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ABSTRACT

In the optimal linear quadratic regulator problem for finite dimensional
systems, the method known as an a-shift can be used to produce a closed-loop system
whose spectrum lies to the left of some specified vertical line; that is, a closed-
loop system with a prescribed degree of stability. This paper treats the extension
of the a-shift to hereditary systems. As in finite dimensions, the shift can be
accomplished by adding o times the identity to the open-loop semigroup generator and
then solving an optimal regulator problem. However, this approach does not work
with a new approximation scheme for hereditary control problems recently developed
by Kappel and Salamon. Since this scheme is among the best to date for the
numerical solution of the linear regulator problem for hereditary systems, an
alternative method for shifting the closed-loop spectrum is needed. An a-shift
technique that can be used with the Kappel-Salamon approximation scheme is
developed. Both the continuous~time and discrete-time problems are considered. A
numerical example which demonstrates the feasibility of the method is included.
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1. INTRODUCTION

In this paper we consider the problem of computing optimal linear state
feedback control laws for linear hereditary systems which yield a resulting
optimal state trajectory that exhibits a prescribed degree of stability. This
problem is sometimes referred to as the linear quadratic regulator problem
with a-shift, a being the desired degree of stability, since it involves a
linear state constraint, the minimization of a quadratic payoff functional and
the shifting of the closed-loop spectrum to the left of the line Re z = =& in

the complex z-plane. A solution is a control law of the form
* * %
(1.1)  u(t) = K(x (t), x.), t3>0

*
where K is a linear function of the optimal trajectory x (t) and its past
* * *, %
history X, at time t, x = x (u ) is the solution to the underlying hereditary
*
system, u minimizes a performance index which is quadratic in the state and

*
the control and x satisfies a uniform exponential bound of the form
* -t
(1.2) |x ()] < Me ", t>0.
These ideas will be made precise in the subsequent Section 2.
In finite dimensions, i.e. when the state is given by a linear ordinary
differential equation of the form

(1.3) x(t) = Ax(t) + Bu(t), t >0,

the linear quadratic regulator problem with a-shift and its solution are well

known (see [1], [2]). The matrix A is simply replaced by the matrix



A + al and the resulting standard linear quadratic regulator problem (the
shifted problem) is solved in the usual fashion.

A hereditary system, on the other hand, is infinite dimensional. In-
stead of the matrix A being replaced by A + aI, it is the infinitesimal
generator A of the solution semigroup which is replaced by A+ aI. The
solution of the resulting shifted regulator problem requires the use of some
form of finite dimensional approximation. One is tempted to take the general
approach which by now has become standard in the control of infinite
dimensional or distributed systems. That is, approximate the unshifted system
using one of the currently available schemes for the regulator problem for
hereditary systems and then apply the standard finite dimensional theory and
techniques to the finite dimensional approximating systems to obtain
approximations to the shifted system. However, as we discovered, this
approach may not work.

The linear spline-based approximation scheme for the linear quadratic
regulator problem for hereditary systems recently developed by Kappel and
Salamon in [14] has been shown to be, in many respects, one of the most
attractive approximation methods currently available for this class of
problems. However, the finite dimensional approximating systems possess
eigenvalues which do not converge to eigenvalues of the original underlying
hereditary system. Those eigenvalues are stable and hence do not cause
difficulties when the unshifted problems are solved. However, they are
extremely difficult, if not impossible to shift. Consequently, even if the
poles of the hereditary system which are to the right of the line Re z = —a in
the complex z-plane can be shifted (i.e. the finite dimensional subspace
spanned by the eigenvectors corresponding to the eigenvalues with real part

greater than or equal to —o 1is controllable), when the a-shift is



applied to the approximating systems the solution of the resulting finite
dimensional regulator problems fail.

We have found a relatively simple and straight forward way to overcome
this difficulty. It involves a modification of the infinite dimensional
shifted system which permits the extraneous elgenvalues introduced by the
approximation to remain stable while the true eigenvalues of the hereditary
system are forced to the left of the line Re z = —a.

In the paper we have treated both the continuous—time and the discrete—
time or sampled problems. The Kappel-Salamon approximation and the o—~shift
are discussed in Section 3. In Section 4 we provide an example with numerical

results.



2. THE OPTIMAL LINEAR QUADRATIC REGULATOR PROBLEM FOR HEREDITARY SYSTEMS WITH

A PRESCRIBED DEGREE OF STABILITY

We consider linear hereditary control systems of the form

(2.1) x(t) = th + Bou(t), t>0,

(2.2) x(0)

1]
3
-
»
o
]
©
-

where x(t) € R" , UE€ L2(0,tf;Rm) for each te with 0 < tf o

Bye L@,E"), ner", ¢¢ L,(-r,03R") and for each t > 0,

xt € L2(—r,0;Rn) denotes the past history of the state x on the interval
[t-r, t]. That is, Xt(e) = x(t+¥9), -r < 6 < 0., The linear transformation L

is assumed to be of the form
v 0 ’
(2.3) W= ] AVGT) +[__A®W(8)d®
i=0

with A e LR™,R™), 1 = 0,1,2,.0.,9, (v <®), Ac L,(-r,0; LR",R")) and
0= r, < ry < ry < r, = r.

Standard arguments yield the existence of a unique solution =x( ; n,$,u) to
(2.1), (2.2) which is absolutely continuous with x( ; n,b,u) € LZ(O,tf;Rn)
for any te, 0 < tf < ®, which satisfies (2.1) for almost every t 2 0 and which
depends continuously on n,$, and u.

