONS

Hot line profile calculations based on theoretical hydrostatic model atmospheres indicate

that there is a unique signature of intense nonthermal electron heating by Coulomb collisions,
in addition to the pressure signature discussed above. The lower panel of Figure 1 shows three
different theoretical Hot profiles for physical model atmospheres based on three different values
of F20, the energy flux of nonthermal electrons above 20 keV. As F2o is increased, holding
Fs and Po constant, substantial wings of distinctly non-Gaussian form appear. This effect is due
to linear Stark broadening of the upper and lower atomic levels of the Hot transition; Stark broad-
ening has a much different spectral form in the wings than the Gaussian form appropriate to
thermal broadening. This Stark-broadened wing emission arises relatively deep in hydrostatic
chromospheres, where the density is large enough that Stark broadening becomes significant.
CGR showed that such obvious Stark wings, having form much different from the more Gaussian

form shown in the top panel, and extending >3 ._, from line center, are a unique signature of
intense electron beams (F20 _> 10 l° erg cm "2 s'l).

Canfield, Gunkler, and Kiplinger (1984), studying the two well-observed 1980 flares, found
direct spatial correspondence between Hot Stark-wing sites and the strongest _>16 keV emission
sites observed by the Hard X-Ray Imaging Spectrometer (HXIS). Hard X-ray and Hot Stark-wing
sites from both flares were also well correlated in time with higher-energy X rays observed by the
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Hard X-Ray Burst Spectrometer (HXRBS). Figure 3 shows hard X-ray counts for these two flares,
and allows a comparison of their temporal variations with those of typical Hot kernel (Stark-wing)
pixels. Ignoring, for the moment, the Hot asymmetry (red excess), there is a clear tendency for
the Hot line wings to broaden and narrow in close synchronism with the hard X-ray count rate
while, for example, the Hot line center intensity varies both more slowly and qualitatively differ-
ently. The obvious conclusion is that nonthermal particles not only stop at the footpoints of
loops, as also indicated by hard X-ray imaging of impulsive flares, but actually penetrate into the
chromosphere.

It is interesting that when observations of the extent of the Hot wing broadening are used

to estimate the value of F2 o, one gets high values of F2o in the brightest kernels of both well-
observed 1980 flares. These values, F2o "" 1011 erg cm"2 s"z, are very close to what one would
infer to be the limiting electron beam flux permitted by reverse current stability considerations.
Moreover, F2 o values of the same order are inferred for these events if F2o is calculated by a
quite independent method, using the total flare power inferred from the spatially unresolved
HXRBS data and the observed Hot Stark-wing kernel area. This suggests that our 1980 Hot spatial
resolution, though only "2.5 arc s, is probably within an order of magnitude of what is really

necessary to properly resolve the true Hot kernel image.

V. CHROMOSPHERIC EVAPORATION: BEAMS OR CONDUCTION?

A topic of considerable current interest is chromospheric evaporation, which is the process
of heating chromsopheric material to typical flare coronal temperature (T >> 106 K). Among
the issues of debate (cf. Doschek et al, 1985) are: (1) Can chromospheric evaporation account
for the amount of X-ray emitting material in flares; (2) What is the mechanism that drives
chromospheric evaporation?

Various approaches have been taken to answering the first question, including the use of Hot

imaging spectroscopic observations. Acton et al. (1982) compared Hot imaging spectra of the well-
observed 7 May 1980 flare to theoretical Hot profiles based on empirical model flare chromsopheres.
On the basis of the relative strength of the central reversal, Acton et al. were able to assign to each

pixel in the Hot image an amount of material, per pixel, that had been evaporated. Integrating over
the flare area, they compared this quantity to that implied by the soft X-ray observations, and found
that the Hot profiles implied the evaporation of more than enough material to account for the
observed X-ray emission measure and image size. A less empirical approach, based on the physical
models of CGR, was later taken by Canfield and Gunkler (1985), in the course of resolving the con-
troversy over pressure imbalance alluded to in Section III above. However, because this approach
treats coronal pressure and transition region conductive flux as independent parameters (although
they are certainly not), it is capable of observationally confirming only the presence of high pressure,
but not its physical cause. Hence, Canfield and Gunkler were able to show, on simple physical
grounds based on coronal loop equilibrium scaling laws, only that conductively-driven evaporation
could theoretically account for the inferred amount of X-ray emitting material.

The main contribution of Hot imaging spectroscopy to the second question comes about
because this method of observation gives information about both the spectrum and the image
morphology. As discussed in Section IV above, this allows the observational determination of the
electron beam energy flux F20. In the two well-observed 1980 flares Gunkler et al. (1984)and
Canfield and Gunkler (1985) determined F2o in order to estimate the amount of chromospheric
evaporation that arose due to direct Coulomb heating by the beam electrons, which they found
to be less than the amount of chromospheric evaporation due to classical thermal conduction, by
the time of peak X-ray emission measure.
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Vl. CHROMSOPHERIC RADIATING SHOCKS AND CONDENSATIONS

Our theoretical understanding of the dynamics of the atmosphere contained in flare loops

has progressed dramatically during this solar maximum. The most novel physics lies in the under-
standing of chromospheric aspects of explosive evaporation driven by intense impulsive electron
beams, which initiate downward-propagating radiating shocks (Fisher, 1985) at the leading edge
of dense chromospheric condensations (Fisher, Canfield, and McClymont, 1985). These chromo-

spheric phenomena may have the same origin as the impulsive-phase X-ray blue-shifts seen from
SMM, P78-1, and Hinotori (Doschek et al., 1985), though they certainly involve much different

physics. Physical understanding of chromospheric condensations is so recent that there do not yet
exist theoretical Ha line profiles with which to compare the observations. However, physical
conditions in strong condensations are known, as shown in Figure 4, which focuses on the upper

chromospheric part of a flare loop during the first few seconds of heating by an intense impulsive
electron beam. To the left of the dashed vertical line, in all panels of the figure, is the high-

temperature plasma that is thought to be the source of the blue-shifted X-ray emission. Between
the dashed and solid vertical lines is the condensation itself, which is somewhat cooler and much

denser than its surroundings, and is moving downward at velocities (initially approaching 100 km

s-1) that far exceed the sound speed in the underlying electron-beam-heated upper chromosphere.
Fisher (1985) has recently developed a simple model of a radiating shock and condensation
propagating into an isothermal chromosphere, which predicts that the timescale for disappearance
of the downward motions should be _lmin, independent of the strength of the condensation.

Straightforward physical arguments, supported by the numerical simulations, indicate that
explosive evaporation should take place only for F20 _ 10 x° erg cm "2 s"1 (Fisher, Canfield, and
McClymont, 1985); since the observations discussed above imply such large values of F2o in flare
kernels, we should expect to see spectroscopic evidence of chromospheric condensations.

The five 1980 flares for which we have both imaging spectroscopy in Ha and non-imaging

spectroscopy in hard X-rays (from HXRBS on SMM) show properties that are very suggestive of
chromospheric condensations driven by explosive chromospheric evaporation and electron beam
heating (Canfield, Gunkler, and Kiplinger, 1985). One or more pixels of all five flares show the
Ha Stark-wing signature. These pixels have several interesting properties in difference spectra,
which are formed by subtracting their pre-impulsive spectrum, as shown in Figure 5. First, during

the impulsive phase redshifts are ubiquitous; ipeak-observed Doppler velocities for all five events
are typically 40 to 60 km s"a downward. Multiple redshift episodes in the Ha spectrum can often
be identified with major impulsive spikes in the hard X-ray count rate, as indicated in the figure.
It is not uncommon for redshift episodes to decay to essentially zero in 30 to 60 s, though more

long-lived redshifts (probably multiple episodes) are also often seen. It is often observed that in
the wings of Ha the Doppler shift becomes independent of intensity, indicating either that the
moving material becomes optically thin or that it is optically thick, but moving at the same
velocity over a broad range of column depth. Often the excess spectrum is either weakly
centrally reversed or not reversed at all, indicating high pressure.

During the time of the balloon flight that discovered hard X-ray micro flares (Lin et al.,
1984), we were making Ha imaging spectroscopic observations at Sacramento Peak. Canfield and
Metcalf (1984) have found that the Ha counterparts of the larger observed hard X-ray microflares

have bright kernels that show impulsive-phase Hoe wing broadening that rises and falls in syn-
chronism with hard X-rays, indicative of chromospheric ,electron-beam heating. The flare-excess
emission of these larger microflares is clearly redshifted, with Doppler velocities that are typically
"_50 km s-_. Both the impulsive-phase wing broadening and the redshifts indicate that although
these microflares are small in area, they still have intense electron beams with F2o _> 101° erg
cm:2 s-1. Metcalf and Canfield (1985) have examined the Ha counterparts of the smallest
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microflares observed in hard X rays. They find that in them there is little or no Hot redshift.

It is interesting that they still show evidence of electron beams, however, although with
F2o _ 101° erg cm"2 s"1. In particular, they show weak Hot wing enhancements temporally
correlated with hard X rays, and line profiles much like the theoretical profiles for low-pressure
atmospheres heated by weak electron beams shown in Figure 1 (upper panel, Po = 1-10 dynes
cm-2, F20 = 108 erg cm"2 s'X). Finally, there is evidence for Hot events much like the Hot

counterpart of the smallest hard X-ray microflares, but without detected hard X-ray counter-
parts, Supporting the suggestion of Lin et al. (1984) that the distribution of non-thermal events
extends to very small events indeed.

VII. FUTURE PROSPECTS FOR THEORY AND OBSERVATION

One of the delights of working on impulsive-phase chromospheric flare physics at this
time is that both theory and observation are advancing at a rapid pace.

On the theoretical side, it is clear that more work needs to be done to complete our
physical understanding of the relationship between the properties of the mechanism that leads

to explosive evaporation and the properties of the dynamic phenomena that ensue. For example,
to what extent will a coronal conduction front lead to explosive evaporation, creating a chromo-
spheric condensation? How is the velocity (or temperature density) of a condensation related to

F2o? What effects will return currents or beam instabilities have? Second, we need to predict
specific observable spectral parameters of dynamic atmospheres, much as has already been done
for Hot from static atmospheres. How does the Hot profile reflect the presence of radiating shocks
and condensations? How about transition-region lines, or lines formed deeper in the chromo-
sphere? How much emission comes from the radiating shock and condensation, as compared with
the underlying atmosphere that has not yet been shocked? How can simultaneous observations

of more than one line, formed at different temperatures, discriminate between various transport
processes?

On the observational side, it is obvious that during the next solar maximum we will be

able to do dramatically better than what we did during the past one. We can estimate the quan-
titative improvements by assuming that we will use devices that are available right now. A major
advance can certainly come from using analog-to-digital conversion and video recording hardware
that has been developed for the home hi-fi market, rather than conventional 1/2 in. computer
tape as we did at Sacramento Peak in 1980. Presently available video-digital interfaces for home
hi-fi run at 1.6 megabits per second for each (stereo) channel, and retail for about $1000. Add a
video recorder, and you can record on-line an order of magnitude faster than what we had in

1980. The number of photosites per array has also gone up about an order of magnitude over
what we used in 1980. Data preprocessing, i.e., pre-reduction to reduce the number of bits

actually written to tape, is now in daily use with the Multiple Diode Array (MDA) at Sacramento
Peak. In principle, this will allow speed enhancements that might easily be 1 to 2 orders of
magnitude. Conservatively, I estimate the potential benefit at a factor of 3, based on setups we
have developed wiht the MDA in the last year, which simply reduce the effective spectral resolu-
tion in the wings of the Hot line to compensate for the effectively slower spectral variation of the

absorption coefficient there. Finally, multiple arrays, each with its own recorder, can potentially
enable one to make imaging spectroscopic observations of perhaps 10 different spectral features
simultaneously, using an echelle spectrograph like the one at Sacramento Peak.

Combining all these improvements, by the time of the next maximum, I expect to be
able to carry out imaging spectroscopic observations, critically resolved spectroscopically, that

achieve both spatial resolution _<1 arc s and temporal resolution <5 s, simultaneously, for many
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spectral fines and continua formed at different temperatures or depths within the chromosphere,
temperature minimum, and photosphere. However, only through imaging spectroscopy of higher-
energy radiation such as microwaves, X rays, and ")'-rays can we hope to build a compelling

physical picture of the whole flare process, throughout the solar atmosphere. I look forward to
the advances and challenges these new capabilities will provide for our physical understanding of
acceleration and transport processes in solar flares.
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Figure 1. The effect of various physical processes on theoretical Hot profiles from hydrostatic

model atmospheres. Upper panel: the effect of varying only coronal pressure Po, holding

the energy flux of nonthermal electrons F20 and the transition-region conductive flux F5
fixed, showing the disappearance of the central reversal in the highest-pressure model.

Lower panel: the effect of varying only F: o, holding Po and F s fixed, showing the

appearance of Stark wings at high F: o. From Canfield, Gunkler, and Riechiazzi (1984).
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Figure 2. Observed Hot line profiles from two pixels of the flare of 1522 UT, 24 June 1980.
Each column is a time sequence of profiles of a single pixel; the times given are those at

which the spectrograph slit crossed the pixels shown. The spectral range of the profiles
is Hot + 4.8 A, and the distance between tick marks on the vertical scale is half the

quiet Sun continuum intensity. To correctly identify the time associated with
each Hot spectrum, note the line segment to its fight linking it to its

quiet Sun continuum point. From Gunkler et al. (1984).
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Figure 3. Hard X-ray count rates of the two 1980 flares observed well by Ha and X-ray imaging spectroscopy and times
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From Canfield, Gunkler, and Kiplinger (1984).',D
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Figure 4. Computed evolution of a chromospheric condensation for the F:o = 1011 erg cm"= s"1
flare simulation of Fisher, Canfield, and McClymont (1985). The spatial coordinate N is the

number of hydrogen nuclei in a cm 2 column, measured from the coronal loop apex.
Velocity is positive in the downward direction, away from the loop apex.
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THEORETICAL MOTIVATION FOR HIGH SPATIAL RESOLUTION, HARD
X:RAY OBSERVATIONS DURING SOLAR FLARES

(Invited)

A. Gordon Emslie

Department of Physics, UAH, Huntsville, Alabana 35899, U.S.A.

ABSTRACT

We review the important role played by hard X-ray radiation as a diagnostic of impulsive
phase energy transport mechanisms. It is argued that the sub-arc second resolution offered by an
instrument such as the Pinhole/Occulter Facility (P/OF) can greatly increase our understanding
of such mechanisms.

I. INTRODUCTION

For nearly three decades, observations of solar flares in hard X rays (photon energy e
10 keV) have been vigorously pursued, in an attempt to understand the true nature of the
impulsive phase of this astrophysical enigma. Although the total amount of energy emitted in
hard X rays is a negligible (%10 "5) fraction of the flare energy budget, this radiation is an
extremely valuable diagnostic of the population of high energy electrons which produce the hard
X rays, and, according to some models, these electrons constitute a dominant fraction of the
energy released in the flare. Indeed, since the upper solar atmosphere is optically thin to all
short-wavelength (< optical) radiation, electrons must constitute the dominant form of energy
transport there, and so the importance of high quality diagnostic hard X-ray observations becomes
obvious.

It is generally accepted that solar flare hard X rays are produced by bremsstrahlung
interaction of high energy electrons with ambient protons (see, however, Emslie and Brown,
1985). To investigate this farther, toward the ultimate goal of understanding the mechanisms that
give rise to a solar flare, we must evaluate the characteristics of the high energy electron popula-
tion through interpretation of its bremsstrahlung signature. This involves an investigation of the
temporal, spectral, spatial, and polarization signatures of the hard X-ray radiation. Spectral
information has been available since the earliest observations (Peterson and Winckler, 1959), with
ever-increasing precision as higher resolution detectors with larger and larger detecting areas have
been developed (Lin et al., 1981). The excellent statistics available from recent large detectors
such as the Hard X-Ray Burst Spectrometer (HXRBS) onboard the Solar Maximum Mission
(SMM) satellite have allowed studies of fine temporal structure (r _ 10 ms) in flares to be made
(Kiplinger et al., 1983). Polarization measurements are relatively sparse, yet have provided
definite results (see Tramiel et al., 1984, and references therein) to be compared with model
predictions.

One of the major problems of interpreting the above mentioned data has been the lack
of spatial information on the source. This means that data represent a convolution over a wide
extent of possible physical regimes, and it is extremely difficult, if not impossible, to deconvolve
this spatial information. By way of an example, consider a model in which the (nonthermal)
electrons responsible for the bremsstrahlung radiation are injected at the apex of a magnetic loop
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and spiral about guiding magnetic field lines. The degree of curvature and torsion in the field line

geometry will affect the predicted hard X-ray polarization from the entire source. Indeed, for a
suitably inhomogeneous magnetic field, one expects the target-averaged electron velocity distri-

bution to be nearly isotropic, leading to a near-zero observed polarization; however, over suffi-
ciently localized regions of the source quite high polarization can result (see Leach et al., 1985).
Similar problems exist in the interpretation of bremsstrahlung spectra in terms of a continuous

injection thick target model (Brown, 1971): the physical processes operating on the electrons
within the source volume can have as much of an effect on the emitted bremsstrahlung spectrum
as does the electron spectrum at injection (Brown and MacKinnon, 1985). With spatial resolu-
tion these effects can be decoupled and the injected spectrum (with its associated constraints on
the primary energy release process) better determined. It is thus clear that spatial resolution of
hard X rays is essential for a better understanding of conditions in the impulsive phase of flares.

Imaging of solar flare hard X rays has so far been accomplished in three distinct ways.

The Hard X-Ray Imaging Spectrometer (HXIS) on SMM observed solar hard X rays through
multiple layers of collimator holes, with a large number of proportional counters (one per
collimator channel) to record the data. This instrument yielded images of regions on the Sun in
six energy bands spanning the range of 3.5 to 30 keV, with spatial resolution down to 8 arc s.

The Solar X-Ray Telescope (SXT) onboard the Japanese Hinotori satellite used a rotating double-
grid modulation collimator (see Makishima, 1982) to image the entire solar disk with a spatial
resolution of order 10 arc s. Finally, use of stereoscopic views of behind-the-limb flaring
regions (from different spacecraft) has yielded crude imaging in the form of a measure of the

fraction of X-ray photons emitted above the occulting photospheric limb (Kane et al., 1979).

These data have traditionally been interpreted (see Hoyng et al., 1981; Brown et al.,
1981) in terms of two distinct hard X-ray production models: the so-called "thermal" and "non-

thermal" models. We refer the reader to numerous articles (e.g., Emslie and Rust, 1980; Brown
and Smith, 1980; Emslie, 1983) for a description of these two canonical models and the physical
differences between them. However, it is becoming increasingly obvious to modelers that neither

of these simple models is really appropriate to actual flare conditions, with a suitable hybrid being
employed frequently (e.g., Emslie and Vlahos, 1980). We therefore see that what is really
required is a knowledge of the relative proportions of electrons with velocities much greater than
the ambient thermal velocity ("nonthermal" electrons) to those with velocities of order of the

thermal velocity. In fact, this article seems to be an appropriate place to lay this historical
"thermal versus nonthermal" distinction to rest, and to turn our attention to the real unknown

of the energetic electron problem - the electron phase-space distribution function f*(r,v) and
its evolution with time. Knowledge of f*(r,v, t) (electrons cm"3 (cm s'a) "3) gives us not only
the requirements on the acceleration region (r = ON),but also the physics of the interaction of
the energetic electrons with the ambient solar atmosphere. In the next section we will show how

spatially resolved hard X-ray images can give us direct information on f*(r,v, t) and its deriva-
tives, and so address both of these two areas of investigation. We will also discuss (Section III)

theoretical and observational evidence that the behavior of f*(r,v, t) is at present poorly under-
stood. In Section IV we summarize these results and look toward the P]OF as the logical next
step in solar flare hard X-ray studies.

II. DETERMINATION OF THE ELECTRON PHASE SPACE DISTRIBUTION FUNCTION
THROUGH SPATIALLY RESOLVED MEASUREMENTS OF HARD X-RAYS

Consider the observation of hard X rays from a "pixel" of a bremsstrahlung source. Let

the volume of this pixel be V, the distribution of target protons within the source be np(r),
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and the phase-space density of the bremsstahlung-emitting electrons be f*(r,v,t). For

simplicity, we will here consider only the total X-ray yield from the pixel, and not its direction-
ality or polarization properties. It is thus sufficient to work with the four-dimensional phase-space
function f(r,E,t) (electrons crn -3 erg"1, where E = 1/2 m Ivl2) and the isotropic non-relativistic
Bethe-Heitler cross-section QB(e,E) for calculations of the bremsstrahlung yield. With these
simplifying assumptions, the flux of hard X-rays observed at the Earth will be

)1 f(ff(r,E,t)np(r)d3rv(E)QB(e,E)dEphotonscm'2s"erg'l (1)
I(e,t + At) - 4rrR 2

E=e V

where At is the light travel time from Sun to Earth and R = 1 AU. Following Brown (1971)
we write

1
f d 3 (2)n°-v --np(r) L
v

and

- 1 ff(r ,E,t)np( r)d 3 r (3)
f(E,t)- no V V

(the average value of f in the pixel, weighted with respect to np). Equation (1) then becomes

noV

J _'(E,t)v(E)QB(e,E)dE (4)I(e,t + At) - 4rrR 2
E=e

The formula may be straightforwardly inverted, as in Brown (1971), to give f(E,t) in terms of
I(e,t +At); we refer the reader to Equation (7) of Brown (1971) for the essential result. Here we
wish to emphasize that no assumptions regarding the origin of evolution of the electron distribu-

tion function f(r,E,t) have been made and that, if the pixel size is made sufficiently small that
the averaging processes given by Equations (2) and (3) are redundant, then f(r,E,t) can be

explicitly determined from hard X-ray observations alone (with the proviso that the number of
protons noV in the pixel must also be known). Thus hard X-ray observations of sufficiently good
angular resolution allow us to trace the evolution of f(r ,E,t) throughout the source, fulfilling the
dual scientific objectives of (a) determining the "injected" electron distribution f(O,E,t), and (b)
providing an evolutionary scenario for f throughout the target, against which to test theoretical
transport models.

By way of illustration, let us calculate the predicted evolution of f*(r,v,t) in a model in

which nonthermal electrons (E >> kT e, where k is Boltzmann's constant and Te the ambient
electron temperature) interact with a background plasma of uniform density no by purely colli-
sional processes. Let us further adopt a vertical geometry, so that f*(r,v,t) may be replaced by
g(z,E,t), where z is height in the source, and let us also assume a steady-state over timescales of
interest, so that the t-dependence "of g need not be considered explicitly. The bremsstrahlung
yield from a pixel of height Az centered on z then becomes
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noA& z oo

I(z,e)- 4rrR2 f g(z,E)v(E)QB(e,E)dE , (5)
E

where A is the area of the vertical column imaged. Equation (5) can easily be inverted to give
g(z,E) in the manner of Brown (1971). By continuity of electron flux, however, we know that

g(zl ,El )vl (El)/sl (El) = g(z2 ,E2 )v2(E2) Ja2(E2) , (6)

where zl and z2 are different heights in the source and/aa,/_2 are the cosines of the pitch angles
to the (vertical) guiding field lines, taken here to be single-valued functions of the respective
energies Ei, E2 (see below). In a purely collisional analysis, we have (Brown, 1972; Emslie,
1978)

(3KAN) 1/3E1 E2 1 +/_2E'---7

' (7)

gl =/a2 +_
vzE22

where K = 27re4A, e being the electronic charge (e.s.u) and A the Coulomb logarithm, and
AN = no(Z 2- zl)is the intervening particle column density between the two levels. Substituting
formula (7) into Equation (6) gives

g(z2,E2) = 1 +_1 g x,E2 1 +/a2_E2 (8)

The value of/a 2 appropriate to E2 follows from the global equivalents of (7), viz. (Brown, 1972;
Emslie, 1978)

E2 = Eo 1 _oEJ

, (7a)

3KN )1/3
/a2 =/a o 1 2

/aoEo

where N is the total column density between the injection point (E = Eo) and the pixel in question.
For a given injection pitch angle cosine tao and prescribed pixel and energy E2, the first relation of
Equation (7a) gives implicitly the value of Eo; the second relation then gives/a 2(/ao,E 2 ,N) for substi-
tution in Equation (8).

Equation (8) is a theoretical prediction for the behavior of g, given the ambient density

no(Z) and the injection pitch angle/_o of the electron beam. A corresponding, more complicated,
result follows if the electrons are injected over a range of pitch angles tto. Either of these results
can be compared with the forms of g(z2,E2) and g(z1,E1),deduced from inversion of Equation
(5), in order to test whether a simple treatment of the beam dynamics in terms of collisional
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scattering in the presence of a uniform magnetic field and Suitable no(Z) is indeed appropriate.
Other effects, such as collective processes and a non-uniform magnetic field, will modify Equation

(8) in a way that can in principle be determined empirically through spatially resolved X-ray
observations and Equations (4) and (6). In the next section we will briefly outline the existing
evidence, both theoretical and observational, which suggests that Equation (8) is indeed an over-
simplification, and that new input from high spatial resolution hard X-ray observations is required
to better define the true relationship between the forms of g(z,E) in different locations of the

flare, and so the physics of electron transport in solar flare atmospheres.

III. EVIDENCE FOR NON-COLLISIONAL PROCESS AFFECTING
ELECTRON TRANSPORT IN FLARES

In the additional presence of non-collisional processes the first of Equations (7) assumes
the formal structure

El = E1 (E2,AN;p i) , (9)

where the Pi'S are parameters of the electron distribution function and the ambient medium
(e.g., temperature, electron/ion temperature ratio, magnetic field geometry, etc.). As pointed out
in Section II, this relationship can in principle be determined through hard X-ray observations of
sufficient quality at sufficiently high spatial resolution. However, there is already evidence to
suggest that the collisional analysis leading to Equations (7) is inadequate and/or invalid. This
evidence is both theoretical and observational.

Dealing first with the theoretical side, a purely collisional analysis assumes that (a) the
magnetic field structure is uniform and that (b) collective effects can be ignored. Leach and
Petrosian (1981) have analyzed the effect of a non-uniform magnetic field on the evolution of
g(z,E) and we refer the reader to that paper for details. Collective effects can be subdivided into
two classes: coordinate-space and velocity-space. The former (coordinate-space) collective effect
is that of the beam-neutralizing reverse current, which causes the beam electrons to lose energy
sufficient to drive this reverse current through the finite resistivity of the ambient plasma. The

electrical potential difference which each electron must overcome is given by V = fT/jdz, where

is the resistivity and j the beam current; the corresponding energy loss is AE = ef_jdz. Thus,
the energy loss rate required to drive the reverse current is E = e_jtav = e_oJTe3/2/av.This loss rate
differs from the collisional rate of 1_ = Knov/E (Emslie, 1978) in three basic ways: (1) depend-
ence on the properties of the electron: 1_= E 1/2 for reverse current ohmic heating, but 1_cc E-_/2
for collisional heating, (2) dependence on the properties of the background atmosphere: there is
a temperature dependence of 1_in the reverse current case, replacing a density dependence in the
collisional case, (3) dependence on the parameters of the overall beam: l_ depends on the total
beam current j in the reverse current case, a dependence which is totally absent in the collisional
case. We therefore expect that, for high beam fluxes for which reverse current ohmic heating can
become an appreciable contributor to the energetics of the beam electrons (Emslie, 1980, 1985),
Equation (7) will be substantially modified to the form

E1 = EI(E2,AN;j, Te) , (9a)

and this new form should be evidenced by the evolution of hard X-ray spectrum from pixel to

pixel in the source.
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Collective effects in velocity-space, as they apply to hard X-ray producing electron beams
in flares, have only recently received attention. Emslie and Smith (1984) pointed out that, due to
the inverse energy dependence of the collisional energy loss rate (see above), an injected flux of

suprathermal electrons will develop a "hump" in velocity-space which moves to increasing energies
with depth in the collisional target. For a sufficiently dense beam the hump eventually rises
above the level of the background Maxwellian velocity distribution, creating an electron-electron
two-stream unstable situation. Due to the great rapidity of microscopic collective plasma
processes compared to the collisional lifetime of energetic electrons in plasmas of relevant

densities, quasi-linear processes will effectivelyprevent this hump forming, so that instead a platehu
of ever-increasing extent is formed as the electrons penetrate deeper into the target. The formula
for the rate of change of the electron distribution function g is now a complicated function of g
itself, and we must replace Equation (7) by

E1 = E1 (E2,AN;g(z2,E 2)) , (9b)

the form of which has yet to be determined and represents work currently in progress (Emslie
and McClements, 1985). It is possible that empirical determination of this form through spatially
resolved hard X-ray measurements, as discussed in Section II, could increase our understanding
of this collective process and how it operates.

We turn now briefly to the observational evidence for non-collisional processes affecting
electron transport in flares. In an attempt to explain the stereoscopic data of Kane et al. (1979)
in terms of a collisional model such as discussed above, Brown et al. (1983) found that the values
of AN inferred from the "top pixel" (the unocculted part of the behind-the-limb flare, i.e., that
part observed by both spacecraft - see Kane et al., 1979, for details) depended on the photon
energy being observed - clearly an unphysical result pointing to the invalidity of the model

(unless a suitably contrived energy-dependent pitch angle distribution of injected electrons was
involved). Further, in an event discussed by Kane (1983; his Figure 7), the inferred value of
the unocculted AN rises when determined using observations at one photon energy and falls when
using observations at another. This is strongly indicative that a simple collisional model is
inadequate.

IV. DISCUSSION AND CONCLUSIONS

We have seen in the previous two sections that our knowledge of electron energy transport
in solar flares is at present quite possibly poorly understood, both from theoretical and observa-
tional standpoints, and how, in principle, hard X-ray observations with sufficiently fine spatial
resolution can help to increase our understanding in this area.

Present hard X-ray imaging data, from both HXIS (SMM) and SXT (Hinotori), is not of a
high enough quality to be of great aid in such an investigation. Indeed, there is great controversy
over the basic interpretation of the images hitherto obtained. For example, Duijveman et al.
(1982) claim to have observed the "footpoint" signature of precipitating nonthermal electrons in
a flare on 5 November 1980. However, MacKinnon et al. (1985) claim that these "footpoints,"
although definitely representing real enhancements of emission in localized areas, may be simply
due to the line of sight volume along a vertical column through the ends of a loop being greater
than that along a similar column at the apex of the loop (see also Fennelly and Emslie, 1985).
In addition, the "footpoint" spectra observed by HXIS are inconsistent with (lower than) the

137



extrapolated Hard X-Ray Burst Spectrometer (HXRBS) spectra for the flare as a whole, implying
that the "footpoint" emission is not the dominant component at HXIS energies. The need for
statistically sound hard X-ray measurements at fine spatial evolution is therefore apparent, if only
to unambiguously interpret the images obtained. For the analysis of Section II we need hard

X-ray spectra spanning as wide a range of photon energies as possible, with spatial resolution
of order 1 arc second or better. (The reason for a wide energy survey is because of the possibly
different nature of energy loss processes operating in different electron energy ranges - see
Section III.) As discussed elsewhere in this volume, the Pinhole/Occulter Facility (P/OF) is indeed

capable of such measurements and therefore represents the logical next step in solar hard X-ray
observation.

