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AN OVERVIEW OF EUROPEAN SPACE TRANSPORTATION SYSTEMS

R. E. Lo
Director, DFVLR-Institut fuer Chemische Antriebe

und Verfahrenstechnik, 7101 Hardthausen-Lampoldshausen

Summary /I*

With the completion of the launch rocket series ARIANE 1 to

4, Europe will have reached the same capacity to transport

commercial payloads as the USA has with the Space Shuttle and

the kick stages which are presently operative. The near-term

development of these capacities would require Europe to develop

a larger launch rocket, "ARIANE 5." Further motivations for

this rocket are access to manned spaceflight, the development of

Europe's own space station, and the demand for shuttle

technology. Shuttle technology is the subject of research being

done in France on the winged re-entry vehicle "Hermes."

Operation of the European space station "Columbus" will require

development of an interorbital transport system to facilitate

traffic between the space station's various segments.

All European space transportation systems will have to match

their quality to that of the other countries involved in space

flight. All areas of development are marked not only by

possible cooperation but also by increased competition because

of increasing commercialization of space flight.

*Numbers in the margin indicate pagination in the foreign text
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1. Launch Rocket*Series A R I A N E 1 -4

t«Vl r. 5
temnt.

OF POOR

A R I A N E launch rocket models 1 - 3 a r e be ing opera ted a t

present in Europe . The th ree-s tage r o c k e t , w i t h s torab le f u e l s

in the f irst two stages and the cryogenic combina t ion of

H z / 0 2 in the t h i r d , is designed, for transpprt into geostationary

transfer_orbit (GTQ) (see fig. i).

1st Takeoff

LEO

Payload (kg) GTO

GEO
Takeoff mass (^)

height, (m)
Price (MGM, 84)

24.12.1979

(4900)

1800

1000

210.

47

120

•01 .1986

(5100)

2100

1130

217

50

130

04.08'. 1984

(5900)

2580

1330

237

50

140

(5900)

2600

1600

163

(6800)

3000

1800

57

170

(7200)

3200

1900

57

177

06.1986

(8300)

3700

2200

57

185

(9000)

4200

2500

460

57

200

Figure 1: Launch rocket series ARIANE 1-4 (Numbers in

parentheses are calculated values; the

structural load limits the payload to 4300 kg.)

ARIANE 1 has taken off 11 times to date (as of August

1985). These include the two renowned failures, when combustion

instabilities occured in the first-stage engines during the

second takeoff (May, 23, 1980), and the third-stage turbopumps

failed during the fifth takeoff (September 10, 1982). Since

^Editor's Note: in this translation "launch rocket" should be "carrier rocket",



that time, however, ARIANE has enjoyed a spotless success

record, including three takeoffs to date by1 the ADRIANE 3. The

ARIANE 2 was developed.from the first model by increasing /3

the power of the Viking engines (stages 1 and 2) and the HM7

engine (stage 3), as well as by enlarging stage 3 from 8 to 10 t

of fuel. The Viking engine's fuel combination of N204/UDMH

was changed to N204(UDMH + 25% hydrazine hydrate = "UH 25")

to eliminate combustion chamber pressure fluctuations while

increasing combustion chamber pressure (from 53.5 to 58.5 bar).

This model's first flight is not anticipated until 1986, based

on demand. ARIANE 3, on the other hand, had its first takeoff

in 1984. It is structurally similar to the ARIANE 2, except for

two additional solid boosters (each of which has 71 t thrust and

7.35 t fuel) [1] .

ARIANE 1 took off on July 2, 1985 for the second-to-last

time (with the comet probe GIOTTO). It is not to be used again

after its final takeoff in November of this year (with the

French Earth observation , satellite SPOT). ARIANE 2 is to

takeoff for the first time in 1986 (twice with INTELSAT-V

satellites, once with the German TV-Sat). Otherwise, the more

powerful ARIANE 4 model will be available beginning in 1986 (for

the first time in July with TDF-1 or Meteo-sat). This model was

developed from the ARIANE 3 by increasing fuel in stage 1 from

145 to 220 t, as well as by selective inclusion of 2 to 4

strap-on boosters, each having 9.5 t solid fuel (each with 71 t

thrust) or 40 t liquid fuels (67 t thrust each through a Viking

6 engine). Variations of booster type and number provide a

series of 5 transports with staged payload capacity. The

development of the ARIANE series was a consequence of the market

situation in the sector of commercial satellite transportation.

