
High frequency sampling of the 1984 spring bloom

within the mid-Atlantic Bight:

synoptic shipboard, aircraft, and in. situ perspectives

of the SEEP-I experiment

by

1 2 3John J. Walsh , Creighton D. Wirick , Leonard J. Pietrafesa ,

A S 6
Terry E. Whitledge , Frank E. Hoge and Robert N. Swift

Department of Marine Science
University of South Florida

St. Petersburg, Florida 33701

Department of Applied Science
Brookhaven National Laboratory

Upton, New York 11973

Department of Marine, Earth, and Atmospheric Sciences
North Carolina State University >-l ̂ >" (T / ~} S S
Raleigh, North Carolina 27650 A/ .'* ( ' ' .' /

Marine Science Institute
University of Texas

Port Aransas, Texas 78373

Goddard Space Flight Center
Wallops Flight Facility

Wallops Island, Virginia 23337

TV

E. G. and G.
Washington Analytical Services Center

Pocomoke City, Maryland 21851

N86-27700INAS&-TM-88765) HIGH P B E Q D E N C Y SAMPLING OP
THE 198U SPEING EIOOM W I T H I N TEE
MID-AIL ANTIC BIGH1: SYNOPTIC SHIPBOAED,
AIBCEAFT, AND IN SITU fEBSPECTIVES OF THE Unclas
SEEP-I E X P E B I M E N 1 ( N A S A ) 56 p HC A01/MF A01 :G3/43 43155



ABSTRACT

Moorings of current meters, thermistors, transmissometers, and

fluorometers on the mid-Atlantic shelf, south of Long Island, suggest

a cumulative seaward export of perhaps 0.35 g C m"2 day"1 between the

80 and 120 m isobaths during February-April 1984. Such a horizontal

loss of algal carbon over the lower third of the water column would be

23-78% of the March-April 1984 primary production. This physical

carbon loss is similar to daily grazing losses from zooplankton of

32-40% of the algal fixation of carbon. Metabolic demands of the

benthos could be met by just the estimated fecal pellet flux, without

direct consumption of algal carbon, while bacterioplankton needs could

be served by excretory release of dissolved organic matter during

photosynthesis. Sediment traps tethered 10 m off the bottom at the

120 m isobath and 50 m above the 500 m isobath caught as much as

0.16-0.26 g C m'2 day'1 during March-April 1984, in reasonable

agreement with the flux estimated from the other moored instruments.

If annual estimates of carbon accumulation within sediments of the

mid-Atlantic slope were to actually occur during 100 days of the

winter-spring bloom, as much as 31% of the above export might be

temporarily stored in slope depocenters.



INTRODUCTION

Conventional shipboard surveys of 1-3 week duration, which

attempt to study dominant shelf phytoplankton processes, such as the

spring bloom, cannot resolve either algal population growth

(0.5 day ) or wind resuspension events (0.2 day ), thereby severely

aliasing estimates of primary production and its consumption (WALSH,

DIETERLE and ESAIAS, 1987a). As part of a multidisciplinary effort to

determine the fate and transport of biogenic particles from the

coastal zone to slope depocenters, a series of moored fluorometers,

transmissometers, thermistors, current meters and aircraft overflights

were deployed in the DOE SEEP-I (Shelf Edge Exchange Processes)

experiment during February-April 1984 within the mid-Atlantic Bight

(Fig. 1).

The sampling rates of the 4 moored instruments were sufficient

(0.007-0.012 day ) to resolve major scales of physical and biological

variability. Four times, a NASA P-3A aircraft overflew the arrays

(Fig. 1) in less then 2 hours, providing synoptic estimates, as well,

with an infrared radiometer and a laser fluorosensor of the surface

temperature and chlorophyll fields around the moored instruments. We

compare these time series data of the Eulerian measurements with

concurrent aircraft and shipboard data, to both estimate the export of

phytoplankton from the mid-Atlantic shelf during the 1984 spring

bloom, and to provide validation data for a simulation model of this

ecosystem (WALSH, DIETERLE and MEYERS, 1987b).
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Figure 1. Location of fluorometer, transmissometer, thermistor, and
current meter moorings (W6-W40, E8-E40) during SEEP-I in
relation to hydrographic stations taken during the recovery
cruise of R/V Oceanus.



METHODS

Endeco current meters in the euphotic zone and Aanderaa current

meters below were moored within the same arrays of fluorometers,

Fenwal thermistors and Sea Tech transmissometers (Fig. 2) from

14 February 1984 to 8 April 1984, south of Long Island and Martha's

Vineyard. Of the eight moorings, two were lost, with recovery of W6,

W8, W12, and W40 at the 60 m, 80 m, 120 m, and 400 m isobaths south of

Long Island, and of E8 and E40 at these respective isobaths south of

Martha's Vineyard (Fig. 1). In this analysis, the fluorescence, light

attenuation, temperature, and current data were subjected to both 2-

and 40-hour low pass filters to remove some of the high frequency

fluctuations, e.g., diel changes in photosynthesis or tidal motion.

Extracted chlorophyll data from the shipboard observations

(WALSH, WHITLEDGE, BARVENIK, WIRICK, HOWE, ESAIAS and SCOTT, 1978)

were used to calibrate both measurements of the in situ xenon-flash

fluorometers (AIKEN, 1981) and the laser-induced estimates of

chlorophyll from the airborne Lidar system (HOGE and SWIFT, 1981;

2
1985). An r of 0.92 was obtained for the shipboard and aircraft

2
measurements in SEEP-I during 1984, similar to a range in r of 0.77

to 0.95 within mid-Atlantic Bight waters off Virginia in 1980 (HOGE

9
and SWIFT, 1981). The r of shipboard and in situ measurements of

chlorophyll is usually >0.60 and, at times, as high as 0.98 (WHITLEDGE

and WIRICK, 1983).

