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SUMMARY 

Flow f i e l d  da ta  f o r  a double d e l t a  wing a t  low speed were used t o  determine 
t h e  locat ion  of a vortex ac t ion  point .  The r e s u l t  was found t o  be cons i s t en t  with 
what was determined f o r  a d e l t a  wing. In  supersonic flow, the  ac t ion  po in t  locat ion  
was determined empirical ly.  For a wing with rounded leading edges, an assumption 
f o r  i n i t i a l  vortex separa t ion  was shown t o  be equivalent  t o  i n i t i a l  leading-edge 
bubble separa t ion  f o r  a i r f o i l s .  A t h e o r e t i c a l  formulation by t h e  sec t ion  analogy t o  
determine t h e  delayed vor tex  separa t ion  on a cambered wing with rounded leading edges 
was presented.  The method of suct ion  analogy was f u r t h e r  shown t o  be appl icable  t o  
p red ic t ing  t h e  body vortex l i f t .  

INTRODUCTION 

Since Polhamus introduced the  method of suct ion analogy fo r  plane d e l t a  wings 
with sharp edges i n  subsonic and supersonic flows ( r e f s .  1 and 21, various 
extensions of the method have been proposed and used successful ly.  For wings with 
nonzero t i p  chord, Lamar introduced the e f f e c t  of side-edge vortex l i f t  ( r e f .  
3 ) .  When a vortex generated a t  the  leading edge passes over some downstream 
planform area ,  addi t ional  l i f t  is induced because of the vortex suct ion e f f e c t .  
This addi t ional  l i f t  was incorporated i n t o  the method of suct ion analogy by Lamar 
as  the augmented vortex l i f t  ( r e f .  4 ) .  The l a t t e r  may be pos i t ive  a s  is  the case 
f o r  a cropped d e l t a  wing and a strake-wing configurat ion.  Augmented vortex l i f t  i s  
negative f o r  an arrow wing because of t h e  lack of downstream area  t o  receive t h e  vortex 
ac t ion  o r  t o  allow t h e  reattachment of the  vortex flow. For a noncarnbered wing, the  
vortex force  was assumed t o  be ac t ing  a t  t h e  leading edge and normal t o  t h e  planform. 
However, fo r  a positive-cambered wing, t h i s  assumption would produce too much 
t h r u s t  as  compared with data.  To allow f o r  the determination of where the vortex 
force  is ac t ing ,  the concept of vortex ac t ion  point  was introduced ( r e f .  5 ) .  I f  
the  leading edge is rounded, the generation of vortex l i f t  w i l l  be delayed. 
Kulfan presented a method t o  account f o r  t h i s  e f f e c t  fo r  plane wings ( r e f s .  6 and 
7). Another method f o r  the e f f e c t  of rounded leading edges was developed by 
Carlson by using avai lable  experimental da ta  ( r e f .  8). 

The method of suct ion analogy has a l s o  been employed t o  ca lcu la te  the r o l l  
damping of s lender wings ( r e f .  9 ) .  The extension of it t o  ca lcula t ing  a l l  
l a t e r a l - d i r e c t i o n a l  c h a r a c t e r i s t i c s  of slender wings was made i n  reference 10. In 
reference 10,  the e f f e c t  of vortex breakdown was a l s o  incorporated by using a 
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numerical scheme t o  fo r  d e l  i n a l l y ,  an 
unsteady l i f t ing - su r face  theory was used i n  developing the  method of unsteady 
suct ion  analogy ( r e f ,  11) ,  The l a t t e r  can be used fo r  predic t ing  dynamic 
s t a b i l i t y  der iva t ives  of s lender wings, 

I n  .+his paper, the concept of vortex ac t ion  p i n t  is reconsidered for  
subsonic and supersonic flows. In addit ion,  Kulfan's concept f o r  plane wings with 
rounded leading edges is corre la ted  with viscous flow calcula t ions  fo r  a i r f o i l s .  
The extension of the method f o r  cambered wings is described next. Final ly,  it i s  
shown t h a t  the method of suct ion  analogy can be applied t o  p red ic t  the  vortex l i f t  
of s lender  bodies. 

