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ABSTRACT

Acceleration methods are presented for solving the steady state

incompressible equations. These systems are preconditioned by introducing

artificial time derivatives which allow for a faster convergence to the steady

state. We also consider the compressible equations in conservation form with

slow flow. Two arbitrary functions e and B are introduced in the general

preconditioning. An analysis of this system is presented and an optimal value

for B is determined given a constant _. It is further shown that the

resultant incompressible equations form a symmetric hyperbolic system and so

are well-posed. Several generalizations to the compressible equations are

presented which generalize previous results.
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1. INTRODVCTION

In this study we consider ways of reaching a steady state for the

incompressible fluid dynamics equations and also for low Mach number

compressible flows. We shall only consider tlme-marchlng schemes that are

represented by hyperbolic systems. Chorin [6] developed the artificial

compressibility method which is further discussed by Peyret and Taylor [I0].

We consider generalizations of this method by allowing artificial time

derivatives in all the equations and not just the continuity equation. This

allows for faster convergence and also facilitates a uniform treatment for

both primitive variables and conservative variables. It is shown that the

resultant equations forms a symmetric hyperbolic system and so is well-posed

for both primitive and conservative formulations.

We next consider compressible flow with very low Mach numbers. As is

well-known, this system is stiff due to the large ratio of the acoustic and

convective time scales. A number of people have considered preconditionlngs

of these equations in various special cases, e.g., Vlvland [20], Briley,

McDonald, and Shamroth [2], Choi and Merkle [4], [5], Rizzi [13], and Turkel

[17], [19]. In this study we generalize these various approaches. In all

cases we consider primitive variables p, u, v plus an additional variable.

After the analysis is complete it is shown how one can reformulate the system

in conservation form.

As pointed out by Briley et al., [2], it is necessary to nondimenslonallze

the equations so that the pressure does not go to infinity as the Mach number

A

goes to zero. In [2] this is accomplished by choosing (0,Cp,U,v,h 0) as the

dependent variables. In this study we shall concentrate on (p,u,v)

variables or else the conservation variables (p,pu,pv,E). Instead in the
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Runge-Kutta code [8] used the variables are nondimensionalized so that P = 0

= 1 in the far field.

2. INCOMPRESSIBLE FLOW

In this section we consider the incompressible inviscid equations.

Extensions to the viscous equations will be considered later while the

following sections will discuss the effects of compressibility. We will only

consider time-independent solutions. Nevertheless, since we shall discuss

time-marching algorithms we begin with the time-dependent incompressible

inviscid equations.

u +v =0
x y

+ vu + Px = 0 (2.1)ut + uux y

+ vv + py 0.vt + uvX y

These equations can also be written in conservation form as

u +v = 0
x y

ut + (u2 + P)x + (UV)y = 0 (2.2)

vt + (uv)x + (v2 + p)y = 0.
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In this study we shall only consider smooth solutions to the systems (2.1) and

(2.2). The only discontinuous solutions of interest are contact

discontinuities, vortex sheets, etc., which are essentially linear phenomena

and so are extensions of smooth flows. Shocked flows are not of interest for

these equations and hence, the systems (2.1) and (2.2) are identical.

Since we are only interested in steady solutions we will modify the time

derivatives that appear in (2.1) and (2.2). The simplest such modification is

the pseudo-compresslbility approach which adds a pressure time derivative to

the continuity equation [6], [i0], [15]. Then all the equations can be

marched in time until a steady state is reached. We shall consider

generalizations of this technique. All the time-dependent equations that we

consider form hyperbllc systems. Since there is no decay mechanism except for

boundaries we can accelerate to a steady state only by increasing the

allowable time step. By normalizing the fastest speed it is shown in [19]

that we accelerate the convergence when all the speeds are close together in

absolute value. Conversely, the worst convergence occurs when the speeds of

the system differ by orders of magnitude. It is also shown in [19] that in

order to have a well-posed problem that is compatible with the steady state,

especially in terms of boundary conditions, it is desirable to have a

symmetric hyperbolic system. For a symmetric hyperbolic system, when the

preconditioning matrix is positive definite we are guaranteed that we have not

changed the appropriate number of boundary conditions and that we have not

introduced any nonphysical time reversals.
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We therefore consider the following extension of system (2.1)

i

pt +u +v = 0
x y

_U =

8--_pt + ut + UUx + VUy + Px 0 (2.3)

(IV

8-_ Pt + vt + UVx + VVy + py 0.

