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ABSTRACT

In this paper we study an inviscid model for a steady axisymmetric flow

with swirl. The governing equation is a nonlinear elliptic equation which has

more than one solution for a certain range of the swirl parameter. The

physically interesting solutions have closed streamlines that look llke vortex

breakdown ("bubble"-like solutions). A multlgrid method is used to find these

solutions. Using an FMG algorithm (nested iteration), the problem is solved

in just a few multigrid cycles.

Research was supported by the National Aeronautics and Space
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I. INTRODUCTION

In this paper we study an invlscid model for steady axlsymmetrlc flow with

swirl, which has solutions with closed streamlines. These solutions have a

structure similar to that observed experimentally as "bubble"-like solutions

when vortex breakdown occurs [4].

Using a streamfunctlon-vorticity formulation to the axisymmetrlc

incompressible Navler-Stokes equations, it was found [3] that one can reduce

the problem to a single nonlinear elliptic equation for the streamfunctlon, in

case of a special inflow flow and some regularity assumption on the vortlclty.

This nonlinear elliptic equation for the streamfunctlon has more than one

solution. The trivial, represents a uniform flow and is of no physical

interest. The other shows a "bubble"-like structure, the target of our

numerical study.

In solving the problem numerically, the problem is reformulated in terms

of a perturbed streamfunction, i.e., the deviation from the trivial solution.

In terms of this perturbed streamfunction, the trivial solution is represented

as an identically zero solution. Our goal then is to find non-zero solutions

which have "bubble"-like form.

The approach we have taken in finding these solutions is to seek first for

a bifurcation point from the trivial branch of solutions. By introducing a

continuation parameter, we can then start marching on a branch of non-trivlal

solutions that bifurcate from that point. One choice of a continuation

parameter is arc length [I]. Another choice, which is simpler but may not be

good in general, is the norm of the perturbed streamfunctlon. The natural

parameter in the problem, a swirl velocity parameter, is not good enough since

it cannot "choose" the non-zero branch as can the former parameter. We
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therefore choose the norm as a continuation parameter, making the swirl

velocity parameter an unknown to be determined by the solution.

The multlgrld approach used for solving the problem is similar to the one

used in [5] for solving the Bratu problem. The relaxation in this method

consists of three steps: (i) a local relaxation to smooth the error; (ii) a

step to update the norm of the solution; and (iii) a step to update the swirl

velocity parameter. An FMG algorithm (nested iteration) is used. That is, a

solution for the prescribed norm is found first on the coarsest level, and

then interpolated to finer levels, where on each level a few basic multlgrid

V-cycles are performed before proceeding to yet finer level.

The coarsest level, when solved to get an initial approximation for finer

levels, uses a continuation method. Here the problem was solved first for a

small norm, and then the norm is gradually increased until the prescribed norm

is reached. Each time the norm is increased, the solution of the previous

step was used as initial approximation. By solving for a bifurcation point

from the trivial solution, a first approximation for the smallest norm problem

was obtained.

Once a solution on the coarsest level is obtained for a prescribed norm,

it is possible to solve finer grid problems without continuation.

The same problem we are discussing here was treated by a completely

different method and is reported in [3]. There, a single grid method was used

with a least squares formulation of the problem. The amount of work needed

for that approach is considerably larger than the one reported here. Computed

solutions by the two different formulations are in good agreement.



-3-

2. ON DERIVATION OF THE GOVERNING EQUATION

We summarize here the derivation of the equations used in the numerical

process as given in [3]. In cylindrical coordinates (x,r,e) the

incompressible Navler-Stokes equations can be written in terms of a stream-

function $, vortlcity _, and circulation k as

_r
r-- + $ = r_ (2.1a)

r r xx

(u_) r + (W_)x + "-_rx - Re _rr _ _r - --r2+ _xx (2.1b)

+ wk- I [krr- --ik + k ] (2 Ic)Ukr x Re r r xx

where k = rv, _ = w - u and Re is the Reynolds number. The velocity
r x

components in the x,r,e directions are w, u, v, respectively, of which w

and u are given in terms of the streamfunction by

_r
w - (2.2a)

r

_x
u = ---. _.zD_

r

It is shown in [3] that in the invlscld case (Re = =), one finds that the

circulation k and the vorticity _ are functions of the streamfunction

only. Therefore, k and _ can be determined outside the "bubble" from the

inflow boundary condition. In the model discussed it is assumed that the same

functional dependence of k, _ on _ is true also inside the bubble
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(negative 4). This imposes some regularity on the solution.

