
NASA Technical Memorandum 87325

Re-examination of Cumulative
Fatigue Damage Analysis—An
Engineering Perspective

(NASA-TM-87325) R E - E X A M I N A I I C N OF N86-27680
C U M U L A T I V E F A T I G U E D A M A G E A N A I Y S I S : A N
E N G I N E E R I N G PERSPECTIVE ( N A S A ) 71 p
HC A 0 4 / M F A01 CSCL 20K Unclas

G3/39 43113

S.S. Manson
Case Western Reserve University
Cleveland, Ohio

and

G.R. Halford
Lewis Research Center
Cleveland, Ohio

Prepared for the
Symposium on Mechanics of Damage and Fatigue
sponsored by the International Union of Theoretical and Applied Mechanics
Haifa—Tel Aviv, Israel, July 1-5, 1985

NASA



CONTENTS

Page

ABSTRACT 1

INTRODUCTION 1

CUMULATIVE FATIGUE FOR MECHANICAL LOADING 2
Fatigue Curve Convergence and Rotation 3

Basis 3
Critique 5

Damage Curves 7
Basis for single-term damage curves 7

1. Flexibility of constants . . . , 8
2. Significance of the damage curves 1n relation to two-level

loadings . . . . . . . . . . . . . . . . . . . . . 9
Basis for a new double-term damage curve system . . . . . . . . ; . . . 10
Double Linear Damage Rules 11

Background . . . . . 11
Definition of linear and double-linear damage rules 12
Extension to multiple loading levels 14

Development of Practical Double-Linear Damage Rules 16
Earlier work 16
Recent development 17
Application to multiple loadings . ; 19
1. Multiple changes 1n loading Involving two load levels . 19
2. Loadings Involving three load levels 21
3. Cases Involving large number of loading levels 22

Construction of damage curves 22
Choice of the reference damage lines 24

4. Complex service cycle 25

DISCUSSION ' 27
Restatement of Damage Curve Approach and Relation to DLDR 28
Modifying Procedure for Including Mean Stress Effects 30

CAUTIONS 30
Effect of Stress Mult1ax1al1ty 31
Deformation systems 1n complex loading not revealed 1n Individual

loadings 31
Residual Stresses 32
Metallurgical Instabilities 32

CONCLUDING REMARKS 35

APPENDIX A - DERIVATION OF THE DOUBLE DAMAGE CURVE APPROACH (DDCA) . . . . 39

APPENDIX B - MODIFIED PROCEDURE FOR MEAN STRESS EFFECTS 41



RE-EXAMINATION OF CUMULATIVE FATIGUE DAMAGE ANALYSIS
- AN ENGINEERING PERSPECTIVE

S.S. Manson
Case Western Reserve University

Cleveland, Ohio 44106

and

G.R. Halford
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135

ABSTRACT

A method which has evolved 1n our laboratories for the past 20 yr 1s

re-examined with the Intent of Improving Its accuracy and simplicity of

application to engineering problems. Several modifications are Introduced

both to the analytical formulation of the Damage Curve Approach, and to the

procedure for modifying this approach to achieve a Double Linear Damage Rule

formulation which Immensely simplifies the calculation. Improvements are also

Introduced 1n the treatment of mean stress for determining fatigue life of the

Individual events that enter Into a complex loading history. While the

procedure 1s completely consistent with the results of numerous two-level

tests that have been conducted on many materials, 1t 1s still necessary to

verify applicability to complex loading histories. Caution 1s expressed that

certain phenomena can also Influence the applicability - for example, unusual

deformation and fracture modes Inherent 1n complex loading - especially 1f

stresses are mult1ax1al. Residual stresses at crack tips, and metallurgical

factors are also Important 1n creating departures from the cumulative damage

theories; examples of departures are provided.

INTRODUCTION

Treatment of accumulated fatigue damage has received a large amount of

attention 1n recent years. The subject has been popular since Palmgren [1]



first suggested what 1s now known as a "Linear Damage Rule." The same rule

was later Independently proposed by Langer [2] and Miner [3]. However, 1t was

soon recognized that while the method has merit for simple treatment of

complex loading history, Its predictions are often unconservatlve. Many

alternative methods of analysis to predict behavior more accurately followed

and 1t became necessary periodically to prepare review papers placing all the

new methods Into perspective, among them the ones by Newmark [4] Xaechele [5],

Manson [6], O'Neill [7] and Schlve [8]. Schlve's study lists nearly 200 :;r ,

references pertinent to the treatment of the problem and to the experimental

programs conducted to evaluate the concepts.

No comprehensive report has appeared recently to review the considerable

effort made 1n the past 12 yr since Schlve's publication. Such a report 1s

long overdue, and 1t was our original Intent to prepare such a review.

Because of space limitations, we found, however, that the review had to be

limited. Thus, 1n the discussion that follows we shall restrict ourselves to

elucidation and extension of those aspects of the subject with which we have

had personal association. Although we will have occasion to refer to the work

of others, these references will be brief. The more comprehensive review

remains a subject for the future.

CUMULATIVE FATIGUE FOR MECHANICAL LOADING

Most theories of cumulative damage are based on observation of behavior

at a second loading once the material has undergone loading, short of failure,

at a previous level. This behavior 1s then extended by analogy to treatment

of a complete history Involving numerous loading levels. In our work we have

used three basic concepts for the formulation of procedures: the effect of

prior loading on the convergence and rotation of the fatigue curve 1n

subsequent loading, the Damage Curve Approach (DCA), and the Double Linear

Damage Rule (DLDR) concept. A critique of these methods will now be discussed.
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Fatigue Curve Convergence and Rotation

Basis. - Our entry Into the cumulative fatigue damage field arose because

of observations of a geometric relation between fatigue curves representing

different degrees of damage either by prior fatigue or by damaging forms of

machining. Bennett [9] 1n 1946 published the results of fatigue tests on

specimens stressed at two successive levels, 1n F1g. 1. Line PA 1s the

original S-N curve. Specimens prestressed at ±54 ks1 for 33 percent of mean

life, and then tested at other stress levels, yielded the new S-N curve

PB. When 90 percent of the Ute was applied at ±54 ks1, the remaining S-N

curve was PC. It appeared to us that all three S-N curves projected to a

single point P at ±60 ks1 at 20 000 cycles to failure, and that the concept

of convergence of S-N curves contained the potential for the formulation of

a cumulative fatigue damage procedure.

Another set of curves that suggested to us the convergence concept for

cumulative fatigue 1s shown 1n F1g. 2 [10]. Here fatigue for a medium

strength steel are shown for different types of surface finish. As, one

proceeds from a ground finish through progressively rougher surface finishes,

the S-N curves simply rotate about a point P. If we regard each form of

machining as the Imposition of a different level of surface damage similar to

that which occurs 1n fatigue, this figure also suggests that each level of

fatigue damage reflects Its physical effect by causing a rotation of the S-N

curve for such materials 1n which the S-N curve can be linearized.

On the basis of these observations, we proposed an approach to treatment

of cumulative fatigue damage based on S-N curve rotation [11]. A

considerable test program was undertaken to check the validity of the

approach, the major results being shown 1n F1g. 3. Here, the first loading

was at ±100 ks1, for which the median life was determined to be 22 000 cycles.

A series of specimens were therefore subjected to various fractions of this
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life, and then the S-N curve of the prestressed material was determined for

each condition of prestress. These S-N curves Indeed appeared to be

derivable by rotation of the basic S-N curve of the material. Since one

point on the "remaining" S-N curve 1s known by subtraction of the prestress

cycles from the life at the prestress level, the predicted S-N curve can be

determined by passing a straight line through this point from the point of

rotation, P. While this point 1s unknown at the outset, 1t could be

determined as a material constant, as 1n F1g. 4, or 1t could be estimated by

using the point on the S-N curve at a stress near the ultimate tensile

strength. Once the rotation point 1s known the effect of any loading sequence

can be determined by successive application of the concept for treating two

loadings. Each loading uses as Its S-N curve the rotated value already

produced by the prior loadings, as Illustrated 1n F1g. 4.

In Refs. [11] and [12], we assumed that each loading progressively

reduced the endurance limit. However, for brevity, we shall not review this

Issue. In many cases the existence of an endurance limit, and Its progressive

changes, 1s not of Importance; however, even 1f endurance limits need to be

considered, the rotation concept may not be the best vehicle for doing so. As

we shall see later, we feel that the convergence framework has other

limitations as well. Thus we prefer to devote more research to the other

methods. Interested readers may, however, find Refs. [10] and [11] useful 1f

there 1s need for Information on changes of endurance limit.

In a more recent report Hashln and Rotem [13] have presented an

Interesting discussion of the convergence concept as a special case of a

framework they have devised for cumulative damage analysis. They avoid the

Issue of determining the convergence point as a material constant, and take

this point at a quarter of a cycle. They also speculate on alternative

formulations, for example, when the convergence point 1s at the endurance
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limit, Fig. 5. Such an approach would not, of course, properly represent the

usually observed loading order effect (I.e. high stress followed by low stress

producing a cycle ratio summation less than unity, while a low-high sequence

produces a sum greater than unity), but 1t 1s an Interesting possibility for

academic study. Hashln and Rotem also consider the case when stress versus

cyclic life 1s linear on log-log coordinates, rather than sem1logar1thm1c

coordinates of F1gs. 3 and 4. Of course, 1n this case the constant damage

curves are presumed straight on the log-log coordinate system. Hashln and

Rotem do not really require linearity In any particular coordinate system,

'only that the constant damage curves emanating from the focal point be a

systematic set, never again Intersecting anywhere. However, 1f they are not

linear, then some other criterion must be Introduced to establish the nature

of the curvature.