-5-



2. Trans-Atlantic Competition

Approximately 70% of all civilian takeoffs so far have

involved geostationary telecommunication satellites, a situation

which, according to all mission analyses, is not likely to

change in the future. The development of material processing in

space (space processing, material sciences) is certainly an

unknown factor, but in the realm of earth observation it is a

certainty that it will never account for much more than 1% of

telecommunications.

The payload capacities into geostationary orbit (GEO) and

geostationary transfer orbit (GTO) shown in Figure 2 testify to

the fact that the ARIANE series 1-3 has competed successfully

(also with regard to costs) with the US Delta and Atlas-Centaur

carriers. The satellite masses which the US Space Shuttle

(STS) can transport to GEO aided by the perigee-stages /_5

of the PAM-series from McDonnel Douglas [2] also lie in the same

range, while another apogee engine is required for ARIANE.

However, as early as 1983 and with the advent of Boeing's IUS

(inertial upper stage) system [3], the STS attained a payload

class of which ARIANE is not capable. The satellite masses

which can be transported by different versions of the Titan

(among others, also with IUS) lie in the same range, as well.

Of late, however, these transports* have been used exclusively

for military missions. Beginning in 1986, this range will be

accessible to Europe as the result of the ARIANE-4 series. To

date, Arianespace has profited from operating the ARIANE because

PAM and IUS are relatively expensive systems, and because

competition existed within the US itself between the

non-retrievable US transports and the STS. According to NASA,

this competition will have been eliminated by mid-1987.

*Editor's Note: in this translation "transports" should be "carrier vehicles"
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MN)GTO Mg
Figure 2 Payload Capacity to GEO and GTO for ARIANE

Series Compared to US Transports. (Note:

Equivalent GTO capacities are given for

transfer stages with LEO-GEO transport

capacities.) Black dots = ARIANE series, White

dots = US Transports and Kick Stages
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McDonnell Douglas has stopped producing the Delta, of which

only 5 more examples exist. A private firm (Transpace Carriers

Inc.) is endeavoring to keep this carrier on the market.

General Dynamics Convair is interested likewise in continued

commerical use of the Atlas, although only 5 more takeoffs are

anticipated up to 1987. There is already agreement that the

Titan should not continue to be used for military payldads.

In addition to PAM and IUS, many other kick stages which can

be employed with STS will come on the market:

-- The perigee stage SCOTS (shuttle compatible orbital

transfer system), developed by RCA, will be used

beginning in 1986 for their "RCA-4000"

telecommunication satellites. The interface for the

payload on the SCOTS is designed so that it can be used

on ARIANE 4, as well, without any changes [5].

Another solid fuel perigee T§S (transfer orbit stage) stage_

is being developed by Martin Marietta in agreement with

Orbital Sciences Corporation as an economical

replacement for IUS and is to be ready for takeoff

already by 1986 [6]. Beginning in 1988, the payload

range of the IUS is to be exceeded by the TOS in

connection with the second stage AMS (apogee and

maneuvering stage), which will be equipped with an

RS-51 11.6 kN liquid fuel engine designed by

Rocketdyne.

The availability of the large CENTAUR-G1 (General /6

Dynamics Convair) is guaranteed beginning in 1986. It is to be .

used for the first time at the takeoff of the Jupiter probe

Galileo. Based on its engine capacity, this model affords the

STS a new dimension in GEO-payloads (6600 kg), but, because of

the volume limit of 30 kg/m3, only considerably smaller

-8-



satellites (approximately 4000 kg) will fit in the

cargo space next to the 8.87 m long stage

For this reason, CENTAUR G, a shorter (5.94 m) version,

is being developed. It will be able to transport over

4600 kg to GEO and leaves a length of approximately 12

m available in the cargo space [7], The same payload

can be attained by the Titan 34D-7 (being developed at

present by Martin Marietta) in combination with the

IDS, so that at least the USAF will not have to depend

on the STS/CENTAUR G combination.