A one parameter family of solution operators for the homogeneous system

corresponding to (2.1), (2.2) can be defined by

(204) T(t)(n:¢) = (X(t;n,¢,0), Xt(n’¢,0))~



If we let Z = Rn X L2(—r,0;Rn) together with the usual inner product

(2.5)  <E0),(@,x)>, = 87T + [ w(©) x(®)ao,

then the family of operators, { T(t) : t > 0} forms a Cop semigroup of bounded

linear operators on the Hilbert space Z. The infinitesimal generator is given

by
Dom(A) = {(E,9) & Z & ¥ & 1 (-r,0;R™), & = ¥(0)}
(2.6) A@W(0),¥) = (Lb,DY) .
If we define the operator B: R" + Z by
(2.7) Bu = (Byu,0)

then an equivalence exists between solutions to (2.1), (2.2) and mild or

generalized solutions to the abstract evolution equation
(2.8) z(t) =Az(t) + Bu(t), t> 0

with initial condition

(2.9) z(0) = (n,$) .

That is, z(t) = (x(t;n,pu), xt(n,¢,u)), where



t
(2.10)  z(t) = T()(n,0) + [ T(t-s) Bu(s)ds, t >0 .
In the subsequent discussion, when the solution to the system (2.8), (2.9) is
referred to, it should be understood to imply the mild solution given by

(2.10).

2.1 THE CONTINUOUS-TIME PROBLEM
The control problem which is of interest to us here is the infinite time

horizon linear quadratic regulator (LQR) problem given by
*
Find u ¢ LZ(O,“;Rm) which minimizes the performance index
0
T T
(2.11)  J(uw) = [ x(£)"Qyx(t) + u(t) Ru(t)dt
0
where x is the solution to (2.1), (2.2) corresponding to u.
The matrix Qo € L(Rn,Rn) is assumed to be nonnegative, symmetric and the
matrix R € L(Rm,Rm) is assumed to be positive definite, symmetric.
Defining the nonnegative, symmetric operator Q : Z >+ Z by
(2.12) Q(£,¢) = (QOE ,0),
we treat the equivalent LQR problem given by

*
(P1) Find u € L,(0,%;R") which minimizes

(2.13) J(u) = [ <Qz(t),z(t)>, + ult) Ru(t)de
0



where z is the solution to (2.8), (2.9) corresponding to u.

We summarize the results from [7] concerning the solution of problem
(P1). An admissible control for the initial state z(0) = (n,$) € Z is a

function u € L2(0,w;Rm) for which J(u) < ®. Under the assumptions

(A1) for each initial state, z(0) = (n,¢) € Z there exists an admissible
control,

and

(B1) the operators L, B, and Q0 are such that any admissible control u

drives the state z(t), t > 0 to zero, asymptotically as t + @ ,

there exists a unique nonnegative, self-adjoint solution P e L(Z,Z) to the

Riccati algebraic equation
% -1 _*
(2.14) AP+PA-PBR B P+ Q= 0.

* .
The unique solution u € LZ(O,m;Rm) to problem (Pl) is given in feedback form

by
* -1 % _ %
(2.15) u (t) = -R ° B Pz (t), t> 0
and
(2.16) Iy = < PM,8), (0,605,

*
The optimal trajectory, z , is given by



*
(2.17) z (t) =S(t)(n,¢)
where (S(t) : t > 0} is the Cop semigroup generated by A- sr718%*p, The

semigroup (S(t) : t » 0} is uniformly exponentially stable, i.e. there exist

positive constants M and w for which
(2.18) Is(e)] < Me™t, t>o0.
The operator A* is given by

*
Dom(A") ={(¢E,9y)e Z : Y ¢ L2(-r,O;Rn),w absolutely
continuous on [-r,0] except at the points TTyseees T,

where w((-ri)+)—¢((—ri)_) = AEE, 1<1i1<v-1

and y(-r) = AEE} R
(2.19) A*E ) = (A% +v(0), ATE - D)
and is the infinitesimal generator of the CO semigroup {T*(t) : t > 0}.

We have P Z & Dom (A*).

The operator P can be represented by a matrix of operators

(2.20) P =

0
where P 0 € L(Rn,R“) is a nonnegative symmetric matrix,



*
pl0 ¢ L, (-r,0; L&™,RY), P01 = pl0 wien

0
2210 P = [ PP@NEI®, ¥ e Ly(-r,0RY,

r
and Pll € L(Lz(—r,O;Rn),L (-r,O;Rn)) is nonnegative and self-adjoint. We
have

0

(2.22) W) = - px (@) - [ plex e, >0
“r

-1_T 00 1

where po =R B, P~ and pl(e) =R Bg PIO(O)T, -r < 6 <0,
We note that Assumption (Al) is satisfied if the unstable subspace of L
(which is finite dimensional, see [9], [23]) is controllable. Assumption (Bl)

is certainly satisfied 1f Q; is positive definite.
The Continuous-Time Problem with a-Shift

An a-shift, we recall, is a technique which 1is used in conjuction with
the standard LQR theory to obtain an optimal feedback control which yields not
just an asymptotically stable closed-loop system, but rather, one which
exhibits a prescribed degree of stability. that is, one for which the state
z(t) decays at least as fast as e_at, i.e.

(2.23) l2(0)], < M 2],
where M 1is a positive constant and @ > 0 is the desired degree of stability.

For the hereditary systems of interest to us here, this is completely



-10-

equivalent to requiring that the eigenvalues of the closed-loop system have
real part less than —a. A discussion of this problm and its solution for
finite dimensional systems first appeared in [1] and can also be found in [2].

One approach to solving this problem involves the inclusion of the
multiplicative factor e2at under the integral sign in the performance iandex
given in (2.13). However, making the change of variables

at

e z(t)

(2.24) 2(t)

(2.25) alt) = e*Fu(e)

it is easily seen that if one solves the modified LQR problem

A

(rl) Find u € L2(O,m;Rm) which minimizes

(2.26) T (w) Zn <Qz(1),2(£)>, + u(e)Ra(e)dt
where z is the (mild) solution to the abstract evolution system
(2.27) & 2(e) = (A+aDz(r) +BuCr), t> 0
(2.28) 20) = (n,9)
and applies

-t

* *
(2.29) ua(t) =e u (t), t> 0

to the original control system (2.8), (2.9), the resulting optimal trajectory,
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z:, will satisfy (2.23).