Critique. - Although our Initial efforts at Implementing the convergence

concept were quite vigorous, several limitations of the concept soon led us to

seek alternate approaches. One was the obvious contradiction that would occur

1f the prior cycling produced a "remaining life" less than that at the

convergence point P. For example, 1n F1g. 6, 1f a prior loading at the

stress level of point A were applied to a degree that the remaining life

were less than 1000 cycles, such as B, then the damage line after the Initial

cycling would have a positive slope, BP, which means that higher stress would

produce longer life - a clear adabsurdum.

Secondly, as we conducted more tests on other materials 1t became clear

that the convergence approach does not always properly represent the damaging

effect of prior loading on subsequent loading at lower stress levels. We can

Illustrate this effect by a simple example 1n F1g. 7. Suppose, for example,

we apply the Initial loading at the stress level of point A. If we apply

x percent of the life, at this level, the remaining life, (1 - x) percent at
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this stress level 1s shown at point A1. If, however, later testing 1s at

stress level B, failure would be expected at B', the linear projection of

PA1 to the stress level of B. Experience has Indicated such a test would

produce a lower life, at B", and 1n some cases a higher life, as at B"1.

To Illustrate the somewhat general expectation we resort here to the use

of the Double Linear Damage Rule which we shall discuss later 1n the report.

It 1s appropriate to use this rule for Illustration because 1t reflects more

accurately the experience we have had with many materials. Figure 8 shows the

results of detailed computations. Selected life fractions are assumed to be

applied at stress level A, and the remaining S-N curves are calculated by

the DLDR approach to be A'B', A"B", etc. Two Interesting results are

evident: The curves A'B1, A"B", etc. are not straight lines, as required by

the linear-convergence concept; rather they are curved. Also, while A'B1

almost converges to P, the curves representing more highly fatigued material

do not converge. After some fraction of preloading, they start to displace

somewhat parallel to AB. Hence, the overall effect 1s one of rotation plus

translation.

Incidentally, the rotation plus translation overcomes the difficulty

envisioned earlier since the point B can be displaced to any desired life

level by prior loading without requiring the self-contradictory remaining life

curve such as BP 1n F1g. 6. This concept of rotation plus translation was

first discussed by us 1n Ref. [14] when we Introduced the DLDR concept. We

have refined the approach 1n later publications, as we shall discuss, but the

basic feature of rotation plus translation 1s Inherent 1n all the variants we

have studied.

On the basis of the above limitations of the rotation concept of

convergence, we have not pursued this .concept further. The alternatives not



only give more accurate behavior representation, but are easier to Implement

as well.

Damage Curves

Basis for single-term damage curves. - The use of damage curves to

reflect the Interaction of loadings at different stress or strain levels has

been used since the concepts of cumulative fatigue damages have first been

considered. In 1948 Rlchart and Newmark [15] Introduced the Idea, but did not

provide definitive formulae for representing the damage curves 1n such a way

as to predict quantitatively the high-low load sequences. Many attempts have

been made since then to provide suitable analytical relations. In 1981 we

made our own attempt [16] based on a large amount of experimental data for

two-level loading conducted 1n our laboratory. The form we chose,

0 - .[O.IB]aoM0.18-ao) Mf (1)

was based on analogy to early crack growth. Figure 9 shows the concept as we

applied 1t. The curves represent the damage accumulation for each of the
o A

decade life levels from 10 to 10 . As an example, 1f n^ cycles are
3

applied at the 10 cycles to failure level the damage accumulated will be

represented by point A. Changing to a second load level, which produces a

life of 10 cycles to failure, moves us to point B at the same damage as

A, and cycling can continue for n_ cycles as damage accumulates from B

to failure at C. Thus, 1f the damage curve formulae are known, 1t 1s easy to

calculate n./N_ once the n-j/N-, 1s specified 1f N. and N. are known.

The subscripts refer to sequence of the applied loadings, 1 1s the first and 2

1s the second level. A more convenient type of plot 1s shown 1n F1g. 10 where

the life scale 1s normalized to failure life. From this figure 1t 1s clear

that 1f the first loading 1s at the higher stress (lower life) and the second

1s at the lower stress (higher life) the sum of the cycle ratios will be.
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smaller than unity. Since this 1s the most commonly observed behavior, the

qualitative nature of the damage curves 1s correct. Before discussing the

pred'se quantitative Implications 1t 1s useful to clarify a few points.

1. Flexibility of constants. - If we express the relation that the damage

at A and B are equal 1n F1g. 10, I.e., D. = DE, then 1t 1s clear that

the a , 0.18 and 2/3 terms 1n Eq. (1) cancel, and that

I"n

3,0.4

'2

105

More generally for any combination of life levels N, and N? we obtain

the Damage Curve Approach (OCA).

(2)

,C"2
Thus the relation between n_/N_ and n1/N1 depends only on the ratio

N,/N?, and 1s Independent of any constants that might be Introduced 1n

place of the a , 0.18, and 2/3. Thus, suppose we replace a by zero,

the 0.18 by 1.0 and the 2/3 by 0.02512 (equal to [1/104]0'4), the damage
4

curve relation for the 10 life becomes linear and the damage curve for any

other value of N becomes simplified. In fact we can choose to linearize the
0 4damage curve for any Nrgf by replacing the 2/3 by [1/N̂ ] ' . In

this case

"ref "ref

and



DN = lS

r-Ji-i
Nrefj

0.4

(5)

Figure ll(a) shows the damage curves for life levels from 10 to 10 when the
4

damage curve for 10 1s taken as the reference straight line. More

generally, these same curves are obtained when any life level N 1s taken

as the reference life. The damage curves for other lives are labeled as a

function of N/N ,, as seen 1n F1gs. 11 (a) and (b) which produce the same

curves for equal values of N/N , whether the reference life 1s taken as
3 410 or 10 cycles. Only one set of damage curves 1s thus needed as long

as the designation 1s according to N/N f. Note that the reference life

level can be used as the first, second, or any other number 1n a sequence of

cumulative loadings.

2. Significance of the damage curves 1n relation to two-level loadings. -

Figure 12(a) shows the damage curves for two-level tests, using the first

(lower) life N. as the reference which 1s forced to be a straight line.

If we wanted to use these curves to obtain the n./N_ versus n./N-j curves

for such a test, the procedure would be to go from A to B to produce the

arbitrary n /N , determine C at the same damage as B, and measure n /N

as damage proceeds from C to E. Thus n2/N_ 1s equal to length CD. If we

plot n./N. versus n,/N., as 1n F1g. 12(b), the point C1 results. For other

choices of cycle ratio n,/N,, n^/N- falls at other points along the curve

A'C'E'. Examination of F1gs. 12(a) and (b) reveals that the curves ACE and

A'C'E' are similar. One can be obtained from the other by a 90° rotation

about the central point x. We can then generalize that 1f the curves of

F1g.s. 11 (a) and (b) represent the damage line relationships, the expected n-i/N,



versus f^/Np curves can be obtained by a clockwise 90° rotation. Such a

family of curves 1s shown 1n F1g. 12(c).

Basis for a new double-term damage curve system. - Although the

single-term damage curve system was chosen by us to agree with many

experimental results generated 1n two level tests, there 1s one feature of the

system that has been of some concern to us from the very beginning of Its

use. This feature can be seen 1n F1g. 12(c). The Initial drop of n_/N_

for a small value of n./N, 1s exstremely rapid. Since the choice of the

damage curve relation was derived mostly for two-level tests which did not

Involve such low values of n./N" as to be within the troublesome low

range, the choice was not 1n conflict with our experiments. However, after we

recognized that the resulting feature of the damage curve analysis was

probably unrealistic, we decided to attempt to Improve Its characteristics.

Brief attempts to modify the terms 1n Eq. (1) Indicated that 1t would be

difficult to Improve the very low n-./N. part of the curve while

retaining Its good features 1n the remainder of the range. We decided,

therefore, that a more appropriate way would be to add a term that would have

a large significance at low values of n-./N., but only relatively small

effect for larger values. In our procedure to alter the Damage Curve equation

we were guided by our Double-Linear Damage Rule analysis [16] which will be

discussed later.

To distinguish the new double-term damage curve from the original

single-term expression, we refer to 1t as the Double-Damage Curve Approach

(DDCA). Details of the derivation are given 1n Appendix A and only the final

results are presented here:

1/Y

(6)ft] L fJ

where
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0.35 Href

1 - 0.65

Note that q 1s the slope of the first straight line segment of the D

versus n/N curve 1n the DLDR formulation, discussed 1n the next section.

The q term 1s the exponent of the 0 versus n/N curve 1n the DCA

formulation, Eq. (5), and the constant Y 1s Introduced to represent two

Intersecting straight lines by a curve having a single methematlcal formula.

Direct comparison of the newly formulated DDCA, Eq. (6), with the DLDR

and the original DCA 1s given 1n F1g. 13 for values of N ,/N of 10 ,
-2 -310 , and 10 . As expected, the DDCA equation conforms closely to the

DLDR 1n the early portion of the Phase I regime but blends directly Into the

DCA curves which are also close to the DLDR 1n Phase II.

