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SUMMARY

Flow field data for a double delta wing at low speed were used to determine
the location of a vortex action point. The result was found to be consistent with
what was determined for a delta wing. 1In supersonic flow, the action point location
was determined empirically. For a wing with rounded leading edges, an assumption
for initial vortex separation was shown to be equivalent to initial leading-edge
bubble separation for airfoils. A theoretical formulation by the section analogy to
determine the delayed vortex separation on a cambered wing with rounded leading edges
was presented. The method of suction analogy was further shown to be applicable to
predicting the body vortex 1lift. '

INTRODUCTION

Since Polhamus introduced the method of suction analogy for plane delta wings
with sharp edges in subsonic and supersonic flows (refs. 1 and 2), various
extensions of the method have been proposed and used successfully., For wings with
nonzero tip chord, Lamar introduced the effect of side-edge vortex lift (ref.
3). When a vortex generated at the leading edge passes over some downstream
planform area, additional 1lift is induced because of the vortex suction effect.
This additional 1lift was incorporated into the method of suction analogy by Lamar
as the augmented vortex lift (ref. 4). The latter may be positive as is the case
for a cropped delta wing and a strake-wing configuration. Augmented vortex lift is
negative for an arrow wing because of the lack of downstream area to receive the vortex
action or to allow the reattachment of the vortex flow. For a noncambered wing, the
vortex force was assumed to be acting at the leading edge and normal to the planform.
However, for a positive-cambered wing, this assumption would produce too much
thrust as compared with data. To allow for the determination of where the vortex
force is acting, the concept of vortex action point was introduced (ref. 5). If
the leading edge is rounded, the generation of vortex lift will be delayed.
Kulfan presented a method to account for this effect for plane wings (refs. 6 and
7). Another method for the effect of rounded leading edges was developed by
Carlson by using available experimental data (ref. 8).

The method of suction analogy has also been employed to calculate the roll
damping of slender wings (ref. 9). The extension of it to calculating all
lateral-directional characteristics of slender wings was made in reference 10. In
reference 10, the effect of vortex breakdown was also incorporated by using a
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numerical scheme to extend the available data for delta wings. Finally, an
unsteady lifting-surface theory was used in developing. the method of unsteady
suction analogy (ref. 11). The latter can be used for predicting dynamic
stability derivatives of slender wings.

In this paper, the concept of vortex action point is reconsidered for
subsonic and supersonic flows. In addition, Kulfan's concept for plane wings with
rounded leading edges is correlated with viscous flow calculations for airfoils.
The extension of the method for cambered wings is described next. Finally, it is
shown that the method of suction analogy can be applied to predict the vortex lift
of slender bodies.

SYMBOLS
c local chord
C sectional leading-edge .singularity parameter = limy(x)(x - xZe)1/2
x+x2e
CD drag coefficient
cdw sectional wave drag coefficient
Cy sectional 1lift coefficient
Cy, 1lift coefficient
Cn pitching moment coefficient
CN body normal force coefficient based on maximum cross-sectional area
Cn,v sectional normal force coefficient due to body vortex 1lift
CN,VA total augmented vortex normal forcg coefficient on a body
Cp pressure coefficient
cg sectional leading-edge suction coefficient
Cqf sectional side-force coefficient of a body
Csf,N total suction force coefficient prodqced by a body nose section
cy sectional leading-edge thrust coefficient
£ ratio of vortex-induced vertical velocity to the free stream (eqg. (2))
h vortex action point location on a body defined in egs. (15) and (16)
QN body nose length

M Mach number




r vortex action point location measured from the leading edge (eg. (4)),
or body radius

Ty leading-edge radius

A4 ’ velocity

Xg body axial station at which the vortex separation starts

o angle of attack

a4 sectional angle of zero lift

Og angle of attack of initial vortex separation

B sideslip angle or wave angle

Bs oblique shock angle

Y ratio of specific heats or bounded vortex density

A sweep angle

P density

6 angular coordinate of a body (fig. 8)

Oa an?ular location of the augmented vortex action point on a body (eq.
21

0 angular location of the body vortex action point (eq. (15) and fig. 10)

Subscripts:

L lower surface

Le leading edge

u upper surface

L free stream

CONCEPT OF VORTEX ACTION POINT

In developing the concept of vortex action point, flow field data in cross-
flow planes are needed, see figure 1(a). It is assumed that the velocity
distribution around the vortex in the longitudinal plane parallel to the free
stream is the same as that in the cross-flow plane (fig. 1(b)). If a control
surface (o) is taken through the vortex center as shown in figure 1{c), the vortex
force should be equal to the vertical component of the force due to the momentum
transfer through the control surface o. Since the vortex force acting on the wing
is equal to csqwc by the suction analogy, it follows that the force acting on the
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where the integrals have been replaced with the average values. From equations
(1) and (3), it is found that

c c (4)
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In reference 5, £ was taken to be 0.5 so that r = CgCe To show that this choice

of £ is reasonable in subsonic flow, the flow field data in reference 12 for a
double delta wing at station (1) are rearranged in figure 2, By numerically
integrating the velocity distribution to evaluate the integrals in equation (3),
an average velocity with £ = 0,53 can be found. At station (2), the two leading-
edge vortices have started to merge, so that the flow field data are not
appropriate for the present purpose.

In supersonic flow, Squire et al. demonstrated by a vapor screen method
that the vortex region became much flatter than that in subsonic flow (ref. 13),
as shown in figure 3. Unfortunately, flow field velocity data are not available
in reference 13 and, in fact, have not been found so far for other wing
planforms. Therefore, an empirical method tq determine an appropriate f value was
used. By assuming different values for 1/4f  and comparing the calculated CL and
CD values with data for different planforms with leading-dege flaps, it was found

that a value of 8.0 for 1/4f2 produced the best results. In other words, f = 1/4/5.
Therefore, unless additional data prove otherwise, the following relation for the
vortex action point will be used in supersonic flow:

r = 8(csc) (5)
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Some calculated results are compared with data in figures 4 and 5 (refs. 14 and
15), It is seen that the theory predicts the results quite well. Note that the
effect of rounded leading edges accounted for in fiqures 4 and 5 will be dis-
cussed in the next section. The wave drag correction in figures 4 and 5 is to
add the nonlinear effect to the predicted linear values based on the predicted
sectional lift coefficients and the exact two-dimensional theory for a flat plate
in supersonic flow. The wave drag correction is described in the Appendix.

VORTEX LIFT ON CAMBERED WINGS WITH ROUNDED LEADING EDGES

Kulfan assumes that on a slender wing the leading-edge vortex separation
starts at an angle of attack at which the leading-edge drag equals the leading-
edge thrust (refs. 6 and 7). To examine this assumption, experimental pressure
data (ref. 16) and theoretical results from the Lockheed-Georgia airfoil code
(ref. 17) were used. The airfoil negative pressure coefficient is integrated to
give the leading-edge suction (cS ), and the positive pressure coefficient is

fe
integrated to produce the leading-edge drag (c ). The integration is over the
Le
forward portion of the airfoil from the maximum thickness location if no
separation bubble occurs. Otherwise, the integration is performed only over the
region forward of the separation bubble. The results indicate that at the angle
of attack (as) at which the separation bubble first occurs, the leading-edge

thrust is about equal to the leading-edge drag (ref. 18). For symmetrical
airfoils, this is illustrated in figure 6. For cambered airfoils, some calculated
results are presented in figure 7. As shown, the leading-edge suction at Oy tends

to be greater than the leading-edge drag. This is due to the pressure thrust

generated on the forward camber. To remove this camber thrust in performing the
pressure integration, the slope of the upper airfoil surface is reduced by the
local camber slope and that of the lower surface is increased by it. The results
indicated in figure 7 by rectangular symbols ( [1) show that Kulfan's concept is
still applicable for cambered airfoils if the camber thrust is removed from the
calculated suction. In the thin airfoil or wing theory, this is always true
because the calculated leading-edge thrust is concentrated at the leading edge and
does not contain the camber thrust.

Having established that Kulfan's concept on the starting of a leading-edge
vortex separation is related to the occurrence of leading-edge laminar separation,
the next question is how this concept can be used in calculating the vortex lift
on a cambered wing with rounded leading edges. The first task is to determine
as.’ For a cambered wing, the sectional leading-edge suction coefficient can be
written as

¢ = K(sina + « )2 (6)
s i

where K is a function of geometry and Mach number, and o, is the sectional angle

1

of zero lift. 1In practice, o4 can be found as follows. Let cg' be the sectional

leading~edge suction coefficient for the same wing without camber. Then
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c ' =K sin2a (7)
5
From equations (6) and (7), o, can be found to be
o, = [(cs/cs')1/2 - 1lsino (8) -