SYMBOLS 

c l o c a l  chord 

C sec t iona l  leading-edge s i n g u l a r i t y  parameter = l imy(x) (x  - x ) 1 /2 

X+X 
Re 

Re 

C~ drag c o e f f i c i e n t  

"% 
sec t iona l  wave drag c o e f f i c i e n t  

R s ec t iona l  l i f t  c o e f f i c i e n t  

CL l i f t  c o e f f i c i e n t  

Cm p i tching moment c o e f f i c i e n t  

C~ ma1 force  coeff ased on maximum cross-sect ional  a rea  

C nf v  sec t iona l  normal force  c o e f f i c i e n t  due t o  body vo f t  

C ~ f  VA 
t o t a l  augmented vortex normal force  c o e f f i c i e n t  on a  body 

c~ pressure c o e f f i c i e n t  

Cs sec t iona l  leading-edge suct ion  c o e f f i c i e n t  

Csf sec t iona l  s ide-forc i c i  

' s ~ , N  t o t a l  suct ion force  c o e f f i c i e n t  produced by a  body nose sec t ion  

Ct sec t iona l  leading-edge t h r u s t  c o e f f i c i e n t  

f  r a t i o  of vortex-induced v e r t i c a l  ve loci ty  t o  the  f r e e  stream (eq. (2)) 

h vor te  i n  eqs. ( 1 5 )  and (161  

R~ body nose length 

M Mach number 



r vortex ac t ion  wint loca t ion  measured from the Leading edge (eq, (411, 
or body radius  

ro leading-edge radius 

e7 ve loc i ty  

Xs body a x i a l  s t a t i o n  a t  which the vortex separa t ion  s t a r t s  

a angle of a t t ack  

"1 sec t iona l  angle of zero l i f t  

as angle of a t t ack  of i n i t i a l  vortex separa t ion  

6 s i d e s l i p  angle or  wave angle 

8s oblique shock angle 

Y r a t i o  of s p e c i f i c  hea t s  o r  bounded vortex dens i ty  

A sweep angle 

P densi ty  

angular coordinate of a body ( f i g .  8) 

angular locat ion  of the  augmented vortex ac t ion  point  on a body (eq. 
21 1 

c angular locat ion  of the body vortex ac t ion  point  (eq. (1 5 )  and f ig .  10) 

Subscripts: 

2 lower surface  

Re leading edge 

u upper surface 

w f r e e  stream 

CONCEPT OF VORTEX ACTION POINT 

In developing the  concept of vortex ac t ion  point ,  flow f i e l d  da ta  i n  cross-  
flow planes a re  needed, see f igure  l ( a ) ,  I t  is assumed t h a t  the ve loci ty  
d i s t r i b u t i o n  around the vortex i n  the longitudinal  plane p a r a l l e l  t o  the  f r e e  
stream is the  same as  sat i n  the  cross-flow plane ( f i g ,  l ( b ) ) ,  I f  a con t ro l  
surface ( a )  is taken through the  vortex center  as shown i n  f igure  1 ( c ) ,  the  vortex 
force  should be equal to the v e r t i c a l  component of the force due t o  tke momentum 
t r a n s f e r  through the cont ro l  su r face  a, Since the vortex force ac t ing  on the  wing 
i s  equal t o  c q-c by the suct ion analogy, it follows t h a t  the force ac t ing  on the  

s 



con t ro l  volume is 

= I ( P V z  - PVZ ) f  *d"L ( 1 )  
i n  o u t  

-b 
To f ind  an average V, l e t  

It1 = vz = fV_ (2 

where f is a constant.  I t  follows t h a t  fo r  a u n i t  span, 

I ( pvz 
-b -b 

- PVZ ) V  d t  = -fv_llpvZ d r  + IpvZ d r l  
i n  out  i n  ou t  

where the  i n t e g r a l s  have been replaced with the  average values. From equations 
( 1 )  and (31, it is  found t h a t  

In  reference 5, f was taken t o  be 0.5 so  t h a t  r = csc. To show t h a t  t h i s  choice 

of f is reasonable i n  subsonic flow, the  flow f i e l d  da ta  i n  reference 12 fo r  a 
double d e l t a  wing a t  s t a t i o n  (1 ) a re  rearranged i n  f igure  2. By numerically 
in teg ra t ing  the veloci ty  d i s t r i b u t i o n  t o  evaluate the  in teg ra l s  i n  equation ( 31,  
an average veloci ty  with f = 0.53 can be found. A t  s t a t i o n  (21, the two leading- 
edge vor t i ces  have s t a r t e d  t o  merge, s o  t h a t  the flow f i e l d  da ta  a r e  not  
appropriate fo r  the present  purpose. 