Acknowledgment. The author would like to thank Dr. J. C. Brown for discussions on
various aircraft, from which the particular format of this paper emerged.
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THE ROLE OF HIGH RESOLUTION OBSERVATIONS IN DETERMINING
ENERGY RELEASE AND TRANSPORT PROCESSES
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With present observations from the Solar Maximum Mission and Hinotori, we are seeing a
very selective sample of spatially large flares in the soft part (10 to 50 keV) of the hard X-ray
spectrum. The spatial resolution is at best 5600 km with a corresponding time resolution of 4.5 s

for adequate count statistics. This resolution gives rise to the following problems: We cannot
resolve the minor radii of the loops involved or tell where and how the energy release occurs.

The manner in which loops interact and the relationship between the soft and hard (>100 keV)
parts of hard X-rays remains elusive. We cannot see how energy propagates in most cases.

Thus it is desirable to determine the minimum increase in spatial and temporal resolution

required to solve these problems. Spatially we need to resolve the minor radius of a small loop
which is about 800 km or 1 arc s. Upper limits to observed speeds of conduction fronts and shocks
are "v2000 km s-1 with theoretical limits running about a factor of 2 higher. Thus, a compatible
minimum time resolution is in the range of 0.2 to 0.4 s. With these spatial and temporal resolu-

tions, sufficient count statistics are required to go up to _120 keV with a sufficient number of
energy bands to obtain spectra.

Before noting some of the results to be expected with these resolutions, we briefly con-
sider some recent results on energy transport which are described in detail in Smith (1985a).
For the past several years starting with Brown, Melrose, and Spicer (1979) and Smith and Lillie-
quist (1979) there has been some question as to what extent a thermal hard X-ray source could
be more efficient than a nonthermal thick-target source. The laser fusion community has devoted
a considerable amount of effort to the problem of heat transport in steep temperature gradients
(e.g., Campbell, 1984). The results of these studies have shown that the Spitzer-Harm conductiv-
ity has a very narrow range of applicability. In terms of the mean free path of the bulk thermal
electrons

K2Te2

_s - Zzre4neln A , (1)

and the temperature scale height L, the condition for the applicability of Spitzer-Harm conduc-
tivity, is

;ks/L < 10"3 (2)

Here Te and ne are the electron temperature and density, respectively, Z is the ionic charge and
lnA is the Coulomb logarithm. When condition (2) is violated, which can be determined using

_s/L = 6.31 x l09 IqSHI Te-3/2 ne'l , (3)
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where qSH is the Spitzer-Harm conductivity, the actual conductivity q should be calculated from
the following table for hydrogen (Z = 1):

TABLE 1. HEAT FLUXES FOR DIFFERENT Xs/L

Xs/L q/qsH q/qFS

0.0010 0.9998 0.0030
0.0032 0.9706 0.0094
0.010 0.8351 0.0251
0.032 0.5849 0.0564
0.10 0.3792 0.1142
0.32 0.2251 0.2169
1.00 0.1235 0.3718

Here qFS = nemeVe 3 (Ve = electron thermal velocity) is the free streaming heat flux.

The physics in the reductions to qSH in Table 1 is the following: Spitzer-Harm conduc-
tivity neglects the presence of fast tail electrons with mean free paths Xf >> L. Thus it over-
estimates the heat flux because it does not take into account the fact that these electrons cannot

contribute to the local transport of heat. They do contribute to the global heat transport by
depositing heat far beyond the temperature gradient. For most astrophysical applications where
local values of the transport coefficients are important, it is sufficient to use Equation (3) and
Table 1.

The effect of employing these results in thermal models for hard X-ray sources is the
following (Smith, 1985a): The conduction fronts formed now travel at "5Cs, where cs is the
ion-acoustic speed and for energy inputs up to 6.4 x 103 erg cm -3 s"1 (equivalent to the con-
version of a 400 G field every second into heat) the maximum Te reached is 10 s K. Thus a
thermal hard X-ray source can only be effective in the soft part of the hard X-ray spectrum.

The hard part of the spectrum must be due to accelerated electrons. A possible acceleration
scenario is given in Smith (1985b). By separately following the hard and soft parts of the hard
X-ray spectrum we shall be able to test these theoretical results and thus determine the mode of
energy propagation. This exercise will probably be most unambiguous for limb flares and
theoretical support of this nature will be useful.

With the above desired resolutions we shall be able to determine where the energy release

occurs and, with comparable optical and UV data to ascertain the preflare energy storage, to
determine whether coronal storage is sufficient or energy must be transported from the photo-
sphere. The role of the interaction of loops in this release and in particular acceleration should
also become clear.

Acknowledgment. This work was supported by NASA contract NASW-3603 and NSF
grant ATM-8314511.
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WHY P/OF SHOULD LOOK FOR EVIDENCES OF OVER-DENSE STRUCTURES
IN SOLAR FLARE HARD X-RAY SOURCES
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ABSTRACT

White-light and hard X-ray (HXR) observations of two white-light flares (WLFs) show that

if the radiative losses in the optical continuum are powered by fast electrons directly heating the
WLF source, then the column density constraints imposed by the finite range of the electrons
requires that the WLF consist of an over-dense region in the chromosphere, with density exceed-
ing 10 TM cm "3. Thus, we recommend that P/OF search for evidences of over-dense structures in
HXR images obtained simultaneously with optical observations of flares.

I. SUMMARY OF CALCULATIONS

As a working hypothesis, we adopt a classical thick-target model, whereby nonthermal
electrons are accelerated in a low-density coronal region and subsequently thermalized in the
denser layers of the chromosphere. In the following steps we use optical and HXR data for two
well-observed flares, 1 July 1980 and 24 April 1981; the calculated results are shown in Table 1.

a. The observed power (PwL) in the optical continuum at the peak of the WLF was
derived from measurements made with the Multiple-Band Polarimeter at Sacramento Peak (Neidig
and Cliver, 1983; Kane et al., 1985).

b. The fast electron power loss spectrum (of the form P(E) = AE "_, where E is the elec-
tron energy) was calculated from the associated HXR burst, assuming a thick-target model, at the
time of the WLF peak power (Batchelor, 1984; Kane et al., 1985), and the electron energy Eo
above which the power in thick-target loss is equal to white-light power was then derived for both
flares. Note that the values for Eo obtained in this way are upper limits on the low-energy cut-

off actually required under realistic conditions, as we assume (1) the electrons are depositing their
energy only within the WLF area, and (2) all the energy in electrons with E > Eo is converted
into white-light emission.

c. The column density nc that can be traversed by electrons of energy Eo was calculated
from the equations given by Bai (1982). Because the values for E0 adopted in the previous step

are upper limits, it follows that the column density nc will be an upper limit on the range of the
electrons that carry sufficient power to the WLF. If we take the electron trajectory to be normal
to the sun's surface and with zero pitch angle, and denote the height (above rsoo0 = 1) of the

acceleration site as za and the height where the fast electrons are stopped as zo, then
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Z1

z N(z)dz = n c ,

where N(z) represents the vertical density distribution in the solar atmosphere. If we assume
that the density at the acceleration site is NI012 cm "3 and N(z) is similar to the density distribu-

tion in the quiet sun atmosphere, we can easily determine the electron stopping height Zo (note
that for the electron energies considered here, zo is not sensitive to the selection of zl as long
as N(za ) N 1012 cm-3).

d. Next, we considered the minimum amount of atmospheric material that could give rise

to the WLF; i.e., we assumed Hfb emission at 104 K in an optically thin slab. In this way we

obtained a lower limit on the linear emission measure, Ne2Az, required to produce the observed
WLF intensity. A more realistic lower limit on Ne2Az would actually be larger than the values
listed in Table 1, as the observations of the peak WLF intensities were undoubtedly affected by

seeing and finite spatial resolution of the telescope. Note that the adopted emission measures
oo

are considerably larger than the entire integrated atmospheric emission measures fzo N2 (z)dz.

e. The minimum density, NWLF, in the WLF source was then estimated from the quan-
tities in steps (c) and (d), i.e., NWL F = Ne2AZ]nc .

I1. CONCLUSIONS AND DISCUSSION

The calculations summarized above show that it is not possible to obtain the required

WLF emission measures within the column densities allowed by the finite range of the energetic
electrons. Thus, we conclude that if WLFs are powered by fast electrons, in the sense of a classic
thick-target model, then the solar atmospheric structure must be modified in such a way as to
produce a steeper density gradient than is found in the quiet sun. This could imply (1)the
existence of an over-dense region formed in the flare atmosphere, or (2) the partial removal of the
atmospheric mass overlying the denser regions of the deep chromosphere (but probably not via
evaporation, as the mass might still remain in a column between the WLF and the electron
acceleration site). Further, we find that the density in the WLF, if heated directly by fast
electrons, must exceed 1014 cm-3.

These conclusions are based on several assumptions, each of which was chosen to give the
fast electron heating model every chance of success. Furthermore, the calculations were made at

the time of the peak white-light emission; if, on the other hand, we consider the maximum E0
able to satisfy the power requirements at all times during the 24 April flare, we find that E0 must
be decreased from 85 keV to 25 to 40 keV! The result is that the conclusion reached above is

even more strongly reinforced.

WLF structures are sometimes quite small and short-lived (see Figure 1) and, therefore, if
they are associated with electron bombardment, high-spatial resolution observations in HXR are
required in order to study them. A major goal of P/OF science should be to obtain HXR images
of WLFs, simultaneous with optical observations, and to look for evidences of over-dense
structures.
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TABLE 1. CALCULATED PARAMETERS FOR TWO WLFs

1 July 1980 24 April 1981

Observed power, PWL, in the optical
continuum (erg s"i ) 4.5 x 1027 7.0 X 1027

Electron energy cut-off Eo (keV) 37 85

Electron range nc(E o ) (cm "2) 2.7 x 102° 1.4 x 1021

Electron stopping height Zo (km) 1100 875

Emission measure, Ne 2Az, in the
white-light source (cm "5) 5.3 x 1034 1.6 x 103 s

Integrated atmospheric emission
measure above Zo (cm "s) 1.1 x 1033 3.5 x 1034

Minimum density in the white-light
source (cm "3) 2.0 x 1014 1.1 x 1014
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Figure 1. White-fight flare of 4 June 1982, 1332 UT, photographed at 3610 A. Small kernels
show significant intensity variations in timescales of a few tens of seconds. (Photograph from

National Solar Observatory, Association of Universities for Research in Astronomy, Inc.)
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THE HEATING OF THE THERMAL PLASMA WITH ENERGETIC
ELECTRONS IN SMALL SOLAR FLARES

Hua-An Lin and Robert P. Lin

Space Sciences Laboratory, University of California, Berkeley

The energetic electrons deduced from hard X-rays in the thick target model may be
responsible for heating of soft X-ray plasma in solar flares. Datlowe'(1975) has shown from
OSO-7 studies that if a cutoff of 10 keV is assumed, the total electron energy is comparable to

the thermal plasma energy. However, (1) the soft X-ray emission often appears to begin before
the hard X-ray burst, (2) in about one-third of flares there is no detectable hard X-ray emission,
and (3) for most events the energy content (assuming constant density) of soft X-ray plasma
continues to rise after the end of the hard X-ray burst. To understand these problems we have
analyzed the temporal relationship between soft X-rays and hard X-rays for 20 small events
observed by ISEE-3 during 1980. One example is shown in Figure 1. The start of soft X-ray

and hard X-ray bursts is defined as the time when the counting rates of the 4.8 to 5.8 keV and
25.8 to 43.2 keV channels, respectively, exceed the background by one standard deviation.

Problem (1) mentioned above may be due to the low sensitivity and high background of

the solar hard X-ray detector. We find that &tSH, the difference in start times between the soft
X-ray and hard X-ray burst, and AFH/AtHM, the rate of increase of the hard X-ray flux, are
anti-correlated with a linear correlation coefficient of 0.70 (Figure 2). This result suggests that
the hard X-ray burst may start simultaneously with the soft X rays, and the faster F H grows, the

shorter the time till F H exceeds the hard X-ray detector background. In some flares the peak
flux of hard X rays may not exceed the detector background rate, leading to an apparent absence
of hard X-ray emission.

The thermal energy e is proportional to e'n e = 3KT'EM for ne -- constant and to
e.V "yz = 3KT.EMV2 for V = constant. Figure 1 shows that tN, the time of maximum thermal

energy for ne = constant, is later than tv, the time for V = constant. We have obtained AtN,
At V and r H (Figure 1) from each event. Figure 3 shows that the thermal energy reached
maximum before the end of hard X rays for about 30% of the analyzed events for ne = constant,

and for about 65% for V = constant. On average, the At N is larger by 20 to 30 s than At V.
Thus, the temporal agreement [problem (3)] may be greatly improved if the volume rather than
the density of the thermal plasma region is assumed constant in the flare process. In fact, the
observations show that the volume of soft X-ray region varies relatively little compared with the

density for compact flares (Moore et al., 1980).

Energetic electrons may provide energy to the soft X-ray plasma region in two ways:
(1) chromospheric evaporation by the energy deposition of the higher energy electrons, which
mainly increases the emission measure of the thermal plasma; and (2) energy deposition of lower
energy electrons directly into the thermal plasma region, which mainly increases the temperature.
The increase of the thermal energy for V = constant can be split into two components Ae(V/'_)
and Ae(T), due to the increase in emission measure and in temperature, respectively. Since

K V1/'2e = 3 "T'x/'E-M, we obtain Ae _ 3KVY2.]_._'_ + 3KvV2. X_ " AT, where the first term is
Ae(X/_ ) and the second &e(T), and T and x_ are average values. We compute the ratio

be( V_ )/Ae(T) during the phase of increasing temperature when the energy loss of thermal

plasma by heat conduction and radiation may be ignored. This ratio and "YMIN, the lower hard

146



X-ray spectral index, are anti-correlated (Figure 4). The correlation coefficient between

ln(Ae( _ )/z_e(T)) and 7MIN is 0.62. This result indicates that as the proportion of higher
energy electrons increases, the fraction of the thermal energy contributed by the emission measure
correspondingly rises, and vice versa.

From an analysis of 20 small events, we conclude that if the volume rather than the
density of the thermal plasma region is assumed constant in the flare process, energetic electrons
could heat the soft X-ray plasma.

Acknowledgments. We would like to thank Dr. S. R. Kane for useful discussions. This
research was supported by NASA grant NAG5-376.
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Figure 1. The temporal evolution of the solar flare of 29 March 1980
and the definitions of various times.
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HARD X-RAY IMAGING AND THE RELATIVE CONTRIBUTION OF THERMAL
AND NONTHERMAL EMISSION IN FLARES
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The question of whether the impulsive 25 to 100 keV X-ray emission from solar flares is
thermal or nonthermal has been a long-standing controversy. Both thermal and nonthermal

(beam) models have been developed and applied to the hard X-ray data. It now seems likely
that both thermal and nonthermal emission have been observed at hard X-ray energies. The
Hinotori classification scheme (Tsuneta, 1984), for example, is an attempt to associate the

thermal/nonthermal characteristics of flare hard X-ray emission with other flare properties. From
a theoretical point of view, it is difficult to generate energetic, nonthermal electrons without
dumping an equal or greater amount of energy into plasma heating. On the other hand, any
impulsive heating process will invariably generate at least some nonthermal particles. Hence,
strictly speaking, although thermal or nonthermal emission may dominate the hard X-ray emission
in a given energy range for a given flare, there is no such thing as a purely thermal or nonthermal
flare mechanism.

For a hard X-ray instrument covering a wide range of photon energies, such as the HXRBS
on SMM, it would not be surprising to find both thermal and nonthermal processes contributing
to the X-ray emission from a given flare. Hence, instead of simply applying a specific thermal or
beam model to the hard X-ray data, it would be more instructive to use combined flare data to

try to determine the relative importance of these emissions for a given flare. Combined hard
X-ray and microwave images and spectral data are particularly valuable for this. Since the energy
released in flares is understood to derive from magnetic field energy, it is most likely that the

impulsive phase heating and particle acceleration occur in the current channels associated with
these magnetic fields. Electron heating and acceleration in these current channels have recently
been studied by Holman (1985a,b). The use of hard X-ray imaging to determine the thermal]
nonthermal character of the emission is discussed in light of these results in the following

paragraphs.

Simple considerations of the induction magnetic field associated with a current of accel-
erated electrons have shown that the flux of electrons required for a 25 to 100 keV nonthermal
hard X-ray burst cannot be generated by direct electric field acceleration in a single current
channel (Hoyng, 1977; Spicer, 1983; Holman, 1985a,b). If this emission is to be nonthermal, a
large number of oppositely directed current sheets is required. The relationship between the
electron flux needed for the nonthermal X-ray burst, N, and the minimum number of current

sheets required for the burst, s, is

N = 1030 sw9 B2 electrons s-a

(see Holman, 1985b), where w9 is the width of the sheets in units of 10 9 cm and B2 is the mag-
netic field strength in units of 100 Gauss. Since a typical hard X-ray burst requires 10as elec-
trons s"1 for B = 300 G and w = 3 x 109 cm, a minimum of 104 current sheets is required. The
thickness of each sheet is generally less than 1 km. Imaged hard X rays can be used to better
determine N and estimate an upper limit for w.
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Although a large number of current sheets makes the generation of the nonthermal X-ray
emission possible, the heating of the thermal plasma in the acceleration region is also increased.
Hard X-ray imaging in different energy bands can be used to determine the relative importance of
the thermal and nonthermal emissions at different photon energies, and how the emission is
distributed within the flaring region. Simultaneous second-of-arc resolution soft X-ray images
would also be useful for determining how thermal energy (both from direct Joule heating in the
acceleration region and the evaporation of chromospheric material by the nonthermal beam) is
distributed within the flaring region. Hard X-ray images and spectra will also be valuable for
determining if the transition from impulsive to gradual emission observed in many flares represents
a transition from nonthermal to thermal emission, as is widely believed.

An interesting test for multiple current sheets with an X-ray imager would be to search
for small-scale spatial structure in the emission region. Although the individual sheets would not
be resolvable, spatial variations in the X-ray emission due to variations in the physical properties
of the individual sheets may be detectable. This may be detectable in the thick-target,
nonthermal emission region if the accelerated electrons from the individual sheets remain well

separated, but is more likely to be detected in the thermal emission from the acceleration region.

A large number of current sheets is not required when the 25 to 100 keV X-ray emission
is thermal. Holman (1985b) has shown that a thermal hard X-ray burst can be generated by a
single current sheet within a flaring region. The energetic electrons required for a nonthermal
microwave burst can also be accelerated within the single current sheet. Although the 25 to I00
keV X rays from the single sheet cannot be nonthermal, a transition to nonthermal emission is

expected at energies above 100 keV. Hence, X-ray imaging (and spectra) in the 100 to 500 keV
range is particularly valuable for testing for bursts generated within a single sheet. Simultaneous
microwave images and spectra are, of course, also valuable for comparison with the X-ray data.

An interesting result of the single current sheet analysis was that a thermal hard X-ray
burst can be generated without requiring anomalous resistivity in the sheet if the density in the
X-ray emitting region is 1011 cm-3 or greater. Since the emission measure and estimated source
volume obtained from hard X-ray imaging data can be used to estimate the density in the source
region, the observations can yield information about the resistivity in the current sheet. The
resistivity in the sheet must be anomalous if the average density in the X-ray emitting volume is
less than 1011 cm-_.

It is shown in the previously cited paper (Holman, 1985b) how a comparison of hard
X-ray and microwave rise times (or, more specifically, the Joule heating and electron acceleration
time scales) can be used to obtain more detailed information about the flaring region (see
Shevgaonkar and Kundu, 1985, for a recent application). In particular, the electric field strength
and resistivity in the current sheet can be deduced from such a comparison. The maximum
energy to which electrons are accelerated in turn depends upon the electric field strength and the
length of the current sheet. This maximum energy can be estimated from the hard X-ray or
gamma-ray continuum data for a given flare. For complex, multiple-spike bursts, hard X-ray and
microwave imaging will help in properly identifying the Joule heating and acceleration timescales.

An additional important task for X-ray imaging (both hard and soft) is to determine how
thermal energy, once deposited, is transported within the flaring region. The observed properties
of the thermal X-ray emission will be quite different if the thermal energy is readily transported
to large volumes rather than primarily confined to the energy deposition region. High spatial and
temporal resolution X-ray observations will provide a tracer for the transport of this energy
during a flare.
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SUPER ACTIVE REGIONS AND PRODUCTION OF MAJOR SOLAR FLARES

Taeil Bai

Center for Space Science and Astrophysics, Stanford University
Stanford, CA 94305

The success of imaging detectors with small fields of view such as HXIS or P/OF (Pinhole/
Occulter Facility) depends heavily on pointing to the right place at the right time. During the
solar maximum years many active regions coexist on the solar disk. Therefore, in order to point
the imaging detector to the right place, it is important to know which active region is most likely
to produce major flares. This knowledge is also important for flare prediction.

As a first step toward this goal, I have identified active regions which produced major
flares observed by HXRBS (Hard X-Ray Burst Spectrometer) on SMM during February 1980

through December 1983. For this study I have used the HXRBS Event List (Dennis et al.,
1983), an updated flare list compiled by the HXRBS group, and the Comprehensive Reports of
the Solar Geophysical Data. During this period, HXRBS detected hard X rays from "_7000 solar
flares, out of which only 441 flares produced X rays with peak count rates exceeding 1000
counts/s. I call flares with such high peak count rates major flares. During the same time period
about 2100 active regions passed across the solar disk, out of which only 153 active regions were
observed to produce major flares. (Some active regions are known to persist for several solar

rotations, but at each passage new active region numbers are assigned and my estimate is based
on active region numbers.) Out of these 153 active regions, 25 were observed to produce 5 or
more major flares. Considering their high productivity of major flares, we may call these active
regions "super active regions." These 25 super active regions produced 209 major flares, account-
ing for 51% of all the major flares with identified active regions.

In Table 1 I have listed number of active regions as a function of observed major flares.
One finds that 82 active regions produced only one major flare each during SMM observation
periods, and several active regions were found to produce more than 10 major flares. Because SMM

is in the Earth's shadow "50% of time, the actual rates should be regarded about double the rate
in this table. In Table 2 super active regions are listed chronologically, with some pertinent

information. Active region 18405 (NOAA region number 3763) produced the largest number (18)
of major flares, making June 1982 the most active month in terms of major flare production.
During the same month active region 18422 (NOAA region number 3776) produced 15 major
flares, and it was still very active during its next passage across the disk (active region number
18474; NOAA region number 3804), producing 13 major flares. One could learn a great deal
about solar flares by studying such super active regions in detail with use of magnetograms and
optical observations. If we can find some common properties of the super active regions in Table
2, it would also help understand flare production.

TABLE 1. NUMBER OF MAJOR FLARES PER ACTIVE REGIONS

Number of Major
Flares from Single
Active Region 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Number of

Active Regions 82 29 11 6 7 3 3 3 1 1 1 1 1 1 l 1 0 1 i
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TABLE 2. CHARACTERISTICS OF SUPER ACTIVE REGIONS

ORDER HALE (NOAA) NO. OF NORTH CMP CMP DAYS ROTATION CARRINGTON
REGION MAJOR OR DATE AFTER 00 UT LONGITUDE
NUMBER FLARES* SOUTH 80.1.I

I 16747 (2372) 8 (0) N 80 APR 7.3 97.3 New 103

2 16923 (2522) 5 (0) S JUN 23.3 174.3 1,2; 16864 166

3 16978 (2562) 6 (I) S JUL 17.3 198.3 New 207

4 17244 (2776) 11 (3) N NOV 6.6 310.6 2nd: 17181 165

5 17255 (2779) 16 (2) S NOV 11.6 315.6 2nd; 17188 100

6 17491 (2958) 6 (2) S 81 MAR 2.8 426.8 New at 17436 74
& 17438

7 17590 (3049) 7 (2) N APR 20.7 475.7 2nd; 17535 150

8 17751 (3221) 5 (I) S JUL 24.2 570.1 3rd; 17709 340
- 17667

9 17760 (3234) 9 (2) S JUL 28.3 574.3 2nd; 17713 290

10 17777 (3257) 7 (2) S AUG 10.0 587.0 1,2; 17737 118

11 17824 (3310) 5 (0) S SEP 4.9 612.9 2nd; 17777 133

12 17830 (3317) 10 (3) N SEP 10.6 618.6 New 59

13 17906 (3390) 12 (3) S OCT 14.3 652.3 New 334

14 17969 (3432) 5 (0) S NOV 4.9 673.9 New at 17890 50

15 18176 (3576) 5 (1) S 82 FEB 1.4 762.4 New 323

16 18201 (3594) 5 (0) S FEB 10.7 771.7 2nd; 18142 202

17 18280 (3659) 8 (I) N MAR 29.0 818.0 New 309

18 18405 (3763) 18 (6) S JUN 8.5 889.5 New 85

19 18422 (3776) 14 (3) N JUN 18.8 899.8 New at 18382 310
& 18383

20 18430 (3781) 8 (I) N JUN 21.5 902.5 New 276

21 18474 (3804) 13 (4) N JUL 15.0 926.0 2nd; 18422 320

22 18473 (3814) 8 (0) N JUL 15.5 926.5 4,5; 18421 314

23 (3994) 7 (I) S N0V 20.0 1054.0 72

24 (4026) 5 (3) S DEC 16.9 1080.9 2nd; 3994 80

25 (4171) 6 (2) S 83 MAY 13.0 1228.0 298

• Numbers in this column represent numbers of flares with HXRBS peak rates

> 10,000 eounts/s.

154



Inspecting Carrington longitudes of the super active regions in Table 2, one can find that
the super active regions are clustered in the 60 to 120 degree and 300 to 360 degree intervals,
and that no super active regions are found in the 0 to 30 degree and 210 to 270 degree intervals.
It has been suggested that there exist active longitudes where the occurrence probability of active
regions producing interplanetary protons is much higher than other areas (Svestka, 1970; for a
review see Svestka, 1976). The present study confirms the existence of active longitudes.

Recently Gaizauskas et al. (1983) have shown that many active regions frequently occur in
"complexes of activity," which rotates near the Carrington rate. According to Svestka's (1970)
study, there was only one sector of active longitudes during 1963 through 1967. However, in the
present study we can find two sectors of active longitudes whose medians are separated by about

120 degrees. The existence of active longitudes may be due to giant convection cells (McIntosh
and Wilson, 1985).

Because the Carrington rotation period is not the rotation period of the Sun, one can
determine the mean rotation rate of the sectors of active longitudes by the following procedure:
Adopt a system rotating rigidly at an assumed rate, count the number of major flares occurring
in 20 degree longitude bins in this system, and calculate the rms flare numbers. Then by changing
the rotation rate around the Carrington rate, find the rotation rate which maximizes the rms
value. By this procedure I found that the rotation period 27.34 days (synodic) maximizes the
rms value. The number of major flares in 20 degree longitude bins in the system rotating with
the 27.34 day period is given in Table 3. Here I have adopted the Eastern limb at 00 UT on
1 January 1980 as 0 degree. We can see that a large number of major flares occurred in the 120
to 140 degree and 240 to 260 degree bins.

In the following I summarize the highlights of the present study which are pertinent to
future P/OF observations of solar flares:

(1) All active regions are not created equal, but a small number of "super active regions"
produce the majority of major flares. Therefore, it is very important to find out the properties
of such super active regions. When we can recognize super active regions with the aid of such
properties (yet to be found), we would have better chance of detecting major flares by pointing
imaging detectors to such active regions.

(2) There exist sectors of active longitudes, where large fractions of major solar flares are
produced. Active regions appearing in active longitudes are good candidates to point imaging
detectors to.

TABLE 3. NUMBER OF MAJOR FLARES PER LONGITUDE BIN

Longitude 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340
Bin 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360

Number
of Flares 20 10 5 9 34 17 77 18 12 7 5 39 60 20 19 19 22 9
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THE SOLAR RADIO CORONA: MANIFESTATIONS OF ENERGETIC ELECTRONS

(Invited)

Monique Pick

Observatoire de Paris-Meudon, DASOP, UA 324

I. INTRODUCTION

Most of the topics I am going to discuss in this talk concern the acceleration of particles

during solar flares. The energy transferred to particles is in fact a great fraction of the energy
released during a flare; hence, the problems related to the acceleration/injection process are of
crucial importance for build-up and evolution of the flare.

The accelerated particles produce a wide variety of electromagnetic radiation including
hard X-ray and radio bursts. The various kinds of emissions are generated in the corona through

different mechanisms in sources with different physical parameters. Hence, any common feature
in the temporal evolution of the fluxes can be attributed to the energetic particles. Furthermore,
the different heights of emission enable us to deduce information on the three-dimensional struc-
ture of the source region from imaging observations in hard X rays, microwaves, and meter waves.
One of the best prospects for understanding the electron acceleration has recently emerged from
observations of X-ray and radio emission with a time resolution of 41 s. A detailed comparison
of source locations and temporal evolution at different wavelengths is an important means to
investigate crucial problems of the flare development such as:

-The temporal evolution of the electron population in the sources under the influence
of acceleration/injection and interaction with the ambient medium.

- The magnetic structure involved in the acceleration/injection site.

-The alternative between long-term particle storage in the corona and continuous or
repetitive injection.

My talk will be divided into two chapters: The first one deals with the solar flare
development: pre-impulsive and impulsive phases, gradual and post gradual phases. A few points
related to electron acceleration outside of flares will be also briefly discussed. The second chapter
concerns a few problems related to the radio emission processes.

II. THE SOLAR FLARE DEVELOPMENT: PARTICLE ACCELERATION
DURING AND OUTSIDE OF FLARES

(a) Impulsive phase

It is well accepted that electrons responsible for type III bursts and hard X-ray emission
have a common origin. This idea is based on the temporal association between these emissions,
when they are both produced. In fact, Raoult et al. (1985) have shown that the hard X-ray
bursts associated with metric type III (or U) groups are of moderately small importance. They
have a peak flux _<1 ph cm -2 s-1 keV "1 at about 30 keV. On the opposite, X-ray bursts asso-
ciated with type III/V emission lasting more than 30 s are considerably more intense with peak
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fluxes around 30 keV exceeding 1 ph cm -2 s"1 keV "1 and spectra extending to >/100 keV. The
study of the spatial and temporal characteristics of type III]V events as well as their temporal
association with X-ray emission came out with new information on the development of the
impulsive phase. The observations (see Figures la and lb) can be summarized as follows:

-There is an overall temporal correlation between X-ray and radio emissions. As X rays
are produced in dense regions, this correlation implies a quasi-continuous input of accelerated
electrons in the corona.

