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AN OVERVIEW OF EUROPEAN SPACE TRANSPORTATION SYSTEMS

R. E. Lo
Director, DFVLR-Institut fuer Chemische Antriebe
und Verfahrenstechnik, 7101 Hardthausen-Lampoldshausen

Summary /1%

With the completion of the launch rocket series ARIANE 1 to
4, Europe will have reached the same capacity to transport
commercial payloads as the USA has with the Space Shuttle and
the kick stages which are presently operative. The near—term
development of these capacities would require Europe to develop
a larger launch rocket, "ARIANE 5." Further motivations for
this rocket are access to manned spaceflight, the development of
Europe’s own space station, and the demand for shuttle
technology. Shuttle technology is the subject of research being
done in France on the winged re-entry vehicle "Hermes."
Operation of the European space station "Columbus" will require
development of an interorbital transport system to facilitate

traffic between the space station’s various segments.

All European space transportation systems will have to match
their quality to that of the other countries involved in space
flight. All areas of development are marked not only by
possible cooperation but also by increased competition because

of increasing commercialization of space flight.
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1. Launch Rocket” Series ARIANE 1 -4
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ARTANE launch rocket models 1 - 3 are being operated at

present in Europe.

The three-stage rocket,

with storable fuels

in the first two stages and the cryogenic combination of
Hz/0z in the third, is designed for transport into geostationary
transfer orbit (GIQ) (see fig. 1). .
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1:

Launch rocket series ARIANE 1

— 4 (Numbers in

parentheses are calculated values; the

structural load limits the payload to 4300 kg.)

ARIANE 1 has taken off 11 times to date (as of August

1985). These include the two renowned failures, when combustion

instabilities occured in the first-stage engines during the

second takeoff (May, 23,

1980),

and the third-stage turbopumps

failed during the fifth takeoff (September 10, 1982). Since

*Editor's Note: in this translation ”Ié%ﬁch rocket' should be ''carrier rocket'.



"that time, however, ARIANE has enjoyed a spotless success
record, including three takeoffs to date by the ADRIANE 3. The
ARIANE 2 was developed.from the first model by increasing /3
the power of the Viking engines (stages 1 and 2) and the HM7
engine (stage 3), as well as by enlarging sfage 3 from 8 to 10 t
of fuel. The Viking engine’s fuel combination of N204/UDMH

was changed to Nz20s (UDMH + 25% hydrazine hydrate = "UH 25")

to eliminate combustion chamber pressure fluctuations while
increasing combustion chamber pressure (from 53.5 to 58.5 bar).
This model’s first flight is not anticipated until 1986, based
on demand. ARIANE 3, on the other hand, had its first takeoff
in 1984. It is structurally similar to the ARIANE 2, except for
two additional solid boosters (each of which has 71 t thrust and
7.35 t fuel) [1].

ARIANE 1 took off on July 2, 1985 for the second-to-last
time (with the comet probe GIOTTO). It is not to be used again
after its final takeoff in November of this year (with the
French Earth observation . satellite SPOT). ARIANE 2 is to
takeoff for the first“fime in 1986 (twice with INTELSAT-V
satellites, once with the German TV-Sat). Otherwise, the more
powerful ARIANE 4 model will be available beginning in 1986 (for
the first time in July with TDF-1 or Meteo-sat). This model was
developed from the ARIANE 3 by increasing fuel in stage 1 from
145 to 220 t, as well as by selective inclusion of 2 to 4
strap-on boosters, each having 9.5 t solid fuel (each with 71 t
thrust) or 40 t liquid fuels (87 t thrust each through a Viking
6 engine). Variations of booster type and number provide a
series of 5 transports with staged payload capacity. The
development of the ARIANE series was a.consequence of the market

situation in the sector of commercial satellite transportation.



2. Trans—-Atlantic Competition

Approximately 70% of all civilian takeoffs so far have
involved geostationary telecommunication satellites, a situation
which, according to all mission analyses, is not likely to
change in the future. ' The development of material processing in
space (space processing, material sciences) is certainly an
unknown factor, but in the realm of earth observation it is a
certainty that it will never account for much more than 1% of

telecommunications.