Here, _ and 8 are functions to be determined. When, _ = 0 we recover the

standard pseudo-compressibility method and we need only determine B. To form

a conservation system we multiply the first equation by u and also v and

then add to the second and third equations respectively. The resulting system

is

1

Pt +u +v = 0
x y

(a + l)u =

82 Pt + ut + (u2 + P)x + (UV)y 0 (2.4)

(_ + l)v =

B2 Pt + vt + (UV)x + (v2 + P)y 0.

Note i: The system (2.4) is not truly conservative for tlme-dependent

flows. However, we have in any case destroyed the time accuracy and the

system is fully conservative in the steady state.

Note 2: Even for the original pseudo-compressiblity approach, a = 0, one

should add pressure time derivatives to the momentum equations in the

conservation form. Some authors, e.g., [4], [13] have not added these

derivatives which amounts to choosing a = -i.
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Note 3: We shall do all the analysis on the nonconservative system

(2.3). All the results will be equally valid for the conservative system

(2.4) with the appropriate = and B.

We first rewrite (2.3) in vector form as

f_ 0 o_ 0 iB2

_u

B-_ 1 0 + u 0

_V, lj
B-_ 0 0 u\ (2.5)

(00i)(!l+ 0 v 0 =0

l 0 v

or

-i

E wt + A0 w + B0 w = 0. (2.6)x y

with

w = (p,u,v) t.

Multiplying (2.6) by E we rewrite (2.5) as

2 21+ (I - _)u 0 + v -_u = 0 (2.7)

-_v u 0 (I -
Y

or

+ Bw = 0 (2.8)
wt + Aw x y
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with

A = EA0, B = EB0.

In order to consider the wave speeds of (2.7) we Fourier transform the

system. The wave speeds of (2.5) are given by the eigenvalues of

D = ml A + m2 B, -i J ml' m2 J 1, (2.9)

where ml' m2 are the x and y components of the Fourier transform

variable. Defining

q = u_ I + v_2, (2.10)

we find that the eigenvalues of D are

do = q, (2.11a)

and

1
Remark: In the special case _ = I, we have d± = ±B and so the

"acoustic" sound speed is isotropic and independent of the flow velocity.

We note that for all values of _ and B, d+ and d_ have opposite

2
signs, i.e., d+ • d_ = -B is always negative. This corresponds to subsonic

flow for a compressible fluid which is appropriate for the incompressible case

being considered.

We next consider the choice of B. We consider e as given and we wish

to choose B to minimize the largest possible ratio of wave speeds. Thus, we
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wish to choose B so as to minimize max(]di/dj]) i,j = O, i. After some

algebra we find that the appropriate _ is given by

B2 (2 - e, _ < I, with condition no. ]2 - _[

-_= I (2.12)q _, _ > I, with condition no. _ .

Formula (2.12) is not useful since q, given by (2.!0), is a function of the

Foruier variable (ml,m2) while _ must be given in physical space. Hence,

we replace (2.12) by

_2 1 2 - _' _ < 1 (2.13a)

2 v2u +

_, _ _ i. (2.13b)

The ratio of the fastest to the slowest speed now also depends on the ratio

(u2 + v2)/q 2 and will be larger than that given in (2.12) unless

2 2 2
q =u +v .

Remark: It follows from (2.12) that the optimal _ is _ = I in which

case the condition number is one, i.e., all the speeds have the same

magnitude. Since B cannot be a function of the Fourier variables we must

use (2.13) which means that the condition number is a function of ml/m2.

Nevertheless, this is still the best result for a range of Fourier modes in

multidimensions. We remind the reader that the original artificial

compressibility corresponds to _ = 0 for the primitive variables and to

= -I for the conservative variables.
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We note that in all these formulae 82 is not constant but rather is a

function of the speed, u2 + v2. To avoid difficulties near stagnation points

(2.13) must be modified so that 8 cannot approach zero. For example, (2.13)

can be changed to

max[(2 - =)(u 2 + v2),_] c_< 1

B2 = (2.14)

K max[c_(u2 + v2),_] c_> 1 .

On dimensional grounds s should be a fraction of (u2 + V2)ma x. From later

considerations, (2.16), K should he chosen slightly larger than one.

Until now we have only discussed the wave speeds, i.e., the eigenvalues

of D, (2.9). We have shown that these eigenvalues are always real and so

(2.5) is a hyperbolic system. We next wish to find out whether the system can

be symmetrized. Gottlieb and Gustaffson [7] have suggested a general

technique to check if a system can be simultaneously symmetrized. A necessary

condition is that A and B can each be separately symmetrized. Since A

can be symmetrized it can also be diagonalized. Furthermore, the

diagonalization of A is unique except for exchanges of rows and columns and

also an additional similarity transform using diagonal transformations. Thus

after A has been diagonalized one only need check if B can be symmetrized

by a diagonal similarity transform.

