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SUMMARY

The simulation of the leading-edge vortex flow about a series of conical
delta wings through solution of the Navier-Stokes and Euler equations is
studied. The occurrence, the validity, and the usefulness of separated flow
solutions to the Euler equations are of particular interest. Central and
upwind difference solutions to the governing equations are compared for a
series of cross-sectional shapes, including both rounded and sharp tip
geometries. :

For the rounded leading edge and the flight condition considered, viscous
solutions obtained with either central or upwind difference methods predict
the classic structure of vortical flow over a highly swept delta wing.
Predicted features include the primary vortex due to leading-edge separation
and the secondary vortex due to crossflow separation. Central difference
solutions to the Euler equations show a marked sensitivity to grid
refinement. On a coarse grid, the flow separates due to numerical error and a
primary vortex which resembles that of the viscous solution is predicted. 1In
contrast, the upwind difference solutions to the Euler equations predict
attached flow even for first-order solutions on coarse grids. On a
sufficiently fine grid, both methods agree closely and correctly predict a
shock-curvature-induced inviscid separation near the leeward plane of
symmetry.

Upwind difference solutions to the Navier-Stokes and Euler equations are
presented for two sharp leading-edge geometries. The viscous solutions are
quite similar to the rounded leading-edge results with vortices of similar
shape and size. The upwind Euler solutions predict attached flow with no
separation for both geometries. However, with sufficient grid refinement near
the tip or through the use of more accurate spatial differencing, leading-edge
separation results. Once the leading—edge separation is established, the
upwind solution agrees with recently published central difference solutions to
the Euler equations.

INTRODUCTION

The current interest in high angle-of-attack aerodynamics and vortical
flows has focused considerable attention on the numerical simulation of the
flow about a swept delta wing at moderate to high angles of attack. For
subsonic leading edges which are sharp or of small radius of curvature, the
flow separates at the tips and forms two counter-rotating vortices on opposite
sides of. the leeward wing surface. The presence of the vortices produces a
pressure minimum on the upper surface and results in an additional 1ift
component not predicted by linear theory.
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Interest, here, is restricted to methods which "capture" the vortex
rather than modeling it in an approximate manner. Thus, we consider only
methods which solve the Euler and Navier-Stokes equations. The Navier-Stokes
equations model all physical mechanisms and provide the most accurate
results. Vigneron et al.! solved the conical and parabolic approximations to
the Navier-Stokes eguations for the vortical flow about a sharp-edged delta
wing at supersonic speeds. Fujii and KutlerZ>3 solved the three-dimensional
Navier-Stokes equations for the leading-edge separation about a delta wing
with rounded edges at subsonic speeds. Rizzetta and Shang“ presented three-
dimensional Navier-Stokes solutions for a delta wing with sharp edges at
supersonic and hypersonic speeds. The principal drawbacks of the Navier-
Stokes equations are the higher computational costs necessary to resolve small-
scale viscous effects and the need to model turbulence in an approximate
manner. However, the Navier-Stokes solutions set the standard by which less
exact solutions must be judged.

In the last several years, it has been suggested that Euler codes could
be the method of choice in the simulation of leading-edge vortex flows.® In
contrast to potential methods, the Euler equations provide the correct
Rankine-Hugoniot shock jump conditions. They also admit rotational flow
solutions. Indeed, numerous Euler solutions with leading-edge separation have
been reported for both rounded and sharp leading edges using a variety of
numerical schemes. A partial list includes the works of Rizzi et al.6-10,
Raj and Sikora, !l and Powell, Murman et al.l2? using a finite volume Runge-
Kutta algorithm; Fujii and Obayashi13 using a LU factored scheme whose right-
hand side is identical to the Beam and Warming scheme; and Manie et al.l% and
Newsome 13 using a MacCormack scheme.