I n  supersonic flow, Squire e t  a l .  demonstrated by a vapor screen method 
t h a t  the vortex region became much f l a t t e r  than t h a t  i n  subsonic flow ( r e f .  1 3 ) ,  
as  shown i n  f igure  3. Unfortunately, flow f i e l d  ve loci ty  da ta  a r e  not ava i l ab le  
i n  reference 13 and, i n  f a c t ,  have not been found so  f a r  fo r  other  wing 
planforms. Therefore, an empirical  method t 2  determine an appropriate f value was 
used. By assuming d i f f e r e n t  values f o r  1/4f and comparing the ca lcula ted  CL and 
CD values with da ta  for  d i f f e r e n t  planforms with leading-dege f l a p s ,  it was found 

t h a t  a value of 8 -0 f o r  1 /4f produced the  b e s t  r e s u l t s ,  In other  words, f = 1 /4fi, 
m e r e f o r e ,  unless add i t iona l  da ta  prove otherwise, the following r e l a t i o n  f o r  the  
vortex a c t i o n  point  w i l l  be used i n  supersonic flow: 



Some ca lcu la ted  r e s u l t s  a re  compared with da ta  i n  f igures  4 and 5 ( r e f s ,  14  and 
151, It is seen t h a t  the theory p red ic t s  the r e s u l t s  q u i t e  well.  Note t h a t  the  
e f f e c t  of rounded leading edges accounted f o r  i n  f igures  4 and 5 w i l l  be d is -  
cussed i n  the  next sec t ion ,  The wave drag correc t ion  i n  f igures  4 and 5 is t o  
add the nonlinear  e f f e c t  t o  the predicted l i n e a r  values based on the  predicted 
s e c t i o n a l  l i f t  coe f f i c i en t s  and the exact  two-dimensional theory f o r  a f l a t  p l a t e  
i n  supersonic flow. The wave drag correc t ion  i s  described i n  t h e  Appendix. 

VORTEX LIFT ON CAMBERED WINGS WITH ROUNDED LEADING EDGES 

Kulfan assumes t h a t  on a s lender wing the leading-edge vortex separa t ion  
s t a r t s  a t  an angle of a t tack  a t  which the leading-edge drag equals the leading- 
edge t h r u s t  ( r e f s .  6 and 7 ) .  To examine t h i s  assumption, experimental pressure 
da ta  ( r e f .  16) and t h e o r e t i c a l  r e s u l t s  from the Lockheed-Georgia a i r f o i l  code 
( r e f .  17) were used. The a i r f o i l  negative pressure c o e f f i c i e n t  is in tegra ted  t o  
give the leading-edge suct ion (c ) , and the pos i t ive  pressure c o e f f i c i e n t  is 

S 
Re 

in tegra ted  t o  produce the leading-edge drag ( c  1 .  The in tegra t ion  is over the  
dRe 

forward por t ion  of the  a i r f o i l  from the maximum thickness locat ion  i f  no 
separat ion bubble occurs. Otherwise, the in teg ra t ion  is performed only over the  
region forward of the separat ion bubble. The r e s u l t s  ind ica te  t h a t  a t  the angle 
of a t tack  (as)  a t  which the separa t ion  bubble f i r s t  occurs, the leading-edge 

t h r u s t  is about equal t o  the leading-edge drag ( r e f .  18) .  For symmetrical 
a i r f o i l s ,  t h i s  is i l l u s t r a t e d  i n  f igure  6. For cambered a i r f o i l s ,  some ca lcula ted  
r e s u l t s  a r e  presented i n  f igure  7. A s  shown, the leading-edge suct ion a t  as tends 