We first need the eigenvectors of A. This is also useful for

constructing characteristic boundary conditions. If follows from (2.11) that

a0 = u

(2.15)

(i - _)u • _(I - _)2 u2 + 482
a =
• 2
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are the eigenvalues of A in (2.8). Let

I 1 a+ 01 _ 1

a+ - aI a+.- a_ -a_ -a+ 0

T -i -a_= 0 , T-I = 1 1 0
a+ - a_ a+- a_

v u vu - a+)(u - a_) (u - a+)(u - a_) - a+ u - a_

Then det(T -I) = /(i - o) 2 u2 + 4_2 # 0 and so the transformation is

nonsingular° Furthermore, the columns of T-I are the eigenvectors of A.

It then follows that

(i0 0)
a+

TAT- 1 = a_ 0

0 u

and

(I - o)a+ v (I + o)a_ v -a+(u - a+_a+ - a_ (a+- a_)(u- a_) a+ - a_

-i -(I + o)a 2_v -(I -o)a_ v a_(u - a_)
TBT = -

(a+- a_)(u- a+) a+- a_ a+- a_ "

ova_ ova+a - (u - a+)(u - a_) -a+ - (u - a+)(u - a_) v

Let DO = diag(dl,d2,d3) with

dI = a__(a+ - a_)(u - a_), d2 = a+J(a+ - a_)(a+ - u),
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JB -a+ ad3 = (a+ - u)(a - u 2 _ a(-u_'+ v2) "

Then DO TAT -I D01 is still diagonal, while DO TBT -I DO1 is now

symmetric. It follows from the definition of a+, a_ that a+ > 0 > a_. It

can then be shown that DO is real and hence the system is symmetrizable if

2 for all ) or equivalentlyand only if q2 j d+ (ml,_2

B2 > _(u 2 + v2). (2.16)

We note that from (2.13) we have, that the optimal B, for e > I, is gotten

by choosing an equality in (2.16) rather than an inequality. Hence, if one

wishes the system to be both close to optimal and symmetrizable we should

2 v2choose B2 slightly larger than u + . Furthermore, for _ < I, (2.13a)

implies (2.16) automatically. For _ < 0 (2.16) is always satisfied for all

8.

When using an explicit method we need an upper bound on the largest eigen-

value of D. A typical explicit scheme has a stability criterion of the form

At <K
_-- _ _+ (2.17)

where A is a typical mesh length and K is a constant that depends on the

scheme. Using (2.11b) we replace d+ in (2.17) by its upper bound

d+ < (u2 + v2) [ _ 4B2 ]-- _ (i - _ + (i - _)2 + u2 _ v2J
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with B2/(u 2 + v2) given by (2.14). If we use a general curvilinear mesh

then the corresponding formula is given by (3.20), with c = _.

The previous discussion has been scheme independent and relied only on

equalizing the wave speeds for the differential equation. We now discuss the

implementation for some difference schemes. For an explicit scheme the time

step is restricted by the fastest moving wave. Thus, the previousanalysis

insists that the time step chosen by a stability analysis should not be

inappropriate for the slower waves. If the wave speeds differ significantly

then the slower waves will propagate very slowly and convergence will also be

slow. Furthermore, for most explicit schemes the damping of the scheme is

small for small At and so the slowly moving waves will not be damped very

much. Hence, our analysis is certainly appropriate for standard explicit

schemes.

Using an implicit method it is less clear that the stiffness of the system

matters. If one uses a backward Euler method then one can show [8] that for

large At that one approaches the classical Newton-Raphson iteration

scheme. In this case the convergence is not very affected by the stiffness of

the system. In [4] computations are presented that show fast convergence for

one-dimensional problems. However, in multidimensions it is not practical to

invert the matrix that one gets using a fully implicit scheme. Instead one

frequently uses an ADI type algorithm. In this case one should not choose

very large At [16] but rather one close to the explicit Courant condition.

This occurs because of the (At)2AB term that is created by the splitting.

Hence, again a At that is appropriate for the fast waves is inappropriate

for the slow waves. Hence, our preconditioning which will equilibrate the

wave speeds will also accelerate ADI type methods. Using the notation of Beam

and Warming [I] we write an implicit scheme for (2.4) as
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E-I + At A0 + _ B Aw = -At f + gy

n+l n
where Aw = w - w

f = , g= uv

\ uv v2+p

_f _g _
AO = _w = 2u B0 - 0 v

v 1 0 2v

(B2( I-- 0 0 o 0
B2

E-I = (_ + l)u I 0 E = -(_ + l)u i 0 .