Since these developments have been known for some time it

has become evident in Europe that to remain competitive, it

would be necessary to expand payload capacity while

simultaneously reducing specific transport costs. Since the

ARIANE series exhausted possibilities of contemporary design

with the advent of ARIANE 4, the question of future European

launch rockets has been under investigation (above all by the

the French ONES, as well as by the_ESA) since 1981. The

question of corresponding engine technology goes hand-in-hand

with this research.

3. The HM60 Engine and European Engine Technology

The first ideas to expand upon ARIANE 4 involved a new

second stage for the ARIANE 4. The new second stage was to be

equipped with a new motor (M) with a high-energized (H)

hydrogen/oxygen base and 60 t thrust. The resultant concept,

designated "HM60", had already established itself by 1980,

although most engine parameters and ideas regarding ARIANE 5

changed continuously over the following years. The probable

final HM60 engine version, "ASP," is characterized by very

conventional technical details, the result of a nearly

15-year-long pause in the .European development of engine

technology.

-9-



This fact can be seen by comparing (see Figure 3) all the

conventional Hz/Oz engines ever developed or tested in the

West and Japan. (Compare also, Table 1 which contains the

essential technical data on these engines.)

5000

250

Figure 3: Thrust and Combustion Chamber Pressure of

Hz/Oz Engines (See text for discussion;

shaded symbols represent European engines.)
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ĉn
CO

, ,
— ̂  O CM
_J TO 00
to ^ *=^",^ , . . rv

i
to r- •—
^ 1-̂  CO
oo r^i T-
•— fM r—

U 0)

> 2
O CO
CO

r—i
•z.
l_l

f 4J' '

; 1 '

0
ID

' —

CO
ro
i~*

^D
^

O
r*4
rx

"1
•~»
""*

n
V.
(0
J.
C I .*"•

.. {

'l*':'
. O1—
^C

ilj •
fi'ij. p'
'cl,'.
gf '

,c

o
K

UJ

ô
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RL-10, developed by Pratt & Witney between 1958 /9.

and 1963 for the Centaur upper stage, is the first and,

at the same time, very successuful cryogenic engine

having main current expander cycle with 1 turbine on

the LHa pump, and engines to the LOX pump. It can be

re-fired in flight. It has been, in use from 1963 to

present. In addition to this engine, Pratt & Whitney

offered an alternative STS main engine in 1971 [7].

J2 was developed by Rocketydyne between 1960 and 1962

for the second stage of the Saturn I in the Apollo

Program. It has an induction current engine with

turbine exhaust-film cooling in the nozzle. It is

equipped with 1 gas generator with 2 turbines working

in series; it can be re-fired*in flight. It has not

been used since the end of the Gemini Program in 1966.

J2-S was developed by Rocketdyne between 1961 and 1966

for the second stage of the Saturn IB and Saturn V. It

is structurally similar to J2. It has not been used

since the end of the Skylab Program in 1973.

Ml was developed by Aerojet Liquid Rocket Co. beginning

in 1962 as an experimental large engine for

technological purposes. In 1971, Aerojet offered an

alternative STS main engine based on experience gained

from this experiment [9].

SSME, Space Shuttle Main Engine, was developed by

Rocketdyne between 1970 and 1981 for the STS. It has a

high—pressure main current-staged combustion cycle with

2 pre-combustion chambers, 2 turbines, and 2

high—pressure turbopumps; main current expander cycle

for the LH2 low-pressure pumps, and high-pressure LOX

drive for the LOX low-pressure pumps. It meets

qualifications for manned flight. It cannot be

*Editor's Note: in this translation "re-fired" should be "re-started".



re-fired in flight. However, one developmental goal is

reusability (40 times) with 6.0 hours minimum

operational life. By March 1985, this goal had been

fulfilled by only. 23%, due to the limited lifespan of

the turbine blades of the LEz high-pressure pump at

109% thrust (upper design limit) .

ASE, Advanced Space Engine, was developed by NASA in

1972 at Rocketydyne under agreements on construction of

the high-pressure main current-staged combustion

engine. Its cycle is similar to the SSME, however,

because of its smaller dimensions, the storage load on

the LHs turbopumps is even greater than for the

SSME. Development of this engine was interrupted in

1979 because of difficulties with the SSME.