The payload capacities into geostationary orbit (GEO) and
geostationary transfer orbit (GTO) showﬁ in Figure 2 testify to
the fact that the ARIANE series 1 - 3 has competed successfully
(also with regard to costs) with the.USDeluiamiAthm-Caumur
Camiersf ) The satellite masses which the US Space Shuttle
(STS) can transport to GEO aided by the perigee-stages - /b
of the PAM-series from McDonnel Douglas [2] also lie in the same
range, while another apogee engine is required for ARIANE.
However, as early as 1983 and with the advent of Boeing’s IUS
(inertial upper stage) system [3], the STS attained a payload
class of which ARIANE is not capable. The satellite masses
which can be transported by different versions of the Titan
(among others, also with IUS) lie in the same range, as well.
O0f late, however, these transports*have been used exclusively
for military missions. Beginning in 1986, this range will be
accessible to Europe as the result of the ARIANE-4 series. To
date, Arianespace has profited from operating the ARIANE because
PAM and IUS are relatively expensive systems, and because |
competition existed within the US itself between the
non-retrievable US transports and the STS. According to NASA,
this competition will have been eliminated by mid-1987.

*Editor's Note: in this translation ''transports' should be ''carrier vehicles"



® : Ariane Famil
O : US —carriers and kick stages

TOS/AMS

n 12 13

_ Figure 2: Payload Capacity to GEO and GTO for ARIANE
| Series Compared to US Transports. (Note:
Equivalent GTO capacities are given for
transfer stages with LEO-GEO transport .
capacities.) Black dots = ARIANE series, White
dots = US Transports and Kick Stages
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McDonnell Douglas has stopped producing the Delta, of which
only 5 more examples exist. A private firm (Transpace Carriers
Inc.) is endeavoring to keep this carrier on the market.
General Dynamics Convair is interested likewise in continued
commerical use of the Atlas, although only 5 more takeoffs are
anticipated up to 1987. There is already agreement that the

Titan should not continue to be used for military payloads.

In addition to PAM énd IUS, many other kick stages which can
be employed with STS will come on the market:

- The perigee stage SCOTS (shuttle compatible orbital
transfer system), developed by RCA, will be used
beginning in 1986 for their "RCA-4000"
telecommunication satellites. The interface for the
payload on the SCOTS is designed so that it can be used
on ARIANE 4, as well, without any changes [5].

- Another solid fuel perigee T®S (transfer orbit stage) stage

is being deveioﬁed by Martin Marietta in agreement with

Orbital Sciences Corporation as an economical

replacement for IUS and is to be ready for takeoff _

already by 1986 [6]. Beginning in 1988, the payload
range of the IUS is to be exceeded by the TO0S in
connection with the second stage AMS (apogee and
maneuvering stage), which Qill be equipped with an

RS-51 11.6 kN liquid fuel engine designed by

Rocketdyne.
- The availability of the large CENTAUR-G! (General /6
Dynamics Convair) is guaranteed beginning in 1986. It is to be .

used for the first time at the takeoff of the Jupiter probe
Galileo. Based on its engine capacity, this model affords the
STS a new dimension in GEO-payloads (6600 kg), but, because of

the volume limit of 30 kg/m?®, only considerably smaller

-8~



satellites (approximately 4000 kg) will fit in the

cargo space next to the B8.87 m long stage

-~ For this reason, CENTAUR G, a shorter (5.94 m) version,
is being developed. It will be able to transport over
4600 kg to GEO and leaves a length of approximately 12
m available in the cargo space [7]. The same payload
can be attained by the Titan 34D-7 (being developed at
present by Martin Marietta) in combination with the
IUS, so that at least the USAF will not have to depend
on the STS/CENTAUR G combination.