Since flow separation is usually associated with generation of vorticity
through the no=-slip boundary condition in a viscous flow, its occurrence in an
inviscid solution is of both theoretical and practical importance. Necessary
conditions for flow separation include the presence of vorticity in the flow
as well as an adverse pressure gradient. While the Euler equations admit
rotational solutions through the transport (and for three-~dimensional flow,
stretching) of vorticity, there is only one valid mechanism for vorticity
generation in an inviscid flow. In accord with Crocco's theorem, the Euler
equationg allow for the generation of vorticity through non-constant shock
strength (shock curvature, shock intersection, etc.). Salasl® first
demonstrated shock-induced inviscid separation for the transonic flow about a
circular cylinder. Marconil? published similar results for the supersonic
flow about circular cones and more recently elliptic cones. 18

The Euler equations are singular at a sharp tip. This, however, causes
no particular problem for a finite volume scheme in which cell centered
quantities are computed. Salas and Daywitt 7 in considering conical flow about
sharp external axial corners, have shown that a limiting form of the inviscid
equations valid at the singular corner point leads to a conical analog of the
isentropic Prandtl-Meyer expansion. The maximum Prandtl-Meyer expansion angle
corresponds to vacuum pressure. It is not c¢lear whether theoretically valid
attached flow Buler solutions exist for geometries in which the wvacuum
expansion limit is exceeded. For any finite radius of curvature, the flow
field is resolvable and a valid Buler sclution must approach the expansion
limit as the radius of curvature approaches zero. In a viscous gas, the flow
separates well before the inviscid expansion limit is reached. Once the
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separation and the level of shed vorticity ave established, the dynamics of the
vortex motion, i.e. its interaction with neighboring surfaces, are essentially
inviscid and thus adequately described by the Buler equations {(excluding
viscous features such as secondary vortices).

In practice, numerical solutions to the Buler equations for wings. of
small radius of curvature often result in inviscid separation. Any numerical
algorithm, whether central or upwind differenced, must be dissipative for
stability. As such, there is an.effective Reynolds number inherent in the
calculation which is dependent on the local mesh resolution and the order of
the method. Upwind schemes are naturally dissipative. Central difference
schemes are not naturally dissipative and dissipative terms are generally
added to the discretized equations. The added dissipative terms are generally
of two types: a third-order fourth-difference term to provide dissipation in
smooth regions and an adaptive second difference term to control shock
oscillations. The latter term reverts to first order at a shock but it also
is significant in regions of rapid expansion. Finally, error can be
introduced by the application of surface boundary conditions.

In reference 15, from which parts of this paper are taken, central
difference solutions to the Euler and Navier-Stokes equations for the flow
about a delta wing with a rounded leading edge (elliptic cone) were
considered. The separation vortex predicted with the Euler equations, which
is characteristic of the viscous solution, was found to be numerically
induced. More recently, upwind difference Euler solutions20 were shown to be
much less susceptible to spurious inviscid separation. In the present paper,
the upwind difference method is extended to the conical Navier-Stokes
equations and a more detailed comparison of central and upwind difference
solutions for both the Euler and Navier-Stokes equations is given for the
round leading-edge wing. The upwind code is further extended to consider
Navier-Stokes and Euler solutions for several sharp leading—-edge wings.

SOLUTION METHOD

If interest is restricted to supersonic flow past conical bodies, then
the governing equations may be simplified since the resulting flow will also
be conical. A conical flow has the property that all flow guantities are
invariant on rays which pass through the apex of the conical surface. All
derivatives in the radial direction may then be neglected, reducing a three-
dimensional problem into a much more tractable two-dimensional one. The
conical assumption is exact for inviscid flow. For viscous flow, a length
scale dependence is contained in the Reynolds number. The flow may be thought
of as locally conical with the Reynolds number determining the location of the
conical plane at which the solution is determined. The conical equations may
be obtained by introduction of the conical variables

£ = E(x) = x y =% z =2
X X

n = n{x,y,z) = n{¥,2)

L = L(x,y.,2) = {¥,Z)
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into the three~dimensional Navier-Stokes equations;, written in terms of the
non-dimensional Cartesian variables (x,v,2). Upon simplifying for conical
flow, the govering equations may be expressed in conservation form as

3

3 A
(Q) + 3

Ly ~ a R ~ Iy ~
5t (G—GV) +82;(H-HV) +(S—Sv) = 0 (nH

A~ ~ "~

The inviscid equations are obtained by dropping the terms (GV,HV,SV).