HM7 was developed by SEP between 1973 and 1979 under

contract from CNES and ESA as the third stage H8 of the

ARIANE rockets. It has induction current engine with 1

gas generator and 1 turbine on the LHa pump'with

drive to the LOX pump. It cannot be re-fired in /10

flight. Failure of the engine led to a crash of the

third stage during takeoff 105. It was flown

successfully 6 times thereafter with ARIANE 1, and 3

times in an improved version HM7-B with ARIANE 3.

LE-5 has been under development by NASA/NAL since 1977

as the engine for the second stage of the Japanese H-l

transport. Completion date goal is 1986. It has an

induction current engine with 1 gas generator and 2

turbines, turbopumps in series, and nozzle film cooling

using turbine exhaust. It can be re-fired a number of

t imes in f1ight.

LE-7 has been under development by NASA/NAL since 1982

as the engine of the core stage of the Japanese H-11

-13-



transport, aimed for use in approximately 1993. It has

high-pressure main current engine with stage combustion

cycle.

HM60 has been in developmental stages since 1980.

Beginning December 1984, it has been developed as the

official ESA project at SEP under contract from ONES as

the engine for the core stage for the European launch

rocket ARIANE 5P, planned for use in 1995. It has

medium-pressure induction current engine with 1 gas

generator and 2 turbines, and turbopumps operating

parallel without engines. It cannot be re-fired.

Qualifications for manned flight remain open.

Figure 4 depicts the combustion cycle of this engine.

It can be started only once with the solid gas

generator. Oxygen and hydrogen are tapped from the

cycle for tank pressurizing using heat exchanger. The

parallel set-up of the turbines requires a hot-gas vent

to control the mixture ratio. Although the design is

not totally complete yet, it is likely that the set-up

with 2 turbine exhaust lines will be built as shown.

The alternative (Figure 5 [20]) would be to use these

lines f°r £ilm cooling, as they are used in an other

induction current engines (with the exception of HM7).

It has been determined that this technology presents

great difficulties in Europe. The amount of hydrogen

needed to dump cool the nozzle would have to be

decreased.

-14-
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Figure 4: HM60 Combustion Chamber Cycle (Source: SEP)

Figure 5: Alternative Use of HM60 Nozzles with Dump

Cooling. Left: Additional Film Cooling using

Turbine Exhausts. Right: Separate Exhaust

Lines.
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The history of the European cryogenic engine does not /12

begin with HM7 and HM60: Preparatory projects began already in

1960 at SEP (SEPR), and already in 1962 a contract existed to

develop a 4-chamber drive system with 6 t thrust. This system

satisfied all the technological data of the subsequent HM7

engine [12], [22], and, using an HM4 engine, led to the HM7 in

1973. MBB began investigating high-pressure engines in 1967

[21] and cryogenic engines in 1962. A main current Hz/Oa

experimental engine (HPC, high-pressure chamber in Figure 3) had

attained 210 bar chamber pressure as early as 1968. This engine

was developed in conjunction with Rocketdyne and led to SSME

taking over combustion chamber production technology.

Unfortunately, the previously mentioned 15-year pause followed,

during which time no research was done in Europe on chemical

liquid drive. The one exception to this was SEP's development

of the HM7. Unfortunately as well, this gap included the area

of small, pressure-driven engines with storable fuels, which are

necessary for advanced stored control systems and as kick

stage engines. The Federal Republic became the world leader in

this area in 1970 with MBB's ION and 400N symphony engines.

Today, similar engines having a far greater thrust range are

available from numerous firms in the USA.

Overall, the situation today is such that Europe must catch

up in the following areas of chemical liquid engines (a list,

which could be expanded easily):

Mechanical transfer: Cryogenic high-pressure

turbopumps, entire field of technology, especially,

however, cryogenically cooled bearings at high speeds.

(HM60 is said to exhibit 45% more stress than HM7. A

value of 75% over that of HM7 was planned in Japan for

LE-7. HM60 lies below, LE-7 above the value of SSME.)

Combustion chamber: High-pressure/high-temperature

materials (for example, replacement for the Narloy Z

-16-



used in the SSME, since Cu Ag Zr alloys are neither

available in sufficient amounts in Europe, nor has the

processing of same been sufficiently developed,

especially for pre-combustion chambers.) New

constructions and cooling with LOX must be

invest igated.