- In the early stage of the event, during the pre-impulsive phase which is shorter than
1 min, radio emission is primarily type III or U bursts, the type III bursts arising from
several locations. The X-ray flux (_<1 ph cm"2 s"1 keV -x at 30 keV, similar to pure type III
flare events) grows as the type III frequency increases. This effect is frequently observed. As
the radiation of the type III bursts is emitted at the local plasma frequency or its harmonic,
the starting frequency corresponds to the density at the point where the electron beams become
unstable. Thus, the fast variation of the starting frequency may be explained by a real variation
of the electronic density in the source (downward shift or compression of the injection/accelera-
tion site) (Kane and Raoult, 1981). Alternatively, this effect may be linked to a variation in the
distance traveled by the electron beam from the acceleration site before it becomes unstable to
plasma waves (Kane et al. 1982).

-During the fast increase of the X-ray flux, one of the type III sources labeled A' in
Figure 1 becomes predominant and a new different source B appears. These two sources fluc-

tuate together with short time delays of often less than 1 s. Both sources contribute together to the
spiky (burst) and smooth continuum part of the radio emission. The simplest interpretation of
the behavior of these two sources is that fast electrons are injected simultaneously into two
magnetic structures as illustrated in Figure 2. This can happen if two magnetic structures suddenly

interact at the acceleration/injection site. Several other observations give complementary informa-
tion.

Microwave observations show effectively the electron propagation inside an arch. Indeed,
they have revealed the existence of secondary bursts occurring at distances of l0 s to 106 km

from the primary site (Nakajima et al., 1985). The secondary burst has a time profile similar
to the primary burst with a delay of 2 to 25 s. Some of these events occur simultaneously with
meter-wave type III/V bursts. These observations strongly suggest that the distant microwave

burst is produced by 10 to 100 keV electrons channeled along a coronal loop from the flare site to
the distant footpoint of the loop.

Analysis of soft and hard X-ray imaging observations obtained with HXIS aboard SMM
or with Hinotori also support the evidence of two systems of loops interacting. As an example,
for one event, on 29 June 1980 associated with type III/V emission, different components of the
X-ray source have been resolved. These features are labeled A, B, C, and D in Figure 2d
(Hernandez et al., 1985). Feature A is a small loop (length <20 000 km). Features B and C
are located in a large loop system, C corresponding to the footpoint, and B to a coronal source.
The spatial configuration strongly suggests that the radio source B is the counterpart of the
coronal X-ray source B. Furthermore, feature D which looks like a surge-like structure is located
in the interaction volume of the 2 loops and its temporal behavior (Figure 3) reveals that the
maximum of thermal energy release occurs in this region. Similar surges have been observed in
Ha, and a systematic study has proved the close association between the appearance of these
surges and type III burst occurrence (Mein and Avignon, 1985; Chiuderi-Drago et al., 1985):
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there is a relationship between the evolution of the velocities of the Hc_ dark material and the
occurrence of the type III bursts; the radio emission occurs in coincidence, within 1 rain, with the
blueshift maxima. The production of these surges may be due to the interaction volume which
induces compression and thermal instability (Poland et al., 1982).

In conclusion, major progress has been achieved in the understanding of the impulsive
development. Nevertheless, with the instruments presently available, it is difficult to achieve
properly a quantitative interpretation. X-ray instruments with improved sensitivity and spatial
resolution are necessary. Indeed, during the pre-impulsive phase, the comparative study between
the temporal evolution of the X-ray spectrum and the radio emission cannot be carried out
presently. Similarly, the time resolution of the X-ray image is too poor to obtain the exact
evolution of the different features and their temporal association. In particular, we do not know
if the bright points at the foot of the flaring loop appear simultaneously. Finally, the spatial
resolution is insufficient to understand the exact topology of the accelerating site, and how, for

example, electrons can be injected along several discrete diverging magnetic paths. The mechanism
of electron acceleration that takes place is not yet understood. For this purpose, I would like
to mention now the potential interest of radio decimeter observations.

Spikes of duration less than 100 ms are frequently observed above the starting frequency of
type Ill bursts. An example is shown in Figure 4 together with a hard X-ray time profile for compari-
son (Benz, 1985). The spikes tend to occurin the early phase of the type III groups and predominantly
in the rising phase of hard X rays. The most plausible interpretation is emission at the electron cyclo-
tron frequency or harmonic (upper hybrid wave emission or cyclotron maser) (Benz, 1985). Figure 5
displays the temporal evolutions of average spike flux, metric type III flux, and hard X-ray counting
rate. The observed correlation clearly demonstrates the close connection between spikes and the

injection of energetic electrons. Following Benz, the spikes originate close to, or in the energy
release region. "The observed fragmentation of the decimetric radiation into spikes might be a

secondary effect of one global energy release or it could reflect that the energy of flares is released
in thousands of 'microflares' (typical energy _ 1026 ergs)." The latter interpretation suggests that

type III bursts may be related to integrated effects of elementary acceleration events during the solar
flares (Benz, 1985).

All the observations shown here have pointed out the quasi-continuous and nearly simultan-
eous injection of electrons into distinct magnetic structures (type III/V emission) and precipitat-
ing, at least partially, electrons associated with hard X-rays bursts. The accelerating region must

share different diverging field lines (Kane et al., 1980). Another possibility, proposed by Sprangle
and Vlahos (1983), is the acceleration of secondary electrons generating type III bursts by intense
radio waves. The signature of these radio waves is given by the presence of decimetric bursts.
In this model, the "flaring loop model," the primary accelerated electrons are produced in the
flaring loop, and excite the e.m. radio waves which can easily escape from the flaring region.

It must be indicated that joint observations obtained with a multifrequency radiohelio-
graph and the hard X-ray imaging instrument of the Pinhole/Occulter Facility will provide in
principle an answer to this problem. Indeed, the respective location of the spike and type III
bursts will be obtained as well as the hard X-ray source structure.

(b) Gradual and late phases of large solar flares

It is now widely accepted that during the gradual phases of large solar flares, the electrons
are continuously or repetitively injected into different coronal structures where they emit hard
N rays and broadband continua from centimeter to meter radio waves (Kai et al., 1983; Hudson
et al., 1982; Klein et al., 1983). The strongest argument supporting this conclusion is the similarity
of time profiles between hard X rays, microwaves, and meter emissions.
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Despite this general agreement several problems still remain confused. First of all, it seems
to me that a great deal of ambiguity arises from the inhomogeneous terminology adopted by
different authors to describe the successive stages of type IV events. This led some authors to

suggest an association between hard X-ray emission and, indifferently, "flare continuum" or late
"stationary type IV burst" without any clear distinction between these two components. The

consequence has been a confusion in the electron energy responsible for the different components
of a type IV burst. Secondly, type II bursts which are produced by shock waves are often
observed at the onset of type IV bursts. The exact role of shocks in the acceleration of electrons

responsible for type IV emission is not yet understood.

A typical radio observation of a big solar flare is shown in Figure 6. Let me recall that:

(1) The gradual phase comprises a broadband emission from centimeter to meter waves
that often starts during the impulsive phase. This part, very well-observed at single frequencies
called "flare continuum" (Wild, 1970), has in general a duration of a few tens of minutes, exceed-

ing sometimes one hour for large events (Pick, 1961; the "phase A" in this paper is identical to
the term "flare continuum"). Sometimes this emission is accompanied by a "moving type IV
burst" at meter waves. This is in contradiction with what was reported later on by Cliver (1983).
This author had in mind that the flare continua are of short duration, and he designated as sta-

tionary type IV burst events that were in fact typical flare continua extending to microwave
frequencies.

(2) The post gradual phase, "stationary type IV burst," corresponds to a long lasting
emission up to many hours at meter decameter wavelengths and occurs in some flares during the
fading of the flare continuum or sometimes without any proceeding impulsive or gradual phase.

Figures 7 and 8 compare the temporal evolution of hard X-ray and radio emissions
between two flares containing a flare continuum which starts at the time of the impulsive phase
emission. Flare continuum and hard X-ray emissions start and finish together, presenting an

overall similar temporal behavior. The observed nearly simultaneous end of the burst and of
some of its fine structure features, in both spectral ranges, indicates that the electrons are not

efficiently trapped. The electrons must be quasi-continuously injected.

Furthermore, one can notice that for the 13 August 1980 event (Figure 8), the onset of
the flare continuum at meter wavelengths clearly occurs during the flash phase, before the type

II burst occurrence. Thus, it is not classified as FCII continua which are initiated by the passage
of the shock wave accelerating locally the electrons (Robinson and Smerd, 1975)(see also Figure
9). On the other hand, Hudson et al. (1982) associated a hard X-ray event with an FCII flare
continuum. They suggested that the timings of the FCII, the X-ray, and microwave emissions
were all consistent with the shock wave as the accelerating agent. Then, it is not understandable

that the onset of the hard X-ray event lagged significantly behind the appearance of the type II
burst and the 80 MHz continuum (Figure 10). Hudson et al. (1982) suggested that the particle

acceleration site is largely remote from the impulsive first-stage energy release, contrary to other
major flares. As the corresponding flare occurs behind the limb, I suggest that a large part of the
gradual X-ray event may be occulted as well as the impulsive phase. Indeed, Kane (1983) has
shown that, for impulsive and gradual bursts, the bulk of hard X rays is below 3000 km.

Occasionally, for disk events a delay between X-ray and radio emissions has been observed.
The onset of X-ray bursts precedes the onset of the meter radio emission.
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In conclusion and for discussion:

(a) Flare continua are produced by energetic electrons.

(b) The temporal relationship between X-ray emission and flare continuum has still to be
clarified. It is indeed not clear enough whether two physically distinct accelerating mechanisms
exist; one corresponding to an injection/accelerating site located relatively low in the corona and

producing electrons continuously or repetitively during the whole development of the event;
another one corresponding to an in situ accelerating process linked for a given altitude to the
passage of the shock wave. Robinson himself, who introduced the distinction between FCM and
FCII flare continua, notices that "the type FCII activity is accompanied by an unclassified con-
tinuum burst sometimes having the properties of the type Ill/V" (Figure 11) (Robinson, 1977).
I suggest that the energetic electrons responsible for FCII events may be also produced in the
lower levels of the solar atmosphere, close to the site of flare energy release. Kundu and Stone
concluded similarly for the kilometric solar radio bursts detected by Cane et al. (1981) and

referred to them as shock-accelerated (SA) events (Kundu and Stone, 1984).

(c) The source topology during both impulsive and gradual phases looks roughly similar.
Both phases require a quasi-continuous acceleration mechanism. Despite this analogy, we do not
yet understand why some large flares are only associated with relatively short type III/V events
(plausibly "flare of class B" in the Hinotori classification) and others with "flare continua" of
longer duration (plausibly "flares of class C"in the Hinotori classification). The mechanism main-
taining a continuous input of energy from the interaction region is still unknown.

(d) One of the important results coming out from the SMM mission is that protons and
heavy ions are rapidly accelerated during the impulsive phase (Forrestetal., 1981; Chupp,
1982). It was suggested that all flares might produce "r-ray lines and that only the threshold
sensitivity distinguishes the gamma-ray line flares from the others. On the opposite, Bai and
Dennis argued that 7-ray line events exhibit distinct characteristics from other flares. They con-
cluded that these events belong to a distinct class of flares (Bai and Dennis, 1985). One of the
characteristics is the close association between type II/IV bursts and "r-ray line events. Let me
emphasize the fact that an association between two features has not the same meaning as a
"temporal correlation." In that way, it must be noticed that the 3 June 1982 flare, one of the
most important -y-ray line events observed by SMM, showed 3 successive blobs of activity, com-

parable to 3 type V events (Figure 12) followed by a type IV event. The onset and the develop-
ment of the "r-ray emission occurs during the first type V burst. On the other hand, Raoult et
al. (1985) notice that "r-ray events may occur in association with type III/V events and in the
absence of any type IV burst.

The Post Gradual Phase

When the gradual meter emission is followed by a storm continuum (stationary type IV
burst), the latter is not associated with detectable hard X rays, but only with soft ones (Stewart,
Wolfson, and Lemen, 1979; Svestka et al., 1982; Klein et al., 1983). An isolated storm con-
tinuum has been observed by Lantos et al. (1981), with spatial resolution in the meter and soft
X-ray range. Although the sources are widely separated, their fluxes evolve in the same manner.

Lantos et al. proposed that electrons of about 10 keV in the tail of the thermal distribution emitting
soft X rays escape from the X-ray source and generate the radio emission inside a large expanding
loop transient.
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(c) Electron acceleration outside of flares

(1) Micro-activity at meter decameter wavelengths

Using a balloon-borne instrumentation of very high sensitivity, Lin et al. (1984) have
detected many hard X-ray microbursts, 25 in 141 min, with peak fluxes exceeding 7 x 10-3 ph
cm-z s-_ keV -1 at 20 keV and with a power-law energy spectrum. Ho_flares were only reported
for a few of the strongest bursts. The integral number of events varies approximately as the
inverse of the peak flux (Figure 13). Lin et al. concluded that the energy contained in accel-
erated electrons might contribute significantly to the heating of the active corona. Kundu and
Stone (1984) proposed that these microbursts could be of the same nonthermal nature as the
frequent microbursts observed at meter and decameter wavelengths. The CLRO radioheliograph
recorded many micro-type-III-like bursts lasting from a few seconds to several tens of seconds

with flux densities ranging from a few tens to huridreds of milli sfu. As shown by Kundu and Stone,

the integral number of events also varies inversely to the peak flux (Figure 13). The Clark Lake
Radioheliograph images show that the radio source persists for many hours. These type-III-like
burst storms are also frequently observed at higher frequencies as weak meter type I noise storms.
The exact origin of the electrons responsible for these emissions is not yet understood.

(2) Noise storm onsets or enhancements related to transient coronal modifications

The most rapid variations of the K corona, coronal transients, have been extensively studied,
and some of them are known to be associated with type II-IV bursts (for a review, see the chapter on

"coronal mass ejections and coronal structures" by Hildner et al. in the SMM workshop proceedings,

1985). I am not going to discuss these large events here.

Combining SMM - C/P observations and Nan_ay Radioheliograph measurements, Kerdraon
et al. (1983) found that noise storm onsets or enhancements are systematically associated with

the appearance of additional material in the corona. These coronal brightenings are not
necessarily transient mass ejections. Most often, they appear as a stepwise increase on a timescale
of one hour and remain stable for several hours. In all cases, the radio source is cospatial with
the region of increased white light brightness. Whatever may be the process causing the mass
increase, it is a necessary condition for the noise storm emission to change intensity or to appear.
This result represents the first systematic association between visible features and noise storm
production. Indeed, attempts to associate this activity with chromospheric flares (Elgaroy, 1977)
or with surges (Garczynska et al., 1982) did not reveal any systematic relationship.

In conclusion, electrons can be accelerated quasi-continuously in the absence of any
detectable chromospheric activity. The observations summarized in this section may suggest
that these electrons may have a purely coronal origin. In order to progress, joint observations
between radiohefiographs, white-light and UV coronographs, especially observing below 1.5 solar
radii from disk center, are necessary to establish more clearly this coronal origin.

III. RADIO EMISSION PROCESSES AND ELECTRON BEAM OBSERVATION

(a) Type 111radio bursts

In the last years, both theory and observational techniques of solar type III bursts have
been developed up to a level where it became possible to investigate the fine structure of type III
radio emission and to use it as a test of the theory. At kilometric wavelengths, pioneering work

in this direction has been done by Lin et al. (1973), Gurnett and Anderson (1976),and

164



Fitzenreiter et al. (1976) from an observational point of view, and by Goldstein et al. (1979)

from a theoretical point of view. For example, it was possible to confirm that the radio emission
is produced by streaming electrons. In the higher frequency band, in situ verification of the
theory is not possible. Indirect investigation by means of the radio emission has been the appro-
priate way to get information about the early development of the electron beams. The conclu-
sions diverge significantly. On the other hand, many authors have invoked propagation effects
of electromagnetic waves, such as coronal scattering or wave ducting to explain observed size,
position, directivity, and characteristics of fundamental-harmonic pairs (F-H) (Steinberg et al.,
1971; Stewart, 1976; Duncan, 1980; Dulk and Suzuki, 1980). On the other hand, other authors
have noted that type III bursts may be resolved into elementary sources which can be explained
by the discrete diverging structures in the corona (Axisa et al., 1972; Mercier, 1975; Raoult and
Pick, 1980). This was recently confirmed by direct combined white-light and radio observations

obtained with the SMM coronograph/polarimeter and the Nan_ay Radioheliograph. It was shown
that type III sources are located in the vicinity of thin ray-like structures which are over-dense,

short-lived (1 day or less), and sometimes diverging (Trottet et al., 1982). More generally, the
type III source structure tends to follow that of the corona. Even if propagation effects are not
excluded, they must be estimated in the context of a corona composed of small discrete struc-
tures. This has direct implication on the type III burst modeling. For example, type III pairs
are often observed; most of the observed type III pairs have been widely interpreted as funda-
mental and harmonic emission (F-H). However, this interpretation may sometimes encounter
serious difficulties as the observations fit occasionally better with the assumption of 2 electron
beams propagating along different diverging magnetic paths (Benz et al., 1982).

In situ measurements of electron beams in connection with coronal observations will

yield powerful diagnostics of the radio emitting mechanisms. Indeed, electron beam propaga-
tion characteristics will be clearly identifiable and distinguishable from propagation effects of
electromagnetic waves. Finally, it must be emphasized that results which have been obtained
from in situ measurements at low frequencies in the interplanetary medium cannot be auto-
matically extrapolated to higher radio frequencies emitted at coronal levels.

(b) Pulsating structure

Flux variations with quasi-periods of the order of 1 s are frequently observed in type IV
continua (McLean et al., 1971). They are referred to as "pulsating structure." Theories involv-

ing incoherent or coherent gyrosynchrotron radiation from energetic electrons trapped in a mag-
netic arch and periodic oscillations of this arch have been often invoked for the interpretation
of pulsating structure (Rosenberg, 1970).

Combined imaging and spectral observations have made a detailed study possible of both
the spatial structure of the source and its emission spectrum. This led to the discovery of new
properties of these modulations as high temperatures "10 __K, limited frequency spectrum, spatial
and spectral drift of the peak frequency within one pulse (Trottet et al., 1981). It has been
shown that these characteristics exclude gyrosynchrotron radiation as the emission mechanism.
As an alternative, processes where the plasma emission of trapped particles is inhibited by per-
turbations of the loss cone distribution have been proposed. These perturbations can correspond
to repetitive injections of fast electrons as suggested by Benz and Kuijpers(1976) for the inter-
pretation of "sudden reductions" in continua. As mentioned by Trottet et al., "simultaneous
X-ray and radio observations of similar pulsating structure events will furnish clues concerning
the changes in distribution function and the correctness of the model."
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IV. CONCLUSIONS

Radio observations are powerful tools which are complementary to the space missions
devoted to the physics of the flares, of the corona, or of the interplanetary medium. I would
like to take this opportunity to stress the fact that two multifrequency radioheliographs presently

exist: the Nan_ay instrument (the multifrequency facility will be in operation by the end of
1985) observes the middle corona at decimeter-meter wavelengths, and the Clark Lake radiohelio-

graph, operating at decameter wavelengths, is the only one in the world to have the ability of
observing the outer corona above the disk.

Acknowledgments. I acknowledge L. Klein, A. Raoult, G. Trottet, and N. Vilmer for
helpful discussions and criticisms on the manuscript.
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Figure la. Type III/V bursts on 29 July 1981 observed with the Nan_ay Radiospectrograph
and the associated hard X-ray burst observed with HXRBS on SMM. Evolution of the

X-ray emission compared to the evolution of the radio event. Note the inverted
scale for the X-ray data. (From Raoult et al., 1985.)
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Figure lb. 29 July 1981 event. Top: starting frequency of the radio emission measured on the

Nan_ay digital spectrograph. Middle: evolution of the radio flux from source A' (solid line) and
B (broken line) as observed by the Nan_ay Radioheliograph. Location of radio sources A-A'
and B (see text) observed during the development of the event. Bottom: evolution of the

X-ray power-law spectral index observed with the HXRBS on SMM and of the hard
X-ray emission. (From Raoult et al., 1985.)
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Figure 2. (a) Schematic evolution of an X-ray burst showing (1) "preflash phase," (2) impulsive
phase. (b) Suggested geometry of the flare during the preflash phase showing the presumed

magnetic field lines from the electron acceleration/injection site through the metric radio
sources labeled A. (c) Similar geometry of the flare during the impulsive phase showing
the location of the metric radio source A' and the new source B (see text). (d) 29 June

event, HXIS soft X-ray data, 10.40 UT (3.5-11.5 keV). Sketch of the field geometry
assumed by the authors, overlaid on a HXIS field of view display (size of individual

pixels, 32 arc s). (a,b,c from Raoult et al., 1985; d from Hernandez et al., 1985)
The spatial configuration suggests that the radio source B is the counterpart of

the X-ray source B. (X: see caption of Figure 3).
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Figure 3. 29 June event 10.40 UT. Temperature versus time plots for features A, D, and
its neighbor (pixel indicated by an x in Figure 2d). (From Hernandez et al., 1985.)
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Figure 4. Decimetric spikes on 31 August 1980. Top: Composed figure showing HXR counts

versus time (>_30 keV, observed by HXRBS onboard SMM) (courtesy B. R. Dennis) and radio

spectrogram registered by the analog spectrograph (Dacedalus). The spectrogram shows type

II1 bursts at metric wavelengths and spike activity above about 350 MHz. Bottom: Blow-up

of a small fraction of the spectrogram produced from data of the digital spectrometer

(Ikarus) presenting single spikes. (From Benz, 1985.)
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(From Klein et al., 1983.)
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Figure 10. Height-time plot of the type 11burst of 22 June 1972. Heavy sloping lines indicate
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harmonic) bands. The light broken line indicates a shock speed "630 km s-1 . Type II
frequencies were converted to heights using the Newkirk (1961) coronal streamer
density model. Also shown are the times of type III bursts (vertical bars), the flare
continuum source at 80 MHz at an observed height "0.6 solar radii, and the time

profile of the hard X-ray burst. Error bar indicates the injection time inferred
from interplanetary observations. (From Hudson et al., 1982.)
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Figure 13. (left) A sequence of radioheliograms at 150 MHz showing the positions of type
Ill-like bursts. Successive images were taken every 1 to 2 seconds. (Right top) Distribution

of hard X-ray microbursts observed by Lin et al. (1984) as a function of peak keV photon
flux. Also shown for comparison is the distribution of hard X-ray bursts reported by
Datlowe et al. (1974). (Right bottom) Distribution of meter-decameter microbursts

at 50 MHz as a function of intensity in arbitrary units. The lowest intensity is a
small fraction of 1 sfu. (From Kundu and Stone, 1984.)
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ABSTRACT

High resolution (arcseconds to tens of arcseconds) mapping of solar microwave bursts

has recently been achieved. ] review the properties of the radio images that have been reported
to now and, so far as possible, the relation of the radio sources to X-ray observations of the
same flares.

I. INTRODUCTION

One of the most important advances during the past solar maximum was the development
of the capability of imaging flare emissions with a resolution of some tens of arcseconds to less

than one arcsecond, i.e., adequate to resolve almost all sources. This capability was achieved
in one dimension in Nagoya, Japan at 35 GHz, Nobeyama, Japan at 17 GHz, Westerbork,
Netherlands at 1.4 and 5 GHz, and in two dimensions at theVLAin the USA at 1.4, 5, 15, and
22 GHz. Because Westerbork and the VLA are general purpose instruments, only a small fraction
of their time is used for solar studies so the number of flares observed by them has been severely
limited; nevertheless they obtained a number of very important results, some of which will be
described here.

Of particular relevance to this workshop is the fact that radio waves in the decimetric-
centimetric band emanate from the same populations of energetic electrons that produce soft
and/or hard X rays. Time profiles ("light curves") of radio bursts are nearly identical to those
of X-ray bursts even on time scales of 1 s or less. In general the form and duration of the light
curves vary with radio frequency and X-ray energy, with the curves of the higher frequency radio
waves corresponding better with those of the higher energy X rays; some aspects of the correla-
tions and spectral properties will be discussed by G. Hurford at this meeting. Because of this
high temporal correlation, one would expect that images made at radio and X-ray wavelengths
would also be similar, with source structure at some tens of GHz resembling that at hundreds
of keV, structure at a few GHz resembling that at tens of keV, and structure near 1 GHz resembl-
ing that at a few keV. However, verification of the expectation has not been possible because (1)

no X-ray images have been obtained at energies _>30 keV, (2) the number of flares imaged in
radio waves has been small and those with simultaneous X-ray imaging even smaller, and (3) in
almost all cases of joint coverage the frequency of the radio image has not matched the energy
of the X-ray image. Only in the event described by Kundu et al. (1984) was there near
compatibility - 5 GHz radio and 16 to 30 keV X rays, and then the images were indeed very
simi/ar.

In addition to mapping the intensity of radiation, it is possible at radio frequencies to
make maps in both fight-hand (RH) and left-hand (LH) polarization, or equivalently, in Stokes

parameter V = RH - LH or degree of circular polarization rc = V/I = (RH - LH)/(RH + LH).
At the higher frequencies where the source is optically thin, the sense of circular polarization
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immediately gives the direction of the magnetic field in the source region, with RH and LH
polarizations implying that the longitudinal component of field is directed toward and away
from the observer respectively. Here it is assumed that gyrosynchrotron radiation is the radio

emission mechanism of the relevant bursts, an assumption that is well substantiated by both
theory and observations. With additional information on electron energies, sometimes available
from hard X-ray observations, it is also possible to infer the magnetic field strength in the source
region. Typical values are in the range of 100 to 500 Gauss.

In the remainder of this paper I will describe the main results achieved from radio imaging
of flares by showing some examples of the better-observed flares or ones illustrating the points
most clearly. Two cautions are necessary: the first is the usual one that flares differ so much
in their temporal, morphological, and spectral characteristics that it is difficult to make deductions

that apply to more than a subclass of flares, and second is the point that I can illustrate only a
handful of cases, so the selection is both incomplete and biased towards flares observed in two

dimensions, i.e., with the VLA. The reader can find more illustrations and implications in reviews
by Marsh and Hurford (1982), Kundu and Vlahos (1982), Kundu (1982),and Canfield et al.

(1985), and in detailed reports by Allisandrakis and Kundu (1978), Kattenberg (1981), Kundu,
Bobrowsky, and Velusamy (1981), Marsh et al. (1981), Kundu et al. (1982), Ohki et al. (1982),
Velusamy and Kundu (1982), Duijveman and Hoyng (1983), Dulk, Bastian, and Hurford (1983),
Hoyng et al. (1983), Kai et al. (1983), Kawabata, Ogawa, and Suzuki (1983), Lang and Willson
(1983), Tsuneta et al. (1983), Willson (1983), Kundu et al. (1984), Langand Willson (1984)_
Dulk, Bastian, and Kane (1985), and Nakajima et al. (1985).

II. DISCUSSION OF INDIVIDUAL EVENTS AND THEIR IMPLICATIONS

Event of 5 November 1980, 2226 UT

Hoyng et al. (1983) and Duijveman and Hoyng (1983) described the hard X-ray and
radio imaging of this flare, a relatively weak one that preceded by about 7 min a more intense
flare much described in the literature but for which no radio images are available. As seen in

Figure 1 the flare lasted only a few minutes and had three peaks, the last was visible mainly in

softer X rays and was not evident at 9.4 or 15 GHz; the first two peaks were not properly
resolved with 10 s time resolution of the VLA. The upper-right part of Figure 1 shows the flar-
ing region at the times of the first two peaks with the magnetic neutral line, the 15 GHz radio
sources, and the HXIS pixels in which there were significant numbers of counts (shaded) in the
16 to 30 keV range. The 15 GHz sources are seen to straddle the neutral line of the magnetic
field; this is a general rule to which there are only a few exceptions. The sources are very small,
less than about 5 ",7,in extent; this also is common, with sizes averaging about 3 _" at 15 GHz,
10 ¢;' at 5 GHz, and 30 '_ at 1.4 GHz. Because of the weakness of the flare, few counts were

recorded in the HXIS 16 to 30 keV channel. During the first peak (top right), two separated
pixels had a significant number of counts, probably near footpoints of loops arching over the
neutral line. During peak 2 one of the two pixels with significant counts was the central one
coinciding with the radio source, but its X-ray spectrum was probably softer than that of the

outer pixel. Peak 3 was also largely from the central pixel, and its spectrum was softer yet.

The bottom part of Figure 1 shows the location of the RH and LH radio sources of peak
2 relative to the neutral line and the Ho_ bright features. The neutral line as drawn may be
misplaced by a few arcseconds, and its probable location is between the two ribbons of the flare.

In any case the RH and LH radio sources are predominantly on the sides of + and - polarity,
respectively. In addition, the radio source straddles the region of the brightest Hot kernels.
These also are common, nearly ubiquitous features of radio images of flares.
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The 15 GHz brightness temperature in RH polarization during peak 2 was 9.4 x 108 K,
and the source was optically thick or nearly so. From this it follows that the average energ_¢ of
the emitting electrons was >I00 keV; in fact, the HXRBS experiment observed X rays to about
300 keV. From the degree of circular polarization and the radio spectrum, the magnetic field
strength in the 15 GHz source was estimated to be about 500 Gauss. With the density estimated
from X-ray data to be about 3 x 101 o cm-3, the plasma beta was _ _ 10"2, showing a dominance
of magnetic energy density in the source region.

Event of 24 June 1980, 1522 UT

Kundu et al. (1984) described the hard X-ray and VLA imaging at 5 GHz of this flare.
It was located within 30 deg of disk center and was of importance SB in Hot and M1 in soft
X rays. Figure 2 shows light curves in soft and hard X rays; the duration of the latter was only
about 3 rain. Figure 2 also shows the relationship of the 5 GHz radio source to the soft and hard
X-ray sources and the off-band Hcx features. Several points are notable: (1) The 5 GHz source
size, about 10 rr x 20 _', was only slightly smaller than the hard X-ray source. (2) The radio and
hard X-ray sources overlapped but seemed to be slightly displaced from each other; however, this
might not be significant in view of possible alignment errors. (3) The radio source lay near the
extremity of the off-band Hot brightening and it is not clear what its relation was to the magnetic
field. However, on polarization maps (not shown) the northern and southern parts of the radio
source were polarized in the LH and RH sense, respectively. (4) The soft X-ray source was con-
siderably larger (>60 _) than either the hard X-ray or radio source and its center was displaced
from them. (5) After the radio and hard X-radiation had ceased, the soft X-radiation covered a
huge area that generally coincided with but even exceeded the extent of the Hot brightenings.