t o  be g rea te r  than the  leading-edge drag. This is due t o  the  pressure t h r u s t  

generated on the forward camber. To remove t h i s  camber t h r u s t  i n  performing the 
pressure in teg ra t ion ,  the slope of the upper a i r f o i l  surface is reduced by the  
l o c a l  camber slope and t h a t  of the lower surface is  increased by it. The r e s u l t s  
indicated i n  f igure  7 by rectangular  symbols ( 0 )  show t h a t  Kulfan's concept i s  
s t i l l  applicable for  cambered a i r f o i l s  i f  the camber t h r u s t  is removed from the  
ca lcula ted  suction. In  the  t h i n  a i r f o i l  or  wing theory, t h i s  is always t r u e  
because the  calculated leading-edge t h r u s t  is  concentrated a t  the  leading edge and 
does not contain the camber th rus t .  

Having es tabl i shed t h a t  Kulfan's concept on the  s t a r t i n g  of a leading-edge 
vortex separat ion is re la t ed  t o  the  occurrence of leading-edge laminar separa t ion ,  
the  next quest ion is  how t h i s  concept can be used i n  ca lcu la t ing  the  vortex l i f t  
on a cambered wing with rounded leading edges. The f i r s t  task is t o  determine 
a For a cambered wing, the sec t iona l  leading-edge suct ion  coe f f i c i en t  can be 
s : wrl t ten  as 

where K i s  a function of geometry and Mach number, and a, i s  the sec t iona l  angle 

of zero l i f t ,  In p rac t i ce ,  a? can be found as follows, Let cst be the s e ~ t i ~ n a %  

leading-edge suct ion c o e f f i c i e n t  for  the same wing without camber. Then 



2 
G " s i n  or 

S 

From equat ions ( 6 )  and ( 7  ) , a, can be found t o  be 

For a wing, t he  s e c t i o n a l  leading-edge t h r u s t  c o e f f i c i e n t  ( r e f .  19) 
can be shown t o  be 

where C is the  leading-edge s i n g u l a r i t y  parameter and can be w r i t t e n  a s  

C = K 1 ( s i n a  + a ) 
1 

(10)  

s i m i l a r  t o  equat ion ( 6 ) .  I f  C1 is C a t  as, then 

The expression f o r  the  leading-edge drag can be found i n  re ference  20. By 
equat ing the  leading-edge drag  t o  t he  leading-edge t h r u s t  a t  as, it  is obtained 
t h a t  

r cosh 
2 

o Re ( s i n a  + a1 ) n 2 - - s n - - C 
2 2 

c 
2 ( 1 - Ma cos  ARe) l2/cosA 

( I  - M= cos  Age) 'I2 ( s i n a  + a ) 
Re 

1 

from which as can be obtained:  

s i n a  + a, - 1 
a = s i n  [f 2 2 1/2- 
s C ( 2  ~ ) 1 / 2 c o s ~  c Re /(l-Ma cos  A Re ) I 

where ro is the  leading-edge rad ius .  

With a, ca l cu la t ed ,  the remaining s e c t i o n a l  t h r u s t  c o e f f i c i e n t  a t  a > a is  
S 

then  given by equation (9 )  with C replaced by G 2 ,  h e r e  

5 = C i s i n ( @  - a ) + a l / ( s i n a  i- a , )  
s 1 

( 1  3 )  



Note tlhat ct must Ise converted to the sectional suction coefficient (es) before 

Use l a t t e r  is assumed to become the vortex lift through the method of suction 
analogy. The relation between ct and cs for a cambered wing was derived in 

reference 5. 

The above considerat ion has been applied t o  wings i n  both subsonic and 
supersonic flows with good success. In the supersonic flow, the wing must have a 
subsonic leading edge t o  produce the  vortex l i f t .  Some cor re la t ion  with da ta  was 
shown e a r l i e r  i n  f igures  4 and 5. 