For the inflow conditions

V r(2- r2) r < Iv(O,r)= (2.3a)
[Vo/r r > I,

w(0,r) = I, (2.3b)

it is possible to write k and m in terms of the streamfunctionas

2
16 V0 42(1 - 4)2 4 < I/2

k2(0'r) = 2 (2.4a)
V0 4 > I/2

16 V2(1 + 242 - 34)(r2/2 - 4) 4 _ I/2
m(0,r) = (2.4b)

0 4>1/2

and therefore, the equation obtained for 4 is

r(4r/r)r + 4xx = - 4V_ _2(4)(4 - r2/2) (2.5a)

where

40(I+ 242 - 34) 4 ( I/2
_2(4) = (25b)

4>1/2 •

The reduction of the governing equations to a single nonlinear elliptic

equation is possible if the relation 4 = f(r) in the inflow boundary can be

inverted to get r = g(4). When g(4) is introduced in the expression for
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v at the inflow boundary, one has v as a function of _ in that boundary

and therefore k(_), _(_). Note that, in general, one cannot expect to

analytically invert the relation _ = f(r), and so the reduction of the

governing equations is possible only for very special inflows.
2

r

Numerical experiments were done in terms of _ = _ - _-- , which is a
2

r

perturbation from the trivial solution _ =_-- that represents a uniform flow.

3. NUHERICAL ALGOPdTrHM

3.1. Discretlzatlon

The equation for _ = _ - r2/2 is given by

2 a2(_)+ = 0, _ = (0,a) x (0,b) (3.1a)r(l _r)r + @xx + 4 V0

= 0, on _ (3.1b)

where

2 2
r - r

4 + - 1 + _-- (2+ - I + r2) + + _-- _ I/2

a2(_) = . (3. lc)
0 otherwise

Equations (3.1) are dlscretlzed as

@h h @h rj [ 2 h h
i+l,j - 2+ij + i-l,j + [@i,j+l - @ij )

h2 7 [rj+1 + rj

h _ 2 2 h h nhrj +2rj_l(_3"- ¢i,j-I + V0 a (_ij)_ij = O, in (3.2a)

h
_ij = O, on _nh (3.2b)
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where flh= {nh,mh),0 € nh € a, 0 € mh € b}.

3.2. General Strategy for Solving the Discretized Equations

Equation (3.2) has the trivial solution @h = 0 for any V0. This

solution corresponds to a uniform flow and is not interesting physically. We

seek solutions which represent vortex breakdown so that fl_hl[2€ 0, where

2
Itohg2 = h2 I Olj" (3.3)

Iterating on equation (3.2) by any iterative method may lead us to the trivial

solution. In order to rule out this possibility, we specify the norm of the

discrete solution we want to find, while making free the swirl velocity

parameter V0.

To summarize, we solve equation (3.2) for (ih, VO ) under the

constraint

iI_hfl2= go' (3.4)

where g0 is given.

(_h,v 0) in equation (3.2) together with the
A relaxation scheme for

constraint (3.4) is described next.

3.3. Relaxation

Equations(3.2), (3.4) form a nonlinearsystem of equations for (@h,v0).

The relaxationused for this system has three steps: (1) a local process for
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smoothing _h in equation (3.2); (ii) a global change to satisfy (3.4); and

(ill) updating the swirl parameter V0. That is, one relaxation consists of

doing (i), (il), and (ill) successively.

(1) local relaxation

Scan the point (i,j) € _h in lexlcographlc ordering; at each point

h
(i,j) solve (3.2) approximately for _lJ by applying one Newton

iteration.

(li) global step

Compute B = /g0/H_hN 2 •

Then make the change

h h

_ij + B _ij ' (i,j) E oh.

(iii) updating V0

Change V0 such that the following equation holds

<Lh _h + 4V_ a2(@h)i h, _h> = <fh,_h> (3.5)

where Lh _h is the discretization of L_ = r(_ _r)r + _xx' <'''>

denotes the inner product, <u,v> = h2 [ uij vij , and fh is theij
right-hand side of equation (3.2). (In a multigrld process fh is

nonzero on coarse grids.)