The general three-dimensional, upwind, Euler/thin layer Navier-Stokes
code developed by Thomaszo'21'was specialized for conical flow. In the finite
volume formulation, a single array of crossflow plane volumes was constructed
such that the inflow and outflow surfaces are scaled by the conical
transformation, as above. While the code uses a finite volume approach, the
equations may be written in generalized coordinates as

] 3 3~ -

a -~ IS A
SE(Q) + SE(F) Bn(G) + SE(H - HV) =0 (2)

At each iteration, the inflow conditions are updated with the results of the
previous iteration so that, at convergence, 9Q/3%& = 0, consistent with the

conical flow approximation.

The inviscid and viscous flux vectors in equations (1) and (2) are
defined as

pUc
P pUcu + axp
“ pu -~ ~ ~ _ -1 +
Q = % = % pv F.GH =3 PUV *+ a,p
pw pUcw + azp
B
P [pE + p]U
c
(3)
., 1.2 2 2
- 5 pus + p E = e; + E{u + v +w)
S = — puv
J ouw U =odut+tov +ow
[pE + plu ¢ x Y z
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Although the flux vectors can be written in a common form, they are in
fact quite different as applied to equations (1) or (2). A general three-
dimensional transformation between the Cartesian variables (x,y,z) and the
computational variables is implied in equation (2), so that the flux terms can
be defined as below:

F: =£ U =U-= + +
o g Exu Eyv gzw

G: oa=1n U =V= nxu + nyv + nzw
PO (4)
H H: a=¢g; U =W Cyv + gzw

L]
[
o
+

J = 3(&,n,L)/3(x,y,2)

In the finite volume formulation, expressions for the transformation
derivatives and the Jacobain, J, are evaluated geometrically.

When working with the conical equations (1), it is convenient to work in
terms of the conical variables, Y and Z. This allows a simpler form for the
equations using the two~dimensional transformation:

" Syl [Ya %n ! 5o | Sy
N CZ z ZC n CZ
Since
n = = yl¥ng + 2n,] Lo = 7 xl¥ey + 2t
o=l o= ley] (5)
n, = %[nz] &, = i{cz]

it is convenient to define the terms

n, = ~[YnY + ZnZ] z

X = -l¥g, + Zﬁz]

X
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so that the flux terms in equation (3) can be defined as

G,G : = Nt = = = + +
G o =N (uxlcxy,ocz) (nx,ny,nz) Ufc v n,u n,v n,w
(6)
H,H : = T = U =W = + +
e [+ Ci (axlaylaz) (CXICYICZ) c CXu CYV CZW

1
The term, %’ is absorbed into equation (1) when the Reynolds number and the
time scale are defined with respect to the length scale, L, where L is the
length from the body apex to the crossflow solution plane.

Upon nondimensionalization in terms of the freestream density, p, and
sound speed, c_, the shear stress and heat flux terms are defined in tensor
notation (summation convention implied) as:

1 Bua Bus Ju
= X

Tx x Re [“(ax * 9x ) * ax 6&8]

o B o B o Y

(7)
® ( Moo \802 b L3
9, = ~ = ) = u, T - q
X, RemPr(Y 1) Sxa xa B xaxB X,
p U, L

Re =

o0 H

©

The chain rule is used to evaluate derivatives with respect to (x,y,z) in
terms of (n,Z). When the thin layer assumption is made, only those
derivatives in the direction normal to the wall () are retained in the stress
and heat flux terms. Egquations (1) and (2) are closed by the perfect gas
equation of state and Sutherland's law for molecular viscosity. &All
calculations are for laminar flow only.

The conical flow equations (1) were solved with the MacCormack 22 unsplit,
explicit finite~difference algorithm. Since the algorithm is well known, a
detailed description is unnecessary. The method is second-order accurate in
space and time and is conditionally stable. To control shock oscillations,
MacCormack's 23 pressure damping was incorporated into the scheme. The damping
term is 0(Ax3) except in regions of large pressure gradients where the
pressure gradient switch forces the damping to 0(Ax). MacCormack's scheme is
also naturally dissipative due to unsymmetric differencing in the predictor
and corrector steps.