Event of 12 June 1980, 1340 UT

Willson (1983) described this impulsive event which was observed with the VLA at its

lowest frequency of 1.4 GHz. While the overall flare lasted several minutes, we describe only
the first of three peaks, one which lasted only about 10 to 20 s. Figure 3 shows the VLA images
at three times, 10 s apart. The left panel shows the region just before the burst or possibly at its
leading edge, with the radiation being slightly RH polarized. The middle panel is for the next
10 s interval, the one containing the burst. The source size was about 30 _,, considerably larger
than is typical of 5 or 15 GHz sources. The brightness temperature was only moderate, 1.5 x
108 K. The polarization had changed dramatically from the previous 10 s map, being RH
polarized only on the eastern edge while the brightest part was nearly 100% LH polarized. The
right panel shows the region 10 s later yet, during burst decay, when the polarization had
returned nearly to its pre-burst state.

In the absence of further information it is not possible to decide with confidence the
origin of this burst. At decimetric wavelengths not all bursts are due to the same gyrosynchrotron

mechanism responsible for the 15 and 5 GHz radiation of the events described previously. Plasma
radiation and cyclotron maser radiation are also known to occur near 1.4 GHz.

Event of 22 November 1981, 1743 UT

The events described above involved flares on the disk. This allows the positions of
sources to be related to magnetic and Hot features but prevents any direct measurements of

source altitudes. From stereo observations from two spacecraft of X-ray bursts, Kane et al.
(1979, 1982) have established that impulsive hard X-ray sources are located at very low altitudes,
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<2500 km, which is consistent with the belief that they are at the footpoints of magnetic loops.

If images are made of flares near the limb, it is possible, at least in principle, to measure directly
the source altitudes.

To date only one such flare has been reported. Dulk, Bastian, and Kane (1985) made
simultaneous observations at 4.9 and 15 GHz of a flare at 85 deg longitude. The results are

summarized in Figure 4. The light curves at the upper left show a weak, impulsive flare with
two peaks. For the first peak, the profiles at the two radio frequencies are similar to each other
and to that of the 12 to 20 keV X rays (for this burst the highest energy range with enough
counts to give a reliable profile). The three middle panels show the radio sources at three times:
early in the rise, the first peak, and the second peak. As usual the 15 GHz source is smaller than

the 4.9 GHz source, but surprisingly the sources are not cospatial, a fact that would not have
been suspected from the light curves alone. There is little or no 4.9 GHz radiation from the main

part of the 15 GHz source and vice versa. The upper right panel shows, for the two frequencies,
the brightness temperatures near the centers of the two sources. The considerable differences

suggest that the emission mechanisms may not be the same in the two sources, and this is borne
out in detailed study. On the basis of the combined X-ray and radio data, the northern, 15 GHz
source was found to be due to gyrosynchrotron radiation from a small number of "_300 keV

electrons, with the 4.9 GHz emission from those electrons being gyroresonantly re-absorbed as it
passed over a large sunspot enroute to Earth. The southern, mainly 4.9 GHz source was found
to be due to thermal bremsstrahlung from a hot plasma with a temperature ranging from about
5 X 10 6 K at the periphery to about 20 x 10 6 K at the center.

The bottom panel of Figure 4 shows the two sources at the time of the burst maximum

in relation to the Hot limb and the Hot flare brightenings. In projection the radio sources were
at the same height or below the Hot features, probably at an altitude of 3000 km or less. This is

rather similar to the height of hard X-ray sources derived by Kane et al. (1979, 1982). Hence,
it seems that the fast electrons that emit both the microwaves and hard X-rays in impulsive flares
are confined to very low-lying loops or their footpoints.

Event of 8 May 1981, 2200 UT

The events described above were concerned with short-lived impulsive flares, with the evi-
dence indicating that hard X rays come largely from footpoints of low-lying loops and radio waves

largely from their central positions. A distinctly different type of flare is typified by a long dura-
tion and a large source at a high altitude. An example of this kind of flare occurred on 8 May
1981 and was imaged in soft and hard X-rays by Hinotori, and at 4.9 and 15 GHz by the VLA;
it has been described by Ohki et al. (1982) and by Dulk, Bastian,and Hurford (1983). Figure 5
shows two light curves of 15 GHz radiation and one of the 25 to 400 keV X-radiation. Taking
into account the linear versus log scales, the 15 GHz profile from Owens Valley is very similar
to the hard X-ray profile, but the VLA profile is similar only at the earliest times, before 2220
UT. The VLA profile represents the flux as seen by an interferometer with a fringe spacing of
15.4 arcsecond, the lowest resolution of any antenna pair on that occasion. The decrease in
VLA flux after 2220 UT (while it was increasing on the Owens Valley antenna with its 3 _" reso-
lution) demonstrates that the source increased its size to well above 15 _',. The 4.9 GHz flux

recorded by a VLA interferometer with 40 _', resolution behaved in a similar way, showing that
the 4.9 GHz source too was exceptionally large. The lower panel of Figure 5 shows the hard
X-ray sources near the time of burst peak and their relation to magnetic and Hot features. Two

X-ray sources were present, the main one's size was nearly 1 _. Also shown in the figure are
three small sources that were imaged by the VLA, but they contained only a tiny fraction of the
total 15 GHz flux, and their relation to magnetic, hard X-ray, or Hot features is unclear.
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A lesson to be leamed from this flare is that the VLA is most useful when in a compact

configuration, especially if dual frequency observations are desired. When in a widespread con-
figuration there is danger that large-scale structures become invisible and that ambiguities may
not allow the positions of small-scale features to be determined.

Event of 29 January 1984, 1825 UT

As reported by Lang and Willson (1984), this flare was imaged at the VLA at several

frequencies in the range 1.4 to 1.7 GHz. Figure 6 shows light curves at two frequencies spaced
about 0.03 GHz apart, and in the two senses of circular polarization. The burst was weak and the

spiky components appeared almost exclusively in RH polarization. There are significant
differences in the intensity of a few of the spikes at the two closely spaced frequencies, notably

spike 7; this implies that the bandwidth of the spiky radiation was very small, only about 2%.

The upper two panels of Figure 6 shows RH (solid) and LH (dashed) images at the two

closely spaced frequencies at the times of peaks 1 to 7. While the structures are seen to be quite
similar at the two frequencies, the intensities are not always similar. Further, the LH and RH
radiation occurred at distinctly different spatial locations. (It is possible that the polarization of
the southern source may have been low, with the corresponding RH contours not visible because
of the limited dynamic range of the maps.)

The temporal, spectral, and polarization characteristics of this event suggest that two
emission mechanisms were involved, the normal gyrosynchrotron process for the weak, southern
source, and the cyclotron maser process for the strong, RH-polarized northern source. The

former process is not capable of producing bursts of nearly 100% polarization and narrow band-
width, but these are typical characteristics of a maser (e.g., Melrose and Dulk, 1982). It would
be of great interest to know how hard X rays behaved in the spatial, spectral, and temporal
domains at times of microwave spike bursts of the kind illustrated by this event.

III. CONCLUSIONS

In summary, I list some of the general properties derived from radio imaging of flares.

(1) The most common, observed characteristic is that impulsive radio burst sources lie
over neutral lines of magnetic fields, and that the source is near the top of one magnetic loop

or an arcade, but extending over much of the loop lengths. Radio sources are seldom found only
at footpoints.

(2) Radio sources are larger at the lower frequencies; for impulsive flares they are

typically 3 _'_ at 15 GHz, 10 _ at 5 GHz, and 30 _ at 1.4 GHz. However, they are sometimes
much larger, especially for extended flares, reaching 1 ";' or more.

(3) The heights of the impulsive radio sources are quite low, perhaps not much higher
than the 2500-km limit found for several hard X-ray bursts. However, this conclusion rests

mainly on one limb flare observed with the VLA and requires verification.

(4) The field strengths in the source regions are usually in the range of 100 to 500 Gauss

and the plasma beta is usually much less than unity.
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(5) Most radio emission at frequencies higher than a few GHz is due to gyrosynchrotron

radiation from electrons of energy >100 keV, with the higher frequencies being produced by the
more energetic electrons. For 3,-ray flares the frequency of peak radio flux extends to 50 GHz or
more, with the highest frequency radiation produced by relativistic electrons. Extrapolating the
source size versus frequency relation, one would expect the relativistic electrons to occupy a very
small volume, <_1 _

(6) Following the impulsive phases of flares, it is likely that thermal bremsstrahlung from
the soft X-ray plasma plays a role in producing the slowly decaying tail of radio emission that
is especially evident at the lower frequencies.

(7) At frequencies <_3 GHz cyclotron maser and plasma radiation become increasingly
more important. Cyclotron maser emission probably produces the microwave spike bursts

observed mostly at <1 GHz, but occasionally to 3 GHz. In impulsive flares it may also play a
major role in the transport of energy from the energy release/hard X-ray/cm burst region into the
larger, soft X-ray region (Melrose and Dulk, 1984).

(8) Simultaneous imaging observations in radio and hard X rays have revealed several
important phenomena in flares, but their potential has hardly been tapped because X-ray imaging
has so far achieved relatively poor spatial resolution compared with radio imaging, and because
images have so far been made only at relatively low X-ray energies.

This work was supported in part by NASA's Solar Heliospheric Physics and Solar Terres-
trial Theory Programs under grants NSG-7287 and NAGW-91 to the University of Colorado.
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Figure 1. Event of 5 November 1980, 2226 UT. Upper left: light curves at 15 GHz, 9.4 GHz,

and 25 - 386 keV X rays. Upper right: images at the times of peaks 1 and 2 of the burst.

The solid line represents the magnetic neutral line, the black areas are the 15 GHz sources,

and the hatched areas represent HXIS pixels with significant counts in the 16 to 30 keV

range. Bottom: superposition of VLA sources in RH (black contours) and LH (white

contours) radiation on the Ho_ picture of the two ribbon flare. From Duijveman

and Hoyng (1983) and Hoyng et al. (1983).
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Figure 2. Event of 24 June 1980, 1522 UT. Top: fight curves of the soft (3.5 to 8 keV;
dotted line) and hard (22 to 30 keV; solid line) X-ray emission. Bottom: positions and

sizes of the 5 GHz source (solid curve), hard X-ray source (dashed curve), and soft

X-ray source (dot-dash curve) in relation to bright, off-band He features (stippled)
and sunspots (dark areas) at the time of the peak of the hard X-ray burst.

From Kundu et al. (1984).
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RH and LH polarization, respectively. From Willson (1983).
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Figure 4. Event of 22 November 1981, 1743 UT. Upper left: light curves of hard X rays
and 4.9 and 15 GHz radio waves. Middle: VLA maps of the 4.9 and 15 GHz radio

sources at three stages of the flare: rise, first peak, and second peak. Upper right:

time variation of the brightness temperature of the RH polarized radiation at the
centers of the two sources evident in the middle panel. Bottom: enlarged view

of the 4.9 and 15 GHz sources at the time of the first peak, showing their

relation with the Ha limb and the bright, flaring Ha features. From Dulk,

Bastian, and Kane (1985).
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16 arcminute square.
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HIGH-SPECTRAL RESOLUTION SOLAR MICROWAVE OBSERVATIONS

Gordon J. Hurford

Caltech, Pasadena, CA 91125

ABSTRACT

The application of high-spectral resolution microwave observations to the study of solar
activity is discussed with particular emphasis on the frequency dependence of microwave emission
from solar active regions. A "shell model" of gyroresonance emission from active regions is
described which suggests that high-spectral resolution, spatially-resolved observations can provide
quantitative information about the magnetic field distribution at the base of the corona. Corres-

ponding observations of a single sunspot with the Owens Valley frequency-agile interferometer
at 56 frequencies between 1.2 and 14 GHz are presented. The overall form of the observed size

and brightness temperature spectra was consistent with expectations based on the shell model,
although there were differences of potential physical significance. The merits and weaknesses of
microwave spectroscopy as a technique for measuring magnetic fields in the solar corona are
briefly discussed.

I. INTRODUCTION

During the past solar maximum, considerable insight into many aspects of solar activity

has been gained through the use of high-spatial resolution microwave observations (e.g., Dulk,
1985; Kundu and Vlahos, 1982; Marsh and Hurford, 1982). The value of such observations has
been not only to reveal the size, location, and morphology of the microwave sources but also to
enable the brightness temperature of such sources to be determined. The brightness temperature,
determined from the ratio of source flux to area, is the quantity which is related most directly
to the physical conditions in the source or to the characteristics of the energetic particle popula-
tion. For example, the brightness temperature of an optically thick, thermal plasma is equal to
its electron temperature.

In this paper, we shall be concerned with the frequency dependence of microwave
emission from active regions. Such emission can be divided into three frequency regimes depend-
ing on the location and physical mechanisms which dominate. In the first regime, at millimeter
wavelengths, emission from the corona can be entirely neglected and the situation is dominated by
thermal bremsstrahlung from the chromosphere. Active regions are relatively difficult to discern,
except through absorption features associated with filaments (Figure 1).

At centimetric wavelengths, thermal bremsstrahlung from the corona begins to make a
contribution to the observed surface brightness. The low density and high temperature of the

corona can only provide a small optical depth, and so the resulting brightness temperatures fall
well below coronal values. Gyroresonance opacity, however, can render the corona optically thick
at locations where the magnetic field has the appropriate values. This is observed as small,
localized areas in which the brightness temperature achieves coronal values.

At decimetric frequencies, the optical depth of thermal bremsstrahlung from the corona
has increased to the point where coronal brightness temperatures can be approached so that the
morphology of the corresponding microwave maps changes again (e.g., Dulk and Gary, 1983),
almost to the point of being suggestive of soft X-ray maps.
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For many active regions, observations at the VLA frequencies, 15, 5, and 1.4 GHz, would
yield three different morphologies, corresponding to these three regimes.

This paper will be concerned with the frequency dependence of active region emission in
the second regime where gyroresonance opacity is important. It will be suggested that the size
and brightness temperature spectrum of the compact microwave sources can be used to directly
measure the strength and distribution of coronal magnetic fields. This suggestion will be illus-
trated by preliminary results of high-spatial and high-spectral resolution, multifrequency observa-
tions of a solar active region.

II. A SHELL MODEL OF MICROWAVE EMISSION

Let us now consider in more detail some characteristics of the gyroresonance emission
from active regions, with particular emphasis on what might be learned from the frequency
dependence of such emission. To simplify the discussion, we consider the case of a single
isolated sunspot. In the absence of gyroresonance opacity, thermal bremsstrahlung would yield
emission with brightness temperatures of 10" to l0 s K. Under the specific conditions where
gyroresonance can be effective, however, the increased brightness temperature to "106 K would
be readily observable as a bright source against a relatively cool background. The corresponding
sources have been observed by many workers with high-resolution, microwave imaging instruments
such as the Very Large Array and the Westerbork Interferometer (e.g., McConnell and Kundu,
1984; Lang, Willson, and Gaizauskas, 1983).

Gyroresonance opacity is significant at frequencies which are low integral multiples of the

local gyrofrequency, Vg (GHz) = 2.8 B (kG). It is important to recall that the gyrofrequency
depends only on the magnetic field, B, and is independent of electron temperature, density, or
velocity. At temperatures and densities typical of coronal conditions, gyroresonance opacity
usually provides significant optical depth at the 2nd and 3rd harmonics in the extraordinary
propagation mode (left circular polarization for downward directed fields) and at the 2nd
harmonic in the ordinary mode. The optical depth at higher harmonics is usually much less than
1 and so can be neglected.

These considerations lead to the schematic picture, illustrated in Figure 3, whereby at a

fixed frequency, the coronal microwave emission above a sunspot is generated in magnetic shells,
representing isogauss surfaces. At 5 GHz for example, the emission would come from shells
where the magnetic fields are approximately 600 and 900 Gauss. (At 600 and 900 Gauss, the
gyrofrequencies are 1.7 and 2.5 GHz, whose 2nd and 3rd harmonics are 5 GHz.) Thus, at 5 GHz,
the ordinary mode emission comes from a surface where the magnetic field is 900 Gauss, whereas
the extraordinary mode emission comes from a 600-Gauss shell. (In the extraordinary mode, the

900-Gauss shell also would emit at 5 GHz, but such emission normally would be hidden under
the opaque 600-Gauss shell.)

To imaging observations, these shells appear as the localized areas with coronal brightness
temperature. The diameter of the observed sources is determined by the intersection of the
isogauss shells with the transition region. (Emission by the shell below the transition region is
unimportant since even if it were optically thick, it could not have 106 K brightness temperature.)
Thus, the outline of the resulting 106 K source represents a specific isogauss contour at the base
of the corona.
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In this picture, observations at a different frequency would correspond to a correspond-
ingly different magnetic field contour. For example, at higher frequencies, the emission shells
would correspond to stronger fields and a decreased source diameter would be expected. In fact,
at a frequency corresponding to the shell which is tangent to the transition region, we would
expect that the diameter would approach zero and that at frequencies above this cutoff, coronal
brightness temperatures would not be achieved.

Note that the diameter of these shells as a function of frequency depends on the
configuration of the magnetic field in the corona. Rapidly diverging fields would differ markedly
from well constrained flux tubes in terms of the variation of the contour diameter with field at

the base of the corona. Thus, measurement of the diameter and temperature of the corresponding
microwave sources as a function of frequency could provide a direct, quantitative measurement of
the magnetic field distribution at the base of the corona.

III. OBSERVATIONS

To explore the feasibility of such a technique for determining coronal fields, observations
were conducted with the frequency-agile interferometer of the Owens Valley Radio Observatory
(OVRO). This system (Hurford, Read, and Zirin, 1984) can observe at up to 86 frequencies
between 1 and 18 GHz in both right and left circular polarization (RCP,LCP). With its capability
of rapid switching among frequencies, detailed spectra can be obtained in a few seconds.

Early results (Hurford, Gary, and Garrett, 1985) used two antennas for measurements of

active regions. With only a single baseline, it was not possible to directly measure the size of the
sources. The resulting spectra were consistent, however, with the arguments advanced in Section

I. Soviet workers (cf., Akhmedov et al., 1983) have conducted corresponding multifrequency
measurements between 7.5 and 15 GHz using their RATAN-600 instrument.

The present results are based on the first such interferometric measurements using three
antennas. At the time of these observations, the east-west separation of the antennas was 0.183,
1.067, and 1.250 km with the central antenna displaced 0.032 km north of the line joining the
outer two. The resulting resolution (fringe spacing) was inversely proportional to frequency
(5 arc s at 10 GHz), which was more than adequate to resolve the sources at each frequency.
The limited field of view afforded by the use of large antennas (27 to 40 m diameter paraboloids)
made it possible to restrict the field of view to a single active region (at all but the lowest fre-
quencies).

Calibration of interferometer amplitudes as a function of polarization, baseline, and fre-
quency was based on extended observations of 3G273 and 3C84. The resulting amplitudes are
estimated to be known to about 10%, with a principal source of uncertainty being an imperfect
knowledge of the calibrator spectra.

The preliminary results discussed below are based on data acquired in right and left

circular polarization (RCP,LCP) at 56 frequencies between 1.2 and 14 GHz during "_20 min
integrations on 3 successive mornings (26-28 July 1984).

Optical data showed that the target region (AR4549) was dominated by a progressively
weakening, single sunspot. Therefore, we anticipated that only a single gyroresonance source
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would be present. This hypothesis was tested by forming the closure phase* (Pearson and Read-
head, 1984) at each frequency and polarization and rejecting data which were inconsistent with
the single gyroresonance source. (Rejected data were primarily at the highest and lowest fre-

quencies where emission by thermal bremsstrahlung was competitive.)

To determine the size of the source at each frequency/polarization, a Gaussian profile

was assumed. In this case the dependence of amplitude, A [Jy], on projected baseline, L [km],
for a Gaussian source of FWHM diameter, D [arc s], observed at frequency, p [GHz] is given by:

A = Ao e"9"3 x 10-4 (LDu) 2

where Ao [Jy] is the limiting amplitude at L = 0, corresponding to an unresolved source. Thus,
a plot of In(A) versus L2 should be a straight line whose slope yields the value of D, the source
diameter. A typical plot of this type, shown in Figure 3, shows that the diameter can be
measured to an accuracy of about 5%.

Having measured the diameter and Ao, the corresponding brightness temperature is given

by the ratio of source flux to area, using the relation,

Tb = 3.5 x 10 6 Ao (Dr) "2

The resulting size and brightness temperature spectra for 26 July 1984 are illustrated in Figure
4. Figure 5 shows the evolution of these quantities over the three successive days as the sunspot

decayed.

IV. RESULTS

In broad terms, the features of the spectra in Figure 4 are consistent with expectations
based on the shell model discussed in Section II. For example, in LCP (extraordinary mode

emission) the brightness temperature maintained coronal values up to _12 GHz while below
this frequency the source size increased as frequency decreased. The interpretation is that the

isogauss contours at the base of the corona are larger at the weaker fields corresponding to the
lower frequencies. Above 12 GHz, the brightness temperature is seen to drop rapidly to a few
times l0 s K. This is consistent with the expectation that the brightness temperature would fall

at a transition frequency where the corresponding isogauss shell was tangent to the transition
region. The relatively constant value of source size above "_10 GHz is not understood at present,
but might be related to spatial fragmentation of high frequency sources such as observed by
Lang, Willson, ahd Gaizauskas (1983) at 15 GHz. (A group of unresolved sources would be seen
by a three-element interferometer to have a diameter corresponding to their spatial envelope
and a correspondingly diluted brightness temperature.)

Comparing the RCP and LCP brightness temperature spectra, we note that the same

qualitative behavior is observed in RCP as in LCP. Of particular interest, however, is the fact
that shifting the RCP spectrum up in frequency by a factor of 3/2 provides a reasonable agree-

*Closure phase can be defined an appropriately signed sum of the interferometer phases observed
on the three baselines. Its usefulness here is derived from the fact that the closure phase should

be zero for the expected small, single, symmetrical source, and generally nonzero for more

complex sources.
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ment with the LCP brightness temperature spectrum. This is consistent with the expectation
that the 2nd and 3rd harmonics are the highest ones that are optically thick in the ordinary and
extraordinary modes, respectively.

Some aspects of the spectra in Figure 4 are not understood at present. A scaled com-
parison of the RCP and LCP size spectra might be expected to behave in the same manner as
the scaled brightness temperature spectra. Although they are indeed consistent in terms of the
size and scaled frequency at which the size levels off, the RCP results at lower frequencies seem
significantly higher than expected on the basis of the LCP spectra. Another unexpected feature
is the apparent systematic increase from 2 to 4 x 10 6 K as frequency increases. The significance
of this in terms of the physics of the coronal fields is not clear.

The evolution of the coronal field as the sunspot disappeared is illustrated in Figure 5.
Assuming that the 3rd harmonic is the relevant one in the extraordinary mode, from the bright-
ness temperature spectra, it is apparent that the maximum field at coronal levels decreased from

about 1300 to 1000 to 600 G over a 2-day period. The relatively modest change in the size
spectra at the lower frequencies over this period is also significant. It may suggest that the
weaker fields were not affected by the spot's disappearance to the same extent as were the
stronger fields.

Another interesting facet to the field evolution was the systematic decline in brightness
temperature associated with the strongest fields on each day, from 4 to 2 to 1 x 106 K.

V. DISCUSSION

The observations presented above represent preliminary analyses of the first interferometric

size and brightness temperature spectra of an active region. The region selected for this analysis
was deliberately chosen to be a simple one, a single isolated sunspot. In broad terms, we have
seen that the spectra matched expectations based on straightforward application of gyroresonance
effects, as exemplified by magnetic shells. We have also seen that there are some aspects of the
spectra that are not yet understood.

At this stage, it is perhaps premature to consider detailed interpretation of the data in
terms of the solar coronal fields. Nevertheless, it may be worthwhile to comment on the

strengths and weaknesses of microwave spectroscopy (as now understood) for the measurement of
such fields.

Unlike photospheric magnetograms which measure magnetic FLUX (averaged over the

seeing-dependent instrumental resolution), microwave spectroscopy depends on the magnetic
FIELD in the corona. (Thus, for example, the present data are inconsistent with a model in

which much of the coronal field is concentrated in small bundles of intense field.) Through the
gyrofrequency, the field measurements are inherently calibrated. Thus, long-term comparisons
are quite feasible. More complete exploitation of the interferometer phase data will enable the
location of the coronal fields to be accurately established. In such circumstances, limb observa-
tions would enable the field profile as a function of height to be directly determined. Finally,
since measurements such as these can be made in a few seconds, insight into flare-related coronal
fields can be expected as well.

The use of microwave spectroscopy for the measurement of coronal fields has some clear

weaknesses. As our model suggests, the magnetic measurements represent emission coming from a
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range of heights, characterized by temperature, not distance above the photosphere. Thus,
although the measured isogauss contours refer to the base of the corona, the corresponding tem-
perature values average over a range of heights. There can also be potential sources of ambiguity
related to the specification of the appropriate harmonic, particularly for magnetic fields directed
close to the line of sight. This, however, can be overcome in a straightforward manner with more
detailed calculation of the emission (e.g., Kruger, Hildebrandt, and Furstenberg, 1985; Hurford,

Gary, and Garrett, 1985). Perhaps the most serious weakness, however, is that with a three-
element interferometer, there are limitations as to the morphological complexity of active regions
which can be effectively studied. This problem cannot be resolved without the addition of more
antennas.

Despite these weaknesses, these preliminary results suggest that microwave spectroscopy
has the potential to directly determine the magnetic field profile at the base of the corona.
Given the importance of coronal fields to many aspects of solar activity, this may prove a useful
adjunct to the next generation of coronal and hard X-ray imaging instrumentation.
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Figure 1. Comparison of a solar profile at 114 GHz with the corresponding Hot full-disk image.
The two parallel lines on the optical image show the track of the half-power points of the

radio beam as it scanned the Sun. Even when the beam crossed an active region, the
brightness temperature did not significantly exceed its "_7000 K average value. The
most striking correspondence is between the filaments in Ha and absorption features

in the radio. (The data were acquired by a 10 m telescope at Owens Valley in
collaboration with P. G. Wannier and G. A. Seielstad.)
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Figure 2. Schematic illustration of magnetic field fines above an isolated sunspot showing
isogauss contours for 450, 600, and 900 Gauss.
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SINGLE-DISH HIGH SENSITIVITY DETERMINATION OF SOLAR LIMB
EMISSION AT 22 AND 44 GHz

J. E. R. Costa, J. L. Homor, and P. Kaufmann

INPE: Instituto de Pesquisas Espaciais, CNPq, C.P. 515, 12.200 S_o Jos_
dos Campos, SP, Brazil

ABSTRACT

A large number of solar maps were obtained with the use of the Itapetinga 14-m (45-ft)
antenna at 22 GHz and 44 GHz in the 1978-1982 period. A statistical study of these maps,
reduced using original techniques, permitted the establishment of the solar radius with great
accuracy (<1.5 arc s r.m.s.) at the two frequencies. It has been found that 22 GHz and 44 GHz

radiation originates at 16 000 km and 12 500 km, respectively, above the photosphere. Excess
emission due to active regions was clearly identified at lower solar latitudes above and below the

equator, extending up to 26000 km and 16 500 km above the photosphere at 22 GHz and
44 GHz, respectively.

DISCUSSION

During 1978-1982 the Itapetinga 14-m (45-ft) radome-enclosed antenna was intensively
used in a large number of solar runs in connection with SMY and real-time operations with SMM
satellite measurements and by other observatories. Each observing session (a few days up to two
months) was carried on at 22 GHz and 44 GHz linear polarization, simultaneously, or at 22 GHz,
right- and left-handed polarization. Only one run was carried on at 22 GHz, two orthogonal
linear polarizations (May 1980). Details on the experimental setup are given elsewhere(Kaufmann
et al., 1982). During each run, at least one full-Sun map was obtained per day. Every full-Sun
map was obtained in a timescale relatively short (6 min) compared to timescales required by other
large antennas (1 to 2 hr). The sensitivity attained was very high: 10 to 20 K in antenna tem-

perature. The antenna half-power beamwidth was 4 arc min at 22 GHz and 2 arc rain at 44 GHz,
but the spatial definition of "hot spots" of more than 15 percent above the quiet Sun was better
than 15 arc s.

The present study was based on 353 full-Sun maps obtained at 22 GHz, and 79 maps
obtained at 44 GHz. Each map was obtained using the drift-scan technique, with scans in right-
ascension separated by 2 arc min in declination. For the study of the solar limb, we determined
one isotherm contour corresponding to the antenna temperature that was one-half of the value

of the most probable antenna temperature found in the solar disc (assumed as representative of
the quiet Sun). An arbitrary circle was adjusted by least-squares fit to the points that generated
that contour, and the center of the radio-Sun was determined. With this technique we eliminate
uncertainties due to any systematic pointing error. The radius was then determined as the mean
distance from the center to the coordinates defining the isotherm contour previously established.

This method was found to be highly accurate. In terms of solar photospheric radius Ro,
we obtained

- Solar radius at 22 GHz: (1.02305 + 0.00082) Ro

- Solar radius at 44 GHz: (1.01922 + 0.00135) Ro
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or, correspondingly, the height above the photosphere of the 22 GHz emission was of 16 000 +
600 kin, and at 44 GHz it was of 12 500 + 1000 km, determined from 353 maps and 79 maps,

respectively. The corresponding accuracy was of less than 1.5 arc s r.m.s. These results have
greater accuracy and are consistent with measurements obtained by various authors at frequencies
above 10 GHz (Figure 1). It was possible to determine, for example, the apparent variation of
the solar radio-radius with the variation of the distance of the Earth to the Sun (i.e., the varia-

tion of the apparent size of the optical solar disc), as shown in Figure 2.

The solar limb features were analyzed in terms of departures from the mean solar radio-

radius, as it was described before. In Figure 3 we show the mean departures for 353 maps at

22 GHz, in solar heliocentric polar coordinates. It consists of one point every 0.5 deg (720 points
over 360 deg). The principal findings were the following ones:

- The contribution from active regions clearly concentrate around 18 deg North and

South, at both East and West limbs. A clear minimum occurs at the solar equator.

- The active regions' emissions at 22 GHz extend up to 26 000 km above the photo-

sphere (or up to 10 000 km above the radio-radius at 22 GHz).

- A "darkening" was noticed to be more pronounced at the south solar pole. No

physical interpretation has been attempted yet. It might be meaningful to point out that for the
353 maps used in this study, the southern pole was towards the Earth for most of them, with a
mean inclination of-1.2 deg for all the collection.

In Figure 4 similar data are shown for 44 GHz, for the solar limb departures from the
mean radio-radius. The plot is considerably noisier than the 22-GHz plot due to the smaller
number of maps used in the statistics (79). The 44-GHz emission due to active regions are suggested
at the East and West limbs, extending up to about 16 500 km above the photosphere (or up
to 4000 km above the radio-radius at 44 GHz). A depression or "darkening" is indicated near

the NE limb, for which no explanation has been found. The south pole limb seems to be slightly
"darker" than the north pole limb (the mean inclination was +2.0 deg for the 79 maps).

Finally, from the data shown in Figures 3 and 4, we confirm that the best estimate of the
solar radius can be obtained at limb coordinates corresponding to 45 deg West and East of the

poles, when the reference solar radio-radius is not established in advance (Furst, Hirth, and
Lantos, 1979).