We now come to the description of the multlgrid algorithm used to solve (3.2),

(3.4) for (@h, VO).
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3.4.1. Basic Cycle:

Given a sequence of dlscretizations with mesh sizes

hr > h2 >'''> hm, where hk = 2hk+I. The hk-grid equation is generally

written as

Lk _k = fk (3.6)

where Lk approximates Lk+l (k < m) (e.g., they all are finite-difference

approximations to the same differential operator). The algorithm for

improving a given approximate solution _k to (3.6) is denoted by

_k + MG(k, _k, fk) (3.7)

and is defined recursively as follows:

If k = I, solve (3.6) by several relaxation sweeps; Qtherwise do steps

(A) - (D):

(A) Perform _1 relaxation sweeps on (3.6), resulting in a new

approximation _.

(B) Starting with _k-I k-I _, perform one cycle= Ik

_k-I + MGIk_I ' _k-1, Lk-1 _k-1 + l-_k-l(fk_ Eke)).

(C) Calculate

sk _ + k (_k-I k-I _).= Ik_ 1 - Ik

(D) Perform _2 additional relaxation sweeps on (3.6) starting with

sk and yielding the final sk of (3.7).
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In this algorithm k-I --_i_-IIk , are flne-to-coarse grid transfer operators;

ik_!k is an interpolation operator. We refer to the above cycle as MG(_ l,v2).

In the notation of this section (3.6) includes both equations (3.2) and (3.4).

The basic cycle described above is for improving a given approximation on

level k. The full multigrid (FMG) process involves solving the problem on

the coarsest grid, interpolating it to finer grids, and making the cycle

MG(91,_ 2) a few times after each refinement.

3.4.2. Full Multlgrld Algorithm (FMG)

I. Solve (3.6) for k = I, using a continuation method (see remark

below).

2. Set k = k + I and

_k = Hk_ik _k-I , where Hk_ik is a bicubic interpolation.

3. Perform y(k) times the cycle

_k + MG(k, _k fk)

4. If k < m, go to step 2; otherwise stop.

A Remark on Step I of the FMG Algorithm (Continuation Method)

Since the problem involved is a nonlinear one, and we are using a Newton

iteration, a good initial approximation may be needed to get fast convergence

for k = 1 (the coarsest grid). This has been achieved by using a continuation

process where we solve first for a small norm ll@hn2, then gradually

increasing it until the prescribed norm is obtained• Each time the norm is

increased, the solution of the previous step is used as an initial
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approximation. In order to get a good initial approximation for the smallest-

norm problem, we have solved for the bifurcation point from the trivial branch

of solutions.

3.5 Solving for the Bifurcation Point

At a bifurcation point (_*, V_), the llnearlzed problem of (3.1) must

have a zero eigenvalue, and the corresponding elgenfunctlon gives rise to a

second branch of solutions. Since _ = 0 is a solution for any V0, we may

try to find a bifurcating branch from the trivial one (0,V0). The

llnearlzed equations around (0,V0) are given by

Wxx + r(l Wr)r + 4V2 c2(0)W : 0, in _ (3.8a)

W = 0, on 8_. (3.8b)

If there exists a bifurcating branch from the trivial one (0,Vo), equation

(3.8) has a solution (W*,V_) with nW D2 = 1 where n n2 denotes the L2

norm.

We diseretize (3.8) in a way similar to the discretization of (3.1). The

constraint

uwhll 2 = 1,

is added to ensure a non-zero solution to the problem. The process of solving

the eigenvalue problem is identical to the process of solving (3.2), (3.4).



-ii-

Once this linear eigenvalue problem is solved, we can use _0 = ±_W as

an initial approximation for our original problem with a prescribed norm of

€. The sign is chosen such that _0 has negative values, to ensure that the
2

r

total streamfunction _ =_--+ _ will have closed streamlines with negative

values (the bubble).

4. NUMERICAL RESULTS

Experiments were performed with equations (3.2), (3.3) using FMG

algorithm of Section 3.4.2. In these experiments the domain was

_h = {(nh, £h), 0 • nh • 5, 0 • £h < 2}.