BODY VORTEX LIFT 

If the  aspect  r a t i o  of a s lender  thick wing is reduced, eventual ly it becomes 
a s lender  body. I f  the method of suct ion  analogy is applicable t o  the  former, it 
should a l s o  be applicable t o  the l a t t e r .  Based on t h i s  understanding, the  
following method f o r  ca lcu la t ing  body vortex l i f t  was developed. The method is 
based on the  following assumptions and procedures. 

( a )  The attached-flow solut ion  is obtained with the a x i a l  d i s t r i b u t i o n  of G. 
N. Ward's vortex mul t ip le t s  ( r e f .  21). The boundary condition i s  
s a t i s f i e d  on the body surface.  

( b )  A t  any a x i a l  s t a t i o n ,  vortex separat ion s t a r t s  a t  a circumferential  
loca t ion  where c is minimum and negative. This assumption has been 

P 
shown t o  be reasonable ( r e f .  22). A t  low angles of a t t ack ,  C may be 

P 
p o s i t i v e  everywhere near the  nose. In  t h i s  case, no vortex separa t ion  
is assumed t o  occur. I n  reference 22, the a x i a l  s t a t i o n  (xs) a t  which 

the  vortex separat ion s t a r t s  must be assumed or  given by experimental 
da ta .  Examples of ca lcula ted  pressure d i s t r i b u t i o n  with and without 
vortex separat ion a re  i l l u s t r a t e d  i n  f igure  8. 

(c)  A t  any a x i a l  s t a t i o n ,  the  side-force component of the  negative C i n  the  
P 

region assumed t o  have vortex separa t ion  is in tegra ted  t o  produce a 
s e c t i o n a l  s ide-force c o e f f i c i e n t  ( see  f ig .  9 ) .  

The s ide  force obtained is assumed t o  be the suct ion force produced by 
the separated vortex. This suct ion  force  is assumed t o  be ac t ing  a t  8, 

( f i g ,  10) where 

0 = 0  - A 0  
e min p 

(75 )  



Equations ( 1  5 ) - ( 1 6 )  imply  t h a t  the  vor tex  a c t i o n  p o i n t  i s  loca ted  a t  a  
d i s t a n c e  from emin being propor t iona l  t o  t h e  suc t ion  force :  

Based on equa t ion  (41,  h  should be 

TO determine an app rop r i a t e  value f o r  f ,  d a t a  i n  re fe rence  23 a s  
presented i n  f i g u r e  11 a r e  used. Applying t h e  same method a s  used i n  
f i g u r e  2, f  is determined t o  be 0.70. For s i m p l i c i t y ,  f  w i l l  be taken 
t o  be 1 / ( 2 )  i n  subsonic  flow. I n  supersonic  flow, no d a t a  were 
a v a i l a b l e  f o r  c o r r e l a t i o n  s o  t h a t  an empi r i ca l  value w i l l  be used. I n  
summary, t he  fol lowing values  f o r  h  w i l l  be used i n  t he  p re sen t  method: 

With 8, c a l c u l a t e d  from equat ion ( 1 5 ) ,  t he  s e c t i o n a l  normal f o r c e  

c o e f f i c i e n t  due t o  t he  vor tex  suc t ion  is given by 

( d l  S imi l a r  t o  a  wing, t he  augmented body vor tex  l i f t  e x i s t s  whenever t he  
planview of a  body i s  no t  of the  d e l t a  type. The concept used i n  
c a l c u l a t i n g  t h e  augmented vortex l i f t  f o r  a  wing ( r e f .  4) is a l s o  
app l i cab l e  f o r  a  body. Thus, i f  C s f r N  is  t h e  t o t a l  suc t ion  f o r c e  

c o e f f i c i e n t  from the  nose po r t i on ,  then t h e  augmented normal fo rce  
c o e f f i c i e n t  (cNI i s  given by 

where i s  the  length  over which the  nose vor tex  passes  and R i s  the  
N 

nose length ,  The term is the  l o c a t i o n  of augmented vor tex  a c t i o n  

p o i n t  and is assumed t o  be equal  t o  Bc a t  t he  body shoulder ,  

Ca lcu la ted  r e s u l t s  for an ogive cy l inde r  a t  M m  = 0 - 3  a r e  compared 