Acknowledgments. q"nis research was partially supported by the Brazilian research agencies
FINEP and FAPESP. One of the authors (PK) is a Guest Investigator on SMM.
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SHORT-LIVED SOLAR BURST SPECTRAL COMPONENT AT f > 100 GHz

P. Kaufmann, E. Correia, J. E. R. Costa, and A. M. Zodi Vaz

INPE: Instituto de Pesquisas Espaciais, CNPq, C.P. 515, 12.200 S_o Jose
dos Campos, SP, Brazil

ABSTRACT

A new kind of burst emission component was discovered, exhibiting fast and distinct

pulses (_60 ms durations), with spectral peak emission at f _> 100 GHz, and onset time coin-
cident to hard X-rays to within _<128 ms. These features pose serious constraints for the inter-
pretation using current models. One suggestion assumes the f _> 100 GHz pulse emission by
synchrotron mechanism of electrons accelerated to ultrarelativistic energies. The hard X-rays
originate from inverse-Compton scattering of the electrons on the synchrotron photons. Several
crucial observational tests are needed for the understanding of the phenomenon, requiring

high sensitivity and high-time resolution ("1 ms) simultaneous to high-spatial resolution (<0.1
are s) at f > 100 GHz and hard X-rays.

DISCUSSION

An extraordinary solar burst was observed on 21 May 1984, 1326:20 UT, with high
sensitivity and time resolution using the Itapetinga 14-m antenna, at 30 GHz and 90 GHz, and

at hard X-rays (>25 keV) by the HXRBS experiment onboard SMM (Kaufmann et al., 1985a).
The event is shown and described in Figure 1. The spectrum derived for the Structure A of
this event is shown in Figure 2, clearly suggesting an emission component towards millimeter

(or sub-millimeter) waves only. The existence of such a burst emission component was, in fact,
already suggested in the past, although the data were obtained with very poor time resolution.
In Figure 3, spectra of various bursts obtained in the past, by different authors, do suggest
either a "flattening" or a rise towards higher frequencies. Therefore, the occurrence of an
emission component in the mm to sub-ram range of frequencies might be common to many
solar flares.

The basic diagnostics of the 21 May 1984 burst can be summarized as follows:

- Maximum emission frequency > 1011 Hz

- Timescale "-30 ms (60 ms durations)

- Several packets of distinct pulses. Large relative amplitude (AF/F) -_ 60%. Much
larger than the usual "ripple" ('_1%) found at f < 100 GHz.

- Hard X-rays (>25 keV) onset coincident to <100 ms.

- "Delays" or lack of time correlation at lower frequencies (<100 GHz) with respect

to hard X-rays, do not exist at >100 GHz.
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The 21 May 1984 burst-observed emission (for Structure A, Figure 1) in the radio and

hard X-ray ranges is shown as thick solid lines in Figure 4, which also includes the typical
fluxes reported for white-light flares (Neidig and Cliver, 1983). Several tentative spectral fits,
based on different energy loss mechanisms, are indicated in the figure and described in its
caption.

All the loss processes, spectra are shown in Figure 4, imply timescales considerably
larger than the observed ones (60 ms). If hard X-rays are produced by bremsstrahlung, the

short timescales observed require ambient plasma densities of the order of 10x5 cm "3, which
are quite too high. Therefore, another loss process might be acting in order to account for
the short lifetime of the pulses observed. One possibility is to assume the effectiveness of

inverse-Compton (I.C.) scattering, reducing the electron energies in short timescales, and
originating the observed hard X-rays. This possibility was already considered in the past
(Shklovsky, 1964). One interpretation was recently suggested to explain the features of the
21 May 1984 event (Kaufmann et al., 1985b). The pulses are attributed to primary accel-
erators located somewhere in an unstable loop, producing "instantaneously" a population of
ultrarelativistic electrons which constitute a self-absorbed synchrotron source inside which the

I.C. quenching on the source photons originate the hard X-ray photons. Equating the syn-
chrotron and I.C. conditions, the model predicts the observed fluxes at radio and at hard

X-rays, and accounts for the small timescales observed, which are shown in Figure 4. The
predicted Synchrotron 1 spectrum peaks in the infrared ("1013 Hz), and implies electrons
accelerated to >100 MeV energies, in magnetic fields ranging from 100 to 1000 G. A similar

mechanism spectrum has been proposed by Stein and Ney (1963) to explain white-light flare
(WLF) continuum emission.

According to this interpretation (Kaufmann et al., 1985b), the pulse sources are very
short-lived ("60 ms), very small (<107 cm), and exhibiting high apparent brightness tem-
peratures (>10 '° K). As these sources vanish, the electrons decay into lower energy levels
and might still be able to produce the better,known longer-lasting emissions at microwaves
and X-rays.

Alternative interpretations might be considered by placing the primary accelerator

sources deep into the chromosphere, in a very high ambient plasma atmosphere. This new
physical situation needs further investigations. One attempt is currently in progress reconciling
it with the burst impulsive phase description recently proposed by de Jager (1985).

Acknowledgments. This research was partially supported by Brazilian research agency
FINEP. One of the authors (PK) is a Guest Investigator on SMM.
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Figure l. The solar burst of 21 May 1984 is shown in compressed timescale (A), with two
hard X-ray energy ranges at the top, and 90 GHz, 30 GHz, and 7 GHz at the bottom. All

hard X-ray burst structures correlate in time very well with the 90-GHz emission, but not

well for lower frequencies emissions. The major Structure A is time expanded in (B),
with hard X-ray (24 to 219 keV) data at the top, restricted to 128-ms time resolution,

and 90-GHz data at the bottom, displayed with 10-ms time constant. The structure

consists in a packet of distinct pulses, repeating at about 7 Hz. The e-folding rise time
of a pulse is about 30 ms. The hard X-ray onset is coincident to the 90-GHz onset

by less than 128 ms.
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1984 solar burst (Structure A, Figure 1), and the typical fluxes reported for white-fight flares

(Neidig and Cliver, 1983). The tentative spectral fits (points' lines) are: Thermal 1: a thermal
component with turnover frequency somewhere in the sub-mm or far infrared range of fre-
quencies, fitting white-light flare reported fluxes (Ohki and Hudson, 1975); Thermal 2: a

thermal component with turnover frequency at about 100 GHz (Shimabukuro, 1970);
and Synchrotron 2: losses by electrons with relativistic energies, with emission spectrum

peaking at about 100 GHz (implying in electrons energies 7 MeV in a 500 Gauss magnetic
field). The Synchrotron 1 plot in dashed line, peaking in the infrared, is a model prediction
for a synchrotron/inverse-Compton mechanism (implying electrons' energies ~100 MeV in a
500 Gauss field) (Kaufmann et al., 1985b). The quiet-Sun blackbody spectrum is shown

at the top.
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POLAR-CAP AND CORONAL-HOLE-ASSOCIATED BRIGHTENINGS OF THE SUN
AT MILLIMETER WAVELENGTHS

(Extended Abstract)*

T. Kosugi**

Laboratory for Astronomy and Solar Physics
NASA Goddard Space Flight Center, Greenbelt, MD

M. Ishiguro

Nobeyama Radio Observatory, Minamimaki, Minamisaku, Nagano 384-13, Japan

K. Shibasaki

Research Institute of Atmospherics, Nagoya University, Toyokawa, Aichi 442, Japan

Mapping observations of the Sun at millimeter wavelengths were made on 16 to 22 July
1984 with the 45-m telescope of the Nobeyama Radio Observatory. Seven 36-GHz (8.3-mm)
maps and five 98-GHz (3.1-mm) maps were taken with half-power beam widths of 46 _ and
17 ";_, respectively.

Instead of the conventional rastering technique, we adopted a radial-scan method in

which every scan passes through the disk center. Accordingly, the variation of the atmosphere
attenuation due to changes in the weather conditions can be easily estimated and removed by
using the brightness values at the disk center as calibration data. Also, the pointing errors of the
telescope due to the high-speed scans can be corrected by using the solar limbs as position refer-
ences. The rms residual errors in relative brightness and position after the corrections were

estimated to be "2% and "5 ¢;', respectively. To further reduce these errors, a smoothing tech-
nique was applied in making the two-dimensional maps. Thus, the radial-scan method, together
with the beam of the telescope with a small error pattern, enabled us to make high-quality maps
with <1% uncertainty in brightness. Here and in the following, brightness is expressed in terms
of the average brightness of the solar disk as a unit. Note that the brightness temperature of the
quiet Sun is "8000 K and ._6000 K at 36 GHz and 98 GHz, respectively (e.g., see a review by
Furst, 1980).

We perceived on the maps many local brightness enhancements and depressions, most of
which are correlated well with active regions and optical filaments (e.g., Furst et al., 1973).
However, we found that on the 36-GHz maps there are two types of brightness enhancements
which are not associated with active regions.

One is what we call polar-cap brightnening (cf., Babin et al., 1976; Efanov et al.,
1980a,b). It was an extended region around the poles with a brightness excess of "5%. It can

be seen in both polar regions in all the maps taken at 36 GHz between 16 and 22 July 1984.
The boundary of the polar-cap brightenings was located at a latitude of _65 deg in both
hemispheres, which was very close to the boundary of the polar coronal holes observed in the

10830 A helium line in this period. There is no doubt that the polar-cap brightening is a pole-
related phenomenon but not a so-called limb brightening, because the apparent north-south

asymmetry between two polar-cap brightenings is well explained by the orientation of the poles

*Full paper will appear in Publ. Astron. Soc. Japan (1985).

**NASA/NRC Research Associate, on leave from Tokyo Astronomical Observatory.
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with respect to the line of sight, and also because no limb brightenings above 1% are observed in
the equatorial region on the same maps.

The other type of brightness enhancement is found in one equatorial coronal hole region
(cf., Papagiannis and Baker, 1982). Again the brightness excess was "5%. However, the bright
region occupied only half the area of the coronal hole region. Moreover, another equatorial
coronal hole region was not associated with millimeter-wave brightenings, though two small areas
in this region appeared to be slightly brighter than the surroundings. From the comparisons with
optical and other observations, it seems that the presence of white-light faculae and/or an
intense magnetic field are essential for the brightening to occur in a coronal hole region.

No corresponding brightenings are found at 98 GHz for either type of 36-GHz enhance-
ments.

It is suggested that the two types of brightenings at 36 GHz are two aspects of one phen-
omenon, associated with polar and equatorial coronal holes, and that the temperature and density

structure of the upper chromosphere in coronal holes differs from that outside holes.
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ABSTRACT

The Pinhole/Occulter Facility is a powerful tool for studying the physics of the extended
corona and origins of the solar wind. Spectroscopic data acquired by the P/OF coronal instru-
ments can greatly expand empirical information about temperatures, densities, flow velocities,

magnetic fields, and chemical abundances in the corona out to r > 10 R o. Such information is
needed to provide tight empirical constraints on critical physical processes involved in the trans-
port and dissipation of energy and momentum, the heating and acceleration of plasma, and the
acceleration of energetic particles. Because of its high sensitivity, high spatial and temporal reso-
lutions, and powerful capabilities for plasma diagnostics, P/OF can significantly increase our
empirical knowledge about coronal streamers and transients and thereby advance the understand-
ing of the physics of these phenomena. P/OF observations can be used to establish the role in

solar wind generation, if any, of small-scale dynamical phenomena, such as spicules, macrospicules
and coronal "bullets," and the role of the fine-scale structures, such as polar plumes. Finally,
simultaneous measurements by the P/OF coronal and hard X-ray instruments can provide critical
empirical information conceming nonthermal energy releases and acceleration of energetic par-
ticles in the corona.

I. INTRODUCTION

Improved knowledge of the physical conditions throughout the solar corona is critical to

the development of an understanding of the physical State of the corona and the physical
mechanisms responsible for plasma heating, solar wind acceleration, energetic particle acceleration
and the transport of mass, momentum, and energy. The Pinhole/Occulter Facility (Hudson et al.,
1981; Tandberg-Hanssen et al., 1983) can be a very powerful tool for acquiring this knowledge.
Because the P/OF occulting disk is large and located much farther ("50 m) from the telescope
than for any previous externally occulted coronagraphic instrument, it is possible to employ
telescopes of large aperture ("0.5 m). This gives the P/OF coronal instruments sufficient collect-

ing area to have several orders of magnitude more sensitivity than any coronagraphic instrument
previously flown on sounding rockets or orbiting spacecraft. As a result the P/OF coronal instru-
ments can provide measurements with high spatial resolution ("1 arc s, an order of magnitude or
more better than more conventional instruments) and good time resolution for studying transient
phenomena, as well as providing a capability for measuring weak coronal lines at large distances
from the Sun (out to r _ 10 Ro). The P/OF occulter also serves as a multi-pinhole array for
high resolution (<1 arc s) hard X-ray imaging. This gives P/OF a means of detecting signatures
of nonthermal energy releases and energetic electrons. These capabilities yield an instrument

package with unprecedented power for probing the extended corona, investigating the origins and
physics of the solar wind, and studying energetic particle acceleration in the corona.

The purpose of this paper is to briefly discuss the role that P/OF can play in addressing
a few scientific problems in the above areas. Section II discusses spectroscopic plasma diagnostics
and coronal physical processes. Sections III and IV deal with the structure and physics of
streamers and coronal holes, while Section V considers coronal transients and mass ejections.
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II. SPECTROSCOPIC PLASMA DIAGNOSTICS AND CORONAL PHYSICAL PROCESSES

Plasma diagnostic information derived from spectroscopic measurements can provide
critical empirical constraints on mechanisms for transport and dissipation of energy and
momentum in the corona, acceleration of energetic particles, and production of differences in

coronal chemical composition. For example, information on temperatures and flow velocities is

important for studying mechanisms for plasma heating and solar wind acceleration and for separating
mechanisms that depend upon driving the solar wind thermally and those driving it through wave-

particle interactions. At the present time there are very few measurements of most basic plasma
parameters (other than electron densities) beyond a few tenths of a solar radius above the solar
surface. New spectroscopic techniques made possible by the use of coronagraphic instrumentation
with reflecting optics are being developed and proven using instruments flown on sounding rockets

and Spartan (cf., Kohl et al., 1980, 1983, 1985). These are small instruments with limited collecting
area, spatial resolution, and wavelength coverage. The P/OF instruments with their large collecting
areas, high spatial and spectral resolutions, and broad wavelength range, spanning the visible to the
XUV, offer a means of implementing a wide variety Ofplasma diagnostic techniques that can provide
information of a number of critical plasma parameters.

There have been a number of papers published recently which have discussed various

spectroscopic plasma diagnostic techniques that can be used in the extended corona (cf., Beckers
and Chipman, 1974; Kohl and Withbroe, 1982; Bommier and Sahal-Brechot, 1982; Withbroe
et al., 1982a; Kohl, et al., 1983); hence, we will discuss them only briefly here. We consider
first the measurement of temperatures. In the outer corona, r _ 1.5 Ro, the temperatures of
particle species such as electrons, protons, and heavy ions can differ (because the collisional
exchange of energy among particles of different masses is slow at low density). Coronal tempera-
tures can be determined from measurements of the widths of spectral lines. The line width

AX --_ Tw½ , where the temperature Tw includes the effect of line broadening by thermal and
nonthermal motions along the line of sight. Nonthermal motions can be produced, for example,

by MHD waves propagating through the corona. The temperature determined from the line width
is related to the thermal temperature Tt by Tw = (T t + M_2/2k) ½, where M is the mass of the
particles species producing the spectral line and _ is the rms velocity component due to plasma
motions along the line of sight that occur on a spatial scale much larger than the particle mean

free path, but smaller than the path length over which the spectral line is formed. Additional
information about the plasma in the line of sight can be obtained if the shape of the profile is
measured as well as its width, since the shape depends upon the velocity distribution of the

particles along the line of sight. By observing lines from ions of different masses one can obtain
empirical constraints on the magnitude of mass-dependent and mass-independent motions.

An example of how widths of line profiles can be used to test theoretical models for the
solar wind is shown in Figure 1. One of the problems with current solar wind models is satis-

factorily accounting for the flow speeds in high speed solar wind streams originating from coronal
holes. Additional energy over and above that calculated using models with thermally driven winds
is needed to yield solar wind speeds of the magnitude measured. In addition, unless one invokes
a mechanism for heating protons far from the Sun, the proton temperatures predicted by the
theoretical models are too low. Because signatures of MHD waves are detected with in situ

measurements of the solar wind far from the Sun, there is speculation that Alfv_n waves may play

a significant role in driving the solar wind and heating the protons (see reviews by Hollweg, 1981,
Leer et al., 1982). Since the velocity amplitude of Alfv_n waves is expected to vary as N-¼ in

the corona, the amplitude of these waves increases rapidly with increasing distance (and therefore
decreasing density N) from the solar surface. By measuring spectral line profiles from atoms and
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ions of different masses (and thus different thermal widths) one can obtain tight empirical con-
straints on the flux of Alfvdn waves propagating outward from the Sun in coronal holes and other
solar regions.

Figure 1 compares some existing measurements of Lyman alpha with widths calculated
for a theoretical two fluid solar wind model which includes the effects of Alfv6n waves on line

broadening. (The resonantly scattered hydrogen Lyman alpha line is expected to be the strongest
emission line in the extended corona; see Kohl and Withbroe, 1982.) The solid line gives the
predicted behavior for a model with no Alfv_n wave flux, the dashed line shows how the intro-

duction of an appropriate amount of broadening by Alfvdn waves yields a better fit to the Lyman
alpha measurements (Esser et al., 1985). Although the fit is better, the evidence for the presence
of Alfv6n waves is not compelling because of the magnitude of the uncertainties in the measured
widths. However, if measurements of a heavy ion such as Fe XII are available, one obtains a
much tighter constraint on the Alfvdn wave mechanism, as illustrated by the curves calculated for
the Fe XII X 1242 line. With P/OF one could not only observe profiles of Fe XII and other
heavy ions, one could also obtain much better Lyman alpha profiles (hence smaller uncertainties
in the line widths) for r < 4 Ro and observe them much farther out where the amplitude of the
Alfvdn waves is expected to become very large. One also obtains constraints on the energy spec-
trum of the waves from the shape of the spectral line profiles, particularly from profiles of heavy
ions such as Fe XII X 1242.

In order to place the maximum empirical constraints on theoretical mechanisms for plasma
heating and for energy and momentum transport, it is desirable to measure profiles from a wide
variety of particle species. P/OF is ideally suited for accomplishing this, because of the high
sensitivity and wide wavelength coverage that can be achieved, spanning visible through XUV
wavelengths. P/OF can measure profiles of numerous spectral lines, including very weak lines such
as the electron-scattered component of hydrogen Lyman alpha, over a wide range of heights.
With such data one can determine the electron temperature (electron-scattered component of
Lyman alpha) and either determine or place upper limits (depending on the nature of the non-
thermal broadening and plasma heating mechanisms present) on proton temperatures (from
resonantly scattered Lyman alpha) and heavy ion temperatures (from ions such as O VI, Ne VII,
Ne VIII, Na IX, Mg X, A1XI, Si XII, and ions of iron from Fe VIII to Fe XVI).

The second important class of plasma parameters are particle densities. The densities of

the two most abundant particle species, the electrons and protons, can be measured using the

electron-scattered component of the coronal white-light emission (for determining Ne) and
resonantly scattered hydrogen Lyman alpha.(for determining Np). Densities of various heavy
ions can be measured using the intensities of appropriate spectral lines. By measuring densities
of several stages of ionization of an element and/or temperatures and densities of critical particle
species (e.g., one or more stages of ionization of a given element and the electrons which are

responsible for collisional excitation and ionization), one can either measure or place tight
empirical constraints on chemical abundances of the heavier particles such as He, N, O, Ne, Na,
Mg, A1, Si, S, Fe, and Ni (cf., Kohl and Withbroe, 1982,; Withbroe et al., 1982a). Such informa-
tion is needed to obtain insights and empirical constraints on mechanisms for production of the
variations in chemical composition of the solar wind which are measured in the solar wind far
from the Sun (cf., Hirshberg, 1975).

The third critical plasma parameter is the flow velocity. P/OF can measure flow velocities
through use of "Doppler-dimming" of the intensities of spectral lines. In the outer corona where

the densities are low, many coronal lines have a strong resonantly scattered component. This
component is produced by resonant scattering of the line radiation from the solar disc and low
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corona. The intensity of the scattered radiation depends on the number of particles in the line
of sight capable of scattering radiation in the line and on the intensity of the incoming radiation
from the solar disk and lower levels of the corona. The number of scatterings is a function of

the outflow velocity of the solar plasma. In a static atmosphere the central wavelength in the
coronal scattering profile is identical to that of the disk profile. However, in a region with solar-
wind flow the scattering profile is Doppler-shifted with respect to the disk profile and hence there
is less efficient scattering, resulting in a reduction in intensity of the scattered radiation.

Examples of this effect, known as Doppler-dimming, are illustrated in Figure 2 for hydrogen
Lyman alpha k 1216 and O VI k 1032 (Kohl and Withbroe, 1982). The Lyman alpha line is
sensitive to flow velocities greater than about 100 km/s, while the O VI line is sensitive to flow
velocities above 30 km/s. By comparing the intensity of a spectral feature that is affected by
Doppler-dimming with the intensity of a spectral feature that is not (e.g., electron-scattered white-
light radiation), one can determine the amount of Doppler-dimming and hence the outflow
velocity.

Measurements of Doppler-dimming acquired on several sounding rocket flights have been
used to demonstrate that the outflows in some regions are subsonic for r < 4 Re (cf., Withbroe

et al., 1982a, 1985). The most recent data provide evidence for supersonic flow in a polar
coronal hole at smaller radii, r _ 2 Re (Kohl et al., 1984). Much more extensive observations are
needed, particularly measurements made with high sensitivity in a wide variety of spectral lines
over a wide range of heights in order to place constraints on solar wind acceleration mechanisms
for particles of different masses as well as to determine the role of different types of coronal
structures, such as streamers and coronal holes of different sizes and geometrical configurations,
in the generation of the solar wind.

Another critical parameter is the vector magnetic field. Current work suggests that
measurements of the Hanle effect may provide a very useful tool for placing empirical constraints

on coronal magnetic fields (Bommier and Sahal-Brechot, 1982; Kohl and Strachan, 1985). Mea-
surements of magnetic fields via the Hanle effect make use of the influence of magnetic fields on
the polarization of spectral lines. It has been used, for example, to measure magnetic fields in
prominences (see references cited in Bommier and Sahal-Brechot, 1982). Because of the high
sensitivity of the P/OF coronal instruments, it will be possible to measure polarization of a variety
of spectral lines and thereby obtain constraints on coronal magnetic fields.

P/OF is a powerful tool for studying the acceleration of energetic particles in the corona,
because of its unique capability for spectroscopically probing the coronal plasma with high spatial
and temporal resolutions while simultaneously observing signatures of energetic electrons. The
P/OF hard X-ray instruments can observe the location of the region where the electrons are
accelerated and the number, energy spectrum, and trajectory of the accelerated electrons. The

P/OF coronal instruments can observe the spatial and temporal variations of the coronal struc-
ture, density, and temperature of the thermal electrons, and provide empirical constraints on ion

temperatures, magnetic field strengths, and flow and turbulent velocities at the acceleration site and
in the surrounding medium. Clearly, P/OF offers rich prospects for the study of energetic particle
acceleration in low density plasmas in an astrophysical source.

In summary, the P/OF coronal instrument can provide a wide variety of plasma diagnostics
for determining the physical conditions in the corona and inner heliosphere where the solar wind
originates and is accelerated. It can provide empirical information on electron, proton, and ion

temperatures, densities, and flow velocities as well as information of chemical abundances and
nonthermal velocities produced by wave motions. This information can be used, for example,
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with the solar wind equations to determine and/or place limits on the magnitude of the non-

radiative energy deposited as a function of distance from the solar surface - separately for elec-
trons, protons, and heavy ions. This would provide critical insights concerning possible heating
mechanisms which can have different characteristic dissipation lengths and may preferentially
heat particles of a specific mass or charge-to-mass. For example, in coronal holes fast-mode
MHD waves preferentially heat electrons (Habbal and Leer, 1982). Precise measurements of
spectral line shapes made possible by the high sensitivity of the P/OF coronal instruments can
provide additional constraints on processes for energy transport and dissipation. Measurements
by the hard X-ray instruments can provide information on in situ energy releases, nonthermal
energy deposition, and the acceleration of energetic electrons.

III. STRUCTURES AND PHYSICS OF STREAMERS

Streamers are the most prominent bright features observed in white-light photographs of
the corona (see Figure 3). These large structures extend far out into the heliosphere from the

Sun, often to distances greater than 10 solar radii. Because streamers extend beyond the heights
readily accessible with traditional spectroscopic instruments operating at visible, EUV, and X-ray
wavelengths, relatively tittle is known about the physical conditions in these features other than

information about geometry and electron densities derived from white-light observations. There
is little or no information about critical parameters such as temperatures, chemical composition,
magnetic field strengths, and outflow velocities. For example, although streamers clearly con-
tribute mass to the solar wind, it is not known how much. There is evidence from in situ

measurements of the solar wind far from the Sun that streamers are sources of slow speed solar
wind (cf., Gosling et al., 1981). However, until measurements of the outflows in streamers are
acquired, there will be uncertainty as to the nature of their contribution to the outflow of
coronal plasma into the heliosphere.

P/OF will have the capability to greatly expand our empirical knowledge about the
physical conditions in streamers. It will have the high spatial resolution required to probe in
detail the structure of these features and obtain the plasma diagnostic information required to
investigate the physics of these prominent structures of the solar corona. P/OF can provide
empirical information to address questions such as: What are the differences in the tempera-
tures, densities, mass flows, and plasma heating in the magnetically open and closed regions of
streamers and between streamers and the surrounding areas? What are the physical conditions in
the outermost extensions of streamers where we expect there are current sheets separating regions
of oppositely directly magnetic fields? What are the physical conditions in the region near the
top of the "helmet" where the magnetic field lines make a transition from closed to open? Do
magnetic reconnection, plasma heating, nonthermal energy releases, and/or particle acceleration
occur here? Are MHD waves present in various regions of the streamer?

Streamers are also a laboratory for studying interactions between magnetic fields and
plasmas in open and closed configurations and in the transition regions between these configura-
tions. Skylab and SMM observations show that streamers are dynamic structures which can move

about (Illing et al., 1981; Munro and Fisher, 1985), presumably in response to changes in the
large scale magnetic field of the Sun. These observations also indicate that the amount of material

contained in a given structure can vary with time. Because of their very high spatial resolution,
the coronal instruments on P/OF are particularly well suited to studying temporal variations in
streamers. With P/OF it will be possible to observe the structure of a streamer (on both large and

small spatial scales) and monitor the physical conditions in the streamer and its surroundings as
a function of time. It should be possible to obtain, for example, insights as to whether observed
changes in the shape or orientation of a streamer are in response to magnetic forces or changes
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in plasma heating. Streamers are an ideal place to search for signatures of magnetic reconnection
with P/OF because of (1) the high spatial resolution of the P/OF instruments, (2) the capability
for simultaneously monitoring plasma properties and detecting the release of nonthermal energy
and the acceleration of energetic electrons, and (3) the large scale (compared to the P/OF resolu-
tion) structure of streamers.

In short, P/OF will provide the first opportunity to probe in detail the physical conditions
in streamers and obtain empirical information needed to provide insights for developing realistic
physical models for these features and for testing theories for various physical processes occurring in
them. Figure 4 summarizes in "cartoon" or schematic fashion some of the questions discussed
above.

IV. STRUCTURE AND PHYSICS OF CORONAL HOLES

The discovery that coronal holes are sources of recurrent, high-speed, solar wind streams
has generated much interest in these low density regions of the outer solar atmophere. Coronal
holes are the only unambiguously identified source of steady-state solar wind. Figure 3 shows a
particularly large coronal hole observed during the 1973 solar eclipse. From white-light observa-
tions, such as illustrated in Figure 3, and He I X 10830, XUV, and X-ray observations of coronal
holes on the disk (e.g., Figure 5) we have been able to obtain information about the geometries
and densities of coronal holes, their lifetimes (often many solar rotations), and mean tempera-
tures ("10 6 K) at their coronal bases (see Zirker, 1977, 1981). From limited spectroscopic
observations acquired by a combined UV/white-light coronagraphic payload flown several times
on a sounding rocket we have also obtained some empirical constraints on temperatures and
flow velocities out to several solar radii in several polar regions where coronal holes were located
(Kohl et al., 1980, 1984; Withbroe et al., 1985). These measurements suggest that the tem-
peratures, densities, and coronal outflow velocities can be different for different coronal holes,
possibly because of differences in size and geometry.

Existing instruments have insufficient sensitivity, spatial resolution, and spectroscopic
diagnostic capabilities for addressing several fundamental questions concerning the physics of
coronal holes. The high spatial resolution of P/OF (_1 arc s as compared to several arc min for
existing UV coronal spectrometer and 8 to 10 arc s for white-light instruments) is of particular
importance for determining the role of small-scale structures in the generation of the solar wind
outflow from coronal holes. The high sensitivity of P/OF (several orders of magnitude beyond
that of existing instruments) and access to spectral lines over a wide range of the spectrum
(current instruments are limited to measuring intensifies of a few spectral lines and profiles of
only hydrogen Lyman alpha) is needed for performing extensive plasma diagnostics in the low
density regions such as coronal holes. As summarized in Section II, these diagnostics are required
for placing tight empirical constraints on processes for energy transport and dissipation and for
solar wind acceleration.

The most prominent fine-scale structures observed in polar coronal holes are polar plumes,
ray-like structures often visible in white-light eclipse photographs (e.g., lower pole in Figure 3).
These features, which have widths of a few times 104 km, are believed, in many cases, to trace
open magnetic field lines. Skylab observations in the EUV and XUV showed that coronal bright
points are found at the bases of polar plumes (cf., Bohlin, 1977). This is illustrated in Figure 6,
which contains several spectroheliograms acquired by the NRL Skylab spectroheliograph. The
arrows point to several plumes which are best seen in the Mg IX X 368 image. It appears that
plumes can contain 10 to 20% of the coronal mass in polar coronal holes and may contribute a
comparable fraction, perhaps more, of the solar wind mass flux originating in polar regions of the
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Sun (Ahmad and Withbroe, 1977; Abroad and Webb, 1978). A_determination of whether or not

this is the case requires new high resolution measurements of the type that can be acquired by
the coronal instruments on P]OF.