Double Linear Damage Rules

Background. - One concept that developed early to explain deviations for

the linear damage rules was that fatigue was at least a two-stage process -

crack Initiation and crack growth; 1f the two processes developed at different

rates for different life levels, there 1s no reason for expectation of a

linear damage accumulation rate for all life levels. An Immediate conjecture

was that while 1t 1s still possible for linear damage accumulation to develop

during the Initiation stage, and linear accumulation during the propagation

stage, propagation might develop at different fractions of life for the

different life levels. Therefore, a mixture of loadings Involving several

life levels would not be amenable to analysis by a single linear damage

analysis. Thus two damage rules were needed; one for Initiation and one for

propagation.
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Probably the first to suggest analysis by two linear damage rules was

Langer [2]. Later, Grover [19] again proposed the concept Independently.

However, neither proposed quantitative relations for establishing when one

process ended and the other began, nor how to treat problems Involving more

than one loading level. Hanson [14] made an early attempt 1n 1966 on the

basis of limited data, but the relation proposed at that time did not prove to

be sufficiently accurate to predict results of later experiments, so

additional attempts [20] were made. Even these attempts were not sufficiently

general, or of sufficient definitive procedure to be of general engineering

use. However, 1n 1981 Manson and Halford [16] refined the formulation and

procedure to be directly applicable to the analysis of engineering problems.

Additional valuable contributions both to formulation, and possibly to

defining the physical mechanisms Involved, were made by Miller and his

co-workers [21 and 22].

Definition of linear and double-linear damage rules. - Rather than

progressing from damage curve to damage curve as loading Increments

accumulate, considerable simplification can be Introduced by using the well

known concepts of single and double-linear damage rules. Consider, for

example, F1g. 14(a), which Involves two loading life levels. If the damage

curves are linear, 1t 1s possible to normalize each by dividing by the failure

life, reducing both damage lines to a single line. Obviously, for this case

the procedure discussed for summing damage Increments leads to Z n/N =

1, I.e., the linear damage rule (LOR). Adding loading levels to the history

does not change this conclusion as long as each damage level 1s straight.

Even 1f the damage curves consist of broken straight line segments, as shown

1n F1g. 14(b), a linear damage rule will apply 1f normalizing relative to

failure life reduces all damage lines to. a single set of broken lines.

Or, the damage lines are curvilinear over their entire range, as shown

12



1n Fig. 14(c), a linear damage rule will apply 1f all damage lines are reduced

by normalization to a single curve. Nor does 1t matter 1f more loading levels

are Involved, as long as all reduce to a single curve by one normalization.

The merit of treating damage accumulation by a linear damage rule rather than

by damage curves 1s great simplification; loading order becomes unimportant,

and we sum all the cycle ratios without regard to sequence, even when

Individual loadings at one level are Interspersed with loadings at the other.

The amount of calculation Involved, and the associated bookkeeping of damage

accumulation 1s, therefore, drastically reduced.

Now consider the case shown 1n F1g. 15(a). Two damage curves are shown:

one 1s straight, the other shows a single break. Normalizing by dividing by

failure life produces the triangular shape 1n F1g. 15(b). Let us label as

P. the region of damage from the origin to the level of AB, and designate

1t as Phase I since the linear nature of OA and OB suggests that 1n this

region of damage accumulation the damage curves have something 1n common.

Similarly the Phase II region from AB to CE can be labeled D... If 1n

the 0, region we divide all cycle levels of curve OA by N. and all

damage levels by DT, the line OA" of F1g. 15(c) results. The same

straight line results when we normalize OB by division by ND and DT.
D I

Figure 15(c) now states that as long as the damage has not yet reached

D-, we can use a single linear damage rule. In this region, 1t does not

matter how many times load level changes from OA to OB, the cycle ratios

along OA can be summed Independently, and those along OB Independently.

When the sum of cycle ratios reaches unity, Phase I damage D, has been

completed.

Figure 15(d) 1s constructed 1n a similar manner from the segments AC

and BE of F1g. 15(a). Cycles are divided by NAC and NgE,

respectively, and the Increase 1n damage beyond 0, Is divided by DJJ.

13



Since both segments collapse to a single straight line, we can treat damage

accumulation 1n this region as Independent of application order as well.

Thus, no matter how many times, or 1n what sequence, the loading changes from

the OAC to the QBE level, the damage accumulation depends only on the total

sum of cycle ratios at each level. But cycle ratios must of course be

determined relative to the cycles required to apply the 0,. damage, not

total cycles.

In our early work we designated the Dj region as "crack Initiation"

and the D.. region as crack propagation. However, we could detect no

cracks at the transition between the regions, and for other philosophical

reasons discussed 1n [16] we have abandoned designations according to physical

Interpretations, and now simply call these regions l a n d II. As we shall

later discuss, the engineering use of the concept 1s not restricted by absence

of physical designation.

Extension to multiple loading levels. - In the foregoing discussion we

have limited the consideration to two loads Involving only one break point

level 1n the damage relations. As long as breaks occur at the same D level,

the procedure could be generalized to any number of load levels without change

1n final result. The general case Involving more than two load levels

requires that the break points be at various levels. Consider first

F1g. 16(a) 1n which the damage line OFG has been added. We could, of

course, divide the damage range Into three regions: below F, between F

and B, and above B. This would lead to triple-linear damage curves,

(F1g. 16(b)) and a triple-linear damage rule (F1g. 16(c)). Inclusion of more

than three loading levels would Involve even a larger number of distinct

linear regions, and the desired simplicity 1s lost. We have, therefore,

chosen an alternate approach. Only two regions are used, but they are,chosen

so as to preserve fidelity to the Important damage lines 1n a given loading
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sequence and sacrifice fidelity to those loadings which do not have an .

Important effect.

The basic philosophy 1s Illustrated 1n F1g. 17. Here we choose OAP as

the damage line for the life level N of the loading which will cause the

major damage 1n a particular application. As noted earlier, we can choose

this damage line as a straight 45° line, ending at point P where D = 1.0

and n/N, = 1.0. The line OBP for a life N» 1s the normalized damage

line for the loading level that 1s of next Importance 1n producing damage for

this loading history. (Before performing the analysis the values of NI

and N« may not be known, and an engineering judgment 1s made. The

subsequent analysis provides better choices of N, and N^, which quickly

converge to appropriate values.) As long as only the life levels N, and

N_ are Involved In a loading sequence, we can proceed as already

discussed. If another life level N3 (between N, and N_) 1s added,

however, Its damage curve will be OCP, with a breakpoint at a higher damage

level, as previously discussed. One way to keep the breakpoints at the same

level of damage, 1s to replace OCP by OC'P, choosing C1 where OC

Intersects the damage level AB. We then have a damage line which coincides

with the real damage line 1n region OC1 and lies above 1t 1n the region

C'CP. The replacement damage line thus errs on the conservative side since we

attribute a greater damage to an Increment of loading at this level than would

occur by using the real damage line. Similarly, 1f we need to consider a

loading level with a life greater than N we could conservatively replace

Its damage curve ODP by OD'P. Once we have forced all breakpoints to occur

at the same damage level we can reduce the problem to one of a double-linear

damage rule. While the schema of F1g. 17 1s a viable framework for reducing

any problem to one Involving a double-linear damage rule, the procedure we

15



have actually adopted 1s easier to apply and gives very good results, as will

be discussed.

Development of Practical Double-Linear Damage Rules

Earlier work. - Our objective for many years has been to establish a

practical double linear damage rule framework usable 1n design and analysis.

Progress has been gradual. Our first report dates back 20 yr when we first

proposed [14] that "crack Initiation" and "crack propagation" as the phases

within which the two linear damage rules applied. Using limited Information

on one material 1t first suggested that the crack Initiation period be

Nf - 15Nf whenever Nf > 750 cycles, and equal to 0 for Nf < 750. The

propagation period would, of course, be 15,' and N,, respectively. This rule

was simple, but unfortunately not sufficiently accurate for other materials.

In 1967 a second report [20] examined data on other materials and test

conditions. We were forced to conclude that not only could we not, 1n general,

use the simple formula N = 151^' for the propagation phase, but that 1t was

Inappropriate to use the terms "crack Initiation" and "crack propagation" as

descriptors of the two phases. Not only could we not detect any crack at the

kneepolnt of a two-level test, when the "crack" should have "Initiated," but

the kneepolnt shifted as we combined different levels of the second loading

with Identical first load levels. For example, 1f a 1000 cycle life level

loading 1s followed by a 10 000 cycle life load level, the kneepolnt Implies

that "crack Initiation" starts at about 200 cycles. However, 1f the 1000

cycle life level 1s followed by a loading of life 10 cycles, the Implied

"crack Initiation" life for the 1000 cycle level now becomes only about 60

cycles. Since the material cannot sense while 1t 1s Initially loaded at the

1000 cycle level what the subsequent loading will be, why should 1t "crack"
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after 60 cycles 1n one case and 200 cycles 1n the other? For other choices

of loading levels even greater discrepancies could result. Our conclusion was

that the type of linearity we perceived for so many materials and loading

combinations was not a manifestation of "crack Initiation" and "propagation,"

but of some other phenomenon that we did not yet fully understand.

In the 1967 report we salvaged the concept of a double-linear damage

rule, but changed the terminology, calling the regions where the two rules

appeared to be valid as Phase I and Phase II. That we did not know the

physical significance of these phases did not Invalidate the potential use of

the concept, but application required an empirical determination of the

kneepolnt between the two phases for each sequence of loading to be

evaluated. Unfortunately, such an approach 1s not appealing to a designer.