wi th  data i n  f i g u r e  12, The e f f e c t  of Reynolds number is seen t o  inc rease  
t h e  load ing ,  %n re fe rences  22 ( r e f .  24 ) ,  d i f f e r e n t  a x i a l  l oca t ions  of 



i n i t i a l  s epa ra t i on  w e r e  assumed f o r  d i f f e r e n t  Reynolds numbers. The 
p re sen t  r e s u l t s  a r e  seen t o  agree  wel l  with the  d a t a  of h igher  Reynolds 
number, This is  expected because an i n v i s c i d  theory,  such as  the 
presen t  one, is t o  s imula te  t h e  flow f i e l d  of i n f i n i t e  Reynolds number, 

I n  f i g u r e  13 ( r e f ,  25) ;  r e s u l t s  f o r  a c i r cu l a r - a r c - cy l inde r  body a t  

M, = 1.6 a r e  presen ted .  It is  seen t h a t  t he  c a l c u l a t e d  r e s u l t s  agree w e l l  
w i th  d a t a  up t o  a = 32 deg. Above a = 32 deg a t  M, = 1.6 o r  

a > 15 deg a t  M = 2.3 ( n o t  shown), t he  normal f o r c e  i s  always 
w 

underpredicted.  This  i s  probably because a t  high M, and/or high angles  

of a t t a c k ,  t h e  p re sen t  l i n e a r  theory cannot p r e d i c t  a ccu ra t e ly  the upper 
s u r f a c e  expansion and s t r o n g  shock e f f e c t  on t h e  lower su r f ace .  

CONCLUDING REMARKS 

The method of suc t ion  analogy, o r i g i n a l l y  developed f o r  a  plane wing, was 
shown t o  be a p p l i c a b l e  t o  cambered wings by using the  concept of vor tex  a c t i o n  
poin t .  For a wing with rounded lead ing  edges,  t he  method is s t i l l  app l i cab l e  i f  
t h e  de lay  i n  i n i t i a l  vor tex  s epa ra t i on  is accounted fo r .  The l a t t e r  can be 
ca l cu l a t ed  by Kul fan ' s  method. Kul fan ' s  method was shown t o  be r e l a t e d  t o  t h e  
leading-edge laminar separa t ion .  Extension of the  suc t ion  analogy t o  p r e d i c t i n g  
t he  body vor tex  l i f t  has a l s o  been presented.  
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APPENDPX 

CORRECTION FOR NONLINEm WAVE: DaAG 

The co r rec t ion  f o r  nonl inear  wave drag is  based on t h e  d i f f e r ence  i n  
pred ic ted  r e s u l t s  for a two-dimensional f l a t  p l a t e  by the l i n e a r  and exac t  
t heo r i e s .  The l i n e a r  theory shows t h a t  t he  drag c o e f f i c i e n t  is  given by 

2 
c = 4cosa s i n  a / ( ~ _ ~  - 1 1 /2 

dw 

where the  a-terms a r e  not  l i n e a r i z e d ,  so  t h a t  the  l i n e a r i z a t i o n  is with r e spec t  t o  
t he  compres s ib i l i t y  e f f e c t  only. For a three-dimensional wing, a i n  equat ion 
(A.1) is  the one assoc ia ted  with the predic ted  s e c t i o n a l  l i f t  c o e f f i c i e n t  ( cg )  a s  
fol lows : 

- 1 2 
a = s i n  I C ~ ( M _  - 1)"~1 /4  (A.2) 

The exac t  theory f o r  a f l a t  p l a t e  i n  supersonic flow shows t h a t  the upper 
su r f ace  pressure  is  given by the  Prandtl-Meyer s o l u t i o n  ( r e f .  26, p. 383): 

2 
2 

2 
s i n  8, 

c = -  s i n  B 1 ~ / ( ~ - 1 ) , (  ) Y/(Y-1) - 
2 [ ( y  - cos2B y - cos2$_ 

pu YMm 

-1 where B_ = s i n  ( I / M ~ )  and B is  found from 

y +  1 1 / 2  -1 y +  1 1 / 2  + 
) '/2tan-1 [ (E) 1/2tan81 = B, - (- -a + B - (- t an  (------ I t a n  B,l 