Strictly speaking (2.27), (2.28) is not a hereditary system. However,
the results outlined above concerning the solution of problem (P1l) in closed-
loop form are in fact derived from a more general abstract theory (see [6]).
This more general theory can be applied directly to problem (;1). Under
assumptions (Al) and (Bl) (with z, u, and J replaced by

z, u and J respectively) the unique solution to problem (Pl) is given in

state feedback form by
(2.30) u = =-R "B Pz (t), t> 0

where P € L(Z,Z) is the unique nonnegative self-adjoint solution to the

*
Riccati algebraic equation (2.14) withA and A" replaced by A + oI and

-~

*
A + oI respectively. The operator P can be represented by a matrix of
operators analogous to the one given in (2.20). From (2.24) and (2.29) we

obtain
% -1 %~ %

(2.31) ua(t) =-R "B P za(t), t>0.
It then follows that

*
(2.32) za(t) =S (t)Y(n,9), t>0

(v}

with

(2.33) s, (e)] < et t>o0
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where {Sa(t) : t > 0} 1is the Co semigroup generated by A- BR_1 l; ; .

Since the shifted system (2.27) is not a hereditary system, it would seem
that to obtain the estimate (2.33) from the general theory presented in [6],
the coercivity of Q would be required. (In the case of a hereditary system,
assumption (Bl) is sufficient.) However, as will become clear in the next
section, (2.27) is in fact related to a heredipary system through a bounded
similarity transformation. Consequenly, assumption (Bl) is sufficient to
obtain the uniform exponential bound (2.33) for the shifted system as well.

The controllability of the finite dimensional generalized eigenspaces
corresponding to the eigenvalues of A with real part greater than or equal to

—a 1is sufficent to conclude that assumption (Al) holds for the shifted system.

2.2 THE DISCRETE-TIME PROBLEM

The discrete-time or sampled analog of problem (Pl) is given by

(P2) Find u = {uk}k=0 € 22(0,m;R ) which minimizes
i T
(2.34) J(u) = jZ=O<sz,zj>z + ujRuj where z = {zk}k=0 satisfies the recurrence
(2.35) Zk+l = Tzk + Buk, k = 0,1,2’.00,
with
(2-36) ZO = (n ,¢)‘

The operators T € L(Z,Z) and B ¢ L(Rm;Z) are defined by
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(2.37) T =T(t) and B = jg T(s) Bds,

respectively, where T denotes the length of the sampling interval.
The characterization of the solution to the discrete-time LQR
state feedback form for infinite dimensional systems is treated in
[24]. Ihe application of the general theory to problems involving
systems is discussed in [8]. The results are completely analogous
given above for the continuous—-time problem. We briefly summarize
An admissible control sequence u € 22(0,“;Rm) for the initial

= (n,$) € Z is onebfor which J(u) < ®. If the assumptions

20

(A2) for each initial condition zZg = (n,$) € Z there exists an

control

and

problem in
[18] and
hereditary
to those
them here.

condition

admissible

(B2) the operators L, B, and QO are such that if u is an admissible

control for the initial condition z

z = {zkr;go given by (2.35) satisfies ti: Izklz =0

hold, then there exists a unique solution to problem (P2) which is

linear state feedback form by

*

k k £ k=0,1,2,...

where

0= (n,$) then the state

given in
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~ - *

(2.39) F =R BT,
-~ *

(2.40) R =R+ B PB

and P is the unique nonnegative self-adjoint solution to the Riccati algebraic

equation
* k=] %
(2.41) P=T (P -PB(R+BPB) BP)T+2Q.
The minimum value of the performance index can be computed from
*
(2.42) J(u) = <e(M,4),(,8)>,

*
and the optimal trajectory z satisfies

*

k
L =5 (M), k=0,1,2,...

(2.43) z
where S € L(Z,Z) is given by

(2.44) S = T-BF .

We also have the following result.

Theorem 2.1 1If assumptions (A2) and (B2) hold then the operator S has

spectral radius less than 1 and there exist positive constants M and p with

p <1 for which
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(2.45) |sk| < Mpk, k= 0,1,2,¢0.

Proof

Since {T (t) : t > 0} is the solution semigroup for the hereditary system
(2.8) and the operator BF is of finite rank, the operators sk = (T - BF)k are
compact for all k sufficiently large. It follows therefore (see [5], Chapter
VII, Section 4, Theorem 6) that the spectrumn of S, 0(S), contains at most a
countable number of points with no accumulation points in the complex plane
except possibly A = 0. The non-zero elements in o(S) are in the point
spectrum of S; that is, they are eigenvalues of S.

Now suppose A € 0(S), A # 0 and S(§,¥) = A(E,¥) with (E,p) # 0. 1If
£ # 0, then for zg = (E,¥) the optimal trajectory is

*

L= sfew =2 e, k=0,1,2,.. .

(2.46) z

Consequently assumption (B2) implies A < 1. If & = 0 and

(0,y) ¢ N(F), the null space‘of F, then z, = (0,¥) implies

(2.47)  u = —Fz. = Fs50,¥) = AF(0,¥), k= 0,1,2,...

k k
*
Since u € 22(0,N;Rm), (2.47) implies A < 1. Finally, if (0,y) € N(F), then

(2.48) A(0,9) = 8(0,9) = T(0,¥) = (x(730,¥,0), x_(0,¥,0))

which implies ¥ = O and consequently that A ¢ o(S).
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Therefore, we conclude that the spectral radius of S is less than 1 and
that |Sk| < pk for all k sufficiently large for some positive p < 1. The

uniform exponential bound (2.45) immediately follows.

The operator F € L(Z,Rm) can be represented by a matrix of operators,
(FO,FI) where FO € L(Rn,Rm) can be represented by an mxn matrix fo and
Fl € L(L2(~r,0;Rn),Rm) can be represented by a square integrable mXn matrix

valued function fl defined on the interval [-r,0]. We have

(2.49)  uy = % Ga) - [0 ehorxy 00, K = 0,1,2,...