— Nozzles with altitude compensation: Extendable,

bundled, unconventional.

— Preparation methods for injection systems, cooling

systems, nozzles. Cost reduction through automation

and/or robot utilization.

Theory: Thermodynamics and kinetics of high- /13

pressure fuel preparation and combustion, flow

mechanics in all parts of the engine, modeling of

combustion stability, design of mechanisms to prevent

combustion instability.

— Engine development: Engines in the medium thrust range

from 0.3 to 3.0 t.

4. The Future European Launch Rocket ARIANE 5P

Research carried out up to 1983 in France by CNES and in the

Federal Republic by an industrial group ("ZETK") came up with

the concepts shown in Figure 6 [24], [25], which are

'characterized, above all, by three requirements:

— Increase of the European LEO payload capacity from the

present 4 - 6 t (ARIANE 3/4) to at least 15 t;

-- STS compatibility in the specific transport price to

GEO with at least similar space (diameter) available

for use, and

-17-



Inclusion of manned LEO missions for Europe by means of

a retrievable system with which payloads could also be

returned.

The demand for manned flight proved to be the foremost

element in determining a design: On the one hand, the winged

HERMES retrievable craft, proposed by ONES, set the course for

LEO minimum payload sizes and with it for the absolute size of

the transport. On the other hand, this led to the demand of at

least 98% dependability.

The further requirements that this transport be available

for use in 1995 (manned beginning in 1997) and that takeoff

costs be held under 50 MAU (114 MDM) for at least 5200 kg to
•>
GTO, led the ONES to select A5P (Figure 7). This choice has

been subject to some criticism: For one, a small rocket would

be able to handle all the planned missions up to the year 2000

(with the exception of the HERMES mission). Other critics take

exception to the fact that the CNES has knowingly rejected the

demand for continued developeraent possibilities of the system.
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constructed two stage (M = "Modular"); 5S:

Single stage (S = "Single Stage") with
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Figure 7: Three Versions of the ARIANE 5P

ARIANE 5P will consist of a 1 1/2-stage system which /15

has an H120 core stage (120 t fuel H2/02, 1 HM60 engine) and

two P170 solid boosters (each with 170 t solid fuel). It will

carry three different upper stages and payloads to LEO or near

to LEO:

One cryogenic H10 upper stage (Figure 8, [26]) with 8 t

GTO payload, with which up to three satellites can be

brought to GTO simultaneously using corresponding

apogee engines. This stage is also suited for

scientific missions having large engine demands.
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One L4 stage (Figure 8) with storable fuels. With

different fueling, this stage transports up to 15 t to

LEO, but can also convey smaller payloads (5 t) to GTO.

The HERMES retrievable system.

LH2 SPHERICAL
TANK

VEB

SUSTAINING
CONE

ARIANE 3
LOX T.ANK

ARIANE 3
PROPULSION

BAY

INTERSTAGE
"SKIRT

H10 L4

Figure 8: Both Upper Stage of the ARIANE 5P

The new H10 upper stage for the ASP uses a new LEz tank

together with LOX tank, propulsion bay, and HM7 engine of the

H10 in the ARIANE 3/4 version. The range of uses for the H10

could be increased drastically, if it were to be converted into

a type of "European Centaur" by means of re-Start

capability of the HM7 engine. This is not planned at present.
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L4 uses a newly developed engine, whose dimensions /16

have not yet been defined. Thrust for 15 to 30 kN are under

discussion. The decision will depend on the final layout of the

HERMES, which will have the same engine (Figure 9) so that it

will have a drive capacity of 400 m/s (LEO) to 600 ra/s

(.solar-synchronous). This will make it possible for HERMES to

carry 2500 kn fuel N204 /MMH to attain an altitude of 400

to 800 km.

In addition, HERMES requires other small engines in the

range from 10 to 100 N. These are necessary to complete its

three functions [27]:

— Autonomous missions (with 2 pilots and 2 payload

specialists) lasting from 1 to 4 weeks to carry out

projects which correspond practically to the Spacelab

pallet mode. The HERMES payload bay is only 3 m in

diameter and 5 m long.

In-orbit servicing, above all of platforms in /17

solar-synchronous orbits; crew.as above; length of mission,

2 weeks.