Three levels were used in the multigrid algorithm where the finest grid

problem has mesh size 1/16. On the coarsest level 20 relaxations were

performed while on finer grids _I = v2 = 3, y(k)= 4. In all numerical

l_k k-Ik-I -i is injection, Ik is bilinear interpolation, andexperiments Ik --

k
Hk_ 1 is bicubic interpolation.

• 2

Tables 1-IX contain the L2-norm of the residuals and the values of V0

at the end of each cycle on the finest grid. Cycle #0 refers to the

approximation obtained from the previous level as an initial guess. Figures

i-9 show the streamlines (contours of 4) for the different cases. The value

of VO, the swirl parameter value for which bifurcation occurs is V0 = 1.0069

(computed on coarsest level).

The experiments clearly show that the multigrid method suggested is very

2
efficient. In fact, as seen by the convergence history for V0, it is enough
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to take y(k) = 2, instead of y(k) = 4, i.e., by 2 FMG cycles the problem is

already solved.

The results show that bigger bubbles are obtained for smaller swirl

parameters, contradicting to what one would expect. This may be the result of

the assumption made in the model, that the same functional dependence of

k, _ on _ holds inside as well as outside the bubble. A future study will

investigate this point by solving the full systems (2.1), making no extra

assumptions.
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TableI. flchg2= .005 TableII. g_hg2= .05

2 2
cycle# HReslduals,2 V0 cycle# gResldualsll2 V0

0 .362(-I) .95088 0 .948(-I) .68322

1 .986(-3) .96069 ! .232(-2) .68962

2 .843(-4) .96039 2 .251(-3) .68939

3 .148(-4) .96041 3 .113(-3) .68941

4 .745(-5) .96042 4 .918(-4) .68941

Table III. ti@h_2 = .II Table IV. _@hn2 = .15

2 2

cycle # flResidualsfl2 V0 cycle # llResldualsll2 V0

0 .122 .59214 0 .135 .48347

1 .233 (-2) .54739 1 .243 (-2) .48803

2 .215 (-3) .54732 2 .168 (-3) .48798

3 .615 (-4) .54733 3 .474 (-4) .48798

4 .542 (-4) .54733 4 .425 (-4) .48798

Table V. It_hfl2 = .2 Table Vl. l]#hll2 = .4

2 2

cycle # flResidualsn2 V0 cycle # flResidualslt2 V0

0 .150 .42902 0 .192 .30435

1 .242 (-2) .43301 1 .271 (-2) .30725

2 .193 (-3) .43294 2 .239 (-3) .30719

3 .366 (-4) .43294 3 .177 (-3) .30719

4 .266 (-4) .43294 4 .176 (-3) .30719
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Table Vll. fl_hg2 = .6 Table VIII. B_hg2 = 1.0

2 cycle # UResldualstl2 2cycle # _Resldualsli2 V0 V0

0 .230 .24006 0 .295 .17139

1 .303 (-2) .24335 1 .385 (-2) .17303

2 .218 (-3) .24231 2 .363 (-3) .17302

3 .188 (-3) .24231 3 .294 (-3) .17302

4 .175 (-3) .24231 4 .278 (-3) .17302

Table IX. li_hlt2 = 2.0

2

cycle # flResidualsn2 V0

0 .428 .10176

1 .701 (-2) .10276

2 .777 (-3) .10275

3 .584 (-3) .10275

4 .574 (-3) .10275
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STREAMLINES

Figure i. _hl12 = .005, V0 .96042.

STREAMLINES

n@hn2 2 68941.
Figure 2. = .05, V0 = .
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STREAMLINES

Figure 3. _¢h 2 = .II, V_ -- .54733.

STREAMLINES

¢h112 2 .48798Figure 4. li = .15, V0 = .
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STREAMLINES

__.

Figure 5. B@hII2= .2, V0 .43294.

STREAMLINES

_@h,2 2Figure 6. = .4, V0 = .30719.
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STREAMLINES

__.

Figure 7. tllhtl2 = .6, V0 .24231.

STREAMLINES

iiihIl2 2Figure 8. = 1.0, V0 = .17302.
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STREAMLINES

Figure 9. n@hB2 = 2.0, V0 .I0275.
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