The high sensitivity of the P/OF instruments will be important for studying the temporal
behavior of polar plumes. There is evidence from Skylab data that there are short term variations

(minutes to tens of minutes) in the EUV emission from these features, variations which could
result from dynamical phenomena (Withbroe, 1983b). One possible source of the variations are

flares in the coronal bright points which underlie plumes. Coronal bright points are often the site
of flare-like phenomena (cf., Golub et al., 1974); hence, it is possible that they may also be the
source of small-scale coronal transients or mass ejections. Often 50% or more of the energy in
flares in active regions is carried away in the form of mass ejections. It would be interesting to
determine whether or not similar phenomena occur for the smaller "flares" observed in coronal

bright points. It would also be interesting to determine whether or not acceleration of energetic
particles occurs during bright point flares and, if so, whether these particles escape into the helio-
sphere, for example, along the open magnetic field lines in plumes overlying the bright points.
Hence, observations of polar plumes and coronal bright points with the entire complement of

P/OF instruments could lead to significant discoveries concerning the physics of solar wind flow,
transient phenomena, and possibly particle acceleration in coronal holes.

Another prominent feature in polar coronal holes are the large spicules known as macro-

spicules (cf., Bohlin, 1977). These features are most clearly seen in the He II X 304 image in
Figure 6 as narrow (5104 km) jets of emission extending above the solar limb. Macrospicules
have lifetimes of 10 to 20 rain and appear to be jets of cool (<10SK) material ejected from the
chromosphere with velocities up to 150 km]s, velocities comparable to the sound speed in the
corona. Skylab EUV observations indicate that most, perhaps all, of the mass appears to fall
back into the chromosphere (Withbroe et al., 1976; Withbroe, 1983a). It is possible that macro-

spicules, and the more numerous, less energetic spicules found in the quiet chromosphere, are
associated with upward-propagating waves or shocks (cf., Hollweg et al., 1982; Shibata, 1982).

A less frequent, but much more energetic phenomena that may or may not be related to

spicules and]or macrospicules are the high-energy jets, sometimes called coronal "bullets,"
observed by the NRL HRTS rocket experiment (Brueckner and Bartoe, 1983), especially in the
C IV spectral lines formed at temperatures _2 x l0 s K. The velocities associated with these

energetic events are typically of the order of 400 km]s. Their role in the acceleration of the solar

wind is unknown. It is interesting to note that the upward flux of mass and energy flows asso-
ciated with these features is comparable to that in the solar wind. New high resolution spectro-
scopic measurements at chromospheric and coronal heights are required to determine the effects

of these phenomena (spicules, macrospicules, and high-energy jets) on mass and energy flows in
the overlying corona. It would also be interesting to determine whether or not significant
numbers of energetic particles are accelerated in conjunction with these small-scale dynamical
phenomena. This requires simultaneous observations by the P/OF coronal and hard X-ray instru-
ments and the Solar Optical Telescope and]or the NRL HRTS instrument. The latter instru-

ments could provide the chromospheric and transition region observations needed to complement
the P/OF coronal and hard X-ray measurements. Figure 7 summarizes schematically some of the

questions concerning the physics of small-scale phenomena which can be addressed with P/OF.

Another type of structure that may be found in coronal holes are standing shocks. Theo-
retical investigations of the solar wind indicate that standing shocks can develop in coronal holes
under appropriate conditions depending on the geometry and momentum deposition (cf., Habbal
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and Rosner, 1984). The P/OF coronal instruments have the Sensitivity, spatial resolution, and
spectroscopic diagnostic capabilities to detect standing shocks and establishing whether such
phenomena actually occur in solar coronal holes as predicted.

V. CORONAL TRANSIENTS AND MASS EJECTIONS

One of the most spectacular forms of solar activity is the coronal mass ejection, the most
common type of coronal transient disturbance (see reviews by MacQueen, 1980; Sheeley et al.,

1982; Wagner, 1984; Michels et al., 1984). Figure 8 shows a coronal transient photographed by
the Skylab white-light coronagraph. Although we have learned a great deal about coronal
transients from the extensive series of observations obtained by white-light coronagraphs on space-
craft such as Skylab, SMM, and P-78, there is much we do not know. White-light observations
have provided a wealth of information about the forms, frequencies, masses, and apparent
velocities of these phenomena. The rate of production of coronal transients appears to be about
one to two per day (MacQueen, 1980; Sheeley et al., 1982, 1985). From measurements of the
rate of outward propagation of regions of enhanced brightness, assumed to be caused by the
outward flow of coronal material associated with the transient, it appears that coronal transients
often exhibit acceleration out to five or six solar radii and reach velocities of 200 to 1000 km/s.
Because of the presence of accelerating forces over large distances above tile solar surface and
frequent association of coronal transients with loop structures, proposed models for these phen-
omena often invoke magnetic forces (MacQueen, 1980). The amount of mass involved generally
falls between 10xs and 1016 g and the total energy associated with these events is typically of
the order of 1031 erg. For flare-associated coronal transients the amount of energy represented

by the transient is comparable to or greater than that released by the flare in other forms (e.g.,
radiation and energetic particles).

In spite of the great progress made in the past decade, much remains unknown about the
physics of coronal transients. As for other phenomena observed in the corona beyond heights

where measurements by traditional spectroscopic instruments are very limited, there is insuffi-
cient empirical information about critical plasma parameters to determine, for example, the
spatial and temporal variations of the temperature of the plasma in the transient and in the
ambient medium. P/OF does not have these limitations. Because of its capability for acquiring
much more detailed plasma diagnostic information and detecting signatures of energetic electrons
and nonthermal energy releases, P/OF will provide a quantum leap in capability for addressing
a wide variety of questions concerning th.e physics of coronal transients. With P/OF it will be
possible to obtain spectroscopic signatures of shocks associated with transients (measuring, for
example, temperature, density, and velocity jumps across a shock front) while simultaneously
probing for energetic electrons accelerated in conjunction with the shocks. (Existing observations
indicate that coronal transients are often associated with acceleration of energetic particles.)
Through use of Doppler-dimming techniques it will be possible to distinguish between brighten-
ings caused by waves and those caused by flows. It will also be possible (1) to determine the
fate of cool, low-ionization state matter from eruptive prominences associated with transients,
(2) to determine when and where plasma heating occurs, and (3) to obtain insights as to whether
the transient is magnetically or thermally driven (see Figure 9).

There are a variety of radio transient phenomena produced by energetic electrons accel-
erated in or passing through the corona (see review by Pick, 1985). Through simultaneous obser-
vations with the P/OF coronal and X-ray instruments and ground-based radio telescopes, it should

be possible to learn much about the acceleration of energetic electrons in the corona and their
interaction with the coronal plasma. As indicated in Section II, the P/OF coronal instruments
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can observe the spatial and temporal variations of the coronal structure, density, and temperature
of thermal electrons, and provide constraints on ion temperatures, magnetic fields, and turbulent
velocities at the coronal sites of electron acceleration and along the paths where the electrons
propagate. The P/OF hard X-ray instruments and ground-based radio telescopes can provide
simultaneous information of the location of the acceleration site and the number, energy spec-
trum, and trajectory of the accelerated electrons. With such observations one can investigate,
for example, the acceleration of energetic electrons in shocks associated with coronal transients
and the physics of Type III bursts. Clearly, such observations offer great promise for improving
our knowledge about physical processes governing the production, transport, and energy-
dissipation of nonthermal electrons in low-density astrophysical plasmas.

Vl. SUMMARY

The Pinhole/Occulter Facility is a powerful tool for studying the physics of the extended
corona and origins of the solar wind. It offers unique, unprecedented capabilities for probing the

source region of the solar wind, coronal transients, and the acceleration of energetic particles.
Spectroscopic data acquired by the P/OF coronal instruments can greatly expand empirically
derived information about the temperatures, densities, flow velocities, magnetic fields, and
chemical abundances in the extended corona, the region where the solar wind is generated.
Empirically derived knowledge of the physical conditions throughout most of this region has been
limited and, hence, the processes for energy and momentum transport (other than radiation and
thermal conduction) and for energy and momentum deposition have not been identified. Identi-
fication of these mechanisms in the Sun will help make possible development of realistic physical
models for stellar wind acceleration in late type stars.

Improved knowledge of the physical conditions in the extended corona are required to
determine the role of coronal streamers in the generation of the solar wind. Observations made

with high spatial resolution are required to establish the role, if any, of the dynamical phenomena

such as spicules, macrospicules, coronal "bullets,' and fine-scale structures, such as polar plumes,
in the generation of the solar wind. Although we have numerous white light photographs of
coronal transients and mass ejections, we have little information about the physical conditions in
these dynamic phenomena other than densities and velocities. The P/OF coronal instruments can

greatly expand the amount and quality of the available information and thereby significantly
advance our understanding of these spectacular phenomena which account for a substantial

fraction, typically greater than 50%, of the energy released in energetic transient phenomena such
as solar flares.

A fundamental problem in astrophysics is the development of knowledge of the processes
by which energetic particles are accelerated in nature. Simultaneous solar observations of the

signatures of accelerated energetic electrons and of the physical conditions and the structures of
coronal sites where acceleration occurs offer exciting prospects for studying particle acceleration
in an astrophysical plasma.

In short, coronal observations by the Pinhole/Occulter Facility can lead to major advances
in our understanding of the physics of the only stellar corona and source of stellar wind which

can be probed in detail to provide tight empirical constraints on critical physical processes
involved in (1) the transport and dissipation of energy and momentum, (2) the heating and
acceleration of plasma, and (3) the acceleration of energetic particles.

Acknowledgments. I am indebted to numerous individuals for discussions on the subject

of this review, especially J. Kohl, S. Habbal, T. Holzer, and R. Munro. This paper was prepared
with support by NASA under grant NAGW-249.
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Figure 1. Spectral line widths plotted as a function of distance from Sun-center. The solid curve
is for Lyman alpha widths calculated for a simple two-fluid model without any Alf4en wave

flux; the dashed line is for a model with an Alfvdn wave flux added to account more satisfac-
torily for the empirical Lyman alpha widths measured (points) in a polar region where a

coronal hole was located (see Esser et al., 1985; Withbroe et al., 1985). From the results
of the two-fluid model calculations one can estimate the behavior of a line from a heavy ion

(e.g., Fe XII k 1242). The figure shows how the width of this line would vary in a model with
Alfv6n waves present (narrow cross-hatched region) and without Alfv_n waves (nearly horizontal
cross-hatched area). (Because of uncertainties of the amount of electron/Fe XII and proton/Fe
XII coupling, we can only calculate limits in the Fe XII widths without carrying out a detailed,
multi-fluid model calculation.) The empirical Fe XII width (point) near r = 1 R e is typical of

measurements made in quiet coronal regions (cf., Cheng et al., 1981).
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Figure 3. White-light eclipse photograph of the corona obtained at a total eclipse in 1973
(courtesy of High Altitude Observatory). A large polar coronal hole is located

at the north (upper) pole.
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Figure 4. Schematic summarizing some questions concerning the structure and physics of streamers.



Figure 5. X-ray photograph of the solar corona acquired during Skylab (courtesy American
Science and Engineering and Harvard College Observatory). Coronal holes are visible as

dark areas at the north (upper) pole and near the east (left) limb.
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Figure 6. Spectroheliograms obtained by the NRL experiment on Skylab showing coronal bright
points and overlying polar plumes (arrows) and macrospicules at the limb in a polar coronal hole.
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Figure 7. Schematic summarizing some questions concerning the role of small-scale structures in

the physics of coronal holes. (In this illustration the plumes are drawn several times wider than
usually found in nature in order to show the loop structure of the underlying bright points -

compare with plumes visible in Figures 3 and 6.)



Figure 8. Coronal transient observed by HAO white,fight coronagraph on Skylab.
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SOLWlND OBSERVATIONS OF CORONAL MASS EJECTIONS DURING 1979-1985
(Invited)

N. R. Sheeley, Jr., R. A. Howard, M. J. Koomen,* and D. J. Michels

E.O. Hulburt Center for Space Research, Naval Research Laboratory

Washington, D.C. 20375-5000, U.S.A.

ABSTRACT

Coronal observations have been processed for parts of each year during the interval 1979-

1985. Around sunspot maximum, coronal mass ejections (CMEs) occurred at the rate of approxi-
mately 2 per day, and had a wide range of physical and morphological properties. During the
recent years of relatively low sunspot number, CMEs occurred at the rate of only 0.2 per day,
and were dominated by the class of so-called "streamer blowouts." These special CMEs

maintained a nearly constant occurrence rate of roughly 0.1 per day during the entire interval.

I. INTRODUCTION

All but a few months of the Solwind coronal observations have been processed for the
interval March 1979 to December 1981 around the maximum phase of sunspot cycle 21. During

this interval more than 1000 coronal mass ejections (CMEs) were identified. Their properties have
been measured and studied statistically by Howard et al. (1985), and summaries of this work
have been published elsewhere (cf., Howard et al., 1984; Michels et al., 1984). In addition,
several investigators have studied the associations between these CMEs and a variety of other solar
and interplanetary phenomena including soft X-ray events (Sheeley et al., 1983a), metric Type II
radio bursts (Sheeley et al., 1984; Kahler et al., 1984b), interplanetary shocks (Schwenn, 1983;
Sheeley et al., 1983b, 1985; Woo et al., 1985), energetic proton events (Kahler et al., 1984a),
and magnetic clouds (Burlaga et al., 1982).

The Solwind instrument has continued to obtain coronal images routinely since December

1981, and is still doing so at the time of this writing (May 1985). However, our processing of
these data was interrupted for about one year while we were converting to a new computer.

During the past few months, we have resumed the processing, and are rapidly reducing the obser-
vations during 1982-1985. The most striking characteristic of the recent observations is the
persistent streamer structure and the substantial reduction in the occurrence rate of coronal mass
ejections. The resulting correlation between the occurrence rate of CMEs and the level of sunspot
activity (the sunspot number) is similar to that deduced by Hildner et al. (1976) from their
study of mass ejections during the Skylab mission in 1973-1974. It is substantially different from
the nearly constant CME rate that Hundhausen et al. (1984) derived by combining their SMM
observations in 1980 with their reanalysis of the Skylab data. We suppose that the discrepancy
results from assumptions about the "dead time" of the Skylab and SMM coronagraphs.

Perhaps even more interesting is the fact that the recent CMEs have consisted primarily

of the so-called "streamer blowout" class (cf, Sheeley et al., 1982; Howard et al., 1985). During
1979-1981 we found that this class of CME constituted only 5% of all mass ejections and only
8% of all "major" mass ejections. During the four months of 1984-1985 for which we have

*Sachs/Freeman Associates, Bowie, MD 20715.
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processed continuous data, these special CMEs have constituted 36% of all CMEs and 67% of all
major CMEs. Furthermore, it appears that the occurrence rate of "streamer blowout" CMEs

has been approximately constant during the interval 1979-1985 at a value of nearly 0.1 per day.

In this paper, we shall present a brief summary of these recent results, and refer the
reader to the published studies and review papers for more detailed properties of Solwind mass
ejections and their associations.

II. THE RESULTS

(a) The CME Occurrence Rate

From their study of 998 CMEs during 1979-1981, Howard et al. (1985) found that CMEs
could be conveniently classified by morphological structure and importance. They identified nine
more or less distinct classes, examples of which are shown in Figure 1. The importance of a CME
is a somewhat subjective quantity, but in effect it is a measure of the CME's projected size and
brightness. In practice, the classification was performed by two observers, and the assignment was
either major (Y) or minor (N) when both observers agreed on this assignment. The assignment
was questionable (Q) when the observers could not agree or when data gaps made the assignment
indeterminate. Figure 2 illustrates the importance categories for five different morphological
classes of mass ejection.

Howard et al. (1985) found that during the entire interval 1979-1981 the occurrence
rate for all CMEs (regardless of structural class or importance category) was 1.8 per day. This
determination was based on their choice of 4.5 hrs as the minimum "dead time" required to
constitute a data gap. This gave a 66.5% duty cycle. When the minor (N) CMEs were excluded,
the occurrence rate was 0.9 per day, which is essentially the same as Hundhausen et al. (1984)
obtained from their analysis of CMEs observed by the SMM satellite during 1980.

Figures 3, 4, and 5 illustrate the variation of the occurrence rate on a variety of time
scales during 1979-1981. Although there was considerable variation on the shorter scale of 7
days, this variation does not seem to be strongly or consistently related to fluctuations in the
sunspot number. However, when we began to process observations during 1984-1985, we found
intervals of several weeks at a time when there were no CMEs. We never found such intervals

during 1979-1981. After processing completely the observations during June 1984, October and
November 1984, and March 1985, we found only 22 CMEs (of all classes and importance cate-
gorys), for an average rate of only 0.2 per day. If one corrects this rate using the 4.5-hr dead
time correction that was used for the CMEs during sunspot maximum, then the rate increases to
0.4 per day. However, we think this correction is not necessary during sunspot minimum because
our difference images show long intervals of 12 hrs or more during which there is no appreciable
change at all. Thus, if a CME had occurred in a 12-hr data gap during this phase of the sunspot
cycle, we would have seen indications of it.

Figure 6 summarizes our measurements to date. The recent observations have been
assigned to the date 1984, and for consistency both the uncorrected value of 0.2 per day and
the "overcorrected" value of 0.4 per day have been plotted. For reference, the dashed line
indicates the rate that Hildner et al. (1976) deduced from their analysis of the Skylab observa-

tions. Although it is probably premature to emphasize the detailed agreement between the
Solwind and Skylab results, the comparable trend with sunspot number is both obvious and
significant.
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If we adopt the value of 0.2 per day for CMEs (of all classes and importances) during
1984-1985, then we find a value of only 0.1 per day when the minor CMEs are excluded. Of

these, 67% or 0.07 per day consisted of streamer blowouts. This is comparable to the rate of
0.09 per day for streamer blowouts during 1979-81 when this class constituted only 8% of all
major CMEs. Figure 7 shows the occurrence rate for these special CMEs during the interval
1979-1985. Although the statistics are poor, especially for the recent time, the resulting variation
is in sharp contrast to that obtained for all classes of CME shown in Figure 6.

(b) The Properties

Figure 8 shows the evolution of a typical "curved front" CME on 18,19 November 1981.

Mass ejections like this one constituted at least 15% of the CMEs that occurred in the years
around sunspot maximum. Howard et al. (1985) found that such CMEs had average speeds of
584 km]s, spans of 62 degrees in the sky plane, mass of 8.4 x 101 s gm, and kinetic energy of
6.4 x 1030 ergs. Characteristically, they were associated with long-duration X-ray events (Sheeley
et al., 1983a), interplanetary shocks (Sheeley et al., 1985), and energetic protons (Kahler et al.,
1984a).

Notice in Figure 8 that a coronal streamer moved southward as the CME transited the

field of view. Figure 9 shows the subsequent eruption or "blowout" of this streamer during a
19 hr interval on 19_20 November !981. Howard et al. (1985) found that the average properties
of such streamer blowouts included a relatively low speed of 200 km/s, a span of 44 degrees, a
moderately high mass of 5.4 x 101 s g, but a relatively low kinetic energy of 0.56 x 103° ergs.
One of these streamer eruptions (cf., Figure 10a) was associated with a large shock (cf., Figure
10b) at the Helios 1 spacecraft (Sheeley et al., 1983b, 1985). However, during 1979-1981 most
of these streamers and their eruptions occurred at relatively high latitudes and thus did not affect

the near ecliptic spacecraft conditions. However, like the streamers with which they originate,
the streamer blowout CMEs have tended to occur at relatively lower latitudes during 1984-1985
than they did during 1979-1981. Figure 11 shows a sample of these more recent events, and
Figure 12 shows the evolution of a particularly well observed one.

It is interesting to compare some average properties of CMEs observed in the two intervals

1979-1981 and 1984-1985. Whereas the average projected latitude was 45 degrees near sunspot
maximum, it was 22 degrees toward minimum. Similarly, the average span in position angle
dropped from 44 degrees to 22 degrees. The average CME speed dropped from 472 km/s to
roughly 130 km/s, which is consistent with the fact that most of the recent CMEs were the
characteristically slow streamer blowouts.

III. DISCUSSION

In view of the preliminary state of our recent results, we can only speculate on their
significance. The order-of-magnitude drop in the CME rate between sunspot maximum and
the present time is surely significant. It points to a strong connection between the occurrence
of CMEs and the level of solar magnetic activity. This seems consistent with the idea that CMEs

are tracers of the ejection of flux from the Sun. It is also consistent with the fact that a large
fraction of fast CMEs are associated with major X-ray flares, metric Type II bursts, interplanetary
shocks, and energetic protons.

On the other hand, the nearly constant occurrence rate of the streamer blowout CMEs
points to their possible identification as a normal state of the evolution of coronal streamers.
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Such structures are present at all phases of the sunspot cycle. Only their heliographic location
evolves with time. Thus, one might speculate that the streamer blowouts are simply phases in the
evolution of streamers just as disappearing filaments (eruptive prominences) are phases in the
evolution of filaments (prominences). Indeed, it is tempting to suppose that streamer blowouts
and eruptive prominences are two aspects of the same process. However, further study is
certainly required before we can take this speculation seriously.

Finally, we note the similarity between the helmet-like magnetic structure of coronal
streamers and the teardrop structure of planetary magnetotails and comet tails. Thus, it is
possible that an understanding of the physics of streamer blowouts will have a broad application
to other astrophysical objects.
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Figure 1. A sample of Solwind coronal mass ejections during 1979-1981 illustrating the variety

of morphological classes as defined by Howard et el. (1985). The small white disk
indicates the size of the solar disk.

246



Figure 2. A sample of Solwind CMEs during 1979-1981 illustrating major (Y), questionable (Q), and minor (N)
-,a importance categories according to Howard et al. (1985).
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Figure 3. The occurrence rate of all CMEs during 1979-1981 averaged over 7-day intervals.
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Figure 8. A typical "curved front" mass ejection according to Howard et al. (1985). Such CMEs have become rare in 1984-1985.
Note the streamer that was deflected as the CME transited the coronagraph's field of view on 18 November 1981 (cf., Fig. 9).



Figure 9. The eruption of the 18 November streamer during a 19-hr interval on 19-20 November 1981 (cf., Fig. 8). This
illustrates a typical high-latitude "streamer blowout" CME near sunspot maximum.



Figure 10a. A streamer blowout on 27 May 1979, associated with the Helios 1 shock
on 28 May (cf., Fig. 10b).
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Figure 10b. The plasma measurements of the interplanetary shock at Helios 1

located at 0.43 AU, W90 degrees on 28 May 1979.
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Figure 11. A sample of recently observed streamer blowout CMEs during October-November 1984. Note the
relatively low latitudes of the events on 21 October and 14 November.



-W

i ¸¸

....PRE-EVENT

Figure 12. The evolution of a well-observed streamer blowout during 29 June 1984. The moon is visible on the difference
images at 1105, 1241, and 1416 UT. The white disks also indicate the size of the solar disk.



INTERPRETATION OF CORONAL SYNOPTIC OBSERVATIONS

Richard H. Munro and Richard R. Fisher

High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO

I. INTRODUCTION

Three-dimensional reconstruction techniques used to determine coronal density distribu-

tions from synoptic data are complicated and time consuming to employ. Current techniques also
assume time invariant structures and thus mix both temporal and spatial variations present in the
coronal data. The observed distribution of polarized brightness, pB, and brightness, B, of coronal
features observed either at eclipses or with coronagraphs depends upon both the three-dimensional
distribution of electron density within the structure and the location of the feature with respect
to the plane-of-the-sky. By theoretically studying the signature of various coronal structures as

they would appear during a limb transit, it is possible to recognize these patterns in real synoptic
data as well as estimate temporal evolutionary effects.

II. TIME INDEPENDENT MODELS

Coronal streamers, large-scale white-light structures found in the solar corona, are the most
impressive and easily observed features of the extended solar atmosphere. In the summer of

1984, a period in which there were few structures associated with solar active regions, the corona
was dominated by streamers associated with the large-scale solar magnetic field. Rotating more
rigidly than the photospheric material, several streamers were observed near the solar limbs on

DOY 222 with both the spacecraft and ground based instruments. For this investigation, only the
distribution of polarized brightness (pB), at a reference height of 1.3 Ro, over latitude and longi-
tude has been used to estimate a model-dependent electron density at the base of these
streamers. Portions of the K-coronameter synoptic record are shown in Figure 1.

The investigation of the gross brightness properties of the solar corona does not require a
detailed model of the density structure. Thus we have chosen to represent coronal features using
simple "ad hoc" mathematical descriptions. Coronal streamers are assumed to be radial features

with circular cross sections that depend on radius. The bottom portion of "helmet-like" shape
(increasing then decreasing cross-sectional projection) was obtained from eclipse measurements.

The cross-sectional area is set to a constant above a given height ('2.5 Re). At 1.3 Ro, the
angular width of the streamer measured from Sun center is 15 degrees. For these calculations,
the density structure within the streamer has the identical radial logarithmic gradient as the

surrounding background, but with a constant enhancement over the background (corresponding
to an increased base pressure). Model streamers were placed in solar longitude and latitude at
the corresponding brightness maxima of the observations.

Note that during the period of these observations, the large-scale corona contained six

bright regions or streamers. On DOY 222, two of these were located in the southern hemisphere
on the east limb, two were located near the plane-of-the-sky on the west limb in the northern

hemisphere, and the remaining two streamers, somewhat fainter than the others, spanned the
equator near the center of the disk.
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An equatorial symmetric background corona was initially used to determine a multiplier to
the Alien (1963) Minimum Model to replicate the observed polarized brightness between the

streamers at 1.3 R o. The streamer enhancements required to match the observed maximum
polarized brightnesses for each structure averaged 3.1 times the equatorial background. This
enhancement in streamer density required is, of course, dependent upon the specific model
geometry given above, and is only a sufficient model. Taken at face value, a mean density of 5.6

x 107 electrons cm-3 in the Streamer is obtained at the reference height. The ratio of streamer pB to

the background corona is roughly the same as that found by Wilson (1977). On the other hand, the
absolute density for the entire corona is about a factor of 2 lower than the extrapolated value
obtained from Wilson's study. Estimates of the expected polarized brightness distribution (Fig. 2),

obtained by using the model density distribution, replicate the observed distribution of polarized
brightness with reasonable fidelity.

III. SIGNATURES OF STREAMERS IN K-CORONAMETER DATA

The major features found in the observed synoptic chart (Fig. 1) from the east and west
limb data are reproduced (Fig. 2), providing insight into the effects of the long integration path
through the corona and the variation of the apparent location of the streamer as a function of solar
rotation. Thus, it is clear that this relatively simple modeling technique allows the rapid interpreta-
tion of K-coronameter and coronagraph results, at least in the case of the largest features found
in the solar corona. However, some of the characteristic signatures displayed in the model are
absent in the data. The dashed lines on the observed synoptic chart mark the theoretical track of
the two streamers closest to the solar poles. While the southern streamer matches the model cal-

culations, a glaring discrepancy exists for the northern-most high-latitude streamer. In this case,
the data do not display a symmetric feature, but rather a strange trailing extension from the maxi-
mum polarization brightness region (time runs right to left in coronal synoptic maps). To gain
insight into this problem, synoptic observations from the three HAO K-coronameters covering the
years 1965-1984 were used to classify the signature of streamers as they appeared during limb

passage. The shape categories included round, trailing extensions, leading extensions, symmetric
extensions, and other complex features. The results are summarized in Table 1. Although it is
possible to construct static models of coronal density distributions that produce the observed
shape of the extensions, round coronal signatures cannot be produced by a static structure.

Emerging from an examination of a long-term synoptic record is the perception that while
the underlying organization of the large-scale photospheric magnetic field tends to be quite per-
sistent, at least one-third of the streamers identified in K-coronameter synoptic charts must evolve

with a timescale approximately equal to the length of time such a structure is visible using coro-
nagraphic techniques. Taking this argument further, the overwhelming number of trailing exten-
sions over leading extensions implies that the temporal scales for injecting material into a streamer
are shorter than for removing thematerial.

IV. TIME DEPENDENT MODELS

To investigate how time-dependent density enhancements and reductions might appear in

synoptic observations, the model streamers described above were subjected to linear rates of
formation and destruction. Figure 3 depicts sample signatures for streamers at a latitude of 45
degrees North where the maximum density for the streamers occurs one day after, at, and one day
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before limb passage for the top, middle and bottom panels, respectively. With each panel, the
model streamers form in one day, but decay in one, two, three, and four days. The signatures for
slow formation and rapid decay are mirror images of these forms about the central time of the
individual panels (or 90 degrees longitude).

These calculations show that:

(1) The absence of an extension implies rapid density variations and "round" signatures
require both rapid injection and removal of material.

(2) The location of the observed maximum brightness depends on the time when the
streamer attained its maximum density, and only weakly on the spatial location of the streamer.

The physical location of the streamer remained constant in the models displayed in Figure 3;
only the time of maximum density was allowed to vary. As a rule of thumb, the observed maxi-
mum brightness signals the time of maximum density within 8 hours as long as the peak density

was attained within 2 days of the streamer's limb passage. Thus, caution must be used when
associating the physical location of streamers as determined by synoptic observations with under-
lying photospheric features.

(3) The shape of the brightness distribution of an observed streamer can provide clues as
to the nature of the temporal evolution of streamer material. This variation can be seen by select-
ing a particular injection and removal rate (e.g., 1:4, the lower right of each panel), and compar-
ing the signatures as the time of peak density varies from after (top) to before (bottom) limb
passage.
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Figure 1. Portions of the K-coronameter synoptic record, from both the east and west limbs,

centered on DOY 222 1984. Amplitude of the polarized brightness of the corona is plotted

as a function of solar latitude and day of observation. Dashed lines mark the theoretical
track of the northern-most and southern-most streamers.
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Figure 2. The estimated polarized brightness that would be observed from the earth if material

were distributed over the volume of the corona in accordance with a model that has (1) a quiet

background contribution, the axis of symmetry which is tilted with respect to the solar rotation

axis,.and (2) six embedded streamers with the geometrical properties given in the model (see text).
The streamer densities have been adjusted so as to achieve the observed peak polarized brightness.
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(See text for additional information.)

TABLE 1. OBSERVED STREAMER SIGNATURES IN THE HAO
K-CORONAMETERS 1965-1984

Obvious Temporal Evolution
Stationary Sum Other, Total

Round Trailing Leading Complex
Extension Extension Features

Number 77 250 412 57 796 1131 1927

Fraction 4% 13% 21% 3% 41% 59% 100%

Fraction 10% 31% 52% 7% 100%
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WAVE SPEEDS IN THE CORONA AND THE DYNAMICS OF MASS EJECTIONS

Steven T. Suess and Ronald L. Moore

Space Science Laboratory, NASA Marshall Space Flight Center
Huntsville, Alabama 35812

ABSTRACT

A disturbance or coronal mass ejection being advected by the solar wind will expand at
the fastest local characteristic speed - typically approximately the fast-mode speed. To estimate

this characteristic wave speed and the velocity field in the ambient corona, it is necessary to know
the magnetic field, temperature, and density. Only the density is known from coronal observa-
tions. The temperature, magnetic field, and velocity are not yet directly measured in the outer
corona and must be estimated from a model.