— Access to space stations (from US or Europe) with 4 to

6 passengers and 4500 kg payload. Missions lasting 1

week or up to 90 days docked.

While H10 and L4 are clearly elements of the ARIANE 5,

HERMES is primarily a French design. Alternative solutions to the

problems involved in acquiring return technology are being

investigated in the Federal Republic at present. Possibilities

are either bal 1 is t ic re-entry vehicles (as a complement to HERMES)

or winged upper stages (as an alternative).
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Figure 9 HERMES Space Plane (Above left: Configuration

for space station servicing; Below:

Configuration with cargo for autonomous

missions. Note: This set-up is in accordance

with [24]; in the meantime, a design with only

one tail flap has been suggested [28].)
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US SPACE STATION
ACCESS OF HERMES SPACE PLANE

Figure 10 HERMES Approaching US Space Station (left), and

Servicing an Element of the European Space

Station (right).

It must also be mentioned in connection with the

introduction of the ARIANE 5, that during its usage time, it

will have to compete with and operate beside already known

competitors, as well as not yet well-defined, but expected, new

variations of the STS [29], [30].

Several examples are shown in Figure 11 [31], [32]. /18

Because of environmental reasons, but also in order to increase
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payload capacities, the USA is considering replacement of the

STS's solid boosters with liquid fuels (storable or cryogenic).

By substituting a payload capsule for the orbiter (which

weighs 68 t), we obtain a loss device with 71 t payload. NASA

considers this variation to be the most likely further

development. As early as 1996 has been mentioned as a potential

deployment date [30]. In addition to these competitors, the ASP

will have to compete, as well, with the Soviet Proton and the

Japanese H-l1.

5. Orbital Drive and Transport Demands in LEO

An important discovery which the Americans made with the STS

is that the orbiter proved to be too heavy and cumbersome for

interorbital maneuvering in lower orbits. For this reason, an

orbital maneuvering vehicle (OMV) is to be deployed as early as

1990 [30]. This vehicle will serve to pick up or deliver

payloads in orbits at up to 2800 km. HERMES is to be able to

orbit the sun at altitudes up to 800 km, a fact which leads to

the question of whether Europe is not repeating the Americans'

error.

The US space station will be the beginning point for

transfer stages (OTVs) which return from GTO and GEO with the

assistance of air friction. Their effect on the GEO transport

market cannot be estimated yet.

Figure 11: Launch Rocket Scene 1995 - 2000

(Figure follows on page 26)

Shaded symbols: Presently in use. LSOB =

Liquid strap-on booster; SDELV = Shuttle

derived expendable launch vehicle.
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An OMW would be necessary for Europe only as a measure for

traffic between individual elements of a space station. Figure

12 shows a European concept [33]. As part of a modular system,

such an OMW could also be used as a servicing vehicle. This is

the case in the Columbus Space Station project currently under

preparation in Europe.

In the IOC ( in it ial Operating Capability); the Columbus Project

consists of the following known elements [34]:

A laboratory module attached tothe NASA Space Station, but

potentially also free-flying (which would then demand

storage control, orbit correction and ranging

fac i1i t ies).

— Free-flying platforms in near orbits next to the

laboratory module, but also on polar orbits.

Primarily, unmanned service vehicles—as shown in

Figure 13—will be used for these platforms.

— A resources module to assume the free-flying /20

laboratory module's functions which the lab makes

available when docked at the US space station.

In the subsequent AOC (autonomous operating capability)

phase the system will have a pressurized module added to it, and

large platforms with the resource module will be built. A

manned service vehicle would be necessary then to take over the

transport of astronauts (Figure 13) [34], [35].

The drive problems connected with the space station have not

been fully investigated. Particularly the resource module has

considerable maneuvering demands, and its limitation as service

vehicle and/or OMV has not been defined yet.
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Figure 12: European Concept

for Orbital Maneuvering

Vehicles

Figure 13: Unmanned (above:

2 Versions, at right with

Manipulator Arm) and Manned

(below) European Service

Vehicle.

Space stations, launch rockets, and retrievable systems /21

make up the marketable growth areas of space travel in the

coming years. Construction and development of European space

transport systems create demands on European technology, which

must investigate and master this challenge if Europe is to

compete successfully on the international scene in the future.
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