B2

(= + l)u ' I) _
B2 0 (_+ l)v 0 1

We rewrite (2.17) as

E-I[I + At( En _ n En _ 0)] (fn n) (2.18)_x A0 + _ B Aw = -At + gy .

We now apply an approximate factorization to (2.18) and ignore errors in the

conservation form of the left-hand side to get

_ Aw = -At f + gy .E-I I + At _x EA0 I + At _ EB0
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Since the matrices E, A = EA 0 and B = EB0 are well conditioned there is no

way that the splitting error can slow down the convergence compared with the

standard ADI splitting.

For _ = 0 we need only invert 2 x 2 blocks. For general _ we can

use the factorization suggested by Pulliam and Steger [II]. Hence,

A = EA0 = (I - a)u , B = EB0 = v -au

-_v 0 (i - _)

-I -i

can be diagonalized, i.e., UAU = DI, VAV = D2. Ignoring, again,

conservation errors in the left-hand side of (2.19) we rewrite (2.19) as

[ J I jv (nn)U-I V I + At _ D2 Aw = -At f + gyE-I U I + At _ DI (2.20)

and so we need only invert scalar tridiagonal matrices rather than block

tridiagonal matrices.

In practice one usually solves the viscous equations rather than the

inviscid equations. The easiest remedy is simply to add the viscous terms to

the right-hand side of (2.19). One usually finds, for large Reynolds numbers,

that the time step is restricted only by the inviscid terms. Hence, there is

no need to include a viscous Jacobian on the left-hand side of (2.19).

Furthermore, the preconditioner, E, still equilibrates the inviscid time steps

and reduces the splitting error in (2.19).

We next consider the implementation of the scheme on a staggered mesh.
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V
O

U • U

P i,j!

0

V

Figure 1

The steady state equations are independent of At and so we retain the

improved accuracy of the staggered grid independent of our treatment of the

time-marchlng algorithm. Thus, for example, we discretize the x-momentum

equation in (2.3) by

r n+l n + n+l n n+l n+l
aUi+l/2 ,j [Pi+l,j - Pi+1,j Pi,j - Pi,j ) ui+1_ ,j - ui+i/2 ,j+

At At

2g_+i/2'J (2.21)

+ usual space differentiation = 0

where

[ 2 (vi,j+i/2+ Vi+l,j+l/2+ vi,j-i/2+ Vi+l,j-i/2 )I 2
2 = K1 ui+ +Bi+ i/2,j I/2,j 4

and K1 is a function of a given in (2.14). Using an explicit scheme Pt

at (i,j) is already known from the first equation. With an implicit scheme

we now have contributions of Pt in the momentum equations which contribute

to both the diagonal and off diagonal blocks.
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In this section we have only considered Cartesian coordinates. The

extension to general curvilinear coordinates is straightforward. This will be

done in the sections on compressible flow which will contain the

incompressible case as a limiting solution. Here we shall only show that the

matrices are simultaneously symmetrizable in curvilinear coordinates whenever

they are symmetrizable in Cartesian coordinates. Consider the equation in

Cartesian coordinates (X,Y),

w t + AwX + BWy = 0. (2.22)

Let x = x(X,Y), y = y(X,Y) be general coordinates then

+ AI w + B w = 0 (2.23)W t x I y

with

A1 = AxX + BXy, B1 = AyX + Byy. (2.24)

Since AI and B1 are linear combination of A and B it follows that

whenever A and B can be symmetrized simultaneously so can AI and BI.

3. COMPRESSIBLE (p,u,v,S) SYSTEM

In the previous section we have considered incompressibleflow where the

unknowns are (p,u,v). We next consider the compressible equations

concentratingon low speed flow. Since our analysis is local we need only

consider flows that locally have a small Mach number. The flow can even be

supersonicin other regions. Hence, it is useful to considerthe conservation
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form of the equations. In considering the compressible equations we need an

additional unknown. Three possibilities are entropy S, or density p or

else to use Bernoulli's law stating that the total enthalpy is constant, i.e.,

isoenergetic flow. In all cases we shall ultimately cast the equations in

conservation form but the three possibilities lead to different

preconditioning. As before we shall do the analysis on the primitive

variables and only at the end shall we derive the conservation variable

version. In this section we consider the (p,u,v,S) system while the other

possibilities are discussed in later sections.

The time-dependent Euler equations can be written in Cartesian

coordinates (X,Y) as

Pt + (UPx + Vpy) + uX + Vy = 0
pc pc

ut + uuX + VUy + px/O = 0

(3.I)

vt + uvX + VVy + py/p = 0

St + USx+ VSy = 0

where

p = p(p,S).