Since these developments have been known for some time it
has become evident in Europe that to remain competitive, it
would be necessary to expand payload capacity while
simultaneously reducing specific transport costs. Since the
ARIANE series exhausted possibilities of contemporary design
with the advent of ARIANE 4, the question of future European
launch rockets has been under investigation (above all by the
the French CNES, as well as by the ESA) since 1981. The
quéstion of corresponding engine technology goes hand-in-hand

with this research.
3. The HM60 Engine and European Engine Technology

The first ideas to expand upon ARIANE 4 involved a new
second stage for the ARIANE 4. The new second stage was to be
equipped with a new motor (M) with a high-energized (H)
hydrogen/oxygen base and 60 t thrust. The resultant concept,
designated "HM60", had already established itself by 1980,
although most engine parameters and ideas regarding ARIANE 5
changed continuously over the following years. The probable
final HM60 engine version, "AHP," 1is characterized By very
conventional technical details, the result of a nearly
15-year—-long pause in the European development of engine

technology.



This fact can be seen by comparing (see Figure 3) all the
conventional Hz/0z engines ever developed or tested in the

West and Japan. (Compare also, Table 1 which contains the

essential technical data on these engines.)
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Figure 3: Thrust and Combustion Chamber Pressure of
Hz/0z Engines (See text for discussion;

shaded symbols represent European engines.)
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- RL-10, developed by Pratt & Witney between 1958 /9
and 1963 for the Centaur upper stage, is the first and,
at the same time, very successuful cryogenic engine
having main current expander cycle with 1 turbine on
the LHzApump, and engineé to the LOX pump. It can be
re-fired in flight. It has been.in use from 1963 to
present. In addition to this engine, Pratt & Whitney

of fered an alternative STS main engine in 1971 [7].

— J2 was developed by Rocketydyne between 1960 and 1962
for the second stage of the Saturn I in the Apollo
Program. It has an induction current engine with
turbine exhaust-film cooling in the nozzle. It is
equipped with 1 gas generator with 2 turbines working
in series; it can be re-fired¥*in flight. It has not

been used since the end of the Gemini Program in 13866.

- J2~-S was developed by'Rockefdyne between 1961 and 1966
for the second stage of the Saturn IB and Saturn V. It
is structurally similar to J2. It has not been used

since the end of the Skylab Program in 1973.

- M1 was develbped by Aerojet Liquid Rocket Co. beginning
in 1962 as an experimental large engine for
technological purposes. In 1971, Aerojet offered an
alternative STS main engine based on experience gained

from this experiment [9].

—-= SSME, Space Shuttle Main Engine, was developed by
Rocketdyne between 1970 and 1981 for the\STS. It has a
high-pressure main current-staged combustion cycle with
2 pre—combustidn chambers, 2 turbines, and 2
high-pressure turbopumps; main current expander cycle
for the LHz low-pressure pumps, and high;pressure LOX
drive for the LOX low~préssure pumps. It meets

qualifications for manned flight. It cannot be

_ 19
*Editor's Note: in this translation "re-tlired" should be '‘re-started'.



re-fired in flight. However, one developmental goal is-
reusability (40 times) with 6.0 hours minimum
operational life. By March 1985, this goal had been
fulfilled by only. 23%, due to the limited lifespan of
the turbine blades of the LHz high-pressure pump at

109% thrust (upper design limit).

ASE, Advanced Space Engine, was developed by NASA in
1972 at Rocketydyne under agreements on construction of
the high-pressure main current-staged combustion
engine. Its cycle is similar to the SSME,'however,
because of its smaller dimensions, the storage load on
the LHz turbopumps is even greater than for the

SSME. Development of this engine was interrupted in
1979 because of difficulties with the SSME.

HM7 was developed by SEP between 1973 and 1979 under
contract from CNES and ESA as the third stage H8 of the
ARTANE rockéts. It has induction current engine with 1
gas generator and 1 turbine on the LHz pump ‘with

drive to the LOX pump. It cannot be re-fired in /10
flight. Failure of the engine led to a crash of the
third stage during takeoff LO5. It was flown
successfully 6 times thereafter with ARIANE 1, and 3
times in an improved version HM7-B with ARIANE 3. '

LE-5 has been under development by NASA/NAL since 1977
as-the engine for thé second stage of the Japanese H-1
transport. Completion date goal is 1986. It has an
induction current engine with 1 gas generator and 2
turbines, turbopumps in series, and nozzle film cooling
using turbine exhaust. It can be re~fired a number of

times in flight.