When one 1s trying to choose a material among many candidates, and when the

loadings may 1n fact even depend on the material chosen, few designers have

the Inclination, the facilities, or the lead-time to conduct the required

tests.

Recent development. - The matter lay dormant for many years, but Interest

was again stimulated 1n this subject during our evaluation of the Damage Curve

Approach (OCA) for treating cumulative fatigue damage. The model fashioned

for OCA was, naturally, also based on the considerable amount of data

developed for two-level tests on many materials, and the type of results that

we obtained were as shown 1n F1g. 18. The continuous curves 1n this figure

show the results for the damage curves used at that time. We then
<

question what these damage curves would look like 1f we replaced them with two

already discussed, our use of damage curve equations using only a
single term gave somewhat unrealistic results for low values of n-j/N-).
Use of the double damage curve equation (6) discussed earlier produces results
very similar to the dotted lines 1n this figure.

17



straight lines, and sketched the dotted lines shown 1n the figure. Of special

Interest was that the damage curves for a sequence Involving two load levels

N.J and N- depended only on the ratio l^/Np, and not on the

Individual values of N, and N?. The same curve would be obtained 1f

the first life level were 1000 cycles and the second 10 000 cycles as would

result when a 100 000 cycle loading was followed by a 10 cycle loading,

therefore we would have to expect the same Implication for the DLDR.

This observation was precisely the clue we needed to understand the

confusing results derived by stating a DLDR based on crack Initiation and

crack propagation concepts. Referring to the Illustration used earlier, 1f a

1000 life level loading were followed by a 10 000 cycle level, the N]/N2

ratio 1s 0.1, and we should expect the apparent knee to be at about 200

cycles. But 1f the 1000 cycle life loading level 1s followed by a 10 life
-3level, the N,/N? ratio becomes 10 , and we should expect the apparent

knee to be at about 60 cycles. It was not a matter of "Initiating" a crack at

either of the two knee points. Rather, 1t was a question of which N-j/N

curve was Involved. By defining Phase I as the region up to the kneepolnt,

and Phase II as the region beyond the kneepolnt, we can avoid the

philosophical question of Its physical significance and yet devise a simple

but useful analytical procedure.

We returned to our raw data to see 1f an equation could be derived for

the coordinates of the kneepolnt based on the parameter N,/N_ rather

than on the N. parameter as we had previously sought. The results are

shown 1n F1g. 10. Indeed the data of the kneepolnt coordinates normalized

better on the basis of the ratio N,/N2. (By comparison we show 1n

F1g! 20 that when only N, was used to correlate the horizontal coordinate

of the kneepolnt, as required 1f crack Initiation occurs here, the results are

poor.)
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From F1g. 19 the coordinates of the kneepolnt are

nii PM" n2i
N = °'35 N : NNljknee |_N2j N2j * °'65 N ; a = °'25

knee [2]

Once the kneepolnt 1s established, 1t becomes possible to re-examine all the

two-level tests we have conducted to determine 1f the data could have been

predicted 1n advance. Figure 21 shows how double-linear relations, using

Eq. (7) to establish the kneepolnt, have worked for three materials - 300CVM,

SAE4130, and T1-6A1-4V. The agreement generally 1s quite good.

Application to multiple loadings. - We next consider how to treat

multiple loading levels.

1. Multiple changes 1n loading Involving two load levels: Consider a

case Involving a mixture of loadings which 1f applied Individually would

produce 1000 and 100 000 cycles to failure. In this mixture changes occur

from one load to the other many times 1n arbitrary order. A simple case, for

example, 1s one 1n which blocks consisting of 1 percent each of the basic

loadings are successively applied until failure occurs. Each block contains

10 cycles of the loading which alone produces a 1000 cycle life, and 1000

cycles of the loading which alone produces 100 000 cycle life. We seek to

determine how many blocks can be sustained. Figure 22 shows how this problem

would be organized.

The first step 1s to reinterpret the DLDR 1n terms of equivalent damage

curves. Figure 22(a) shows the double-linear representation on the basis that
3

Phase I 1s consumed entirely at the 10 cycle-to-fa1lure level, and Phase II

at the 10 cycle-to-fa1lure level. The coordinates of point B are

computed by Eq. (7), and the numerical values are shown 1n the lower, part of

the figure. Figure 22(b) shows the equivalent damage lines obtained by a 90°

counterclockwise rotation of F1g. 22(a), as previously discussed. Thus

3A'B"C' represents damage accumulation at the 10 life loading, while
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A'B'C shows how damage accumulates for the 10 life loading for a problem

which contains only these two loadings.

The next step 1s to track the damage accumulation as successive loading

blocks are applied. In the early loading the damage accumulates along A'B"
3 5when the 10 loading 1s applied, and along A'B1 when the 10 loading 1s

applied. Thus the straightforward way 1s to move between these two lines as

block after block 1s applied, until the damage reaches the level B"B'.

Beyond this point the pertinent damage lines to use are B"C' and B'C'.

Again the straightforward procedure 1s to move back and forth between these

two lines, Increasing damage until point C 1s reached. Proceeding 1n this

way requires many changes from one line to the next (over 52 times).

However, 1f we recognize that until the damage reaches B"B', both damage

lines are straight, then a linear damage rule 1s valid and the loading order

does not matter. We can then assume that the same effect will be produced by
' 3separately lumping together all the cycles of the 10 life level and all the

cycles of the 10 level. Thus 1f 1t requires B, blocks to complete

Phase I, then 10 B, cycles of the 10 life level and 1000 B, cycles

of the 10 life level will be applied. Since the number of cycles to

complete Phase I for the 103 life level 1s 111, and for the 105 life

level, 1s 79 445, the equation for B, 1n F1g. 22 applies, and 1t 1s seen

that 9.74 blocks are required to complete Phase I. By similar reasoning,

1t follows from the calculations of F1g. 22(b) that 16.67 blocks are required

to complete Phase II, for a total number of 26.41 blocks. This 1s 1n contrast

to 50 blocks that would be unconservatlvely predicted by the Miner Linear

Damage Rule (LOR).

+For simplicity we accept decimal values of blocks, even though a
nonlntegral value means that some loadings of one level are required to
complete the block without being matched by the other loading.
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The simplicity of this type of approach 1s evident for the elementary

problem Illustrated here. When extended to more complex loading histories the

saving of calculation labor 1s even more striking.

2. Loadings Involving three load levels: In F1g. 23 we have added a

third load level which by Itself would produce an Intermediate life of 10 000

cycles, and again assume block loadings Involving 1 percent of Individual

lives. As seen 1n the figure, B' and B" are obtained as before. The
4

problem 1s with the damage curve that 1s to represent the 10 cycle life
3

level. Its kneepolnt, based on Individual combination with the 10 cycle

life loading 1s at D, which does not have the same vertical coordinate as

B'B". To use a DLDR we must find a suitable replacement for the line ADC

having a break-point along B'B". Several alternatives are possible. One 1s

to choose D1 at the average where AD and CD Intersect the B'B" line so

that AD'C replaces ADC. A second way 1s to use the Interpolation formula

shown 1n F1g. 23 which was derived 1n [16]. Basically, 1t 1s an analytical

relation for the cycle ratio to the end of Phase I which 1s consistent with

the formulas used to get the coordinates of B1 and B" and which both

Interpolates and extrapolates 1n a manner consistent with experimental

experience. This matter will be discussed 1n connection with F1g. 24.

For the case of the 10 000 cycle life 1n F1g. 23, the formula produces a

location for D1 at n/Nf = 0.476 which 1s nearly the same as averaging

D" and D'". The replacement damage line AD'C 1n F1g. 23 1s seen to be

below the real damage line ADC 1n the Phase I range, and above 1t 1n the

Phase II range, compensating for errors Introduced by forcing all breakpoints

to have the same ordlnate.

Once we have forced all the breakpoints to be at the same ordlnate,

linear damage rules can be expressed for the Phase I region below this

ordlnate, and for the Phase II region above 1t. Damage calculations are shown
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1n F1g. 23 for the case of blocks of 10, 100 and 1000 cycles applied

respectively at 10 , 10 , and 10 life levels. As before, we first find

out how much Phase I damage a single block of loading produces, and then

determine how many blocks 1t takes to complete Phase I. Similarly we

calculate how many blocks are required to complete Phase II, and therefore the

total number of blocks to failure. In this case, as seen 1n F1g. 23, a total

of 20.7 blocks are required. The LDR would have predicted 33.3 blocks, about

60 percent higher than the DLDR computation. To treat this simple problem by

the OCA would have required changing progressively from one to the other of

the three damage curves, approximately 60 times. Even for this simple case

the calculations would Involve an order of magnitude more labor than the DLDR

procedure. But the result would have been nearly Identical to that obtained

by the DLDR. For the OCA analysis the prediction 1s 21.0 blocks; for the DDCA

the prediction 1s 23.3 blocks, and for the DLDR analysis 1t 1s 20.7 blocks.

3. Cases Involving large number of loading levels: In the more complex

problem Involving many loading levels two Important questions arise: 1) which

two load levels should be used as the baseline values around which to

establish when Phase I ends and Phase II begins, and 2) how to construct the

damage curves for loading levels 1n the extrapolated range, that 1s lower than

the lower life of the reference damage lines or higher than the higher life of

the reference damage lines.

Construction of damage curves. - We address the second of these questions

first by extending the simple problem we have been discussing using four

loading levels shown 1n F1g. 24, loadings which alone would produce lives of *.'