We now introduce curvilinear coordinates x = x(X,Y), y = y(X,Y). The Euler

equations in (x,y) coordinates are
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J --_ (Upx Vpy)2 pt + + + u Y - v X - u Y + v X = 0x y x y y x y x
pc pc

+ Vv + (Px Y - Py Yx )/p = 0Ju t + Uux y Y

(3.2)

Jvt + OVx + VVy + (-Px Xy + py Xx)/p = 0

+ VS = 0
JSt + USx y

where p = p(p,S), and

U = UYy - VXy , V = -UYx + VXx, J = Xx Yy - Xy Yx" (3.2a)

We precondition this system by a generalization of (2.5). We thus obtain

OOOuoou xOoii
pB 2

j +

_0 0 0 I S 0 0

(3.3)

V _y X 0 p
pB2 x x

-Yx/p V 0 u

+ =0.

Xx 0 V v
P

0 0 0 V S
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Since the entropy decouples on the matrix level (we freeze coefficients and so

p no longer depends on S) for stability theory we can reduce (3.3) to the

simpler equivalent form

I 0 _ U Y -X
P

pB2 pc2 Y

j _UpB2 1 0 + Yy/p U 0

eVpB2 0 i -Xy/p 0

(3.4)

rv -Yx X
pc

vii°o
We note that (3.4) is very similar to (2.5). In fact, setting c = B and

p = i and using Cartesian coordinates, (3.4) reduces to (2.5). As before we

rewrite (3.4) as

jE-I
wt + A0 w + B0 w = 0. (3.5)x y

Multiplying (3.4) by E we obtain

+ Bw = 0 (3.6)
Jw t + AwX y

with w = (p,u,v) t and
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82 U

2 PB2 Y -p82 X _
c Y Y

Y

A = EA0 = -_uU + y -_uY + U auX ,2 p y y
pc

---_ Y -_vY _vX + U

_pc P Y Y

(3.7)

B2 V 2 1

2 -P8 Yx P82 Xx
C

Y
-_uV x

EB0 = auY + V -=uXB = 2 p x x
pc

+ x _vY -_vX +
\ pc P x x

and the Jacobian J is given by (3.2a). To find the wave speeds we again

examine the eigenvalues of

D = ml A + m2 B, -i _ ml' _2 _ i. (3.8)

We define

£i = Yy ml - Yx _2' £2 = -Xy ml + Xx m2

and (3.9)

q = UmI + Vm2 = u£1 + v£2,

U and V were defined in (3.2a). Then the eigenvalues of D are

do = q (3.10a)

and
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d+ =I/2 (i - _ +--_) q ± 1 - _ + __)2 q2 + 4(£ + £2 • (3.10b)
c C C

We note that without preconditioning we have

2 2

d± = q J: /£i + £2 c .

Remark: If we consider the special case _ = I + 82/c 2 -- I, then

: 2d+ +8 + £2 - q = +8 + £2 for low speed flow. Hence, the acoustic

wave moves with a speed independentof the velocities u, v and this wave is

isotropic except for grid effects. Also, we note that (3.10) is independent

of C,

We also know that

2 2 $ 2 2 (X_ + Yx)m2 - 2(X x X + Y Yy)ml m2 < L2£i + £2 = (X + Yy)_I + 2 2 y x

(3.11)

= [X_ + y2+x X2+y y2+y 2{Xx my + YX Yy{] "

For subsonic flow d+ and d have the opposite signs. In fact

2 2 _ q21c2)82d+ d_ = -1£ I + £2 < 0

2 v2 c2whenever u + < . For an orthogonal mesh X X + Y Y = 0 and so the
x y x y

expression for L2, (3.11) simplifies.
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We next consider the choice for B. We wish to choose B so as to

minimize the largest possible ratio of the wave speeds, i.e., to minimize the

maximum of the ratio of the d_s in (3.10). In order to simplify the algebra

we assume that q2/c2 << i, i.e., slow flow, we also assume that B2/c 2 << I.

The optimal B is then computed as (cf. (2.12)),

1 212-a _ < 1

B2(£ + _2) + 0(q2/c 2) . (3.121
2

q _ _> I

The condition number is the same as (2.12) to within 01(B 2 + q2)/c21.

Similar to the incompressible case, (3.12) is not of immediate use since _i'

_2 and q all depend on the Fourier variable (ml,_21, see (3.9). Instead

we suggest using

B22 L2 12 - a _ < I
v2 = (3.13)u +

a _>i

where L is given in (3.11).