LE-7 has been under development by NASA/NAL since 1982
as the engine of the core stage of the Japanese H-11

_13_



transport, aimed for use in approximately 1993. It has
high-pressure main current engine with stage combustion

cycle.

HM60 has been in developmental stages since 1980.
Beginning December 1984, it has been developed as the
official ESA project at SEP under contract from CNES as
the engine for the core stage for the European launch
rocket ARIANE 5P, planned for use in 1995, It has
medium—préssure induction current engine with 1 gas
generator and 2 turbines, and turbopumps operating
parallel without engines. It cannot be re-fired.

Qualifications for manned flight remain open.

Figure 4 depicts the combustion cycle of this engine.
It can be started only once with the solid gas
generator.b Oxygen and hydrogen are tapped from the
cycle for tank pressurizihg ﬁsing heat exchanger. The
parallel set—-up of the turbines requires a hot-gas vent
to control the mixture ratio. Although the design is
not totally complete yet, it is likely that the set-up
with 2 turbine exhaust -lines will be built as shown.
The alternative (Figure 5 [20]) would be to use these
lines ﬂﬁffihncoth@, as they are used in all other
induction current éngines (with the exception of HM7).
It has been determined that this technology presents
great difficulties in Europe. The amount of hydrogen
needed to dump cool the nozzle would have to be

decreased.

_14'_
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The history of the European cryogenic éngine does not /12
begin with HM7 and HMG60: Preparatory projects began already in
1960 at SEP (SEPR), and already in 1962 a contract existed to
develop a 4-chamber drive system with 6 t thrust. This system
satisfied all the technological data of the subsequent HM7
engine [12], [22], and, using an HM4 engine, led to the HM7 in
1873. MBB began investigating high-pressure engines in 1967
[21] and cryogenic engines in 1962. A main current Hz/0:2
experimental engine (HPC, high-pressure chamber in Figure 3) had
attained 210 bar chamber pressure as early as 1968. This engine
was developed in conjunction with Rocketdyne and led to SSME
taking over combustion chamber production technology.
Unfortunately, the previously mentioned 15-year pause followed,
during which time no research was done in Europe on chemical
liquid drive. The one exception to this was SEP’s development
of the HM7. Unfortunately as well, this gap included the area
of small, pressure-driven engines with stdrable fuels, which are
necessary for advanced stored control ‘ N systems and as kiék
stage engines. The Federal Republic became the world leader in
this area in 1870 with MBB’s 10N and 400N symphony engines.
Today, similar engines having a far greater thrust range are

available from numerous firms in the USA.

Overall, the situation today is such that Europe must catch
up in the following areas of chemical liquid engines (a list,

which could be expanded easily):

T Mechanical transfer: Cryogenic high-pressure
turbopumps, entire field of technology, especially,
however, cryogenically cooled bearings at high speeds.
(HMB60 is said to exhibit 45% more stress than HM7. A
Qalue of 75% over that of HM7 was planned in Japan for
LE-7. HM60 lies below, LE-7 above the value of SSME.) .

-- Combustion chamber: High-pressure/high~temperature
materials (for example, replacement for the Narloy'Z
_16w



.used in the SSME, since Cu Ag Zr alloys are neither

available in sufficient amounts in Europe, nor has the
processing of same been sufficigntly developed,
especially for pre—combustion chambers.) New
Cohstructions and cooling with LOX must be

investigated.

Nozzles with altitude compensation: Extendable,

bundled, unconventional.

Préparation methods for injection systems, cooling
systems, nozzles. Cost reduction through automation

and/or robot utilization.