103, 104, 105, and 106 cycles. Also, to avoid the Issue of which

loading produces most of the damage, we assume that each block contains

1 percent of the failure cycles for each loading level Individually.
3

Figure 24(a) shows how each of the damage lines would be drawn 1f the 10
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damage line 1s taken as the 45° reference line. Note that the kneepolnts do

not have the same value, as follows from Eq. (7). One of these kneepolnts

needs to be chosen, thus allowing us to retain only two damage curves, but the

other two must be compromised.

In F1g. 24(b) the kneepolnt associated with the 103 and 106 life
4 5levels 1s retained, and the 10 and 10 life damage lines are compromised.

They are constructed 1n the same manner as used 1n F1g. 23, using the formula

shown 1n this figure. The calculations for blocks to complete Phases I and II

are then made 1n an Identical manner as 1n F1g. 23, resulting 1n 11.47 blocks.

In F1g. 24(c) the 103 life damage line 1s paired with the 10^ life

damage curve, thus requiring the compromising of the 10 and 10 damage

curves, - one 1n the Interpolated range of the faithful damage curves, and one

1n the extrapolated range. Again the same formulas shown 1n F1g. 23 are used

to establish the location of the compromised damage curves, and the procedure

for determining number of blocks 1s the same. For this case the computed

number of blocks 1s 12.03.

Finally, 1n F1g. 24(d), the 103 and 104 life damage lines are

faithfully retained, and damage curves for 10 and 10 life are

compromised. Again, of course, the formulas of F1g. 23 are used to establish

the coordinates of the kneepolnts, and the computation procedure 1s the same

as 1n the previous cases. Half of the damage curves are now 1n the

extrapolated range, but the computed number of 13.77 blocks 1s not far

different from the other.

It should be recognized that this example represents an extreme case.

Here the contribution of each loading to the damage accumulation 1s the same,

since 1n each block all contribute equal numerical values of damage. Yet,

even though equally damaging damage lines were compromised, the computed
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blocks differed by less than 10 percent. But the conclusion 1s clear that 1f

the reference damage curves are at least as Important 1n contributing damage

as those damage lines that have been compromised, the use of our basic

equation shown 1n F1g. 23 1s adequate for establishing the damage lines used

1n the analysis.

Choice of the reference damage lines. - It stands to reason that the

degree of error Introduced by compromising fidelity of a damage line depends

on how Importantly the loading associated with that damage line contributes to

the total damage. Thus the most Important loading events should be used as

the reference uncompromlsed damage lines while the lesser events can be

compromised without Introducing much error. If, as seen 1n the example of

F1g. 24, compromising Important lines do not seriously affect the resulting

calculations, then compromising the lesser contributors should not be too

serious. But first we have to know which are the Important events. It would

seem that the answer could be obtained by a successive approximation

approach. The first step could be an ordinary linear damage analysis, and the

cycle ratio at failure for each of the contribution events determined. The

two most damaging events can be taken as N.. and N , where N.. 1s the

lower of the two. If there 1s ambiguity because several events contribute

approximately the same damage, then choose NI and N» as far apart as

possible, so that other Important damaging events will have life values

between them. Then make a OLDR analysis, and review which events are now the

most damaging. If other loadings now appear to be better candidates as N,

and N?, redo the analysis. Since each analysis 1s quite simple, consisting

of only two sets of computations each of which 1s the same as a LOR analysis,

this procedure should not be too demanding. Further refinement could be added

by making successive Iterations until life predictions change little and the

final choice of N, and N- Involves the most damaging events or unless
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they are recognized as the proper choices according to the engineering

Judgment of the analyst.

4. Complex service cycle: In Ref. [16] we analyzed a cycle that had

originally been discussed 1n Ref. [23] representing a complex mission cycle

for a jet engine. The data for the calculations are shown 1n Table I. Every

block of loading Involved 14 events, each of known total stralnrange ae and

tensile mean stress o., columns (2) and (3). Each event was applied a

known number of times, per mission column (4). From these values, life was

calculated for each event, column (5). The procedure used then was to

choose the cyclic life of the event that produced the lowest life as the

NI value, 1n this case event No. 8 with a life of 2500 cycles. Similarly,

the N2 value was the highest one for the events, 64 000 cycles for event

6. From these two values, N, and N,, for each event was calculated

from the equations shown 1n F1g. 23. The remaining procedure was Identical to

that described 1n earlier paragraphs. The n/N^ and n/N values for

each event were calculated, columns (8) and (9), leading to a calculation of

the number of missions required to complete Phase I and Phase II,

respectively. Thus, for this problem 79 missions were required to complete

Phase I and 200 missions for Phase II, leading to a total of 279 missions to

produce failure.

It 1s now appropriate to carry the calculations one step further, and

revise the procedure to determine N.. and N_ more appropriately. A

better choice of N and N_ can be made by considering the higher and

tin our earlier analysis we used a different formula for life when mean
stress 1s present. Now that we have revised the procedure to Include mean
stress effects, as discussed 1n Appendix B, the values In column (5) would be
somewhat different. However, since the changes would not seriously affect the
numerical values Involves, and would have no significance on procedure, we
have not remade the calculations for column (5).
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lower of the two life values for the events that produce the largest amounts

of damage, rather than the events that produce the highest and lowest cyclic

lives.

Using the rationale already discussed, we have added 1n Table I the

column (10) wh1ch*1s not contained 1n Ref. [23]. After the first calculation

1s made, as earlier proposed, and the number of missions required to complete

each of the two phases are calculated, the damage for each type of event 1s

calculated (column (10)). Events 4 and 8 are the most damaging. Hence we

remade the calculations for NI = 2500 and N2 = 5550. On this basis,

events 4 and 8 are still found to be the two most damaging, thus iteration of

calculation 1s not necessary. The total number of missions now calculated 1s

277, which differs little'from the 279 missions earlier determined, and gives

us confidence that we can err considerably on the choice of optimum values of

NI and N without affecting the final life calculation significantly.

However, the degree of error may depend significantly on the type of complex

cycle analyzed. For example, 1f the complex cycling Involves a preponderance

of damage accumulation at a single life level, errors due to choice of N,

and N-, or even of choice of damage rule, will become Insignificant.

Impetus to study cumulative damage rules for complex loading 1s provided

by the extreme high- and low-cycle fatigue operating conditions experienced by

components 1n the NASA Space Shuttle Main Engines (SSME). Several thermal

low-cycle fatigue and mechanically Induced high-frequency, high-cycle fatigue

are superimposed on turbine blades and other critical structural components.

One such component, called a LOX Post, 1s a slender tube carrying cryogenic

oxygen through Its bore while exposed to high-temperature, hydrogen-rich steam

on Its exterior. Flow-Induced vibration provides the high-cycle fatigue

excitation while the thermal transients of engine firing and shut-down

contribute to the low-cycle fatigue loadings. To understand better the damage
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Interaction 1n the alloys of construction, cumulative damage experiments were

conducted on both 316 SS and a cobalt-base superalloy, Haynes 188. Results

are presented 1n Refs. [25] to [27]. In view of the Improvements (DDCA) to

the OCA, we have re-examined both sets of cumulative damage data and have

sought optimum material specific constants. Figure 25 shows the results for

316 SS at 1300 °F compared with calculations by the DDCA, Eq. (6). The

exponents a and B from Eq. (6) have been optimized for the data shown, and

have values of 0.23 and 0.63, respectively. Agreement 1s better than obtained

earlier using the original DCA formulation and the single constant, B = 0.4.

The added flexibility of another constant 1n the DDCA promotes Improved

accuracy of representation.

Similar treatment, Ref. [27], was given to the analysis of data on Haynes

188 reported by B1zon, et al. [26]. The optimum constants are a = 0.35 and

B = 0.60 1n contrast to the universalized values of 0.25 and 0.40,

respectively. Comparison of the DDCA calculations with the experimental

results are presented 1n F1g. 26. A band of expected behavior 1s shown,

reflecting the fact that tests were performed at somewhat different values of

N /N • Again, good agreement 1s obtained. Most Importantly 1s the

unconservatlve deviation (up to a factor of 10 1n cyclic life) of the

experimental results from the classical LDR. The nonlinear features of the

DDCA (and the DLDR) accurately model the Interactions of high- and low-cycle

fatigue.

DISCUSSION

In this re-examination of our procedures for computing damage

accumulation we have Introduced three major changes.

Restating the DCA by adding a term which enables us to make the damage

curve nearly Identical with the DLDR that has been found characteristic for a

large number of materials 1n two-level fatigue tests. The new equation 1s
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called the Double Damage Curve Approach (DDCA). We have also defined more

clearly the relation between damage curves and their approximation by the DLDR.

Introducing a successive-approximation procedure for the choice of the

parameters of Phases I and II of the DLDR.

Modifying the procedure for Including mean stress effects 1n cyclic

life. A few comments are appropriate for each of these Items.

Restatement of Damage Curve Approach and Relation to DLDR

It 1s Important to emphasize that we treat each event on the basis of

life level, not the parameters that lead to Its life level. The strain range

and maximum, minimum, or mean stress are Included 1n the determination of the

life level of the event. Thus any appropriate theory can be applied to

combined them to determine their life level. Cumulative damage 1s then

calculated 1n the same manner as 1t would be at the same life level produced

by other parameters leading to this life. This procedure 1s 1n contrast to

other approaches, e.g. Dubuc, et al. [28] and Bu1 Quoc [29, 30], which

Incorporate the complex stress and strain parameters Into the expression for

the damage function. The advantage of our procedure 1s that the approach may

change for determining the life level without affecting the damage curve

analysis. For example, as already discussed, we have progressed to a more

accurate and generalized method of treating mean stress, but the change 1n

Itself does not alter the DCA.