We next rewrite (3.3) in terms of the conservation variables (p,pu,pv,E)

_ p + P (u2 + v2). We then obtain
with E _ - 1

y- i Pt +Pt

uz2

- I Pt + (PU)t

J + Fx + Gy = 0 (3.14)

vz2

- I Pt + (PV)t
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where F and G are the standard Euler fluxes in curvilinear coordinates,

J is the Jacobian, and

Zl = (Y - i)(12 12)
B c

z2 = (y _ 1)(e + 1 I - 1)
B2 ) = z 1 + a(Yc B2

(3.15)

1 c2 u2 2

z3 = (y - I) y-----_(---B2 i) + (2_B2+ I c12)( +2v )

2 2 2

= zI h + (y - l)_(u 2 + v2)/B 2, h - c u + vY- 1 + 2 "

Thus, as expected, we recover the correct steady state equations. We can also

eliminate Pt in (3.14) and obtain equations only in terms of Pt' (PU)t'

(pv) t and Et. We then have

C°)puJ(I + Q) pv + F + G = 0 (3.16)x y

\E/t

where I is the identity matrix and

R zI -uz I -vz I z12

R2 z2 u -u z2 -uvz 2 z2 u

Q = (3.17)

R2 z2 v -uvz 2 -v2 z2 z2 v_

R2 z3 -uz3 -vz3 z3 11
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2 v2and R2 = (u2 + v2)/2. When e = 0 and 82 = u + this reduces to the

preconditioner found in [18] by a different technique. We note that for _ = 0

the optimal 8 given by (3.13) is 82 = 2(u 2 + v2)/L 2. Furthermore, we can

invert I + Q simply to get

_ 82
(I + Q) 1 = I ---_ Q. (3.18)

C

Because of the structure of Q we can multiply Q times a vector using seven

multiplications.

As before, the stability criterion for a typical explicit scheme for

(3.16) has the form

At

]--_ K/d+ (3.19)

where K is a constant that depends on the scheme. It follows from (3.9)-

(3.11) that

At < 2K

v!c(I - a + + + 1 - = +-_J (U + V2) + - -
c c c

where L is defined in (3.11),is a sufficientconditionfor stability. For

slow speed flow we can ignore all terms of the order (U2 + V2)/c2 and

82/c2. Also since 82 = O(u2 + v2) by (3.13), we see that At is

independent of c and depends only on the local velocity. As pointed out

previously the special choice e = 1 + 82/c2 simplifies the formulas. We

then find that

At < K for _ = 1 + 82/c 2. (3.21)

J 8/12 U2 + V2
2

c
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As long as the flow is subsonic the square root is meaningful.

As in the incompressible case we find that the matrices A and B can be

simultaneously symmetrized when

B2 > _(u2 + v2). (3.22)

In forming the preconditioned system (3.16) we eliminated the pressure

term Pt from (3.14). Since we are not interested in the time-dependent

solution we can instead eliminate Pt'

2 2 Pt
u + v

2 ) Pt y - I + u(pu)t + v(pv)t - Et" (3.23)

As before, we need to do something special in the neighborhood of stagnation

points. This system now solves for (p,pu,pv,E) and so is more similar to

the incompressible limit.

4. COMPRESSIBLE (p,u,v,p) SYSTEM

In the previous section we appended the entropy equation to the

incompressible (p,u,v) equations and did not precondition the S

equation. This had the benefit that the entropy equation decoupled and so

even in the compressible case we needed to only consider three equations (see

(3.2)-(3.4)). Choi and Merkle [4], [5] have discussed a (p,u,v,p)

formulation which we now analyze in more detail.

Again considering curvilinear coordinates x = x(X,Y), y = y(X,Y) the

Euler equations are (compare with (3.2)).
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ZJ i (UPx Vpy)---__pt + + + u Y - v X - u Y + v X = 0x y x y y x y x
pc pc

+ Vv + (Px Y - py Yx)/p = 0Jut + Uux y Y

(4.1)

Jvt + Uv + Vv + (-Px X + py Xx)/p = 0x y y

+ p(ux Y - v X - u Y + v Xx) = 0JPt + UPx + Vpy y x y y x y

where

U - vX , V = -uY + vX , J --X Y - X Y .
UYy Y x x x y y x

We precondition this system similar to (3.3) where again the last equation is

not preconditioning. Thus, we are now not changing the p equation rather

than the S equation of (3.3). We then obtain

[:B2 0 0 0 p 2 Yy -Xy 0 pp c

_-H--u 1 0 0 u --Y U 0 0 u

PB 2 +
p

J

_v__y_ 0 I 0 v X /p 0 U 0 v

pB2 i
_0 0 0 P PYy -PXy

(4.2)
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v o,P1
--7 -Y xx x
Oc

-Yx/p V 0 0 u

+ = O.