Upwind solutions were obtained with the flux vector splitting algorithm

AAsA A
developed by Thomas. 29 The generalized fluxes F,G,H, representing pressure
and convection terms are gplit into forward and backward contributions
according to the sign of the eigenvalues of the Jacobian matrices




BE/BQ, Bé/QQ, Bé/BQ

and differenced accordingly. For example, the flux difference in
the E=direction is
~ _A+ +A_
§,F =8 F + 6 F 8
£ T % ; (8)

- +
where 65 and 65 denote general backward and forward divided difference

operators respectively, in the &-direction. In reference 20, van Leer's Fflux
vector splitting was extended to three-dimensional generalized coordinates.

The flux, F, as an example, is split according to the contravariant Mach

number in the £-direction, defined as M, = u/c, where u = U/ grad(g)’. For
supersonic flow, Mg > 1 g
~p A A
F =F, F =0 M€>+1
Al ay (9)
F =F, F =0 Mg < -1

and for subsonic flow, lMgl < 1

:
mass
£ sslk (- £ 2¢)/y + u]
2t lgraag| £2 [k (<5 % 20)/v + v] (10)
J mass- y
+ ~ -
£ oesli (£ 2¢)/y + w]
+
enerqy
where
0 _ 2
fmass = tQC(ME t 1) /4
£* = 2 [{-(v-182 £ 2(y=Drac + 202}/(¥2-1) + H(uZ+v24u?) ]
energy mass - 2

The surface area of the cell interface in the £ direction is 'grad&,/J, the
cell volume is 1/J, and

A~

ko, = , I3 (1
(ki k,) = (E L8 E,)/|graat] (11)
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are the direction cosines of the cell interfaces in the £ direction. The
split-flux differences are implemented as a flux balance across a cell as
(for AE = An = AL = 1)

~ ’*+ s e “+
+ 8, F = [F Q) + F (Q )]i+1/2 (12)
Ay - L

- [F (90 ) + F (Q )]1_1/2

A+ —
The notation F (Q ) denotes a forward flux evaluated using

i+1/2
the metric terms at the cell interface (i+1/2), with conserved variables

obtained by an upwind biased interpolation

- - a1 -
Qierp =% * 4¢£[(1 k) * (1+Kg)Ag]Qi
(13)
of =9, . -t [V, + (1-k)8.]0
i+1/2 i+1 47E £k ETEITiH
where
B = Q4079 Ve T T

Only fully upwind first or second-order accurate differencing has been used in
the results that follow:

¢€ = 0 (first-order upwind)
(14)

¢£ =1, k, = -1 (second-order upwind)

Differencing for the diffusion terms representing shear stress and heat
transfer effects corresponds to second-order central differences in which
second derivatives are treated as differences across cell interfaces of first
derivative terms

P

§H =8 - HV (15)
SV Vie2 k=1/2

where, for example, the term,

Moo Jdu v
Ty = e My * )]

under the thin layer approximation, becomes,

o 3u 3v
Ny = e M oyag * L) (16)




and is differenced in Hv as
k+1/2

8 (17)

re Mer1/2 (5 Uyq ot © Vies1/2)

where

8

k12 T Yk T %

The linearized, backward time approximation in delta form for -the three-
dimensional equations is given as

A~

I oF el SH v _ N
[JAt + 6539 + 6n8Q + GC(BQ 50 Jag = R (18)

As described in reference 20, equation (18) is solved by streamwise
relaxation (&-direction) and approximate factorization in the crossflow plane
as -

3G -1 M v _ N N+1
M+ 6naQ][M] [M + SC(BQ o J]ag = r(Q7, 0 ) (19)
where
1 art aF
M= [JAt * 3% T %0 ]

In general, the solution is obtained by alternate forward and backward
sweeping through the crossflow planes with a nonlinear update of the residual
R indicated on the right side of (19). For the degenerate conical flow case,
this corresponds to reinitialization of the inflow plane and update of the
crossflow plane until convergence is achieved. Since the spatial implicit
discretizations may be taken as first order with no loss in steady-state
accuracy, the solution of equation (19) involves the solution of two block
tridiagonal equations.