However, we changed the functional form of the damage curve

representation to make 1t conform more closely to extensive data, and to make

1t more consistent with the DLDR. The new functional form 1s called the

Double Damage Curve Approach (DDCA). Thus when we make a comparison between

results obtained by the DDCA and DLDR analyses we do not have to sort out how

much of the difference 1s due to the simplifications used to establish the
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DLDR, and how much ,1s due to the difference Implicit 1n the two types of

damage function used.

The change 1n our new function 1s consistent with some of the thinking

that has recently been Introduced by other Investigators. For example, Miller

and Zacharlah [21] and Miller and Ibrahim [22] devised damage functions which

are also based on two stages of damage accumulation - development of shallow

surface cracks and propagation of a macroscopic dominant crack leading to

failure. In their first effort, damage curves were represented by straight

lines on log-log coordinates, with breakpoints arranged 1n similar fashion to

ours, as seen 1n F1gs. 23 and 24; that 1s, the line joining the breakpoints

had a negative slope. However, 1n their later work they changed their damage

functions so that the slope of the line joining the breakpoints 1s positive.

It 1s Interesting that while the results of damage curve analyses are similar

when based on either our curves or those of Miller and his co-workers, the

governing parameters are different. If we use crack length as the measure of

damage our crack lengths become macroscopic fairly early, while Miller and

co-workers derive crack lengths of ultra-microscopic size 1n the Phase I

stage, and macroscopic size only very close to failure. The Interesting point

1s that, as discussed earlier 1n the report, the damage accumulation process

1n going from one damaging curve to another does not depend on all the

parameters defining the damage curves, but only on one or two critical

constants. Thus they can derive the same final result event though the

baseline Information differs appreciably from ours.

Successive Approximation Procedures for Choice of N.. and N?

In our previous publications we recognized the Importance of considering

the lowest and highest lives to establish the values of N, and N~ 1n

the DLDR formulation. A restriction was Invoked requiring 1 percent life

fraction be Imposed before a level could be considered an extreme. We have
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since come to realize that life levels for which the greatest amounts of

damage (life fraction, n/N) are accumulated are also of Importance because

they represent the major participants 1n the problem. Thus, we have suggested

an Iterative process that homes 1n on the two most damaging life levels and

uses them as the N, and N~ life levels 1n the DLDR. Calculations

presented 1n this paper have borne out the accuracy of this approach.

Modifying Procedure for Including Mean Stress Effects

The cumulative fatigue damage approaches proposed 1n this paper do not

rely upon how mean stresses affect cyclic life, or the specific mean stress

formulation employed. Nonetheless, a cumulative damage analysis cannot

proceed until all the life levels can be quantified. Since mean stresses
\

strongly Influence fatigue life, a reliable, yet general, mean stress

formulation 1s a necessary adjunct to the cumulative damage approaches. We

have modified the mean stress approach from what was used 1n our earlier

publications, and have arrived at a more general means for representing these

Important effects. It has been demonstrated 1n Appendix B that a wide range

of classical mean stress effects can be accommodated by the newly adopted

approach. Because of the approach's flexibility, however, 1t does require a

small amount of fatigue data Involving mean stress to evaluate the constants.

Evaluation techniques are discussed 1n Appendix B.

CAUTIONS

While we have been active 1n developing a procedure for treating damage

accumulations either through damage curves or through a DLDR based on these

curves, few complex service histories have been treated by these methods.

Much experience should be gained 1n diverse applications before these or other

such methods, can be accepted for general use. In many cases, 1t can be

expected that the method will be successful by the very fortuitous nature of

such complex loading histories. They can contain many events, but 1n fact
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most will contribute negligibly to the damage, and life will be governed by

one or two of the major loading events. The results of the Teledyne study (1n

Table I) are typical of what can happen 1n such cases. Current methods are

satisfactory for such cases since they were developed from two load level

tests.

The real caution comes 1n connection with circumstances that have not yet

been factored Into this or other methods. A partial 11st of such

possibilities 1s:

Effect of Stress Mult1ax1al1ty

This subject 1s currently receiving Intensive study that 1s beyond the

scope of this paper, and may reveal unusual and dlff1cult-to-pred1ct results,

especially when loadings 1n one set of directions or slip systems are

subsequently followed by loadings 1n other directions favoring other slip and

fracture systems.

Deformation Systems 1n Complex Loading Not Revealed 1n Individual Loadings

Wood and Relmann [31] tested copper 1n torsion wherein large loading

amplitudes for a portion of the life were then followed by lower loading

amplitudes. The result did not follow a simpler linear damage rule,

F1g. 27(a). Relmann [32] later conducted similar torsion tests of Iron. More

cycles at the lower strain level were possible after the higher strain level

had been applied than 1f 1t had not been applied, F1g. 27(b). We have tested

copper and steels under similar conditions 1n axial loadings, but did not

reproduce the type of effect observed 1n torsion. Wood explained his results

on the basis that when the larger amplitudes were first applied the strain

tended to be absorbed by many slip-planes. Once activated to slip, they

remained effective 1n slipping when the lower amplitude was later applied,

even though these planes might not have participated 1f the lower amplitude

loading were applied singly. Thus the plastic strain of the lower loading was
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distributed over more slip planes when preceded by the higher loading,

decreasing the strain per slip plane, and Increasing the life. Why we have

not seen such a phenomenon 1n the many materials we have tested axially 1s not

clear.

Residual Stresses

The Importance of residual stress has been especially revealed through

the recent emphasis on the fracture mechanics of cracked structures. One such

experience 1s demonstrated by F1g. 28. Two-level load tests were conducted on

aluminum 1n bending [33]. We Introduced a notch on only one side of the

specimen, and ran the high load first to the point at which a small crack had

developed at the root of the notch. The last of the high level loadings

applied was with the notch 1n tension, producing a residual compresslve stress

at the tip of the crack when the load was removed. When the lower load was

applied, the remaining cycle ratio was not less than unity, as normally

expected, but 1t was greater by more than 100 than the Initial life of the

material at the lower load. The crack had been arrested by the residual

compression, and did not progress when the lower load level was applied. The

failure at the low load Initiated at the opposite side of the specimen, when

there was no notch, and progressed toward the crack that had been started by

the high load. The DLDR certainly was not directly applicable here.

Metallurgical Instabilities

Stress and strain together with exposure to high temperature reactive

gases can produce metallurgical Instabilities such as strain aging. Some

materials, subjected to strain at high temperature, develop precipitates on

the dislocations that alter the subsequent deformation and strength

characteristics of the material. Thus loadings which Induce such

precipitations during one portion of the loading history will reveal a
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behavior 1n another portion which by Itself would be different because of no

metallurgical precipitation. An example 1s presented below.

While Investigation creep-fatigue Interaction 1n the cobalt-base

superalloy L-605, at 1400 °F,.we observed a strong strain-aging effect [34].

Carbon, Initially 1n solution with the matrix, precipitated forming an

M C type carbide along the generated dislocations. As the carbides

Increased 1n number and size during cycling, the cyclic stress-strain response

of the alloy changed dramatically. The alloy was thus Increasing Its cyclic

flow resistance and altering Its resistance to fatigue failure. The amount of

change depended upon several factors - amount and duration of deformation and

temperature. The Implication to cumulative damage analysis 1s that the

fatigue life at a prescribed load or strain level 1s not a unique quantity

dictated by the magnitude of the loading. Instead, details of prior loadings

can alter the fatigue life relation. For example, consider two high

temperature loading levels. One under high strains gives rise to dislocation

generation and carbide precipitation, producing a life, N.. The other 1s at

such a low strain level that no precipitation nuclei are formed, the material

does not harden and the ensuing life 1s N > N,. If a few high strain

cycles are Imposed on another sample, carbides will form, the material

hardens, and Its fatigue resistance will be altered. When the partially

fatigued sample 1s subsequently loaded at the smaller strain level, Its

fatigue resistance should no longer be associated with N . Competing

processes are occurring simultaneously; fatigue crack nucleatlon and growth

(damage) and material hardening. The difficulty to the analyst 1s 1n how to

separate these factors to accurately predict remaining fatigue life. Further

research remains as to how best to resolve such complex problems.

Another example of altered fatigue resistance at high temperatures 1s one

encountered while studying Stralnrange Partitioning for creep-fatigue
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analysis, Ref. [35]. When 316 SS was tested with hold periods at peak

compresslve stress, an oxide surface layer formed, which cracked during the

tensile portion of each cycle. After a few cycles of loading, the surface was

riddled with short cracks, most of which hadn't as yet penetrated the

substrate. For small cyclic strains, oxides still form, but would not crack

during the tensile excursions. Hence, a sample loaded at large strains for a

fraction of Its life and then fatigued to failure at a small strain range

would experience an additional damaging phenomenon (a cracked oxide surface

layer) not accounted for 1n the original fatigue curve of the alloy at the low

strain level. Determining the correct life level for cumulative damage

analysis could become a tedious task. Our approach does not specifically

address the Issue raised above. Instead, the approach 1s more general and

deals only with life levels and not with how the life level 1s attained.