Xx/P 0 V 0 v i
_0 -PYx PXx P Y

In order to facilitate comparisons with (3.3) we change variables in (4.2) to

a (p,u,v,S) system. Formally, we define S = _n[p/p Y] and so
1

do =-_ (dp - pdS). Substituting into (4.2) we get
C

( ooo 1
PB2 PC 2 Yy -Xy 0

(_u

PB 2 I 0 0 u Yy/p U 0 0

J +

(xv

--pB2 0 1 iJ v -Xy /p 0 U 0 jB_ ) o o o o o u x

(4.3)

xox1
-Yx /p V 0 0 l

+ = O.

Xx/P 0 V O/0 0 0 V Y
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Comparing (3.3) with (4.3) we see that using the (p,u,v,p) formulation has

introduced an additional Pt preconditioning into the entropy equation.

Hence, the entropy equation no longer decouples from the previous three

equations. This complicates the analysis. The advantage of the (p,u,v,p)

is that it simplifies the preconditioning in conservative variables as will be

seen later. Solving for (p,u,v,S) t we find

--_ U pB2 yy -pB 2 X 0Y
C

-auU + y /p -auY + U -auX 0
2 y y Y

pc

J +

-_vU

2 Yy/O -_vY -_vX 0Y Y
pc

B2 _ B2 2
(i - -_) _yyy(l 1"2 ') -_Xy(' 2 .8 ) U x

pc c c c

(4.4)

V -p y p X C px x
c

Y
-_uV x _uY + V -_uX 0 u

2 p x x
pc

+ = O.
X

-____v+ x -x_vY -_vX + V 0 v
2 p x x

pc

pc
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or

Jw t + Aw + Bw . (4.5)x y

Comparing the matrices A and B of (3.6)-(3.7) with that of (4.4)-(4.5)

the eigenvalues of any linear combination of A and B are unchanged since

the last column has zeros except for the corner element. Hence, all the

preconditionings that were considered before in Section 3 are equally

efficient for the (p,u,v,p) system. In particular, an optimal B is given

by (3.13) and the time step restriction for a typical explicit method is given

by (3.20) and (3.21).

We now rewrite our preconditioned (p,u,v,p) system (4.2) in terms of

conservation variables. This becomes

I °t i
uz2

y - I Pt + (PU)t

+ F + G = 0 (4.6)
x y

vz 2

y - i Pt + (PV)t

z3

_y - I Pt + Et )

with

z2 = (y - I)a/B 2

(4.7)

I c2 a(u 2 + v2)l=3= (_- i)_ -i C_-S_- i)+ B_ ,
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(compare (3.15)). Eliminating Pt in (4.6) we find that

-- m

P

pu

J(l + Q) + F + G = 0 (4.8)
pv x y

where I is the identity matrix and

0 0 0 01

2

R2 z2 u -u z2 -uvz 2 z2

Q = (4.9)

R2 z 2 v -uvz 2 -v 2 z 2 z 2 vI
_R 2 z3 -uz 3 -vz 3 z3

and R2 = (u2 + v2)/2. Comparing (3.14)-(3.17) with (4.6)-(4.9) we see that

the (p,u,v,p) system leads to a simpler preconditioner than does the

(p,u,v,S) system. Choi and Merkle [4] pointed out that in the special case

= 0, that only the energy equation is modified, i.e., z2 = 0 when e = 0.

As before

_ 82
(I + Q)-I = I --_ Q. (4.10)

C
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5. COMPRESSIBLEISOENERGETICSYSTEM

In the two previous sections we have considered two possibilities for

adding an additional differential equation to the incompressible equations. A

different possibility is to use the fact that for the steady state Euler

equations, when the flow originates from a common reservoir, the specific

total enthaphy, h = (E + p)/p, is constant throughout the flow. Since we are

only interested in steady state solutions, we can assume that h = h0 for all

time. Such equations have been analyzed by Gottlleb and Gustaffson [7] and

also Briley, McDonald, and Shamroth [2], Viviand [20], and Rizzi and Eriksson

[12]. Taking as our unknowns (p,u,v) the equations become in a general

coordinate system (x,y),

J --_ VpyPt + (UPx + ) + U Y - v X - u Y + v X = 0
pc pc x y x y y x y x

+ Vv + (Px Y - py Yx)/p = 0 (5.1)Ju t + Uu x y Y

Jv t + Uv + Vv + (-Px X + py Xx)/p = 0x y y

where

= - = + vX , J = X Y - X Y ,
U UYy VXy, V -uY x x x y y x

and

Y

y- 1 p
P = 2 2 " (5.2)

u + v
h0 2

Using a preconditioning similar to that of the previous sections we consider
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i 0 ] p U Y -X
082 pc Y

au--u-- 1 0 u + Yy/p U
pB2

_a2 0 v _-Xy/p o (5.3)

_V _y X
2 x x

pc

+ -Yx/p V 0 = O.