*

* *
with (x (kt), xkr) =2y

k=0,1,2,000 &

The Discrete-Time Problem with a-Shift
The shifted problem in discrete-time involves the finding of an optimal

* *
control u, for which the resulting optimal trajectory z, satisfies

- .
(2.50) Iza’kl < Meo, k=0,1,2,...

where a, the prescribed degree of stability is a positive number less than 1.

modified discrete-time problem (analogous to problem (P1)) takes the form

~

~ *
(P2) Find u ¢ 22(0,W;Rm) which minimizes

~

The

L]
(2.51) J(u) = LQz,,z.>, + u?Ru. where z = {z,}, . satisfles the recurrence
j’“j’z j o3 k” k=0

3=0

~

(2.52) z

| 1
—;Tzk+EBu

~

k=0,1’2’...

k+l k?
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)

(2.53) zy = m,$)

Assumptions analogous to (A2) and (B2) yield

(2.54) u, = = Fz

k k . k=0,1,2,'..

where F is given by (2.39) - (2.41) with T and B replaced by

éT and é'B respectively. It follows that

* Ak
(2.55) u = -Fz

2,k e KT 002

with the optimal trajectory given by
* k
(2.56) Za,k = Sa(n,¢), k=0,1,2,...
where Sa e [(Z,2) is defined by
(2.57) Sa =T - BF .

The operator Sa has spectral radius less than 1 and 1is uniformly exponentially

bounded;

(2.58) 55l < wa®, K =0,1,2,..

-

where M is a positive constant which does not depend on k.
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3. APPROXIMATION

The infinite dimensionality of problems (P1l) (or (;1)) and (P2)

(or (EZ)) necessitates the use of some form of finite dimensional
approximation to solve them. The standard approach involves the use of finite
element (Rayleigh-Ritz, Galerkin, etc.) techniques to discretize the state
equations (2.8) (or (2.27)) and (2.35) (or (2.52)). A sequence of finite
dimensional LQR problems result, each of which can be solved in linear state
feedback form using standard techniques and readily available software. The
averaging , or AVE scheme, which uses plecewise constant elements with finite
differencing, and its application to the continuous time problem is carefully
studied in [7]. A linear spline based Galerkin method is treated in [4].
More recently, methods using piecewise linear elements [21] and Legendre
polynomials [13] and a method based upon Lanczos' T-method for partial
differential equations which also uses Legendre polynomials [12] have yielded
promising results.

While AVE yields strong L, convergence of the approximating feedback
kernals, the observed rate of convergence is relatively slow. The spline
based scheme, by some measures, offers superior performance. However, it
appears that only weak L, convergence of the approximating feedback kernals
can be obtained. Kappel and Salamon [14] have developed a new linear spline
based method which performs at the level of the original spline scheme and
which seems to yield strong L, convergence of the approximating functional
feedback gains. It is this approximation scheme which is the focus of our

discussions below.
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3.1 AN APPROXIMATION SCHEME FOR LINEAR HEREDITARY SYSTEMS

We briefly outline the details of the formulation of the Kappel-Salamon
scheme. Fundamental to their approach (and unlike the standard Galerkin
approéch) is the choosing of the approximating spaces so that they are not
subspaces of either Dom(A) or Dom(A*). Herein lies the key to obtaining
strong L, convergence of the approximating feedback kernals.

For each N = 1,2,... let

. Ar
3.1y  ekdo 3K =12 v, §=0,1,2,00.,N
hd N k-1 J N ? 94geeeyy ] LRl Bl ] L ]
where
(3.2) Ark= rk— rk_l, k = 1,2,000,\) .

Let {¢k’J}N_ denote the usual linear B-spline elements with respect to the
N =0

k,N ek’o} on the interval [-rk, —rk—l)’ k=1,2,...N and extended

mesh {SN TR

to be zero elsewhere on the interval [-r,0]. That is for each k = 1,2,...,N

AN ® - ek,l)’ 6 ¢ [ek,l’ ek,O)
k,0 A rk N N N
0 elsewhere
-N - k,j-1 k,j gk,j-1
R OOy ) Se 0yey T
k,j - N _ _ gksitl k,itl jk,j
(3.3) ORI ol R I U

0 elsewhere
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j = 1,2,...,N—1 and

-~ _ . _ .kN-1 KN k,N-1
- ar (& =8y )s 6e 8y , Ox ]
oy ) =
0 elsewhere .

Defining

0 _ k,j _ k,j
(3.4) ey = (I,,0) and e’ = (0, 6”7 1)
in RPN LZ(_r,o;Rnxn) where I denotes the nxn identity matrix, we let

\V N
0 K, 3
(3.5)  zZy = L) € 22 E) = ey ay + § L ey Jak,J" ags 3 5 € R'}.
k=1 j=0 >3

K
The collection {eg, eN’J} is a basis for the Ky = n((N+1)v + 1) dimensional

T
subspace of Z, Zy and a = (ao, al,O”"’av,N) is referred to as the
0 .
coordinate vector with respect to the basis {eN, eS’J} for the element

(E,v ) ¢ Zy» Defining

0 1,0 v,N

(3.6) E. = (eN,eN seeesey ),

we have (E,¢N) = Ega.

Let Pyt Z + ZN denote the orthogonal projection of Z onto Zye It is

immediately clear that pN(E,w) = (E,wNw) where "N is the orthogonal projection

k,j

of L2(—r,O;Rn) onto span{¢N

I} .
n
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Noting that ZN ¢ Dom(A), approximations AN:

defined by first extending A to all of

>
ZN ZN

Zye for (€,¢N) e Zy» define

to the operator A are

(3.7) A APN) = (L(§ ,‘PN),D(E ,IPN))
where

o \’ 0
(3.8) L(E,¥)) = A + ) Ay T + / A(8), (8)d0

k=1 -r

and

° + \)il
(3.9) D(E,. ) =Dy + 8 (§ - lim y (8)) + 8. (Y. (-r, ) = 1im $ (8))

N N 0 920~ N -y KON Tk 6+—r; N

with 51 the Dirac delta impulse centered at -r

derivative from the right of wN .