In this study, we estimate the magnetic field, solar wind velocity, and characteristic speeds

using an MHD model of coronal expansion between 1 and 5 solar radii (Ro) with a dipole mag-
netic field at the base. This model, for a field strength of about 2 gauss at the base, gives flow

speeds at low latitudes (near the heliospheric current sheet) of <250 km/s at 5 R o and, <50 km/s

at 2 R o, and fast-mode speeds to 400 to 500 km/s everywhere between 2 and 5 R o. This
suggests that the outer edge of a mass ejection will appear to move at a nearly constant rate of
400 to 500 km/s between 2 and 5 R o. This result is in agreement with the observed velocity of
mass ejections reported by MacQueen and Fisher (1983) and implies that the acceleration mechan-
ism for coronal mass ejections is other than simple entrainment in the solar wind.

INTRODUCTION

The kinematics of coronal transients have been well described elsewhere. It is not our

intent to review this research or to put forth a new or original hypothesis for the origin of

coronal mass ejections. Rather, what we propose is to offer a deeper physical insight into the
dynamics of coronal transients in a way that relates to physical parameters of the corona. The
motivation for our study comes from the velocity data reported by MacQueen and Fisher (1983).

They examined the kinematic properties of several "loop-like" coronal transients over the range
1.2 to 2.4 Ro from Sun center. Their results are partially summarized in Figure l(a). In this
figure, velocity profiles for all of the transients analyzed are reproduced. In Figures l(c) and
l(d), the results are split into transients observed in the inner corona with the Mauna Loa K-
coronameter system and transients observed in the outer corona with the coronagraphs on Skylab
and the SMM. Radial expansion speeds are seen to range from 60 to 900 km/s - except for the
anomalous 6 September 1973 event. Flare-associated events were found to exhibit high speeds
and little acceleration with height. Eruptive-associated events exhibited large accelerations.

MacQueen and Fisher conjectured that the pressure gradient forces responsible for the generation
of the solar wind may play an important role in accelerating the eruptive-associated events.

Here, we examine the behavior of an isolated blob of gas riding upon the background solar

wind and suggest that this behavior is very much like the behavior of coronal mass ejections. The
distinction between the hypothesis made by MacQueen and Fisher and what we are describing is
that rather than riding passively on the solar wind, the expansion of the mass ejection into the
ambient medium is the main cause of the observed motion of the leading edge of the mass

ejection.
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RESULTS

The model that we use for our computation of characteristic wave speeds in and near

streamers is that published by Steinolfson, Suess, and Wu (1982) (hereafter referred to as SSW).
In that calculation, a model was developed for the formation of a steady coronal streamer through
numerical solution for the time-dependent, dissipationless MHD equations of motion in a

meridional phase, for axisymmetric flow. The flow is polytropic and the atmosphere is stationary
in magnetically closed regions and flowing outward in open regions. The solution is found

through a relaxation in time in a domain extending from 1 to 5 Ro and from pole to pole. The
flow and magnetic fields, density, and temperature are thus known everywhere in the corona.

CMEs never occur in coronal holes. Therefore, in using the results of SSW, we limit our-
selves to results in the neighborhood of the global streamer - polar angles of 90 degrees to 140
degrees (the equator lies at 90 degrees and the polar hole is centered at 180 degrees). The region
of interest is shown in Figure 2, modified from SSW. The closed field lines near 90 degrees are in
magnetostatic equilibrium - the flow speed there is effectively zero. In Figure 2, the shaded
portion is coronal hole-like and therefore excluded from consideration; three radial cuts through
the topology are indicated at 100, 120, and 140 degrees. Figure 3 shows the flow speed, sound
speed, and Alfv_n speed along these radii. A profile is not given for 90 degrees because that is
the magnetic neutral sheet, the field strength is zero there, and hence the Alfv_n speed is also
zero.

Also shown in Figure 3 is the flow + fast-mode speed, where we have used the term

"fast-mode" for the sum of the sound speed and the Alfv6n speed - strictly only a correct
terminology for propagation perpendicular to the magnetic field. We will ignore this distinction
because the propagation of a transient through the corona seems to strongly deform the ambient
field and hence almost certainly have its motion dominated by the Alfv_n speed.

Figure 3 shows that the flow speed is never very large in the vicinity of the streamer, that
the Alfvdn speed is quite large near the Sun, and - most striking of all - the sum of fast mode

and flow speed is both nearly constant in radius and on the order of 400 km/s. The sound speed
between 1 and 5 R o is so small as to be unimportant in this sum.

These results apply only to the streamer vicinity. The Alfv_n speed is quite different in
coronal holes and will be the subject of a separate study. However, near streamers, we feel the
tendency shown in Figure 3, for the flow speed + Alfv_n speed sum to be nearly constant in
radius, is representative of the corona in the vicinity of real streamers. The difference between

individual streamers will be dominated by field strength and density - the sum will be larger
for higher field strength streamers because the density does not rise as fast as the field strength
(SSW). For geometrically more compact streamers, there should be no qualitative difference -
the characteristic speeds will still be of the same order of magnitude.

DISCUSSION

The results shown in Figure 3 are relevant to mass ejections because the front edge of a
disturbance moving through the corona will always move at the fastest local characteristic speed
(Steinolfson, 1985). Thus, if we imagine a blob of plasma injected into the corona and having a
finite overpressure, then its center of mass will move upwards with the solar wind expansion
speed. In addition, its front edge (and back edge as well) will expand outwards away from the

center of mass with the fastest local characteristic speed in the solar wind moving frame of
reference.
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An obvious question is why should the front edge necessarily be the same as the visible
front edge of a transient. It is true that it does not necessarily have to be the visible front edge.
However, if the front edge is initially visible at the beginning of the transient, then under normal
circumstances, we believe it will only get more visible. This is because a compressive disturbance
in the corona always steepens (Steinolfson, 1985; Zel'dovich and Razier, 1966; Montgomery,
1959; Cohen and Kulsrud, 1974; Steinolfson, 1981; Kantrowitz and Petschek, 1966).

It is also obvious that the sum of speeds shown in Figure 3(d) is a lower bound. After
a shock is formed, the front edge of the disturbance moves at the shock speed. Thus, no freely
expanding CME can move less rapidly through the corona than with the sum of speeds shown
here - about 400 km/s. This is the reason for the result quoted in a study of the numerical
simulation transients by Steinolfson (1982). There, he used the steamer model shown in Figure 2
and introduced a perturbation in pressure at the base. He found that, depending on the magni-

tude and character of the perturbation, he could generate a variety of propagating disturbances,
but that these disturbances never traveled outward more slowly than about 400 km/s in the

neighborhood of the streamer.

By the time a CME reaches a height of 2.0 solar radii, it should be almost free of whatever
initiated the transient or restrained it from freely moving outwards. Thus, on the order of the
time it would take for information to propagate across the transient with the local characteristic
speed, the front edge of CME will appear to be moving at the sum of the solar wind flow speed +
fast-mode speed.

Returning to the data shown in Figure 1, we also offer a hypothesis for why some CMEs
are moving slowly at heights of 2.0 R o and accelerating rapidly. Since the time for information
to propagate across the CME is short with respect to the time it takes the CME to reach these
heights, the CME cannot be moving outwards freely. Apparently the CMEs are being restrained

from moving outwards and the rapid acceleration reflects the release of this restraint. These con-
siderations suggest that the restraint is due to the linkage of the magnetic field in a CME back to the

surface and that this connection is not completely broken at distances below about 2 R o. These
events may therefore more accurately be called "coronal mass releases" rather than mass ejections.
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Figure 1. (a) Radial speed of transients, including measurements from the Mauna Loa
K-coronameter, Skylab coronagraph, and the SMM coronagraph/polarimeter. (From

MacQueen and Fisher, 1983.) (b) Sum of flow speed and fast-mode speed for three positions
in and near an MHD model coronal streamer. (From Steinolfson, Suess, and Wu, 1982.)

(c) Data from panel (a) that were taken only with the Mauna Loa K-coronameter, with the
date the observations were made. (d) Data from panel (a) that were taken only from the

Skylab coronagraph and SMM coronagraph/polarimeter, with the date the observations
were made.
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ON THE FORMATION OF CORONAL CAVITIES
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ABSTRACT

We present a theoretical study of the formation of a coronal cavity and its relation to a
quiescent prominence. We argue that the formation of a cavity is initiated by the condensation
of plasma which is trapped by the coronal magnetic field in a closed streamer and which then
flows down to the chromosphere along the field lines due to lack of stable magnetic support
against gravity. The existence of a coronal cavity depends on the coronal magnetic field strength;
with low strength, the plasma density is not high enough for condensation to occur. Further-
more, we suggest that prominence and cavity material is supplied from the chromospheric level.
Whether a coronal cavity and a prominence coexist depends on the magnetic field configuration;
a prominence requires stable magnetic support.

I. INTRODUCTION

The coronal cavity is a dark region whose density is lower than in the surrounding
streamer. The close association of coronal cavities with prominences has led to the suggestion
that the coronal cavities are a manifestation of prominence formation by condensation of coronal
plasma (Pneuman, 1983). However, Saito and Tandberg-Hanssen (1973) found that the formation
of a prominence requires much more material than available in the cavity before depletion. They
concluded that prominence material must be supplied from below (e.g., in the form of spicules),
not from the adjacent corona. Here, we investigate further how and when a coronal cavity
forms, and suggest what the relation is between a coronal cavity and a prominence. It is believed
that the global steady corona is a consequence of the interaction between outward flowing solar
wind plasma and the cornal global magnetic field (Pneuman and Kopp, 1971; Steinolfson, Suess,
and Wu, 1982). When interacting with the magnetic field, the plasma adjusts itself for energy as
well as force balance. We believe that the coronal cavity is formed in the process of the dynamic
adjustment. In this paper we study the stability of the streamer model of Steinolfson, Suess, and
Wu (1982) (henceforth referred to as SSW) to the condensation mode. SSW calculated the

dynamic interaction between outward flowing solar wind plasma and a global coronal magnetic
field using a 2-D, time-dependent, ideal MHD computer simulation. In the final steady state, they
found a density enhancement in the closed field region with the enhancement increasing with
increasing strength of the magnetic field. Our stability calculation shows that if density enhance-
ment is higher than a critical value, the plasma is unstable to condensation modes. We describe
how, depending on the magnetic field configuration, the condensation may produce a coronal
cavity and/or initiate the formation of a prominence.
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I1. CONDENSATION AS A CAUSE OF CORONAL CAVITIES

The initial plasma density from the steady hydrodynamic solar wind equations and the
two final states with t3 = 0.5 and 4 are shown in Figure 1. For/3 = 4 the density is enhanced
about 1.4 times the initial value, while for /3 = 0.5 the maximum enhancement is 4.3 times the
initial value at r = 1.3 Ro. Figure 2(a) shows the magnetic field configuration and plasma velocity

in the nearly steady-state for /3 = 0.5. Note that velocity is zero in the closed region. An
expanded view of the closed field region of the figure is shown in Figure 2(b), with the con-
densation mode growth rate co for /3 = 0.5 and 4 shown on the right side of the vertical axis
(s implies stability).

For evaluation of the stability, we neglect the temperature and density variation along
field lines but consider the variation on each field line of different equatorial height. Heat con-

duction perpendicular to the magnetic field was neglected - only a parallel component was con-
sidered. The ambient heating rate was assumed to be constant in time and is balanced to the

radiation in a steady-state. An (1985) found that the plasma is stable against condensation modes
if the local growth rate 60 = -poq_/3,Po is positive on all the field lines, but unstable if w is
negative on any field line. Here,

• - + (k • Bo )2
Po P Bo 2 tc

and R, To, Po, Bo, and Po are dimensionless radiative energy loss rate, temperature, density,
magnetic field, and pressure, and k is a wave vector. The quantities tr and t c are radiative and heat
conduction timescales defined as t r = 3Po/2R and tc = L2Po/_:oToT/2. Because of the local
nature of the stability we evaluate _o on each field line of the closed field region. Figure 2(b)
shows that the stability of the final states for _ = 0.5 and 4 is significantly different. For/3 = 4,
all the field lines are stable - mainly because the density enhancement over the initial value is

small as seen in Figure 1.. For _ = 0.5 all the field lines of equatorial height less than r = 2.05

R e are unstable. The local growth rate _o is maximum at the field line nearest to r = Ro and
decreases with height. If we include the gravity in the calculation, the height above which the

plasma is stable is far less than r = 2.05 R o due to the stabilizing effect of the gravity (Wragg
and Priest, 1982; Antiochos and An, 1985).

Next, let us discuss how, depending on the magnetic field configuration, the thermal
instability initiates a coronal cavity or prominence formation. As plasma density increases above
a critical value the plasma becomes unstable to condensation modes. The condensed plasma
accumulates on or falls along the field lines depending on whether or not the field lines provide
stable support against gravity. If the condensed plasma accumulates, the radiative loss rate con-

tinues to increase until the plasma cools to T = 10 s K (An et al., 1983). The plasma keeps
cooling to Tc ("104 K) after the temperature reaches T = 10s K because the radiative energy
loss rate exceeds heat conduction and ambient heating rate. As the temperature approaches Tc,
the ambient heating rate is approximately equal to the radiative energy loss rate and heat con-

duction is negligible in the overall energy balance. The temperature T c (< 10 4 K) and corres-
ponding density Nc are typical of prominence temperature and density.

If the condensed plasma falls down along field lines, runaway condensation is not possible.
During initial condensation, the temperature decreases, density increases, and the radiative energy
loss rate increases. If condensed plasma slips down faster than the radiative energy loss rate
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(tr = 2 x 104 s for the /3 = 0.5 streamer at r = 0.1 Ro) the radiative energy loss rate decreases
until it reaches an energy balance and the condensation and slippage cease. However, because the

plasma cools during the initial condensation and the temperature change is negligible during the
slippage, energy balance can be reached only after the density is depleted below the initial value
(assuming the ambient heating rate is constant in time). The density depletion causes the plasma
to become stable to the thermal instability. Since SSW considered a simple dipole field which

may not provide stable support, the thermal instability for/3 = 0.5 will lead to a cavity. On the
other hand, for /3 = 4, the streamer is thermally stable and cannot have a cavity. Saito and
Hyder (1968) argue that the difference between prominences with and without clearly defined
coronal cavities could be explained by geometry. Our stability calculation suggests that the
existence of the cavity also depends on the coronal field strength.

Saito and Tandberg-Hanssen (1973) and Saito and Hyder (1968) found that plasma mass
in a cavity is not sufficient to account for the mass of the prominence. The other possibility is
that the material comes from below (Saito and Tandberg-Hanssen, 1973), possibly in the form of

spicules. For a newly formed prominence with height 104 km, it takes about one day for a
spicule material of average flux density F = 1.2 x 101 s cm-2 s-1 (Athay and Holzer, 1982) to fill
the prominence. The time is about equal to the timescale of a quiescent prominence formation
(Zirin, 1978). The spicule plasma which is thermalized in the corona and flowing outward will
be trapped by and accumulated on the closed field. If the accumulation is sufficiently high to
initiate condensation and the magnetic field gives stable support at the base but no such support

above, we will find a prominence at the base below a coronal cavity. In other words, a
prominence below a coronal cavity is formed by the material supplied from below as Saito and
Tandberg-Hanseen (1973) suggested and is a consequence of condensation of the plasmas. The
main difference is that prominences require magnetic support and continuous consideration of

coronal material supplied by spicules for fully developed prominences. We schematically sum-
marize our results in Figure 3, showing four different regions; region 1 is an open field region
and source of solar wind plasma. In region 2 the plasma has reached a steady-state with energy
and force balance. In region 3 condensed plasma flows down along the field lines, leaving a

cavity behind. Region 4 is the local field region in which the condensation initiates prominence
formation. The local sheared magnetic field provides stable support against gravity.
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Figure 3. A three-dimensional sketch for a coronal streamer and its fine structures. 
The arrows represent the plasma flows. 
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ABSTRACT

The two X-ray transform telescopes on the Pinhole/Occulter Facility (P/OF) will provide
sub-arcsecond angular resolution, high sensitivity imaging in hard X-rays for the first time, as well
as improved capabilities for timing studies and spectroscopy. Although the design was driven by
solar observing requirements, the result is an instrument of major importance for astronomical as
well as solar observations. Fundamental astrophysical measurements could be made on supernova
remnants, clusters of galaxies, active galaxy cores, accreting binary systems, and active coronae
of nearby stars. Ways in which astronomical observations will benefit solar research are discussed.

INTRODUCTION

The Pinhole/Occulter Facility (P/OF) is proposed to carry a complement of two hard
X-ray imaging instruments and two coronagraphic instruments that together will provide new
capabilities for solar observations. This discussion concerns itself solely with the X-ray instru-
ments, and looks at them primarily from the standpoint of their suitability as tools for celestial,
rather than solar, observations. Descriptions of the P/OF instrumentation may be found in
Tandberg-Hanssen et al. (1983) and in Hurford and Hudson (1980). These references should be

consulted for details, but a brief description is as follows: one of the X-ray instruments, the
coded-aperture imaging (CAI) telescope, has a 50% transparent mask with a coded pattern
of "pinholes," placed 50 m from a detector that records positions, times, and energies
of X-rays transmitted by the mask. The other instrument is a Fourier-transform telescope
(FTT) employing two sets of grids, an upper one on the mask platform and a lower one
directly in front of a detector similar to that in the CAI. Upper and lower grids consist of "100
"subcollimators"; each subcollimator consists of a set of fine, parallel slits. Slit spacing and
orientation vary from one subcollimator to the next, so that each subcollimator measures a
different Fourier component of the spatial image. In both the CAI and FTT designs, the pattern
recorded in the detector is not the source image but rather a transform of that image that must
be inverted to recover the source brightness distribution. Both designs belong to the class of
transform telescopes.

Two main points will be stressed here. The major theme is that P/OF will be a powerful
instrument for high energy astrophysics, in the first rank of X-ray astronomy facilities now fore-

seen. A second point is that inclusion of the astronomical observations in the P/OF program will
benefit the solar program conducted with the facility, as well as solar physics generally.

Capabilities of the X-ray instruments on P/OF will be assessed from the astronomical
perspective, in part through comparison with other major astronomical instruments now planned
or under discussion. The estimated performance characteristics of P/OF will then be used as a
basis for characterizing the expected scientific results. Applications will be described in several
areas including source population studies, imaging of extended sources, photometry, and
spectroscopy.
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I. PERFORMANCE CHARACTERISTICS OF P/OF IN CELESTIAL OBSERVATIONS

In 1979, the Naval Research Laboratory, the University of Birmingham, and the Los Alamos
Scientific Laboratory submitted a proposal to NASA for a large-area coded aperture instrument,

to be used exclusively for astronomical observations in hard X-rays. It is interesting and instruc-
tive to note that this instrument as proposed was roughly similar to the coded aperture X-ray

telescope on P/OF, in its energy range, size, and angular resolution, as well as in design. This
coincidence in parameters means that a single basic instrument concept is able to serve as a
frontier research tool in both solar physics and X-ray astronomy. How does this happen? Naively,

the roughly 12 orders of magnitude difference in flux between bright solar flares and celestial
sources at 1 keV would seem to raise serious questions about feasibility.

It turns out that there is no single answer, but rather a combination of several factors

that disposes of these orders of magnitude. Comparison must be made not in units of flux but
rather in terms of the fluence per pixel in a typical image. Several aspects of typical solar flare

imaging in hard X-rays collectively create a requirement for extremely high sensitivity, which in
tum makes celestial work possible. First, P/OF is not designed solely for the brightest flares, but
rather for the ones that would be seen during a typical Shuttle mission at solar maximum. Hence,
it must detect flares "10 3 times fainter than the brightest ones. Second, the solar flares are to be

imaged at E > 20 keV. The highest priority solar goals, such as imaging bright X-ray regions near
loop footpoints, fall in this energy range. This means that the very steep solar spectrum (typically
E"4) in hard X-rays will drastically reduce the photons available in the band of greatest interest,
relative to energies near 2 to 10 keV. In contrast, celestial observations will cover a range of
2 to 120 keV. The celestial spectra of interest are much harder than E"4, and sometimes harder
than E"1, so that the relative attrition of count rates with increasing energy is far less severe. In
addition, integration times for solar applications are, very conservatively, less than 1 s, in contrast
with celestial sources, wherein 104 or 10s s integrations are appropriate and longer ones are
feasible if the task warrants it. Each of the factors just mentioned disposes of 3 to 5 orders of

magnitude in the naive flux discrepancy. A fourth factor is image complexity. The solar flare
flux, integrated over a typical observing integration time, must ultimately be assigned to a number
of pixels, distributed in a complex way, whereas the faintest objects dealt with in celestial work
are point sources. When all four factors are combined, there is great overlap in the expected
range in fluence per pixel used in typical solar and cosmic observations made with the P/OF.

Granting that the celestial observations are feasible with P/OF, it is still necessary to
understand how data from P/OF would compare with those from other X-ray astronomy instru-
ments.

Sensitivity for a coded aperture instrument such as P/OF depends on detector area and
background in a manner similar to other X-ray instruments, to within factors of 2. It improves
as the square root of integration time for faint sources, because the dominant consideration is
detection of a signal in the presence of Poisson noise. Typically, the detector background per
unit area is much larger than the diffuse X-ray background, and also much larger than the flux

from the source. In this case the minimum detectable flux, Film, is given by

Fil m=277 (B/eAfiEr) ½ , (1)

where

8E = energy range, e.g., 2 to 10 keV

B = background, e. g., 3 x 10-4 cts cm-2 s"1 keV "1
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A = effective area, "104 cm z

r = integration time, 10 4 - l0 s s

7/= detection significance = 50

e = efficiency.

Typical values are, at 5 keV, F = 0.03 (104 s/r) ½ microjansky and, for 6E = 15 to 30
keV, F = 1.3 x 10"s (104 s/r) cts cm "2 s"1. These numbers compare favorably with most X-ray
astronomical instruments that have flown or are now planned, with the single exception that
AXAF will achieve substantially greater sensitivity at energies well below the cutoff energy of its
X-ray mirror, "_10 keV. For many hard X-ray observations, P/OF has no equal in sensitivity.

Figure 1 is a spectral sensitivity curve comparing P/OF with instruments from the first

two decades of X-ray astronomy as well as AXAF. The P/OF curve, taken for a 105 s integra-
tion, represents the CAI and Fourier-transform telescope instruments taken together. It is
clearly more sensitive than the HEAO-1 instruments and aligns roughly with the upper end of the
Einstein Observatory HRI spectral sensitivity curve. All curves, including P/OF, refer to point
sources detected at 5a.

In considering Figure 1, it should be recognized that the sensitivity advantage conferred
by grazing incidence optics does not exist beyond "_10 keV. Hard X-ray instruments must rely
on some nonfocussing technique in order to have imaging at all. The other hard X-ray instru-
ments shown in Figure 1, UHURU and the HEAO-1 experiments, had coarse pencil beam angular
responses (a few square degrees) achieved with mechanical collimators. Unlike these, P/OF enjoys
true high-resolution imaging.

Table 1 summarizes parameters besides sensitivity that affect imaging and timing per-
formance. The P/OF field of view is comparable to that of the Einstein Observatory IPC, while
the angular resolution is substantially better than the HRI, 0.2 arc s. The timing resolution is
1 ms. The total collecting area excellently supports fast timing observations even in the milli-
second domain, as does the large telemetry allocation.

Table 2 gives key parameters of several major X-ray astronomy missions expected over

the next few years. Comparing areas, P/OF is seen to be larger than these future payloads, two
of which have grazing incidence optics (ROSAT, AXAF) and two of which (ASTRO-C, XTE)
do not. The sensitivity advantage of focussing optics pertains to sources at very low flux levels.
For sources whose flux exceeds the background per unit area in the detector, the sensitivity
advantage lies with the instrument having greater collecting area, whether or not it has optics.
For P/OF this crossover would fall near UHURU flux unit (1 UFU = 2.4 x 10"11 erg cm "2 s"1,
2-1 o keV, or roughly 1.1 microjansky at 5 keV, for a Crab-like spectrum) so that the area
advantage of P/OF would be an unqualified performance asset over the focussing instruments
above that flux level. P/OF's area would be (within a factor of 2) the same as ASTRO-C and
XTE, but it would gain in performance by virtue of its imaging and higher bit rate. On fainter
sources, ROSAT and AXAF would perform far better than P/OF, but only up to the cutoff of
their X-ray optics. At higher energies, where P/OF's most novel capabilities lie, it is simultane-
ously superior in collecting area, sensitivity, and angular resolution.

279



It would thus be reasonable to characterize P/OF as being roughly the hard X-ray counter-

part to AXAF, with angular resolution comparable to that instrument and with superior capabili-
ties for timing and low-resolution spectral work on bright sources. Its sensitivity for faint sources
would be roughly like that of the Einstein HRI, the detector that has reached the lowest flux
levels of any X-ray astronomical instrument to the present time.

II. THE X-RAY SKY: SOURCE COUNTS AND CLASSES

P/OF will have the power of a general purpose X-ray astronomy facility; hence, complete
discussion of all observations it could perform would entail a prohibitively vast survey of X-ray

astronomy. The most important thing is to assess where its unique features - hard X-ray imaging

and high sensitivity in hard X-rays - will be effective. This will be undertaken in a brief survey
emphasizing bright X-ray sources. The survey will analyze X-ray astrophysics from several stand-
points: by source populations, by type of observation (imaging, photometric, etc.), and by the

astrophysical problems addressed.

A convenient way to begin is with the full-sky surveys from HEAO-i. The lower portion

of Figure 2 shows the HEAO A-1 full-sky survey (Wood et al., 1984), which covers energies
from 0.5 to 25 keV. Although the flux limit varies in a systematic way with position on the sky
because of variations in sky exposure, it is typically at least 1 UFU, and "450 sources are seen
above this level. The display is in galactic coordinates, with the size of the dot representing a
source proportional to the logarithm of its intensity in counts cm "2 s"i . Five major source
populations are encountered among the identified objects: clusters of galaxies, active galactic
nuclei, accreting binaries, supernova remnants, and stellar coronae.

The upper portion of Figure 2 shows the HEAO A-4 catalog (Levine et al., 1984)
displayed in the same mode. The energy range is now higher, 13 to 120 keV. The epoch
observation over which this high-energy map was accumulated includes that of the other map, but
is roughly three times as long. The sources seen here are a subset of the previous sample, mainly
the brighter objects. None is unidentified, and most of the major classes are again represented.
All sources have lower flux at this higher energy, but they do not all scale the same way because
of differences in spectral hardness. Improving the flux limit tenfold would reveal many more

objects in all classes, particularly the extragalactic ones. It is noteworthy that despite the lower
full-sky source count at higher energies, the regions that were crowded at low energies remain
crowded. Since collimators used in most high-energy designs other than P/OF are comparatively
coarse, this crowding becomes a very serious problem. Ultimately, some imaging is needed as

limiting flux decreases, from source confusion considerations alone.

The most fundamental sense in which confusion provides a limitation is in the fluctuations

from pixel to pixel in the number of unresolved sources. The problem is exemplified by Figure 3,
which shows source counts obtained with HEAO A-1 using two different collimators. The points

at higher flux levels are obtained with 1 deg x 4 deg collimators, and reach a level of roughly
1 UFU. The lowest point is obtainable only by using a collimator eight times finer, 1/2 deg x
1 deg, on a small field of sky where a long integration time was obtained. Instrumental source
confusion has been analyzed formally in several studies, many of them prompted by the early
sky surveys done with radio pencil beams. It can be shown that in work with a particular point
source response function ("beam width"), it is not possible to isolate more than one source in
every few tens of beam widths. The collimator that obtained the lowest point in Figure 3 had
the smallest field of view of any pencil beam design that has yet flown. To go below this limit
requires imaging or modulation collimator designs to achieve smaller effective beam sizes.
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The Pinhole/Occulter Facility would never encounter source confusion within practical
integration times, even up to a few weeks. This is essentially because the very fine resolution
places its confusion limit at a flux level too low to be reached in practical integrations. Accessi-
bility of sources would depend mainly on integration time and energy. Table 3 estimates the

number of sources that would be accessible at various energies. These are extrapolated from
surveys, particularly those shown in Figures 2 and 3, according to expected number-flux relations.

It is clear that all major source classes would be available. There would not be time to
observe all accessible sources, because it would require at least 104 seconds on each of about

40 000 fields, i.e., well over 10 years. A feasible observing program would be to look at bright
targets of special interest, sampling each class, and to conduct statistical studies based on random

sampling with long integrations. This tactic was used with the Einstein Observatory and could
be extremely effective with P/OF.

With overall source accessibility thus characterized, it is appropriate to survey particular
classes and objects. In appreciating P/OF's role, it may help to recall that, in contrast to the
optical sky, virtually every source known to X-ray astronomy has proven to be either extended

or variable, so that the combination of high-resolution imaging, high sensitivity, and fast timing
available with P/OF necessarily finds wide application. As X-ray astronomy matures, measure-
ments needed to advance understanding become more subtle and difficult, creating demand for
advanced instrumental capabilities.

III. IMAGING APPLICATIONS

Supernova remnants, active galactic nuclei, and clusters of galaxies are the major X-ray
source classes having extended X-ray components in which surface brightness mapping with
P/OF would be of great value.

Supernova Remnants (SNR)

The Crab Nebula was the first X-ray source discovered to be extended, a fact determined
originally using lunar occultations (Bowyer et al., 1964; Wolff et al., 1975). This nebula and the
pulsar within it present a wealth of astrophysical phenomena, over radio to gamma-ray wave-
lengths. The pulsar is thought to be the energy supply for the entire nebula, but details of energy
transport remain a challenge to high-energy astrophysics. Insights gained here, for example
concerning particle acceleration and transport, may well transfer to other astrophysical situations.

The angular structure as a function of energy can be used to discriminate between

diffusion and bulk transport models of the energy flow. Diffusion predicts a specific relation for
shrinkage of the nebula as energy increases into hard X-rays. P/OF can precisely determine the
nebular size to higli energies. It can also tell whether there are localized fine features in X-rays,
corresponding perhaps to optical wisps that move appreciably over the course of time.

The combination of high angular resolution and high timing resolution available on P/OF
makes possible a very basic measurement, namely determination of the continuum flux from the

Crab Pulsar (PSR 0532+21). The observation is difficult because the pulsar must be seen against
the nebular background, and must be imaged using data strobed at the pulse period, accepting
only portions of the cycle when the pulsar is at its minimum. Such an image shows whether
there is excess steady flux at the pulsar position. No excess has been detectable with previous

instruments (Harnden and Seward, 1984), but feasibility of the measurement is strongly
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dependent on the angular resolution available. P/OF, with resolution roughly 25 times finer than
the Einstein Observatory's HRI, should provide a definitive measurement. The intent behind this
measurement is determination of the neutron star cooling timescale. Since it is known that the
supernova that produced the Crab Pulsar occurred in AD 1054, determination of the surface tem-
perature at the present epoch fixes the cooling time; an upper limit on current temperature sets

a limit on the cooling time. The cooling time is sensitive to the constituents of the neutron star
interior and the processes whereby they contribute to heat loss.