Initial conditions for both central and upwind difference methods
consisted of freestream conditions. Boundary conditions consisted of
freestream conditions on the outer boundary, reflection conditions in the
crossflow symmetry plane and slip or no slip conditions on the body surface
depending upon whether the viscous or inviscid equations are considered.

RESULTS

The flow about several different conical delta wings with a 70° wing
sweep angle at a Mach number of 2 and 10 degrees angle of attack was chosen

for study. A thin elliptic cone, Fig. 1, with half angles, tarf’1 (yLE/x) =
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20°, and tanw1 (zCL/x) = 1.5¢ was used as a model for round leading edges with
small curvature radius. For sharp tips, a thinner conical body was defined
with a vertical half angle, tam“1 (zCL/x) = (.75° and a tip half angle
angle given as ’r:au:["1 (dz/dy)LE = 10°. As an extreme case, a zero thickness
flat delta wing was also considered.

Central and upwind difference solutions to the Navier-Stokes and Euler
equations are compared for the rounded leading-edge wing. Upwind difference

Euler and Navier=-Stokes results are then presented for the sharp tip
geometries. :

ROUNDED LEADING EDGES

Navier-Stokes Solutions

A comparison of central and upwind difference calculations was made at
Reynolds numbers of Re = 0.1 x 10° and 0.5 x 106, The grid consisted of 151
points around and 65 points normal to the body with an egual minimum step size
at the tip, in both directions, As/x = .0002. This minimum step size in the
body normal direction was relaxed to a maximum value As/x = .0006 away from
the tip. The grid and an enlarged view of the tip are shown in Fig. 2. At a
Reynolds number of Re = 0.1 x 106, the windward symmetry plane boundary layer
contained 14 points and the leading—edge boundary layer contained 7 points.

In general, central and upwind difference solutions, both second-order
accurate, are in good agreement. A plot of the crossflow velocity for the
central difference solution is shown in Fig. 3 (the upwind result is nearly
identical). In this and the results to follow, the radial velocity component
has been subtracted out of the Cartesian crossflow components. The flow
separates at the leading edge with a large primary vortex and a smaller
secondary vortex. At the higher Reynolds number, Re = 0.5 x 10°, the
secondary vortex is smaller relative to the primary vortex. A comparison of
pressure coefficients, Fig. 4, for both the central and upwind difference
solutions, shows the suction peak to be stronger for the higher Reynolds
number. . At the higher Reynolds number, minor differences appear in the two
solutions in the separation zone, particularly near the leading edge.

Squirezu presented experimental data for the same elliptic cone with a
small circular centerbody. To verify the viscous calculations, the upwind
scheme was applied to the elliptic cone at conditions corresponding to the
experimental data of Squire: Moo= 1.8, Re = 2.1 x 1085, The pressure
coefficient is. shown in figure 5. The solution is in reasonable agreement
with the experiment. Miller ‘and Wood?® delineated seven different flow
classifications according to leading—edge normal Mach number and angle of
attack. The present results, which indicate a primary and secondary vortex
with no crossflow shock, are in agreement with Miller's classification.

Since some Reynolds number dependence was. found in the previous cases, a
wider range of Reynolds numbers were investigated with the thin-layer upwind
Navier-Stokes code for laminar flow. Although the grid, Fig. 2, was not
refined with increasing Reynolds number, the results are believed to be




generally valid. The pressure coefficient for the various Reynolds numbers is
shown in Fig. 6. The leeward suction pressure appears to approach a limit
with increasing Reynolds number. The flow fields are similar with the
exception of the lowest Reynolds number in which the secondary vortex is not
present. Consistent with the experimental results of reference 26,
differences with respect to Reynolds number are confined to the size and
position of the vortex as well as the peak suction pressure.