R

Let MN € L(R 7, R ) be given by
(3.10) My = <ELLE >,
and define 6§’+, 6§, € L(Rn,ZN) by
(3.11) 6§’+€ = ENY;;’+€, k =
(3.12) 5;""%; = ENYIE;’ £, K =

where

+
i, i = 0’1,2,0-0\,—1 and D q)N the

=1,2,.00,v,

= 0,1,2,0.0,\)-1 9
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k,+

-1 1
(3.13) S R R R C RS I

- -1
(3.14) v =y 0, 1n %), 0, 1tm 60 NenT w1
6> —p B> mp N n
T r
k k
and & denotes the Kronecker product. The approximating operators

AN : ZN > ZN and their adjoints are given by

(L0 ),m D) + 807 (€ = Lim_ 4,(8))

(3.15) A (E,p)
NYTN 640

\)il k.=
+ 6.7 (Wo(-r ) - 1lim _ ¢ (6))
k=1 N N k 9+—r; N

and

' * T T +
(3:16)  AyEs0) = ( Lin_ 4,0) + AgE, my(AE - Dy)

v=-1
k,+ , T _ _
+ k£1 e (A8 + lim _ LM ORI ¢ r,))

9*—rk

+ 6N (Avg wN( r))
respectively.

3.2 THE APPROXIMATE SOLUTION OF THE REQULATOR PROBLEMS

The Continuous-Time Problem

(3.17) B, =p,B|, =B
N N ZN ZN

and
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(3.18) Qe = Pel, =2l

N N ZN ZN
and assume that problem (P1l) with A,B, Q and (n,$) replaced by Av» By U
and pN(n,¢) satisfies assumptions analogous to (Al) and (Bl). (Under certain
conditions, if the original system satisfies (Al) and (Bl) so too will the
approximating systems if N is sufficiently large, see [14].) The

approximating solutions to problem (Pl) are then given in feedback form by
3 * 1BEP poar >0
(3.19) uN(t) = =R N P pNzN(t), t

where PN is the unique nonnegative self-adjoint solution to the Riccati

algebraic equation

* -1 *
(3.20) AN PN + PN'AN + PN BN R BN PN + QN =0

*

and Zy is given by

(3.21)  zg(e) =S8N ,8), £3 0

where LSN(t) : t > 0} is the C semigroup with infinitesimal generator
-1 _ %

A -BR BNPNPN'

In practice, the approximating feedback gains are computed by solving the

Ky dimensional matrix Riccati algebraic equation

(3.22)  [AgIMy + MfA] + T [B IR ' [By1 M + @y = O
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where brackets denote the operator's matrix representation with respect to the

basis {eg s eg’J} and the matrix I, is given by

N
Then, if we write
0
PN
1,0
PN’
(3.24) Pyl = Py
v,N-1
PN
V,N
PN’

where Pg and Pg’j » k=1,2,.00,v, j =0,1,2,...,N are nxn matrices, we have

(3.25) ug(e) = pp xg(e) =[O plE)e (@8, t > 0

with
0  _-1.T 0 1 v T ki kg

(3.26) pg =R B, Po ,p.®)=3 ¥ R B.PI Iy, -r<eo<o0
N 0N Py k=1 320 o'n N

and (x;(t),(x;)t) - z;(t), £>0 .
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The Discrete-Time Problem

For the discrete-time problem, we let

T
(3.27) Ty =Ty(t) and B = jo T(t) Byde

where BN is given by (3.17) and {TN(C) : t > 0} is the CO semigroup with

infinitesimal generator,AN- The approximating solutions to problem (P2) are

then given in feedback form by

* *
(3028) uN,k. = - FNpNzN,k’ k = 0,1,2’-.0
where
(3.29) F.=R_.BPT

N N 'N'N'N

(3.30) R

]

*
N TR BBy

Py 1is the unique, nonnegative, self-adjoint

equation

solution to the Riccati algebraic

* % -1 %
(3.31) PN = TN (PN - PNBN(R + BNPNBN) BN PN)TN + QN

*
and Zy is given by

(3.32) zN’

* L= N M,4), Kk =0,1,2,...
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with

(3.33) S =T - BF,P_.

The approximating feedback kernals can be computed from

~ -1 T
(3.34) [Fgl = Ryl [B 1T (T,]

and

(3.35) Ryl = R + [BN]TI‘N[BN]
where
(3.36) [1y] = exp ([AglT), [Bg) = [ exp(lA ]e)(Byldt

and FN is the unique nonnetative symmetric solution to the KN dimensional

matrix Riccati algebraic equation
_ T T )-1 T
(3.37) FN = [TN] (FN PN[BN](R + [BN] PN[BN] [BN] PN[TN] + [QN] .

If we set

-1 0 1,0 v,N
(3.38) [F iy = (Fy , F

N ’ N ’...’FN )

0 .
where FN and Fg’J sy k=1,2,000,v, § =0,1,2,...,N are mXn matrices, we have
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* 0 * 0 1 o * o
(3.39)  ug = —fy x(ko) - [2, £ (x), (8)d8, k= 0,1,2,...
with
v N
0_.0 1 ki k,i
(3.40) £y = Fy » £40) = k2=1 j§:—-0 Py 3 05030), —r<e <o

and (x;(kT), (x;)kr) - z;’k, k=0,1,2,000 .