1

For a wing, the sectional leading-edge thrust coefficient (ref. 19)
can be shown to be

_ 20, _ 2.2, ,1/2
= (n/2)C”(1 M_“cos Aze) /COSAze J{Q)!

where C is the leading-edge singularity parameter and can be written éssa1
C = K'(sina + a1) (10)
similar to equation (6). 1If C, is C at ag, then

C1 = C(51nas + a1)/(slna + a1) ~ (1)

The expression for the leading-edge drag can be found in reference 20. By
equating the leading-edge drag to the leading-edge thrust at as,.it is obtained
that .

r cosA"?’e (sino + o)

= A C2 s ! (1 - M 2coszA )1/2/cosA
¢ (1 -m 2coszA )1/2 2 (sina + o) ® fe' fe
» 0 fe 1
from which 0g can be obtained:
sina + « ba L
. - 1 0,1/2 2 2 1/2
- —_ 1,0 - - 12
a_ = sin [+ G (2 S COSAZe/(1 M_“cos Aze) a1] (12)

where L is the leading-edge radius.

With o calculated, the remaining sectional thrust coefficient at o > as is

then given by equation (9) with C replaced by Cz, where

C2 = Clsin{a - as) + a1]/(sina + QT) (13)
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Hote that ¢, must be converted to the sectional suction coefficient (cs) before

the latter is assumed to become the vortex lift through the method of suction

analogy. The relation between ¢, and c, for a cambered wing was derived in

reference 5.

The above consideration has been applied to wings in both subsonic and
supersonic flows with good success. 1In the supersonic flow, the wing must have a
subsonic leading edge to produce the vortex lift. Some correlation with data was
shown earlier in figures 4 and 5.

BODY VORTEX LIFT

If the aspect ratio of a slender thick wing is reduced, eventually it becomes
a slender body. If the method of suction analogy is applicable to the former, it
should also be applicable to the latter. Based on this understanding, the
following method for calculating body vortex lift was developed. The method is
based on the following assumptions and procedures.

(a) The attached-flow solution is obtained with the axial distribution of G.
N. Ward's vortex multiplets (ref. 21). The boundary condition is
satisfied on the body surface.

(b) At any axial station, vortex separation starts at a circumferential
location where cp is minimum and negative. This assumption has been

shown to be reasonable (ref. 22). At low angles of attack, Cp may be

positive everywhere near the nose. 1In this case, no vortex separation
. is assumed to occur. In reference 22, the axial station (xs) at which

the vortex separation starts must be assumed or given by experimental
data. Examples of calculated pressure distribution with and without
vortex separation are illustrated in figure 8.

(c) At any axial station, the side-force component of the negative Cp in the

region assumed to have vortex separation is integrated to produce a
sectional side~force coefficient (see fig. 9).

1 emin P ‘
= / r(x)C_sinbas (14)

csf r(x)

The side force obtained is assumed to be the suction force produced by
the separated vortex. This suction force is assumed to be acting at ec

(fig. 10) where

6 =0 | - A (15)
c min p

= 16
AB = h s (16)
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(a)

Equations (15)-(16) imply that the vortex action point is located at a

distance from emin p being proportional to the suction force:

As = vrAB = h ¥ ¢ (17)
Based on equation (4), h should be
2
h = 1/4f (18)

To determine an appropriate value for f, data in reference 23 as
presented in figure 11 are used. Applying the same method as used in
figure 2, £ is determined to be 0.70. For simplicity, f will be taken
to be 1/(2)1/2 in subsonic flow. In supersonic flow, no data were
available for correlation so that an empirical value will be used. 1In
summary, the following values for h will be used in the present method:

(19)

i
w
o]
=
v
-
.
o

With SC calculated from equation (15), the sectional normal force

coefficient due to the vortex suction is given by

c = ¢ _cosB (20)
n,v sf fe;

Similar to a wing, the augmented body vortex 1lift exists whenever the
planview of a body is not of the delta type. The concept used in
calculating the augmented vortex 1lift for a wing (ref. 4) is also

applicable for a body. Thus, if C ¢ is the total suction force
4

coefficient from the nose portion, then the augmented normal force
coefficient (CN VA) is given by
4

C =ccC cosB_/4% (21)
N, VA sf,N A" N

where ¢ is the length over which the nose vortex passes and zN is the
nose length. The term © is the location of augmented vortex action

A

point and is assumed to be equal to Gc at the body shoulder.