The phasing of temperature and strain cycling during thermal fatigue can

produce additional complications to the problems of cumulative damage

assessment. In a study, Ref. [36], of thermomechanlcal fatigue behavior of

the nickel-base superalloy, MAR M 200, we observed significant differences 1n

life depending upon whether 1n- or out-of-phase cycling was Imposed. During

1n-phase cycling, early developed cracks became filled with oxide while being

held open by the tensile stress. This situation 1s not experienced 1n the

out-of-phase cycling for which compresslve stresses close cracks at the high

temperature, retarding oxidation within the cracks. Out-of-phase cycling was

considerably less damaging than 1n-phase. Furthermore, the two phaslngs

result 1n different modes of cracking at the ubiquitous Internal carbides.

, In-phase cycling produced carbide-matrix Interfadal cracking while

out-of-phase cycling caused the carbides themselves to fracture. The

Implication of the above findings to cumulative damage analysis are of

concern. For example, consider two straining levels, Ac. and Ae^,
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giving rise to the same cyclic life, Nf. One condition Involves 1n-phase

cycling, AC,, and the other, out-of-phase, Ae_ [Ac- >.Ae,]. If cycling of a

sample 1s started at AC, and 1s discontinued after a life fraction n^/M, and

1s resumed at Ae2 until failure occurs, the remaining life fraction according

to the current rules (and the LDR) would simply be n-XN^ = 1 - n^/N,, I.e.,

n. + n = N,. Since both conditions produce the same life, any combination

would be predicted also to produce the same life. However, 1t 1s unlikely

that such a simple result would be borne out by experiment, due to different

damage accumulation mechanisms existing for the two loading conditions. With

different mechanisms of damage, the damage curves of D versus cycle fraction

n/N, would not coincide for the two conditions, and hence damage summations

would differ from 1.0.

The lesson to be learned from these examples 1s that the cumulative

damage rules developed 1n this paper which are based upon a single basic

fatigue crack Initiation and propagation mechanism, will require refinement

for application to unique high temperature conditions wherein additional

damage mechanisms can come Into play.

CONCLUDING REMARKS

In this report we have described a philosophy of analysis that has

evolved 1n our laboratories over more than 20 yr. Our emphasis has been

simplicity of engineering application, and minimizing the baseline Information

required for Implementation. While much of the methodology has been discussed

1n other reports, this presentation takes the evolution process a few steps

further. The format of the damage curve analysis has been altered and the

procedure clarified to be consistent with the Implied damage curves used 1n

the Double-Linear Damage Rule (DLDR). We call the new formulation the Double

Damage Curve Approach (DDCA). We have gained Insight as to how to Iterate the

choice of these substitute damage curves to minimize error while still
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retaining simplicity 1n analysis. Since our basic damage curves are now

consistent 1n both the ODCA and OLDR analyses, the usefulness of the damage

curve analysis procedure has been Increased. By making the same calculations

through the DOCA we can establish how much error 1s Introduced by the

compromises brought about to alter them for DLDR analysis. On the other hand,

1t also becomes clear from such calculations how much simplicity 1s gained by

the OLDR procedure compared to retention of damage curves with attendant

computational complexity.

An Important feature of our methods 1s the characterization of an event

only by Us life, not the parameters that enter Into determining the life.

Thus a stralnrange and associated mean stress that leads to a given life 1s

treated 1n Identical manner as a smaller stralnrange with associated larger

tensile mean stress which also leads to the same life. In this way

Improvements 1n life calculation per se do not later the equations Involved 1n

the DDCA or DLDR analyses. We have, 1n fact, discussed what we regard to be

Improvement 1n accounting for mean stress. Thus, while the life values that

enter Into a damage calculation may be altered by using the new mean stress

relations, the equations operating on these life values do not change.

Experience with the application of the method to a spectrum of complex

loading types 1s currently limited, but we hope to make detailed computations

1n generic cases to evaluate the effects of various parameters. Sample

computations are Included 1n this report.

Finally, we urge caution 1n the use of the method described, or Indeed

any other method, to Insure that some unexpected phenomenon, not Inherently

contained 1n the framework of the method, 1s Introduced Inadvertently. Among

these are stress mult1ax1al1ty, unidentified deformation and fracture

mechanisms, unknown residual stresses (especially at notches and crack tips),
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APPENDIX A

DERIVATION OF THE DOUBLE DAMAGE CURVE APPROACH (DDCA)

Our choice of terms to enter the two term damage curve approach was such

as to produce a continuous curve coincident with the DLDR at small values of

life fraction and coincident with the single term DCA equation at large life

fractions. The first term 1s linear 1n n/N and the second 1s a power

function of n/N

(A-l)

where:

1 - 0.65 , a = 0.25

, 0 = 0.40

The coefficient q, 1s the slope of the first damage accumulation line 1n

the DLDR. The second term 1n Eq. (A-l) 1s the same as the original single

damage curve term except for a reduction of Its coefficient from 1 to

(1 - q..) to force conformity with D = 1 at n/N = 1. N ,. 1s the

reference life condition for which damage could be considered to be

accumulating linearly toward unity, and N 1s the life level of Interest.

While Eq. (A-l) serves to Improve the slope of the damage curve at Its

origin, especially for large values of N/N . (F1g. A-l(a)), additional

Improvement 1s required for lower values of N/N , (F1g. A-l(b)). In both

cases, the double term equation deviates the greatest amount 1n the transition

region between the two terms.
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To achieve Improved fit over the entire range we resorted to a previously

used approach [17] and [18]. Given an equation where the dependent variable

1s expressed as the sum of two power laws of the Independent variable,

y = Xm + Xn (A-6)

1t 1s clear that y •» Xm when Xn « Xm, and y -» Xn when Xm « Xn. Thus y

becomes nearly coincident with X at one extreme of X and nearly coincident

with Xn at the other extreme. Plotted on log-log coordinates y becomes

nearly straight 1n two regions of X. Between the two extreme regions y

changes slope gradually from m to n. However, we can force y to conform

to Xm and Xn over a wider range, and change more abruptly between the two

slopes by rewriting the equation In the form

(A_7)
when Xm » Xn, y still approaches Xm, and similarly when Xn » Xm, y -» Xn.

The asymptotic lines are thus preserved. However, by the proper choice of y

the curve of y versus X can be altered 1n the range where X = X .

Figure A-2 shows the application of this concept for the case at hand.

Rewriting Eq. (A-5),

D = *7 (A-8)

If we choose several values of y and plot D versus n/N for N/N f = 10,

we get the curves shown 1n F1g. A-2. It 1s clear that y = 5 gives a

sufficiently close fit to the double linear damage line, and we have, there-

fore, tentatively settled on this value.
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APPENDIX B

MODIFIED PROCEDURE FOR MEAN STRESS EFFECTS

Service cycles Involving variable amplitude loading will likely encounter

mean stresses during portions of the loadings. Since mean stresses

significantly alter the expected fatigue life relative to a zero mean stress

condition, techniques must be Implemented to determine the associated life

levels for use with the cumulative damage approaches described 1n the body of

this report. The following describes a promising modified procedure for more

reliably dealing with mean stress effects on fatigue life. Consider a

material for which the Manson-Coff1n-Basqu1n diagram has already been

established, as shown 1n F1g. B-l(a). No mean stresses are Involved 1n this

figure. Figure B-l(b) 1s exactly the same plot, except that the life scale

has changed to reflect the presence of mean stress 1n accordance with the

formulation discussed by

A+BlogN
Heldmann [24]. The multiplier on the life scale 1s [1 - (o0/of) ].

Although o,/E and b are known from F1g. B-l(a) the constants A and B

are at the outset unknown. Several tests Involving mean stresses are

necessary to determine these constants. As an example, assume these tests are

conducted with a mean stress ratio of 0.2, I.e., a /a, = 0.2, o = 0.2 xo f o
130 = 26 ks1. For Illustration assume that two tests are conducted, one with

an alternating stress of amplitude 65 ks1, the other with an alternating

stress amplitude of 40 ks1. The lives are measured, and tabulated as shown 1n

Table B-l. We treat three cases 1n which the measured lives are assumed to be

those 1n Table B-l. Consider the analysis of the datum for Case I Where

La/2 = 130(2Nf)"
0>1° = 65 ks1. 'The elastic strain amplitude for the

alternating stress 1s 65/30x10 = 0.002167 1n./1n. We thus proceed to

point P 1n F1g. B-l(b), Indicating that the numerical value on the
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horizontal axis 1s 1024. Thus we apply this value and the measured life

(2Nf = 2 x 55) to the horizontal scale

1024 . (2 x 55) [1 - (0.2)A+B109(55)] — (IM)

from which we calculate

A + 1.74B =1.00 (B-2)

If we apply the same procedure to the second datum for Case I, where

Ac/2 = 40 ks1, we develop the equation

A + (3.85)B = 1.00 (B-3)

Solving for A and B from Eqs. (B-2) and (B-3).

A = 1.0; B = 0

In a similar manner, 1f we treat the two measured points for Case II, we get

A = 2.0; B = 0

and finally for Case III, the measured life values give

A = 3.0; B = -0.42

Case I, therefore, represents a material of the Goodman-Morrow type. All the

normalized alternating stress/mean stress diagrams consist of a single

straight line, as 1n F1g. B-2. Case II represents a material for which the

normalized diagram consists of a single curve of the Gerber type, with convex

curvature. Finally, Case III represents a material of general behavior,

wherein the normalized alternating stress/mean stress diagram consists of a

family of curves, one for each life level. Once the material has been

characterized, any corresponding type of plot can be made that suits the needs

of the Investigator. Figure B-3 shows the mean stress effect for each decade
O c

life level between 10 to 10 cycles.