3.3 CONVERGENCE

The Continuous-Time Problem

Elementary approximation properties of spline functions and the Trotter-
Kato Theorem on the approximation of semigroups (stability together with

consistency imply convergence, see [15], [20]) can be used to argue that
* *
(3.41) TN(t) + T(t) and TN(t) +T7T(t), t>0

strongly on Z as N+ ® | uniformly in t for t in bounded sub-intervals, where
% *
{TN(t) : £ > 0} and {T (t) : t > O} are the C, semigroups with infinitesimal
% *
generators AN and A respectively. Observing (numerically) that |PN] is

bounded in N, it follows (see [7], Theorem 6.7) that Py converges weakly to P

mXn

0 0 1
as N » ® and consequently that PN'+ P 1in R and )

1
N + ) weakly in

LZ(—rO; Rmxn) as N+ o , To obtain strong convergence of PN to P and strong

1, the only known result (see [7], Theorem 6.9)

L, convergence of Pé to P
requires the existence of positive constants M and w, independent of N, for

which
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(3.42) IgN(t)l < Me_wt, t>0, N>1

where { SN(t) : t 2> 0} is the Cy semigroup with infinitesimal generator

1 -1 *
A, = B,R By P

N While all numerical results indicate that strong

N NPN
convergence of the approximating feedback kernals holds, analysis in [14] and
numerical studies point to the fact that a uniform exponential bound of the
form (3.42) can not be obtained for the Kappel-Salamon scheme. Indeed, both
the open and closed-loop approximating systems yield a sequence of extraneous
eigenvalues (i.e. ones which do not appear to be converging to an element of
the spectrum of the original open or closed-loop herediatary system)
Bt y=1
We note that the N-independent uniform exponential bound (3.42) which is

for which Re AN + 0 and Im AN > 4+ o (or = ®) g5 N+ o,

sufficient for strong (in fact trace norm, see [7]) convergence of Py to P has
been shown to hold for the AVE scheme in [22] and for the Legendre-tau method

in [11].

The Discrete-Time Problem

For the discrete-time problem (see [8], Theorem 3.12) IPNI bounded in N
* F strongly, fg
Lz(—r,O;Rmxn) as N+ @ ., The existence of positive constants M and ¢ which do

0 X 1 1
implies P *+ P weakly, F > £ in RO " and fN + f weakly in

N N

not depend on N, with p < 1 and for which
(3.43) |s§| < Mpk , k=0,1,2,..., N> 1,
where

(3.44) Sy = Ty — ByFyPy
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is sufficient (see [8], Theorem 3.10) to conclude strong convergence of Py to
P, uniform norm convergence of Fy to F and strong L2 convergence of

f; to fl as N+ « . Although numerical studies indicate that the stronger
modes of convergence hold, the approximating open and closed-loop discrete-
time systems constructed using the Kappel-Salamon scheme yield a sequence of

-} -
extraneous eigenvalues {u.}. ., with IuNI +1 as N» =,

1
3.4 THE APPROXIMATE SOLUTION OF THE REGULATOR PROBLEMS WITH a-SHIFT

One obvious approach for approximating the solutions to the LQR problems
with a-shift is to replace the operators A,B and Q in problem (El) with the
operators AN, BN and QN or the operators T, B and Q in problem (52) with TN,
By and Qy and then solve the finite dimensional shifted problems with states

given either by

(3.45) & ;Nm = (Ay + D)z (o) + Byu(t), t> 0

or

lT zZ +a1—Bu k=0,1,2,ooo .

(3.46) N,ktl & N

However, if the Kappel-Salamon scheme outlined above 1is used, this approach
will not work. Indeed, our numerical studies indicate that as a result of the
extraneous eigenvalues introduced by the approximation scheme, for N

and a sufficiently large the resulting finite dimensional systems are, at
best, marginally stabilizable. The solutions to the matrix Riccati algebraic
equations begin to deteriorate. Eventually the eigenvalue-eigenvector or

Schur vector methods used to solve them fail completely. We
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observe this independently of the stabilizability of the original underlying
hereditary system. Since only the poles of the original hereditary system are
to be shifted, this situation can be remedied by observing that the

operator A+ al is related to the intinitesimal generator for a hereditary
system (semigroup) through a bounded similarity transformation.

For Y a real number, define UY e L (Z,Z) by
(3.47) UGEW) = (B,e V),
where the function eY.¢evaluated at 8 is eYew(G), r € 6 < 0, Then
(3.48) UHEw) = €,e V).

The Continuous-Time Problem

~ ~

For the continuous-time problem, set w(t) = Ua;(t). Then w satisfies
(3.49) j—t;m - Aa;m + Bu(t), t»>0
(3.50) w(0) = (n, e'9)
where for Y € R, AY: Dom(A) € Z + Z is given by
(3.51) AL (4(0), ¥) = U (A+ YD) U (0D, ¥) = (L ¥, DY)

with
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\Y) Yri 0 "‘Ye
(3.52) Ly = (A, +YIW() + ] e “Ay(-r,) +[ e A(BY()®d .
Y 0 1=1 i i r

Since U;l is self-adjoint and U;IQ U;l = Q for all Y € R, the Kappel=-Salamon
scheme can be applied to problem (El) with A + oI replaced
with Aa and z replaced with ; + The extraneous eigenvalues will now remain
stable and therefore cause no problems when the approximating feedback laws
are computed. The approximating solutions to the continuous-time problem
with a-shift are given by

1 % 2

(3.53) u:N(t) -x1g* p

*
N PanPNZan(t) = B P

aNPNYa aN(t)’ t>0

where PaN is the solution to the Riccati algebraic equation (3.20) with AN

% * %
and AN replaced by AaN and AaN respectively and ZoN is given by
* sy >
(3.54) zog(t) = Sy(B)(n,¢), t>0

where { Sg(t) : t > 0} is the Co semigroup with infinitesimal generator

-1 % 2
A - Br BN PaNpN' We have

-~

1]

(3.55)  w, (6) * (t) - f_r (O D (0)40

0
aN aN

0
aN aN

* (t) - /° piN(e)e“e(x:N)t(e)de, t>0

]

0 1 .0 1
where paN and paN are obtained from PaN in the same manner that pN and PN

* * *
are obtained from PN (as in (3.2.6)) and (xaN(t)’ (de)t) = zaN(t)’ t>0.
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The Discrete-Time Problem