Euler Solutions

The Euler solutions (for conical flow) are characterized by the presence
of vortical singularities. The entire flow is weakly rotational inside the
bow shock due to variable shock strength. Since streamlines terminate at one
of the vortical singularities and each streamline crosses the shock at a
different location, the flow at the singularities is multivalued. As a
practical matter, for the present case, the bow shock is extremely weak and
the entropy variation due to the bow shock is negligible.

Inviscid solutions for the central and upwind difference methods are
compared on coarse and fine grids. While the two methods agree closely on

fine grids, there are dramatic differences on the coarse grid.

Coarse Grid Euler

Since a prime motivation. in solving the Euler equations is the desire to
avoid the grid fineness necessary for viscous resolution, a coarse grid
(75 x 55) was first considered. The minimum step size, As/x = 0.005, gives
poor resolution at the tip as can be seen in Fig. 7. The crossflow velocities
for the central difference solution are shown in Fig. 8. Corresponding
crossflow Mach number and entropy contours are given in Fig. 9. Entropy is
defined as

£ —= - L an(lere, ) [ere,]Y)

For constant total enthalpy, total pressure loss is given as

As
PO “[E*]
= g

"l

OOO
B comparison of the crossflow velocities, Figs. 4 and 8, reveals a large
primary vortex of similar shape and size. Notably absent is the secondary
vortex since there is no vorticity generating mechanism on the upper wing
surface. A comparison of the pressure coefficient, Fig. 10, for the central
difference inviscid and viscous results, shows surprising agreement with the
exception of the over expansion at the leading edge. From Fig. 9, it can be
seen that entropy is generated at the tip and is convected through the
vortex. The entropy and vorticity at the tip are spurious since there is no
valid mechanism for their generation in the Euler equations. 1In the present
case, the flow does not separate at the tip but at about 92% of chord on the
leeward surface. The separation occurs downstream of a small shock at this
point dividing supersonic flows of opposite directions. With less accurate
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boundayy conditions or large values of the damping coefficient, the point of
separation moves closer to the leading edge. In reference 15, several
differvent boundary conditions were tried. The damping coefficient was also
varied over its usual range of sgtability. With minor exceptions in the
location of the separation point, the result was always the same ~ a large
primary separation vortex. It should be noted that a minimum value of the
damping coefficient was necessary to maintain a stable solution. Computations
by E. Murman (Massachusetts Institute of Technology, private communication) for
this case, on a similarly coarse grid with a finite volume Runge-Kutta scheme,
also resulted in a leading-edge separation vortex,

A better understanding of the separation can be gained by a look at the
transient development of the vortex. From the initial condition, the flow
quickly expanded about the leading edge to a supersonic crossflow. A
crossflow shock also developed on the leeward surface with no separation
evident. Concurrently, the leading~edge expansion produced large
entropy/vorticity errors which were convected downstream to the developing
crossflow shock. The interaction of the two produced a separated region at
the base of the shock. The separation then expanded to form the primary
vortex and the shock is either absent or confined to the vortex near the tip
at the point of separation.

First- and second-order accurate upwind solutions were computed on the
same coarse grid. The first-order scheme is the most dissipative scheme
considered and does not accurately resolve the detailed flow structure.
However, as can be seen in Fig. 11, the flow remaing attached at the leading
edge. The second~order solution is shown in Fig. 12, and the higher accuracy
now correctly predicts the shock-induced vortex centered near the point
y/%x = 0.1. Crossflow Mach number and entropy plots for the second-order
accurate solution are given in Fig. 13. The pressure coefficient for the
first- and second-order accurate solutions is shown in Fig. 14. As would be
expected, the leading-edge expansion and crossflow shock are better resolved
with the more accurate differencing. Chakravarthy27 has also solved the
present case with an upwind Euler code on the same coarse grid and found no
evidence of leading-edge separation.