Y - 1  Y - 1  Y - 1  Y - 1  

The lower su r f ace  pressure  i s  given by the  obl ique shock s o l u t i o n  ( r e f .  27, p. 
86-88) : 

where Bs i s  obtained from 

2 2 
2Mm sin f3 - 2 

S 
t a n a  = cot6 

S 2 2 
( y  + I I M _ ~  - 2Mm s i n  B s r z 

From equat ions ( A . 3 )  and ( ~ , 5 ) ,  the  pressure  d i f f e r e n t i a l  and the  wave drag  become 

7 6 



The d i f f e rence  between the  values given by equat ions (A.8)  and ( A . 1 )  
represents  the  c o r r e c t i o n  t o  be added t o  t he  predic ted  s e c t i o n a l  drag c o e f f i c i e n t  
by the l i n e a r  l i f t i n g  su r f ace  theory. 
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Figure 1. Geometry and flow f i e l d  f o r  def in ing vor tex  ac t ion  point .  

F igure  2 ,  Plow field data at station 1 on a double delta wing at 
Mm = 0. Data f r o m  r e f .  12 .  



VORTEX 
REG I ON 

Figure 3 .  Vortex flow regions on a 65-deg plane wing a t  subsonic 
and supersonic speeds. a = 8.1 deg and R = 1.5 X l o6 .  e 

THEORY - ROUNDED EDGES 

r = 8csc WITH WAVE 
DRAG CORRECTION 

DATA (REF. 14) 

r 

F i g u r e  4 ,  Longitudinal charac te r i s t i cs  of a de l t a  wing of aspect ratio 
4/3 at Ma = 1.8. 



Y - ROUNDED EDGES 
r = 8 c c c  

a, des 

Figure 5. Longitudinal  c h a r a c t e r i s t i c s  of a  wing-body conf igura t ion  
of a spec t  r a t i o  2 .0  a t  Moo = 1.3. 

Figure 6 .  Thickness e f f e c t  on leading-edge suc t ion  a t  angles  of a t t a c k  
a t  which separa t ion  bubble f i r s t  occurs  on symmetrical s i x - s e r i e s  
N n S R  a i r f o i l s .  Ma = 0.17, Re = 5.8 X lo6. 



I I I t I J AIRFOIL 

Figure 7. Camber e f f e c t  on leading-edge suc t ion  a t  angles  of attack a t  
6 which sepa ra t ion  bubble f i r s t  occurs .  Moo = 0.17, R = 5.8 X 10 . e 

LIFT IS PRODUCED 

e, deg 

Figure 8 ,  Calculated p re s su re  d i s t r i b u t i o n  on an ogive c y l i n d e r  at 
ci = 10 degrees  and Mm = 0.3.  



Figure  9. Calcu la t ion  of p o s i t i v e  s i d e  force .  

Figure 10.  Vortex ac t ion  p o i n t  and vo r t ex  normal force on a body. 
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Figure 11. Flow f i e l d  d a t a  from r e f .  23 on a tangent  oyive body a t  
x/D = 2 .6 ,  a = 45 deg and R = 1.5 X lo5.  

e 

PRESENT THEORY - VORTEX FLOW 

---- ATTACHED FLOW 

REFERENCE 22 -- x,/d=O.38 -- xS/d=1.66 

Figure 12. Normal fo rce  and p i t c h i n g  moment c o e f f i c i e n t s  f o r  an ogive-cyl inder  
body a t  Mm = 0 - 3 .  Moment c e n t e r  a t  body nose. Reference a rea  = 
base area and reference  length  = d ,  



PRESENT THEORY - VORTEX FLOW -- -- ATTACHED FLOW 

8.0,- DATA (REF. 25) 
R ~ ~ = o . ~ x ~ o ~  e 

Figure 13. Nonnal fo rce  and p i tching moment c o e f f i c i e n t s  f o r  a c i rcular -arc-  
cy l ince r  body a t  Moo = 1.6. Moment cen te r  a t  body nose. Reference 
a rea  = base a rea  and reference length  = body length. 