For the discrete-time problem, we set Wy = Usz. Then

(3.56) w =TaW + B u k=0,1’2,o.'

k+1 k a k?
(3.57) Wy = m,ef sy
where
1 -1
(3.58) T, =3 UgT0p = Tg(e),

{TB(t) : t > 0} the Cy semigroup whose infinitesimal generator is AB’

(3.59) B

[}
Rl

I e Bt T(0) B at

and B = -(1na)/t. The approximating solutions to the discrete—time problem
with a-shift are given by

~

%
(3.60) u

* *
aN,k = ToaNPNZaN,k © -FaNpNUBzaN’k, k=0,1,2,...

where FaN is computed according to (3.29)-(3.31) with Fyp EN’ BN’ TN and Py

*
replaced by F T .. and PaN respectively and ZyN is given by

aN? RdN’ BaN’ oN

* N,k _
(3.61) ZaN,k (5,) (M,$), k=0,1,2,...

with



N

(3.62) Sy
Finally, we have
3.63) u. , =

(3.63) uaN,k B

0 1
where faN and faN

* *
and (xaN(kt ), (Xa
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20 % 071 *
Eonan (k) = (@) (x ) ) (6)d6
0 _* 0 1 LI
Eon Fan() = [ L £op(8)e™ (x 0) (848,

are obtained from F
aN

k=0’1’2’..' L]

*

N)kr) = ZQN,k b

k=0,1,2,...

0 1
as were fN and fN from Fy in (3.40)
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4. AN EXAMPLE AND NUMERICAL RESULTS

We consider the second order linear harmonic oscillator with delayed

damping given by

o .

(4.1)  y(t) + y(t-1) + y(t) = u(t), t > 0 .

We take the continuous-time performance index to be

(-

(4.2) I =] y(©)F + 307 + a(v)’ae .
0
Setting x(t) = (y(t), §(t))T, we rewrite (4.1) as a first order system;

4.3 x(e) = (] ) xo + (g _Dxe-) + (Pue), e>0.

and R = 1.

We computed the optimal feedback gains for the shifted and unshifted,
continuous and discrete-time control problems on an IBM PC personal computer
using the Kappel-Salamon approximation scheme and the a-shift technique
outlined in the previous section. The matrix Riccati algebraic equations
(3.22) and (3.37) were solved using either a standard eigenvalue/eigenvector
(see [16]) or Schur vector (see [17], [19]) decomposition of the Hamiltonian
matrix. For the discrete-time problem, matrix exponentials were computed

using an eigenvalue/eigenvector decomposition.
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A Scheme to Compute Eigenvalues of Linear Hereditary Systems

In order to evaluate the performance of the method, we had to be able to
compute approximations to the closed-loop eigenvalues of continuous—time and
sampled hereditary systems. To do this we used a spline~based scheme
developed in [10]. 1In the case of the continuous—time problem, the closed-
loop system is a homogeneous hereditary system. Let AN = A--BR.”1 B; ﬁaNpN
denote the infinitesimal generator of the closed-loop semigroup
{SN(t) : t > 0} and let {ZM} denote a sequence of finite dimensional spline-

by
based subspaces of Z which are contained in Dom(A). Let qM VAR S ZI denote

the orthogonal projection of Z onto ZM with respect to the inner product
N N
(4.4) <K(E,), (€,x)>>, = ATELY),A (C,x)>z .

An approximation to the spectrum of AN is obtained by computing the

eigenvalues of the matrix representation of the inverse of the operators

(4.5) AT,
Z

Spectral convergence is argued in [10] using the theory of collectively
compact families of operators (see [3]).

The approach outlined above is used to obtain approximations TM and BM to
the discrete—time open-loop state transition operator T and input operator

B. The feedback gains FaNpN are projected (with respect to the standard Z

inner product) onto M to obtain the operators Fz The eigenvalues of the

N .

M MM
operator T - B F

aN are taken to be an approximation to the closed-loop

spectrum of the discrete-time system.
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Numerical Findings

The eigenvalues in the examples which follow were computed using the
method we have described above with quintic splines and M taken large enough
to declare a sufficient number of the eigenvalues converged. Typically,
taking M = 30, which results in a 70 dimensional eigenvalue problem, sufficed
to yleld 21 converged eigenvalues. The resulting matrix eigenvalue problems
were solved using IMSL routines EIGRF (the QR method for the standard
eigenvalue problem) or EIGZF (the QZ method for the generalized problem).
These computations were performed in double precision on the IBM 3081 at the
University of Southern California.

The eigenvalues of AN’ the Nth Kappel-Salamon approximation to A, with
real part greater than -3.5 (ordered by decreasing real part) are given in
Tables 4.2 and 4.3 for various values of N. The first nine "true" continuous-—
time open-loop eigenvalues (eigenvalues of the operator A) can be found in
Table 4.1. Upon careful inspection of Tables 4.1, 4.2 and 4.3, one can easily
discern the true eigenvalues of the hereditary system emerging and observe the
behavior of the extraneous, artifactual eigenvalues which was described in the
previous section as N increases. |

For the present example, we used the schemes described in Section 3 to
compute the continuous-time feedback gains, ﬁaN and ﬁaN for a = 0, 2.0 and
3.0, and the discrete-time gains %SN and EiN for @ = 1,0, .98 and .975.

As a 1s increased, larger values of N are necessary to ensure that the
approximating optimal feedback laws have essentially converged. The results
presented below were computed with N = 10. The scalar gains ;2N and }SN are
given in Table 4.4 and 4.6 respectively. The kernals or functional gains
(EiN)z and (EiN)Z (where ( )j’ j = 1,2 denotes the jth component) are plotted

in Figures 4.5 and 4.7. Note that the initial conditions
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(4.6) n = (O,O)T, (¢)1 arbitrary, (¢)2 =0

for the system (4.3) yield x(t) = 0, t > 0 and consequently that the optimal
control is u(t) =0, t > 0 . This will also be true for the corresponding
"a-shifted” systems. It therefore immediately follows from this observation
and the basic structure of the finite dimensional approximating systems that
the true and approximating, continuous and discrete-time optimal control laws
do not feedback displacement history; that is
@) e = e = o = @b, =0
for all N.