Calculated results for an ogive cylinder at M_ = 0.3 are compared

with data in fiqure 12. The effect of Reynolds number is seen to increase

the loading. In references 22 (ref. 24), different axial locations of




initial separation were assumed for different Reynolds numbers. The
present results are seen to agree ‘well with the- data of higher Reynolds
number. Thig is expected because an inviscid theory, such as the
present one, is to simulate the flow field of infinite Reynolds number.

In figure 13 (ref. 25), results for a circular-arc-cylinder body at

M, = 1.6 are presented. It is seen that the calculated results agree well

with data up to & = 32 deg. Above a = 32. deg at M, = 1.6 or
a > 15 deg at M= 2.3 (not shown), the normal force is always
underpredicted. This is probably because at high M°° and/or high angles

of attack, the present linear theory cannot predict accurately the upper
surface expansion and strong shock effect on the lower surface.

CONCLUDING  REMARKS

The method of suction analogy, originally developed for a plane wing, was
shown to be applicable to cambered wings by using the concept of vortex action
point. " For a wing with rounded leading edges, the method is still applicable if
the delay in initial vortex separation is accounted for. The latter can be
calculated by Kulfan's method. Kulfan's method was shown to be related to the
leading-edge laminar separation. Extension of the suction analogy to predicting
the body vortex 1lift has also been presented.
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APPENDIX

CORRECTION FOR NONLINEAR WAVE DRAG

predicted results for a two-dimensional flat plate by the linear and exact
theories.

The correction for nonlinear wave drag is based on the difference in
The linear theory shows that the drag coefficient is given by

~ . 2 2 1/2
cq = 4cosa sin“o/(M_~ - 1)
W

(a.1)
where the o-terms are not linearized, so that the linearization is with respect to
the compressibility effect only. For a three-dimensional wing, o in eguation
(A.1) is the one associated with the predicted sectional lift coefficient (cz) as
follows:

a=sin e, m? - 1?1/

(A.2)

The exact theory for a flat plate in supersonic flow shows that the upper
surface pressure is given by the Prandtl-Meyer solution {(ref. 26, p. 383):

2
. 2 i
_ 2 sin’8 \v/(y-1) " Pe y/(y-1)
. =2 1T coszp /Y ooszs, - (ae3)
Py ™ o
where g = Sin-1(1/Mw) and B is found from
Y+ 1,1/2 -ty + 1.1/2 _ Y+ 1.1/2 -1y + 1,1/2
o+ B (?f:fqﬁ tan [(§f:—T) tanB] = B b;f:—T) tan [(7~:—T) tang_]
(n.4)
The lower surface pressure is given by the oblique shock solution (ref. 27, p.
86-88):
C = 2sinf sina/cos{B - q) (A.5)
p s s
L
where Bs is obtained from
2Mmzsin28S - 2
tana = cotf 5 3 3 (n.6)
(y+ 1M~ - 2M_“sin BS + 2

From equations (A.3) and (A.5),

the pressure differential and the wave drag become
76




N =C - C {A.7)
p Py P

C

AC sino (A.8)
dw P

The difference between the values given by equations (A.8) and (A.1)
represents the correction to be added to the predicted sectional drag coefficient
by the linear lifting surface theory.

77




78

| i A
EONTROL SURFACE (0) (b)

Vz“—{HTTHF**VZ | cscq, CsCd,

ouT m G o
T.E NLE. -

CsCpVZ/2

SECTION A-A
(c) (d)

Figure 1. Geometry and flow field for defining vortex action point.
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Figure 2. Flow field data at station 1 on a double delta wing at
M_ = 0. Data from ref. 12.
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Figure 3. Vortex flow regions on a 65-deg plane wing at subsonic
and supersonic speeds. o = 8.1 deg and Re = 1.5 x 106.
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Figure 4. Longitudinal chavacteristics of a delta wing of aspect ratio
4/3 at M= 1.8,
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Figure 5. Longitudinal characteristics of a wing-body configuration
of aspect ratio 2.0 at M= 1.3.
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at which separation bubble first occurs on symmetrical six-series
NASA airfoils. M_=0.17, R = 5.8 X 10°.
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Figure 12. Normal force and pitching moment coefficients for an ogive-cylinder

body at M_ = 0.3. Moment center at body nose. Reference area =
base area and reference length = g.
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Figure 13. Normal force and pitching moment coefficients for a circular-arc-

cylincer body at M, = 1.6. Moment center at body nose. Reference
area = base area and reference length = body length. :