P/OF is also suited to mapping other bright, young SNR such as Cas A, that contain
regions of high temperature and high surface brightness. Angular size scales are such that arc-
second or better imaging is required. From Einstein observations (Murray et al., 1979) one
estimates that Cas A would give a flux]pixel ratio of 4 x 10-xz erg cm"2 s-x pixel -x, for pixels
10 arcseconds on a side, so that imaging should be possible up to 10 to 15 keV. The Tycho and

Kepler supernova remnants should also be detectable and possibly some SNR in the large
Magellanic Cloud. Hard X-ray imaging will supplement data from lower energy instruments, such
as AXAF, providing improved knowledge of temperature gradients or of how kinetic energy in the
expanding remnant is thermalized.

Active Galactic Nuclei: Jets and Extended Features

Active galactic nuclei (AGN) are a broad class that includes a number of distinct kinds of
bright, compact, variable galaxy cores, including highly luminous (104a to 1047 erg s"x) quasars
and BL Lacertae objects, as well as less luminous (1042 to 1045 erg s"x) Seyfert I galaxies and

emission line galaxies. Much of the total power in these sources is radiated at high energies. The
central power source may be a supermassive black hole, of mass 10 6 to 10 8 solar masses. Many
of these sources have outer radio lobes, powered by jets of material ejected from the central
object.

In NGC 5128 (Cen A) an X-ray jet has been detected using the Einstein Observatory
(Schreier et al., 1979; Feigelson et al., 1981). This jet includes small knots, interpreted as
regions of synchrotron emission. Jets are also seen in radio wavelengths, and are evidence for
transfer of energy from the nucleus to outer radio lobes. Much of the lifetime energy output of

the source may be in such ejecta, and imaging at high energies is crucial to developing physical
models. Known X-ray jets range in size from a few arc seconds to several arc minutes, but the
total number detected remains small: only in 3C273, M87, and Cen A have jets been seen
(Schreier, Gorenstein, and Feigelson, 1982). The jet in Cen A has an intensity of 3 x 10"x2 erg
cm"2 s"x, or about 0.1 microjansky; hence, P/OF could detect it. The X-ray spectrum of the jet
would be determined from, for the first time, P/OF observations. A jet like that in Cen A should
be observable with P/OF at greater distances because of its high angular resolution. If it were
ten times farther away, its surface brightness would be unchanged, and it would still be resolvable.
P]OF will thus be able to range over a larger volume of space in searching for jets, and should
enlarge the list of X-ray jets.

Clusters of Galaxies: Imaging the Hot Intercluster Medium

Previous work has shown that most clusters of galaxies contain X-ray-emitting gas, usually

at temperatures exceeding 8 keV. The surface brightness has been mapped using the Einstein
Observatory for at least 30 clusters, revealing a variety of structures rather than a single recurrent

morphology. In addition, spectral measurements indicate that there is in some clusters a
nonthermal component extending to hard X-ray energies (Lea et al., 1981), although the relative
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location of this component is unknown. Locating such features is one example of a task that
P/OF could perform on clusters of galaxies. Another would be imaging of clusters in iron lines

near 6.7 keV. Iron line images need to be combined with temperature maps determined from
continuum observations to be maximally useful in modeling the gas distribution and its dynamics.
In combination with a hydrostatic model, mapping of the gas temperature provides a way to
measure the total mass enclosed within a particular radius; this has been used to demonstrate

that there is considerable "missing mass" in M87 (Fabficant, Lecar, and Gorenstein, 1980), that is,
nonluminous matter that contributes to the gravitational mass.

Resolving Multiple Point Sources in Crowded Fields

In several parts of the sky, bright X-ray sources become so crowded that resolving con-
fusion becomes a major aspect of any observation. Below "1 UFU, serious confusion exists

everywhere in the sky for most conventional collimators and imaging becomes essential, but
confusion is encountered at much higher flux levels in the central part of our galaxy, in the

Magellanic Clouds, and elsewhere. The role of imaging in these situations is to resolve point
sources from one another, rather than to map surface brightness.

The galactic center contains 6 X-ray sources within 1 square degree (Watson et al., 1982)
and interstellar absorption restricts observations to energies above about 3 keV. There may be
unusually frequent bursting in this region (Proctor, Skinner, and Willmore, 1978). This is also
the region where 511-keV line emission has been seen (Leventhal, MacCallum, and Stang, 1978),
and P/OF could well play a role in positioning the source of that emission through simultaneous
observations with gamma-ray instruments. P/OF can survey the galactic center region carefully,
going 2 to 3 orders of magnitude fainter than previous surveys above 4 keV.

Crowded field regions also exist in other galaxies of the Local Group. The Large
Magellanic Cloud has several sources at small angular separations, and some of them so close to

one another that hard X-ray spectral determinations without P/OF are impossible. Point sources
in M31 that were imaged with the HRI on Einstein (van Speybroeck et al., 1979) should be
accessible to P/OF in long integrations. The spectral characteristics of an ensemble of binary
sources could be determined in this way.

The number-fluxrelationships for source populations were used earlier to characterize

source accessibility, but they have a deeper significance in that the departures from N(S)"-S'a/2
(the Euclidean, isotropic case) reflect population evolution and cosmological corrections to the
Euclidean volume element. A main ambition of high-energy astrophysics has been to determine
whether and how the diffuse background resolves into discrete sources. The S"3/2 relation cannot

continue to arbitrarily low fluxes without truncation because it will diverge; hence, a turnover is
expected. At the lower end of the P/OF's energy range it should be possible to observe this

turnover in very long integrations, perhaps one or two weeks. This might be accomplished by
summing images from several shorter integrations. Faint sources seen in these long integrations
would be positioned to very high accuracy, so that their counterparts could be identified in

optical and radio wavelengths. While the turnover flux level could be reached at energies >10
keV only with unacceptable long integration time, shorter integrations would greatly advance the

statistical knowledge concerning source populations at those energies. The hard X-ray
continuation of the diffuse background problem could be addressed by modeling and extrapola-
tions but with unprecedented rigor, in much the same way as the same problem at energies
<3 keV is now treated using source counts from the Einstein Observatory.
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IV. TIMING AND SPECTROSCOPY

Let us now consider cases where timing and low-resolution spectroscopy are vital to

advancing physical understanding. These come chiefly from the accreting binary sources and
active galactic nuclei (AGN). It is natural to regard P/OF as primarily an imaging instrument,
but its design is also ideal for point-source_ spectroscopy and photometry, being superior for
these purposes to mirror instruments (for the bright sources where most work is done) by reason
of greater area and energy bandwidth, and superior to non-imaging detector arrays of comparable
area because its imaging permits clean target isolation from other sources and background varia-
tions. These assets give P/OF a data quality advantage in many practical situations.

Accreting Binary Sources

The brightest objects in the X-ray sky are compact objects accreting in binary systems.
These divide into three subclasses, according to whether the accreting component is a black hole,
neutron star, or white dwarf. Further subdivision may be made: e.g., when an accreting neutron

star has a strong magnetic field it will be a pulsar, but a weak field will give either an X-ray burst
source or one of the so-called "bulge sources," found mainly but not exclusively in the region

of the galactic bulge and which neither pulse nor burst.

Black holes are predicted by General Relativity and other gravitation theories as well.

They become luminous X-ray sources if they accrete matter from their surroundings. Several
candidates are known in our galaxy and the LMC, the best studied being Cygnus X-1. In these

objects, accreted material is provided by a binary companion. Determination of binary orbit
parameters has provided mass estimates, one type of evidence for the black hole interpretation.
(Stable neutron star configurations do not exist above _3 Mo.)

Much literature has been devoted to rapid intensity variations in black hole candidates.

These bursts have a noisy, aperiodic character, with timescales as short as a few milliseconds now
established. (See Meekins et al., 1984, which describes techniques for analyzing rapid aperiodic
variability that occurs over a wide range of timescales.) Study of these fluctuations is a good task

for P/OF in virtue of its collecting aperture and timing resolution. P/OF's broad energy range will
allow spectra of the rapid outbursts to be established for the first time.

There can be few problems in astrophysics more important than understanding black holes
and the plasma processes taking place in their vicinity; quasars and other active galactic nuclei
may represent the same phenomenon on large scales (see Rees, 1984, for a recent review of
models). It can be argued on general grounds that the rapid fluctuations must originate near the
innermost part of the accretion disk around the black hole; hence, they are the best probe of the
most extreme non-Euclidean space accessible to astronomical observation.

Generally speaking, the millisecond domain is accessible only to collecting areas > 1000
cm 2, and calls for telemetry rates of at least a few kbps and preferably more. These considera-
tions have to date limited the information gathered on fast processes, but new results from
HEAO-1 and EXOSAT plus anticipated results from ASTRO-C and XTE will make millisecond

X-ray astronomy a rich field by the time P/OF flies.

Fast processes have been in neutron stars as well as in black hole candidates. Figure 3
shows X-ray bursts from the source MXB 1728-34, with risetimes resolved using HEAO A-1. The
total collecting area, 2000 cm 2, was far smaller than the P/OF collecting area. P/OF should
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obtain much better statistics and be able to determine how the spectrum evolves during the rise

of the burst. This should test hydrodynamic calculations of burst evolution. Using EXOSAT
data, van der Klis et al. (1985) have recently reported detection of quasiperiodic oscillations at
high frequencies (several to a few tens of Hz) in GX 5-1. This new phenomenon presents obser-
vational goals again well matched to P/OF's capabilities, for essentially the same reasons as in
the black hole fluctuations and X-ray bursts.

Magnetized accreting neutron stars (binary pulsars) have had a large role in X-ray

astronomy beginning with UHURU. About 20 systems are now known, with spin periods ranging
over 4 orders of magnitude, 69 ms to 13 minutes. In most systems the spin period decreases over

time, but this spin-up is irregular, being driven by accretion torques and possibly other processes.
Variations in period and luminosity can be used to determine neutron star parameters such as the
moment of inertia or the magnetic moment. A detailed model of the accretion flow and of the
dynamic response of the neutron star to the associated torque is one goal of current work.

The source A0538-66, located in the Large Magellanic Cloud, exemplifies several points
about the demanding nature of binary X-ray pulsar observations. This source is unusual because

(1) it has the shortest spin period (69 ms) of any binary pulsar, (2) it is a "recurrent transient,"
sometimes unobservable but turning-on at periodic intervals, (3) it is not always pulsing when it
is active, and (4) by straightforward arguments, it must have the weakest magnetic field of any
binary pulsar. These facts show it has a most atypical accretion environment that will make it the
target for many future observations, surely including hard X-ray pulse phase spectroscopy. Yet
it is separated by only _30 arc min from another bright LMC source, LMC X-4; hence, gathering
the needed data will simultaneously exercise P/OF's imaging (to achieve isolation from LMC X-4),
time resolution (to handle the short spin period), and hard X-ray sensitivity.

The effects of 1012 to 1013 G magnetic fields on radiation processes have been studied
to date solely by means of hard X-ray spectral and timing measurements, i.e., by means of cyclo-

tron features seen in binary pulsars and possibly in gamma-ray bursts as well. This is likely to
remain a phenomenon uniquely accessible in hard X-rays, partly because the canonical magnetic
fields of binary pulsars place the cyclotron resonance in hard X-rays. Furthermore, if the
resonance were to occur below 10 keV in some sources, then it would be more difficult to isolate

from other spectral features such as atomic lines and absorption edges that strongly affect spectra
at lower energies. Cyclotron features have sometimes been isolated by subtracting the spectrum
obtained at one phase of the pulse cycle from that obtained at another phase (e.g., Triimper
et al., 1977). P/OF could employ imaging for background removal and provide high-quality
source spectra in all pulse phases over 2 to 120 keV. It is difficult to overstress the importance
to physics of systematics-free data on hard X-ray cyclotron resonances. These effects result from
electron transitions between energy states that are not dominated by a nuclear Coulomb field but
rather by a magnetic field 5 to 6 orders of magnitude beyond anything produced in terrestrial
laboratories. Pulsar observations should remain the principal source of data.

Active Galactic Nuclei (AGN)

Active galactic nuclei have been discussed in connection with imaging extended jets. How-
ever, most of the X-ray flux from these objects comes from compact components having
unresolved X-ray angular diameters. These cores will probably remain unresolved with P/OF,
although this is not completely certain. The compact components undergo variations that can be
as slow as months to years but which can also occur on timescales less than days (Snyder et al.,
1980; Tennant et al., 1981). P/OF can make a unique contribution to the study of such varia-
tions. The AGN are comparatively faint sources, but spectrally they are comparatively hard.
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It is important to ascertain the spectral character of these temporal variations, determining for
example how spectral indices evolve during outbursts. Obtaining several hard X-ray spectra, at
intervals of minutes to months, on relatively faint sources that sometimes must be isolated from

other nearby sources and that always must be isolated by careful removal of background varia-
tions, is a straightforward task for P/OF but one that is difficult by other means.

Such spectral/temporal data can be used to determine radiation mechanisms and ulti-
mately to study particle acceleration. A deep gravitational potential well, quite possibly con-
taining a black hole, is required to power the process. As with stellar black hole candidates, the
most rapid variations at high modulation will necessarily come from the central regions and there-
fore assist in probing the nature of the core and its energy release.

V. RELATION TO SOLAR PHYSICS AND SOLAR OBSERVATIONS

The examples from preceding sections show P/OF to be a facility of major significance for
X-ray astronomy. Limiting fluxes will be at least a factor of ten below other hard X-ray instru-
ments, and the imaging will be of unprecedented angular resolution (0.2 arc s) for high-energy
astrophysics. Spectroscopic and photometric capabilities of P/OF will also provide major con-
tributions.

P/OF's first role, however, is as a facility for solar physics. Its use for astronomical
observations carries several benefits for the solar program that should be explicitly noted.

The clearest benefit is through the X-ray observations of other stellar coronae, the only

major X-ray source class not discussed above. Such coronae are bright enough to show up among
the bright X-ray sources (Figure 2, bottom) and become quite conspicuous during stellar flares,
with peak fluxes exceeding 50 UFU in some instances (Heise et al., 1975). P/OF would be able
to observe these stellar flares to higher energies than any other instrument now planned. Detec-
tion of flares can be accomplished by an independent X-ray sky monitor such as the one planned
for XTE. P/OF will either need operational capability to respond promptly to such events or else
must conduct prolonged monitoring of a flaring source while it is active. Data would be obtained
on flares of greatly intrinsic different size scales from solar flares: emission measures for stellar
flares reach 10 s s cm-3, and luminosities reach 1032-33 erg s-1 .

The brightest flares are seen from RS Canum Venaticorum binary systems and dMe flare

stars (see Ambruster et al., 1983, for examples of each type). Fainter flares have been seen
from associations of T Tauri stars. Quiescent fluxes from some of these objects will also be
detectable, including W Ursae Majoris systems (Carroll et al., 1980). It may even be that the
imaging capability will come into play, with detection of a measurable extent to the nearest
of the RS CVn binaries. Models for the spectra of these systems require the hardest component
to have dimensions comparable to those of the binary separation. Since the binary separation of
Capella, the nearest RS CVn system, is 0.2 arc s, it is possible that a finite extent to its X-ray
component will barely be measurable, establishing the size of the corona directly.

Another benefit is that astronomical observations provide checks and calibrations on the
P]OF instrument itself. Point sources will test imaging systems, providing the best confirmation

of theoretical point-source response functions. Point response functions obtained from stellar
observations may prove important in fitting the shapes of flare emitting regions on the Sun.
Because most point sources are variable, there will be a shortage of standard candles, but the
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time-average of the Crab pulsar will represent a reasonable calibration source. Many astronomical
situations such as mapping supernova remnants or crowded source fields will exercise image recon-

struction techniques to be used on solar flares, and will give high confidence in solar results obtained
by those same methods.

Possibly the most significant benefit will be the transfer of scientific information and the

exchange of ideas that the use of one facility for solar and cosmic observations will encourage.
Certainly there is overlap between the physical problems studied in the two contexts. Particle

acceleration is a case in point, with examples coming from stellar coronae, supernova remnants,
and AGN, as well as the Sun.

Finally, one should realize that P/OF could be an intermediate engineering step toward
yet more advanced 21st century facilities that would push angular resolution down to tens of

milliarcseconds. Achievement of X-ray angular resolution in that range is not presently foreseen
for focussing X-ray instruments; hence, transform telescopes should have an ever-growing role in
X-ray imaging. The commonality of interest between astronomers and solar physicists that begins
with P/OF will extend to these subsequent facilities.
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Figure 1. Spectral sensitivity of P/OF compared with other X-ray astronomy instruments.
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Figure 2. (Lower) HEAO A-1 catalog (0.5 to 25 keV), displayed in galactic coordinates.
(Upper) HEAO A-4 catalog (13 to 120 keV) displayed in same mode.
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Figure 4. X-ray burst time profiles. Large collecting area and high-time resolution are
needed to follow spectral evolution during the rapid rise of the burst.
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TABLE 1. P/OF X-RAY INSTRUMENT PERFORMANCE SUMMARY
(FOR ASTRONOMICAL OBSERVATIONS)

Angular resolution 0.2 arc s

Field of view 1 deg

Total area 15 000 cm 2

Time resolution 1 ms

Energy range 2 to 120 keV

Sensitivity at 20 keV 10"s ct cm "2 s"1 keV "I

Sensitivity at 5 keV 0.03/tJy

Telemetry allocation 250 kbps

TABLE 2

ASTRO-C

Proportional Counter and All-Sky Monitor to Study Time Variations

1987 Launch

Proportional Counter: 5000 cm 2 ; 1 deg x 3 deg FOV
All-Sky Monitor Sensitive to 100 UFU

XTE

Proportional Counter, Scintillator, and All-Sky Monitor

1991 Launch

Proportional Counter: 10 000 cm2; 1 deg x 1 deg FOV; 2 to 60 keV
Hard X-ray: 2000 cm 2
Monitor: Sensitivity to 10 UFU in Long Integrations
Rapid Response to Transients

ROSAT

Moderate Resolution Telescope for Sky Survey

1988 Launch

X-RayTelescope: Wolter I; E < 3 keV; 500 cm 2 Limiting Area;
Angular Resolution: 3 arc s

AXAF

High.Resolution Telescope

1991 Launch

X-Ray Telescope: Wolter I; E < 8 keV; 3000 cm 2 Limiting Area; Angular
Resolution: 112 arc s within 3 arc min; 1 arc s within 1 deg

293 '



TABLE 3. NUMBER OF SOURCES IN FULL SKY
ACCESSIBLE IN 10 4 S

E (keV) Number (4_ st)

2 15000

4 12000

8 9000

16 2000

32 500

64 100
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SUBPANEL SUMMARIES

• X-RAY PHYSICS

• CORONAL PHYSICS
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X-RAY PHYSICS SUBPANEL SUMMARY

Robert P. Lin and Brian R. Dennis

The X-ray subpanel of the P/OF Workshop provided the opportunity to get input from a
broad-based scientific community, including SMM experimenters and data analysts, solar flare

theorists, and ground-based observers, on scientific and technical trade-offs involved in the X-ray
instrumentation. The basic objective was to review the strawman payload set up for the Pinhole/
Occulter Facility in the light of scientific developments of the last five years.

We began with a discussion of the spatial resolution of the X-ray system. The aspect
system appears to limit the angular resolution that could be obtained with the Fourier-transform

telescope. A knowledge of the relative pointing to "20% of the desired resolution was required
over time intervals of interest for flares. Thus, to achieve the diffraction-limit resolution of

"_0.2 9, knowledge or relative pointing to "_0.04 ";7' would be required. The "alpha" or initial
version of P/OF studied by MSFC would only provide _0.3 _ knowledge, so the angular resolu-
tion would be limited to "_1.5 "_7'. The Solar Disk Sextant - discussed as a "guide telescope"
through its precise astrometry of the solar limb - may be able to provide the accuracy needed
for solar X-ray measurements at 0.2 ,_7,. However, aspect determination at that level for cosmic
X-ray measurements would still be a problem.

Ed Fenimore and Gordon Hurford briefly described the coded-aperture and Fourier-
transform techniques, respectively. A lively discussion of these techniques ensued. It became
clear that more simulations, using model images based on SMM and radio data or on theoretical

models, are needed to help decide the trade-offs between sensitivity, image completeness, dynamic
range in the image, etc.

The subpanel generally agreed that a wide energy range, extending from a few keV to well
above 1.00 keV, was highly desirable. The Fourier-transform imager could easily be extended in

energy to "i MeV by using NaI-scintillation Anger cameras behind the xenon proportional

counters. For the coded-aperture imager, increasing the energy range to "70 keV (and improving
the energy resolution at the same time) may be possible through identification of the xenon

fluorescence X-ray. Significant additional hardware is required for both these techniques. For a
short Shuttle mission the extension to high energies may not be justified, as the likelihood of
observing a large flare is small, but for long-term observations the extension to gamma-ray energies
is scientifically very exciting.

Similar thoughts were expressed about the question of dynamic range - whether to plan
for very large flares. Observation of these large flares would probably require movable shutters

to cut down the flux. For a long-term mission, observations of these large flares would be a
prime goal.

Many SMM observers argued for a larger field of view for the Fourier-transform telescope
(presently 3 arc rain) on the grounds that SMM, with a comparable field of view, missed all
gamma-ray flares and parts of many other flares. P/OF, however, provides full Sun coverage at
"4 "_' resolution with the coded-aperture imager, but only at energies below 30 keV (70 keV if

the xenon fluorescence X-ray is identified). One suggestion was to provide a zoom capability by
changing the mask-to-detector distance so that the field of view could be matched to the size of
the active region.

297



We noted that the specifications for the X-ray instruments, as given in the P/OF

description, need updating as indicated in the following table:

X-RAY IMAGING REQUIREMENTS FOR P/OF

Coded-Aperture Fourier-Transform

Imager Imager

Angular resolution 4 arc s 0.2 arc s

Aspect knowledge
(relative) 1 arc s 0.04 arc s
(absolute) 1 arc s 1 arc s

Field of view Whole Sun (1 deg) 5 arc min (variable?)
(function of energy)

Energy range 2 to 70 keV 2 keV to 1 MeV

Energy resolution (AE/E FWHM)
at Fe s s 20% 20%
at 20 keV 10% 10%
at 100 keV - 12%
at 662 keV - 7%

Time resolution 1 ms 1 ms

Sensitive area 5000 cm 2 25 cm 2 x 100
subcollimators

298



CORONAL PHYSICS SUBPANEL SUMMARY

Richard H. Munro

The objectives of the coronal physics subpanel's discussions were to clarify the scientific
background for the instrumentation of the Pinhole]Occulter Facility. There is continuing need for
input into what we think of as the "strawman" payload, to reflect the growth of knowledge and
capabilities since the original discussions of P/OF took place. In general we find that the major

scientific objectives for the coronal instrumentation as presented in the original P]OF report
(NASA Technical Paper 2168) remain valid. There are new scientific discoveries, however,
together with an enhanced awareness of the potential capabilities of the Facility.

The SMM observations have expanded the scientific questions that the joint (X-ray and
coronal) capabilities of the Pinhole/Occulter can attack. We would now like to push the coronal
observations as close to the limb as possible; the SMM observations had intermediate resolution
and sensitivity for hard X-rays, together with simultaneous observations at ultraviolet and visible

wavelengths, and these were very productive even outside times of flare activity. Coronal flares
- weak X-ray events without a detectable chromospheric response - may be the signature of
magnetic reconnection. Pre-flare activity has been observed in bright points; are micro-flares the
same physical phenomenon as the bright-point flares? Is it possible to resolve type III bursts with
both kinds of instrumentation? Combining the high-resolution X-ray observations with the range
of plasma diagnostics provided by the coronal instruments might provide the first direct astro-
physical observations of magnetic reconnection.

It is not clear whether the physical properties of the coronal plasma are controlled by a

continuous interaction with a non-radiative energy flux generated by sub-photospheric convection,
or by a continuum of dynamic "explosive" phenomena such as spicules, macro-spicules, "coronal
bullets," micro-flares, magnetic-field reconnection, etc. There are suggestions that bright points
are heated by a sequence of minor stochastic events; this concept might extend to major active
regions too, with present low-resolution observations simply integrating over a number of
individual discrete energy releases. In either case, there is great need for observations that can

diagnose the physical characteristics of these non-equilibrium plasmas. Because hard X-ray obser-
vations preferentially probe the tail of the electron energy distribution, complementary coronal
measurements are required to determine the core of the distribution. This is most easily accom-
plished by observing line emission, where the production mechanism is more tightly coupled to
the majority of the electrons. The specification of the pre-event conditions and the physical
parameters of the flare environment would lead to a far deeper understanding of these energetic
processes.

The determination of the direction and strength of the magnetic field as it expands into
the corona has always been a major goal of solar observations. Both technical and theoretical

difficulties have hampered this effort. The accurate specification of the polarization properties
of emission and absorption lines has been compromised by stray-light and seeing. From the
P/OF vantage point, polarimetry with high-spatial resolution might provide the key knowledge
necessary to track the extension of the solar magnetic field into the corona.

Major technical concerns regarding the Facility still remain. If the instruments are to
perform at the 1 arc s level under the current P]OF design, then each instrument must have some

form of active image compensation to negate the imposed motion of the detector plane as it
keeps the occulter steady. While X-ray detectors can time-tag single photon events, the flux in
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the EUV and visible is normally too great for this to be done; one solution is to degrade the
spatial resolution, but this has obvious disadvantages both in the absolute sense and for compari-
son with the high-resolution X-ray data. The use of array detectors without internal active image
compression requires substantial data rates to produce a series of weakly exposed images to
"freeze" the motion of P/OF. This then puts a strain on post-observation data processing to align
the images for reconstruction to a suitable signal-to-noise level.

Another substantial technical problem, more difficult with P/OF than with the previous
intermediate-resolution observations, is the angular co-alignment of X-ray and coronal observa-
tions. This problem may be more difficult still if the coronal instruments use some form of
active optical compensation.
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WORKSHOP SUMMARY

Hugh S. Hudson
UCSD

and

Einar Tandberg-Hanssen
NASA Marshall Space Flight Center

We desired most strongly at this Workshop to have an effective interaction between active

developments in research - observational, analytical, theoretical - with the prospects for instru-
mentation on the Pinhole/Occulter Facility. The best avenue for this interaction was the commu-

nication among the participants who eminently represented these different perspectives. However,
we also prepared a list of topics or questions to deal with, and requested that the subpanels in
particular pay attention to these items. The following represents our view of the Workshop con-
census response to these challenges.

1. Is the present P/OF science emphasis valid in the light of new developments?

Several new developments have taken place, as discussed above in the scientific papers and
in the subpanel reports. Given the long delay between "strawman payload" identification - as early
as 1979 - and actual implementation of P/OF - not before 1989 - it is rather obvious that
changes have been taking place.

In the coronal area, the exploitation of P/OF's capability for observations near the limb
now seems scientifically very exciting. This argues for a large separation between occulter and

telescope: the longer this baseline, the closer to the limb one can view. Exploiting separations
of 30 to 50 m seems entirely feasible from a technical point of view.

For high-energy observations, the basic difference in perception of P/OF goals seems to be
in terms of energy range. The excellent T-ray observations from SMM strongly impel us towards
an imaging capability for high energies; the interesting coronal soft X-ray observations also from
SMM simultaneously drive us towards lower energies. One can therefore anticipate that new kinds
of high-energy instrumentation, not now represented in the strawman payload, will be proposed
to use the Pinhole/Occulter Facility.

2. What programs are appropriate for P/OF deployment?

The basic idea of P/OF, the use of a long separation between an occulter and a detector,
will work well in many applications. Our development to date has been for a Spacelab facility,
analogous to the multi-telescope spar deployed from the Space Shuttle for the solar instruments
of Spacelab 2 or for the comet observations (the Astro mission) of Spacelabs 4, 5, and 6. Such
a facility would evolve in a natural way towards use in a solar observatory (the Advanced Solar

Observatory) installed in a manned space station in the 1990's. With these large facilities, we
could realize P/OF's promise of very high angular resolution.

On the other hand, smaller-scale opportunities may also be available. In a P/OF-like
instrument installed on the MMS spacecraft now carrying SMM, for example, one could have a
boom of 6 to 7 m length. While this would not give sub-arcsecond capability, it would still give
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us a chance to make substantial improvements. The concensus of the Workshop was that
although all opportunities for obtaining scientific observations should be followed up as ener-
getically as possible, the ultimate goal remains the establishment of a true Pinhole/Occulter
Facility using as long a baseline separation as is practical from an engineering point of view.

3. How do the present P/OF program and the strawman payload need to be altered in the
presence of new data or second thoughts?

We have mentioned programmatic concerns above. Regarding the strawman payload, there
is no doubt as to its incompleteness, but this is the nature of the "strawman payload" procedure.
Below we give examples of new "detector plane" instruments that have been suggested since the
strawman payload was created, and which would be likely to be proposed in response to an

Announcement of Opportunity for facility use.

4. Are there good suggestions for new experiments that would use the Facility?

We have identified in the high-energy area the possibility of v-ray and neutron imaging,
soft X-ray imaging, and a concept for an X-ray emission-line imager with moderate (few arc s)
angular resolution. In the coronal domain, the most powerful augmentation of P/OF scientific
goals probably would not come from P/OF instruments beyond those in the strawman payload,
but instead from coordinated instruments (see below).

5. What are the best coordinated experiments (including ground-based) to accompany
P/OF?

As a general statement, P/OF as a facility needs to coordinate its observations with both
wide field-of-view experiments and specialized forms of intermediate solar instrumentation. Simul-

taneous observation with SOT would be wonderful, both for high-resolution disk observations in
comparison with the X-ray images from P/OF, and also near-limb observations for support of the
coronal imaging. The same considerations apply to successful modern ground-based observations,
such as those from a large optical telescope, a Stokes polarimeter capability, or other magneto-
graphic system. The most powerful use of P/OF would certainly be as part of the Advanced
Solar Observatory, in which second-generation solar space instrumentation could be brought to
bear on a variety of oroblems through coordinated observing and analysis.

6. What developments of P/OF would we like to see for the year 2010?

The detector-plane and focal-plane instrumentation capability will certainly evolve, and
P/OF should be able to keep pace with these developments. The Facility itself will inevitably
appear to be too small or in the wrong place by this time - the Space Station should be

approaching its third decade of use, for example, and the Advanced Solar Observatory may have
long since been built, used, updated, and then installed on its own free-flying platform. A free-
flying occulter is a natural extension of the P/OF concept, which would lead to much better
angular resolution again if so desired.

In concluding these comments, and with them the proceedings of the Workshop, we would
like again to thank all of those associated with planning for the Pinhole/Occulter Facility. The
ideas presented here confirm the vitality of the scientific domain of P/OF, and the Facility itself
has shown an ability to evolve even before its first implementation takes place. This is a healthy
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sign, because space research programs often take so long a time to mature as to make initial

concepts obsolete. We do not think that this will happen with the P/OF principle, which in one
form or another is likely to become a prominent feature in future astrophysical investigations at
the highest resolution.
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