Figure B-l can also be used to analyze data wherein the stralnrange and

mean stress are known. Thus 1f point Q 1s known from a total stralnrange

(which may Include appreciable plasticity), we cari still establish the
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abscissa at point R. If mean stress 1s also known, together with the values

of A and B for an already characterized material, N, can be determined

from a simple transcendental equation. Alternatively, 1f life 1s known from

characterization tests for which Ae and a are also known, values of A

and B can be computed 1n the same manner as already Illustrated.

Obviously, for the schematic Illustrations, only two tests are needed for

determining A and B. In practice, many tests may be used to get A and

B from a least squares solution. Or, 1n fact, 1t may develop that these many

tests will define a more general function for N, Instead of the relation

A + Blog(Nf)..

43



REFERENCES

[1] A. Palmgren, Die Lebensdauer von Kugellagern, Verfahrenstech1n1k
0 - :

(Berlin). 68, 339-341 (1924).

[2] B.F. Langer, Fatigue Failure from Stress Cycles of Varying Amplitude,

J. Appl. Mech.. 59, A160-A162 (1937).

[3] M.A. Miner, Cumulative Damage 1n Fatigue. J. Appl. Hech.. 67, A159-A164

(1945).

[4] N.M. Newmark, A Review of Cumulative Damage 1n Fatigue. Fatigue and

Fracture of Metals. W.M. Murray, ed.f Wiley & Sons, New York, 197-228

(1952).

[5] 1. Kaechele, Review and Analysis of Cumulat1ve-Fat1gue-Damage Theories.

RM-3650-PR, The Rand Corporation, Santa Monica, (1963).

[6] S.S. Manson, Interpretive Report on Cumulative Fatigue Damage 1n the Low

Cycle Range. Welding J. Res. Suppl.. 43, 344-S to 352-S (1964).

[7] M.J. O'Neill, A Review of Some Comulatlve Damage Theories.

ARL/SM-REPORT-326, Aeronautical Research Laboratories, Melbourne,

Australia (1970).

[8] J. Schljve, The Accumulation of Fatigue Damage 1n Aircraft Materials and

Structures. AGARD-AG-157, Advisory Group for Aerospace Research and

Development, Paris, France (1972).

[9] O.A. Bennett, A Study of the Damaging Effect of Fatigue Stressing on

X4130 Steel. Proc. ASTM. 46, 693-714 (1946).

[10] G.C. Noll and M.A. Erlcson, Allowable Stresses for Steel Members of

Finite Life. Proc. Soc. Exp. Stress Anal.. 5_ [2] 132-143 (1948). See

also, F1g. 32 of: S.S. Manson, Avoidance, Control, and Repair of Fatigue

Damage. Metal Fatigue Damage-Mechanism. Detection. Avoidance and Repair.

ASTM STP-495, S.S. Manson, ed.f ASTM, Philadelphia, 254-346 (1971).

44



[11]'S.S. Hanson, A.3. Nachtlgall, and J.C. Freche, A Proposed New Relation

for Cumulative Fatigue Damage 1n Bending. Proc. ASTH. 61_, 679-692

(1961).

[12] S.S. Hanson, et al. Further Investigation of a Relation for Cumulative

Fatigue Damage 1n Bending, J. Eng. Ind.. 87, 25-35 (1965).

[13] Z. Hashln and A. Rotem. A Cumulative Damage Theory of Fatigue Failure

Hater. Sc1. Eng.. 34. 147-160 (1978).

[14] S.S. Hanson, Interfaces Between Fatigue, Creep, and Fracture. Int. J.

Fract.. 2, 327-363 (1966).

[15] F.E. Rlchart, Jr. and N.H. Newmark, An Hypothesis for Determination of

Cumulative Damage 1n Fatigue, Proc. ASTH. 48. 767-800 (1948).

[16] S.S. Hanson and G.R. Halford, Practical Implementation of the Double

Linear Damage Rule and Damage Curve Approach for Treating Cumulative

Fatigue Damage. Int. J. Fract.. V7. 169-192 (1981).

[17] S.S. Hanson and H.H. Hlrschberg, Low Cycle Fatigue of Notched Specimens

by Consideration of Crack Initiation and Propagation. NASA TN D-3146

(1967). '

[18] S.S. Hanson and U. Huralldharan, A Single-Expression Formula for

Inverting Strain-Life and Stress-Strain relationships. NASA CR-165347

(1981).

[19] H.J. Grover, An Observation Concerning the Cycle Ratio 1n Cumulative

Damage. Fatigue of Aircraft Structures. ASTH STP 274, ASTH,

Philadelphia, 120-124 (1960).

[20] S.S. Hanson, J.C. Freche, and C.R. Ensign, Application of a Double Linear

Damage Rule to Comulatlve Fatigue. Fatigue Crack Propagation. ASTM,

STP-415, ASTH, Philadelphia, 384-412 (1967).

45



[21] K.J. Miller and K.P. Zacharlah, Cumulative Damage Laws for Fatigue Crack

Initiation and Stage 1 Propagation. J. Strain Anal. Eng. Des.. !_£,

262-270 (1977).

[22] K.J. Miller and M.F.E. Ibrahim, Damage Accumulation During Initiation and

Short Crack Growth Regimes. Fatigue Eng. Mater. Struct.. £, 263-277

(1981).

[23] J. Walcher, D. Gray, and S.S. Manson, Structural Design Analysis Aspects

of Cold End Rotating Structures. AIAA Paper 79-1190, June 1979.

[24] K.R. Heldmann, Technology for Predicting the Fatigue Life of Gray Cast

Iron. Ph.D. Thesis, Case Western Reserve University, Cleveland (1985). ',

[25] S.S. Manson and G.R. Halford, Complexities of High-Temperature Metal

Fatigue: Some Steps Toward Understanding. Isr. J. Technol.. 21, 29-53

(1983).

[26] P.T. B1zon, D.J. Thoma, and G.R. Halford, Interaction of High Cycle and

Low Cycle Fatigue of Haynes 188 at 1400 °F. Structural Integrity and

Durability of Reusable Space Propulsion Systems. NASA CP-2381, 129-138

(1985).

[27] G.R. Halford and S.S. Manson, Reexam1nat1on of Cumulative Fatigue Damage

Laws. Structural Integrity and Durability of Reusable Space Propulsion

Systems. NASA CP-2381, 139-145 (1985).

[28] J. Dubuc, et al., Unified Theory of Cumulative Damage 1n Metal Fatigue.

Weld. Res. Counc. Bull.. No. 162, 1-20 (1971).

[29] T. Bu1-Quoc, A Simplified Model for Comulatlve Fatigue Damage With

Interaction Effects. Proceedings of the 1982 Joint Conference on

Experimental Mechanics. Society for Experimental Stress Analysis,

Brookfleld Center, CT, 144-149 (1984).

[30] T. Bu1-Quoc, Cumulative Damage with Interaction Effect Due to Fatigue

Under Torsion Loading. Exp. Mech.. 22. 180-187 (1982).

46



[31] W.A. Wood and W. Relmann, Observations on Fatigue Damage Produced by

Combinations of Amplitudes 1n Copper and Brass. J. Inst. Met.. 9£, 66-70

(1966).

[32] W. Relmann, Some Metallurgical Observations of Cumulative Damage 1n

Fatigue. AFML-TR-68-359 (1968).

[33] L.F. Impelllzzerl, Cumulative Damage Analysis 1n Structural Fatigue.

Effects of Environment and Complex Load History on Fatigue Life. ASTM

STP-462, ASTM, Philadelphia, 40-73 (1970).

[34] S.S. Manson, G.R. Halford, and D.A. Spera, The Role of Creep 1n High

Temperature Low-Cycle Fatigue. Advances 1n Creep Design. A.I. Smith and

A.M. Nlcolson. eds., Halsted Press, 229-249 (1971).

[35] S.S. Manson and G.R. Halford, Relation of Cyclic Loading Pattern to

Mlcrostructural Fracture 1n Creep-Fatigue. Fatigue 84. C.J. Beevers,

ed., Engineering Materials Advisory Services Ltd., Warley, West Midland,

England, 1237-1255 (1984).

[36] M.3. VerrllH et al.: A Preliminary Study of the Thermomechanlcal

Fatigue of Polycrystalllne MAR M-200. NASA TP-2280 (1984).

47



TABLE B-l. - HYPOTHETICAL FATIGUE LIVES UNDER

VARIOUS MEANS STRESS CONDITIONS. EXAMPLES

USED TO EVALUATE CONSTANTS A , AND B IN

GENERALIZED MEAN STRESS EQUATION

?a-K Q 1

+65
+40

Computed

fl
R

Nfo

a0 = 0

(

512
65 736

Nf,
cycle life

a0 = 26 ksi

Case I Case II

55 340
7 058 43 704

i no ? oo
0 0

Case III

327
15 332

? no
- 42
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Fig. 9. Schematic of damage accumulation curves based on early crack growth
1 equation.

Fig. 10. Schematic of normalized damage accumulation curves.
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DLDR at low cycle ratios with the DCA at high cycle ratios.
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Fig. 18. Cycle ratio relationship for two level
tests as deduced from damage curve approach,
and replacement of damage curves by two
straight line segments to create a double linear
damage rule.
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Fig. 22. Double linear damage rule applied to block loading involving two loading levels.
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