Theory: Thermodynamics and kinetics of high- /13
pressure fuel preparation and combustion, flow
mechanics in all parts of thé engine, modeling of
combustion stability, design of mechanisms to prevent

combustion instability.

" Engine development: Engines in the medium thrust range

from 0.3 to 3.0 t.

4. The Future European Launch Rocket ARIANE 5P

Research carried out up to 1983 invFrance by CNES and in the

Federal Republic by an industrial group ("ZETK") came up with

the concepts shown in Figure 6 [24], [25], which are

‘characterized, above all, by three requirements:

Increase of the European LEO payload capacity from the
present 4 - 6 t (ARTANE 3/4) to at least 15 t;

STS compatibility in the specific transport price to
GEO with at least similar space (diameter) available
for use, and

__1'7_



- Inclusion of manned LEO missions for Europe by means of
a retrievable system with which payloads could also be

returned.

The demand for manned flight proved to be the foremost
element in determining a design: On the one hand, the winged
HERMES retrievable craft, proposed by CNES, set the course for
LEO minimum payload sizes and with it for the absolute size of
the transport. On the other hand, this led to the demand of at
least 98% dependability. -

The further requirements that this transport be available
for use in 1995 (manned beginning in 1997) and that takeoff
costs be held under 50 MAU (114 MDM) for at least 5200 kg to
ETO, led the CNES to select ABP (Figure 7). This choice has
been subject to some criticism: For one, a small rocket would
be able to handle all the planned missions up to the year 2000
(with the exception of the HERMES mission). 'Other critics take
exception to the fact that the CNES has knowingly rejected the

demand for continued developement possibilities of the system.

_18_
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Figure 7: Three Versions of the ARIANE 5P
ARIANE 5P will consist of a 1 1/2-stage system which /15

has an H120 core stage (120 t fuel Hz2/0z2, 1 HM60 engine) and
two P170 solid boosters {(each with 170 t solid fuel)}. It will

carry three different upper stages and payloads to LEO or near
to LEO:

- One cryogenic H10 upper stage (Figure 8, [26]) with 8 t
GTO payload, with which up to three satellites can be
brought to GTO simultaneocusly using corresponding
apogee engines. This stage is also suited for

scientific missions having large engine demands.

__20._



- One L4 stage (Figure 8) with storable fuels. With
different fueling, this stage transports up to 15 t to
LEO, but can also convey smaller payloads (5 t) to GTO.

-- The HERMES retrievable system.

LH2 SPHERICAL
TANK

VEB —————

SUSTAINING _ |
CONE

ARIANE Y _
LOX TANK

INTERSTAGE
SKIRT

ARIANE 3
PROPULSION
BAY

Figure 8: Both Upper Stage of the ARIANE 5P

The new H10 upper stage for the ASP uses a new LHz tank
together with LOX tank, propulsion bay, and HM7 engine of the
H10 in the ARIANE 3/4 version. The range of uses for the HI10
could be increased drastically, if it were to be converted into
a type of "European Centaur" by means of re-start

capability of the HM7 engine. This is not planned at present.

_21..



L4 uses a newly developed engine, whose dimensions ‘LHS_
have not yet been defined. Thrust for 15 to 30 kN are under
discussion. The decision will depend on the final layout of the
HERMES, which will have the same engine (Figure 9) so that it
will have a drive capacity of 400 m/s (LEO) to 600 m/s
(solar-synchronous). This will make it possible for HERMES to
carry 2500 kn fuel N204 ,MMH to attain an altitude of 400
to 800 km.

In addition, HERMES requires other small engines in the
range from 10 to 100 N. These are necessary to complete its

three functions {27]:

- Autonomous missions (with 2 pilots and 2 payload
specialists) lasting from 1 to 4 weeks to carry out
projects which correspond practically to the Spacelab
pallet mode. The HERMES payload bay is only 3 m in

diameter and 5 m long.

- In-orbit servicing, above all of platforms in /17
solar-syicironous Qrbit?; crew as above; length of mission,

2 weeks.