Xx/P 0 V

We see that the form of (5.3) is identical to that of (3.4). The only

difference is that the coefficient p in (3.4) satisfies p = p(p,S) while

in (5.3) p is given by (5.2). However, the eigenvalue properties of the two

systems are identical. In particular, it is evident from (5.3) that in the

absence of preconditioning, i.e., B = c and a = O, that (5.3) is

simultaneously symmetrizable. In [7] there was an algebraic error and it was

claimed that the isoenergetic system could not be symmetrized. In [19] we

presented the matrices that would symmetrize the isoenergetic equations

written in conservation variables. The proof of symmetry is more obvious

when (p,u,v) variables are used as in (5.3). Furthermore, it follows from

our previous results that (5.3) is symmetrizable for all a and B subject

to the restraint (3.22)

We can rewrite (5.3) in terms of the conservation variables (p,pu,pv) as
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Zl Pt + Pt 1

J uz2 Pt + (PU)t + F + G = 0, (5.4)x y
i

VZ2 Pt + (PV)t_

whe re

Zl _ 0 [c2 B2 e(y - i) v2)]
B2 - + (u2 +p Y

and

2 2

z2 = Zl + P _(y - I) u + v
82.p V (h0 2 ) Zl + _/B2 (5.5)

It follows from (5.2) that

Pt - Y - 1 u2 + v2
V [(h0 + 2 )Pt - u(pu)t - v(pv)t]" (5.6)

We can, therefore, rewrite (5.4) so that only time derivatives of p, pu, pv

appear. We thus rewrite (5.4) as

J(l + Q) + F + G = 0
x y

t

where I is the identity matrix and

i R2 Zl -uz I -vz I 1

Q _ Y - 1 uR2 z2 2 z2 -uvz2 (5.7)y -u

kvR 2 z2 -uvz 2 -v2 z2
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2 2

where R2 = h0 + u + v2 . It also follows that

_ B2
(I + Q)-I = I -_ Q . (5.8)

c

As pointed out at the end of Section 3 we can, from (5.6), use Pt instead of

Pt" Substituting into (5.4) we get a system which is similar to the

incompressible equations. Now there is no difficulty near stagnation points.

6. COMPUTATIONALRESULTS

Several authors have previously demonstrated the effectiveness of

preconditioningfor the compressibleequationswith e = 0. Briley,McDonald,

and Shamroth [2] consider the isoenergeticequations (Section5) and present

results using an implicit method for the Navier-Stokes equations with an

algebraicturbulencemodel. Rizzi and Eriksson [12] also use a preconditioned

model based on the analysis of Viviand, also for the isoenergeticequations.

Rizzi and Eriksson show computer results for the isoenergeticEuler equations

in both two and three dimensions. These results are calculated using an

explicit three step Runge-Kuttatype algorithm. In addition Choi and Merkle

[4] analyze a (p,u,v,p) formulation(Section 4) with e = 0, and present

results for nozzle flow using an implicitA.D.I. type algorithm. In [5] they

present an alternative approach to preconditioning the equations that is

effectivefor very low Mach numbers.

We present results based on the Runge-Kuttacode algorithmdescribed in

[8], [19]. This is a pseudo-tlmemethod that solves the compressibleEuler

equationsby a four stage Runge-Kuttaformula. The time accuracy is destroyed
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since a local time step is used together with enthalpy damping. Residual

smoothing is also applied but without multigrid. We compute flow about a NACA

0012 with an inflow Mach number at infinity of 0.01 and 0 degree angle of

attach. Using the original code [8] the residual is reduced two orders of

magnitued after i000 Runge-Kutta steps. Using the preconditioning of Section

3 the residual is reduced by nine orders of magnitude in 1000 steps. In fact,

the rate of convergence is the same as for transonic cases.

We note that the analysis presented is based on inviscid flow. Hence, we

expect the results to also be valid for external high Reynolds number flows.

However, for flows where the viscous effects are important everywhere, e.g.,

low Reynolds number flows or internal flows, it is not clear that B2 should

vary depending on u2 + v2 and not including viscous effects.
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