Fine Grid EBEuler

The grid used in the viscous solutions, Fig. 2, was also used for the
inviscid calculation. The intent was to reduce the effect of numerically
induced errors through better spatial resolution of the tip region. Second-
order accurate central and upwind difference solutions are virtually identical
on this grid. As can be seen in Fig. 15, the central difference solution is
now attached at the leading edge. In both solutions, as in the coarse grid
upwind solution, a small wvortex appears downstream from the crossflow shock.
The vortex is due to shock generated vorticity and is a valid Euler
solution. A plot of the crossflow Mach numbers, Fig. 16, shows both the
crossflow shock and the shock induced wake. In Fig. 17, enlarged views of the
crossflow Mach number and entropy contours are given for the central
difference gsolution. Entropy is generated across the shock according to the
logal shock strength. It is the entropy variation normal to the streamline
which produces the vorticity as required by Crocco's theorem and the
subsequent vortex. On the fine grid, the leading-edge expansion is
essentially isentropic. This can also be seen in Fig. 18 where the leading-
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edge expansion is noticeably sharper than the upwind solution on the coarse
grid. The small bump at y/yLE = 0.3 is due to the expansion under the vortex.

Since boundary condition error, truncation error, and added artificial
dissipation all go to zero in the limit as the grid is refined, it is rather
difficult to ascertain the precise cause of the central difference
separation. However, when compared with the upwind results, certain
possibilities can be eliminated. Both schemes enforce the surface boundary
conditions with equivalent accuracy. Since the first-order upwind solution
has the largest truncation error and yet remains attached on the coarse grid,
the cause of the central difference separation is not just a matter of
inadequate numerical resolution. The one distinguishing characteristic
between the upwind and central difference methods is the added artificial
dissipation model necessary for stability and to control shock oscillations.
Although in regions of smooth flow, the added terms are of higher order than
the truncation error, in regions of large gradients, the pressure switch built
into the model causes the scheme to revert to first order. For this reason,
it has been widely speculated, but not proven, that the artificial dissipation
model is responsible for spurious inviscid separation. It is interesting to
note, in comparing entropy generation at the tip between the central and
upwind solutions on the coarse grid (Figs. 9 and 13), that although the upwind
value is lower (0.3) than the central difference value (0.6), the terms are of
the same order of magnitude.

SHARP LEADING EDGES

Navier—-Stokes Solutions

A thin-layer Navier-Stokes solution was computed for the thin, sharp-
edged wing at a Reynolds number, Re = 0.1 x 108, using the second-order
accurate scheme. The grid, Fig. 19, consisted of 151 x 65 points with a
minimum step size As/x = 0.0002. The crossflow velocities, Fig. 20, exhibit
the same primary and secondary vortices at the same locations as the rounded
leading edge. Crossflow Mach contours are given in Fig. 21.

Euler Solutions

Since the upwind code was found to be much less susceptible to spurious
inviscid separation for rounded leading edges, its behavior for sharp leading
edges was investigated. The essential difference is that, unlike the rounded
leading edge, the local behavior at the sharp edge is singular. Both first-
and second-order solutions were computed on coarse and fine grids. Because of
the very large gradients in the flow near the tip, it was found necessary to
use first-order interpolation {(equation 13) in the flux calculations for some
3~4 points away from and on either side of the tip in the second-order
solutions. This type of flux limiting has been used (ref. 28) to ensure
monotone shock profiles for strong shocks. The calculation remains fully
conservative.

Coarse Grid BEuler

The coarse grid, Fig. 22, consisted of 75 x 55 points. The local tip
resolution is significantly less than that of the sharp tip viscous grid, Fig.
19. On this grid, both first- and second-order solutions are attached at the
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leading edge. The second-order solution predicts a vortex downstream of the
crossflow shock as can be seen in Fig. 23. Crossflow Mach number and entropy
contours for the second-order solution are given in Fig. 24. Despite the
presence of large entropy errors generated at the tip, leading-edge separation
does not occur. The pressure coefficient, Fig. 25, is similar to the rounded
edge result with a well-defined crossflow shock.