-~ Access to space stations (from US or Europe) with 4 to
6 passengers and 4500 kg payload. Missions lasting 1
week or up to 90 days docked.

While H10 and L4 are clearly elements of the ARIANE 5,
HERMES is primarily a French design. Alternative solutions to the.
problems involved in acquiring return technology are being
investigated in the Federal Republic at present. Possibilities
are either ballisticre-entry vehicles (as a complement to HERMES)

or winged upper stages (as an alternative).
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with [24]; in the meantime, a design with only

one tail flap has been suggested [28].)
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Figure 10 HERMES Approaching US Space Station (left), and
Servicing an Element of the European Space

Station (right).

It must also be mentioned in connection with the
introduction of the ARIANE 5, that during its usage time, it
will have to compete with and operate beside already known
competitors, as well as not yet well-defined, but expected, new

variations of the STS [29], [30].

Several examples are shown in Figure 11 [31], [32]. /18
Because of environmental reasons, but also in order to increase
_24_



payload capacities, the USA is considering replacement of the

STS’s solid boosters with liquid fuels (storable or cryogenic).

By substituting a payload capsule for the orbiter (which
weighs 68 t), we obtain a loss device with 71 t payload. NASA
considers this variation to be the most likely further
development. As early as 1996 has been mentioned as a potential
deployment date [30]. In addition to these competitors, the A5P
will have to compete, as well, with the Soviet Proton and the

Japanese H-11.
5. Orbital Drive and Transport Demands in LEO

An important discovery which thé Americans made with the STS .
is that the orbiter proved to be too heavy and cumbersome for
interorbital maneuvering in lower orbits. For this reason, an
orbital maneuvering vehicle (OMV) is to be deployed as early as
1990 [30]. This vehicle will serve to pick up or deliver
payloads in orbits at up to 2800 km. HERMES is to be able to
orbit the sun at altitudes up to 800 km, a fact which leads to
the question of whether Europe is not repeating the Americans’

error.

The US space station will be the beginning point for
transfer stages (0TVs) which return from GTO and GEO with the
assistance of air friction. Their effect on the GEO transport

market cannot be estimated yet.

Figure 11: Launch Rocket Scene 1995 - 2000
(Figure follows on pagé 26)
Shaded symbols: Presently in use. LSOB =
Liquid strap-on booster; SDELV = Shuttle

derived expendable launch vehicle.
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An OMW would be necessary for Europe only as a measure for

traffic between individual elements of a space station. Figure
12 shows a European concept [33]. As part of a modular system,
such an OMW could also be used as a servicing vehicle. This 1is

the case in the Columbus Space Station project currently under

preparation in Europe.

In the IOC (initial Operating Capability), the Columbus Project

consists of the following known elements [34]:

- A laboratory module attached to the NASA Spac_e Stat_ion, but
potentially also free-flying (which would then demand
storage control, orbit correction and ranging

facilities).

- Free—-flying platforms in near orbits next 'to the
laboratory module, but also on polar orbits.
Primarily, unmanned service vehicles——-as shown 1in

Figure 13--will be used for these platforms.

- A resources module to assume the free-flying /20
laboratory module’s functions which the lab makes

available when docked at the US space station.

In the subsequent AOC (autonomous operating capability)
phase the system will have a pressurized module added to it, and
large platforms with the resource module will be built. A
manned service vehicle would be necessary then to take over the

transport of astronauts (Figure 13) [34], [35].

The drive problems connected with the space station have not
been fully investigated. Particularly the resource module has
considerable maneuvering demands, and its limitation as service

vehicle and/or OMV has not been defined yet.
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for Orbital Maneuvering 2 Versions, at right with
Vehicles ) Manipulator Arm) and Manned

(below) European Service
Vehicle.

Space stations, launch rockets, and retrievable systems /21
make up the marketable gro&th areas of space travel in the
coming years. Construétion and development of European space
transport systems create demands on European technology, which
must investigate and master this challenge if Europe is to
compete successfully on the international scene in the future.
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