The resulting closed-loop eigenvalues for the continuous—time systems are
plotted in Figure 4.8 and are tabulated for the' discrete-time systems in Table
4.9. In the discrete—time example, the length of the sampling interval T was

taken to be .0l.
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1 A

1,2 0219 + 1.60201
3 -.7384

4.5 -2.0469 + 7.58201

6,7 -2.6484 + 13.94771

8,9 -3.0179 * 20.27191

TABLE 4.1: EIGENVALUES OF A

1,2 .0220 £ 1.60171 .0219 + 1.60194 .0219

I+

1.60191

-.5833 + 12.77561

-.6503 + 12.78191
3 -.7384 -.7384 -.7384
-1.2679 + 6.10631 -.9824 + 9.21361
-1.5000 + 5.80951 ~1.1564 % 9.11744
~-3.4286 + 2.9692i
4,5 -2.0876 = 7.0492i -2.1251 + 7.46371
-2.8600 + 6.31731 -2.1392 + 9.9917i
-2.8084 + 10.04311

TABLE 4.2: EIGENVALUES OF AN
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N =10 N = 20 N = 30
1,2 .0219 + 1.60191 .0219 + 1.60201 .0219 + 1.60201i
-.4513 + 16.37311 = 1227 % 34.09891 - .0575 % 51.58971
-.4681 + 16.40231i - 1265 t 34.09771 - .0576 £ 51.58851
- .4868 + 32.51681 = «2258 + 50.48971
- .5013 + 32.50501 =~ <2264 % 50.49461
-~ 4869 t+ 48.69591
- .4938 + 48.70641
3 - .7384 - .7384 - .7384

-1.3706 + 13.71314 -1.0176 + 30.08431 - «8459 % 46.30801
-1.5800 + 13.80841i -1.0330 £ 30.03231i - 8707 + 46.31841
-1.6310 & 26.70961 -1.2170 £ 43.39641
-1.7094 £ 26.83111i -1.2651 % 43,37781
-1.7362 + 40.00621
-1.7657 + 39,9081i
4,5 -2.0765 + 7.5469i -2.0483 + 7.58041 -2.0471 + 7.58171
-2.9685 * 10.31021 -2.4723 + 23.11691 -2.2485 + 36.2831i
-2.3628 t 36,44041
-2.4687 + 32,36471
6,7 -2.5840 + 13.99561 -2.6381 * 13,95671
-2.7313 + 19.64551 -2.7968 + 32.29341

-2.8700 + 23,.20281

-3.3004 £ 19.08641
8,9 -2.9769 = 20.15021
=-3.3039 % 27.21711
-3.3823 + 28.11491

TABLE 4.3: EIGENVALUES OF AN
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a = 0.0 a = 2.0 a = 3.0
~0
(kg10)1 4142 31.8304 129.1725
~0
(Pe10)2 1.4291 10.8678 21,6132

TABLE 4.4: SCALAR GAINS - CONTINUOUS-TIME

31

I ) T ! ) 1 J I 1 L

FIGURE 4.5: FUNCTIONAL GAINS - CONTINUOUS-TIME
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a = 1.0 a = ,98 a = ,975
(£° ) 4041 30.9821 63.8527
al0’1 * . .
(£2 ) 1.4215 10.5734 14.9272
alQ’2 . .
TABLE 4.6: SCALAR GAINS ~ DISCRETE-TIME
[r
i
i o
IS: a =
Q=
fux)
I".:' 4,.'"'
,."/f{ e
A i
."H /"/
= Lo
2 N
! ..,-' -
jfﬁ
/.';n'f
o= A
c'rs (.,-
."III
|"’l
13- -"‘"
ﬂ i T 1} i T 1 T T T 1
' ioa.a -29.83 -£R. 3 -48. @ -23.6 ]

FIGURE 4.7: TFUNCTIONAL GAINS — DISCRETE-TIME
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2 60.0
- OPEN-LOOP
B a a=0.0
O a=2.0
5 O a=3.0 1145.0
;/é\;
7.’._);
130.0
&
O e 15,0
Od Ca
D _ Ma O P . A ° }
O =50 O Y30 20 10 ’ 10
-60 -4.0
O Oa
o o 1150
&
4-30.0
&
) <4-45.0
A
J-60.0

3

{

FIGURE 4.8:

EIGENVALUES OF A AND A-BR™ B, P .,

OPEN AND CLOSED-LOOP SPECTRUM - CONTINUOUS TIME;
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OPEN-LOOP a = 1.0 a = ,98 a = 4975

MAG ARG MAG ARG MAG ARG MAG ARG
. 9926 0 .9919 0 .9693 0 «9630 0

1.0002 t .0160 .9938 + .0170 +9594 t .0177 . 9484 t .0211
. 9797 t .0758 . 9796 + .0759 .9787 + .0758 «9702 + .0757
.9739 t .1395 .9738 + .1395 .9738 + .1395 .9737 + .1395
.9703 t+ .2027 .9702 + .2027 .9703 t+ .2027 .9703 + .2027
.9677 ¥ .2658 . 9677 t .2658 .9677 + .2658 .9678 t .2657
«9656 + .3288 . 9656 + .3288 +9656 + .3288 . 9657 + .3288
+9639 + .3918 .9639 + .3918 «9639 + .3918 . 9639 t .3918
. 9625 + J4547 .9625 + 4547 .9625 + 4538 .9625 + 4546
.9612 + 5176 .9612 + .5176 .9613 + 5176 .9613 + .5175
.9599 t .5806 .9599 + .5806 .9600 + .5806 .9602 + .5805

TABLE 4.9: OPEN AND CLOSED-LOOP SPECTRUM - DISCRETE-TIME;

EIGENVALUES OF T AND T - BFa
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