Zero-Thickness Wing

A zero thickness wing was considered in order to determine if attached
flow solutions could be obtained in this extreme case. Powell et al,
recently presented leading-edge vortex solutions for similar
geometries using a finite volume central difference scheme. The grid
dimensions were the usual 151 x 65 points. However, as seen in Fig. 26, the
local resolution at the tip is relatively coarse. The first-order solution
did not exhibit leading-edge separation. The crossflow velocities, Fig. 27,
show a vortex downstream of the crossflow shock. Crossflow Mach number and
entropy are given in Fig. 28. The second-order solution exhibits leading~edge
separation, as is evident in Fig. 29. Both solutions are first-order accurate
at the leading edge. Although the (pseudo) transient development of the two
solutions was not observed, it is presumed that the interaction of the
crossflow shock with the rotationality induced at the leading edge is unstable
in the more accurate calculation. As a consequence, the flow separates at the
base of the crossflow shock and the separation bubble grows to form the primary
vortex. In Fig. 30, it can be seen that the crossflow shock has been displaced
to a position above the vortex near its inboard boundary. The pressure coeffi-
cient for the two solutions is given in Fig. 31. The second-order solution has
been compared with the results obtained by K. Powell and E. Murman (Massachusetts
Institute of Technology, private communication). Although the comparison is not
shown, the two computations are in close agreement, including the level of mini-
mum pressure coefficient and the extent and shape of the separation vortex.

Fine Grid Euler

Upwind Euler solutions were computed for the thin, sharp-tipped wing
using the finer viscous grid, Fig. 19. In contrast to the previous coarse
grid calculations, both the first- and second-order solutions are separated at
the leading edge. The first-order solution predicts a very shallow vortex
extending from the leading edge to the centerline. The second-order solution
predicts the more familiar separation vortex. The crossflow velocity plot,
Fig. 32, reveals two smaller secondary vortices near the leading edge.
Referencing the crossflow Mach number plot, Fig. 33, the secondary vortices
are triggered by a small crossflow shock embedded in the vortex. These
features were not found in the viscous calculation, Rew = 0.1 x 109, Fig.

20. The inviscid calculation also predicts a crossflow shock above the vortex
near the inboard boundary which is not present in the viscous result. A thin
layer (laminar) viscous calculation at a Reynolds number of Re = 50 x 10°
also failed to exhibit the inviscid shock-induced secondary vortices. The
pressure coefficient at the lower Reynolds number is compared with the viscous
golution in Fig. 34.
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CORCLUSIONS

Central and upwind difference solutions to the Euler and Navier-Stokes
equations have been presented for conical delta wings with several cross=
sectional shapes.  For the rounded leading edge, central and upwind difference
Navier-Stokes solutions agree well. Although adequate resolution is necessary
for accurate results, the Navier—-Stokes eguations describe all relevant
physical mechanisms and provide a consistent flow description. On a coarse
grid, the central difference Euler solution predicts a primary separation
vortex which resembles the viscous result. This separation vortex, however,
is due entirely to numerical error. With sufficient grid refinement, the
vortex disappears. On both coarse and fine grids, the upwind solution does
not produce leading-edge separation. - Both methods: correctly predict shock-
induced inviscid separation on the fine grid. The separation in this case is
a valid Euler solution. Upwind solutions to the Navier-Stokes and Euler
equations were computed for sharp leading-edge geometries. The viscous
solutions again represent a consistent physical model. ‘Attached flow Euler
solutions were found for very sharp leading edges and even for the infinitely
thin zero thickness wing. However, with sufficient grid refinement or resort
to higher order spatial accuracy, the upwind scheme also predicts leading-edge
separation.

The behavior of central and upwind difference schemes in the solution of
the Euler equations for flow about the leading edges of highly swept delta
wings raises questions of theoretical and practical importance. 1In this
paper, the emphasis has been on the latter question. As a model for the
prediction of leading-edge separation vortices, the Euler equations lack the
essential quality of consistency. Further, they are fundamentally incapable
of predicting secondary flow features such as Reynolds numbers dependence or
the presence of secondary vortices. On the same grid, the cost of evaluating
the viscous terms in the thin layer Navier-Stokes equations relative to the
inviscid Euler equations is less than a 2% increase in CPU time per iteration
for the implicit upwind code. This figure reflects the fact that a majority
of the CPU time is spent assembling and solving the linear systems arising
from the the implicit time discretization. The penalty for an explicit method
is significantly higher. 1In any event, the increase in accuracy and
consistency in the resulting solutions would seem to justify the marginal
increase in computational cost.
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