The precision of the chlorophyll estimate is ±0.05 ug I from

the fluorometers at high sensitivity (WHITLEDGE and WIRICK, 1986), of

the current velocity estimate is ±1.0-1.3 cm sec from the Endeco and

Aanderaa meters above a threshold velocity of 2.5 cm sec , and of the
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Figure 2. Instrumentation of the moored array at the 120m isobath,
south of Long Island.



temperature estimate from the thermistors is ±0.02°C. Analysis of the

aircraft and shipboard measurements of temperature, with respectively

a Precision Radiometric Thermometer (PRT-5) and a Niel Brown CTD,

suggests, however, that the aircraft estimates were consistently ~2°C

higher. Such a disparity does not preclude analysis of the spatial

and temporal patterns of relative temperature; we have thus made this

correction in constructing the aircraft maps of surface temperature.

RESULTS

Shipboard Perspective

During several 1984 cruises of R/V Oceanus to deploy, calibrate,

and recover our moored instruments, hydrographic stations (e.g.,

Fig. 1) were occupied with a combined F/CTD, equipped with a rosette

of 5.0 i Niskin bottles, to obtain vertical profiles of temperature

(Fig. 3), nitrate (Fig. A), and chlorophyll (Fig. 5). Airborne

sensors only provide data in the surface layer of the water column

(POOLE and ESAIAS, 1982) while the moored instruments only provide

time series at a few points in the sea. The locations of the

surviving 12 moored fluorometers, for example, are indicated by A in

Figure 5 of the cross-shelf chlorophyll transects.

A ~5-fold increase of vertical resolution can be obtained from

bottle casts and >100-fold increase from F/CTD casts, compared to the

moored arrays. The shipboard data base thus provides successive

snapshots in time of the vertical cross-shelf structure of physical,

chemical, and biological variables (Figs. 3-5). From these data, at

least inferences can be drawn (WALSH et al., 1978) about the
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Figure 4. Cross-shelf sections of nitrate (yg-at NO- i~ ), taken
south of Long Island and Martha's Vineyard, from
16-17 February to 11-12'April 1984.



.biological responses to changes in physical forcing at the wind event

time scale (Fig. 6).

During February-May 1979-82, for example, 60 wind events >9 m

sec occurred in the mid-Atlantic Bight. Of these, 80% originated

from the northwest quadrant, 10% from the northeast quadrant, and the

remainder from the south quadrants. Under northwest wind forcing, an

upwelling circulation occurs on this continental shelf, with an

offshore Ekman layer at the surface and return onshore flow at depth

(BEARDSLEY and BOICOURT, 1981; WALSH et al., 1987a). Northeast storms

intensify the predominantly westward flow of the mid-Atlantic Bight,

however, with a downwelling circulation as the diabathic pattern of

shelf water transport. The rarer southeasterly wind events of the

winter-spring seasons lead to eastward and onshore flow of surface

water as well.

In response to a combination of such wind forcing, the mean flow

of the upper 30 m of the water column past 4 moorings between the

46-105 m isobaths, south of Martha's Vineyard during February-April

1980 and April-May 1979 was 7.7 cm sec to the west and 1.3 cm sec

offshore (BEARDSLEY, MILLS, VERMERSCH, BROWN, PETTIGREW, IRISH, RAMP,

SCHLITZ and BUTMAN, 1983). On the outer shelf, within the lower part

of the water column between the 66-105 m isobaths, the flow was also

offshore at 1.4 cm sec during these time periods in 1979-1980. We

thus expected in 1984 to find an average offshore transport of the

spring bloom within both the euphotic and aphotic zones of the

mid-Atlantic Bight, as well, in response to a similar combination of

northwest and northeast wind events.
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south of Long Island and Martha's Vineyard, from
16-17 February to 11-12 April 1984.



Before the 1984 cross-shelf sections of hydrographic stations

were taken south of Long Island and Martha's Vineyard, for example,

_2
five storms of 1.0-1.5 dynes cm intensity occurred from the

northwest quadrant on 22 February, 3 March, 1 April, 8 April, and

10 April. After the first upwelling-favorable (northwest) wind event

on 22 February 1984, an upward doming of the 6°C isotherm was found on

the shelf off Long Island (Fig. 3b) and a seaward, surface tilt of the

4° and 6°C isotherms occurred within the colder shelf water south of

Martha's Vineyard (Fig. 3g). In response to this first northwest wind

event, at least 1-2 ug-at N0_ I had been resupplied to the euphotic

zone at mid-shelf off Long Island by 24-26 February (Fig. 4b),

compared to <0.5 ug-at NO- fc of surface waters found during the

previous transect on 16-17 February (Fig. 4a). At this time, the

near-bottom 6 ug-at X, isopleth of nitrate had also apparently moved

onshore ~40 km within 5-6 days between February 18 (Fig. 4f) and 23-24

(Fig. 4g) on the shelf off Martha's Vineyard, similar to other time

series of this type (WALSH et al., 1978), implying an onshore flow of

at least 6-8 cm sec

Seaward tongues of >2 yg chl I were found within the euphotic

zone at mid-shelf off both Long Island (Fig. 5b) and Martha's

Vineyard (Fig. 5g) after this nutrient injection. No subsurface

maxima of chlorophyll were then found near-bottom on the inner shelf,

as had been observed previously (Figs. 5a, 5f). The other four

northwest wind events on 3 March, 1 April, 8 April, and 10 April 1984

led to similar physical, chemical, and biological patterns. An

apparent 30 km onshore movement occurred, for example, of both the 8°C
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isotherm (Figs. 3b, 3c) and the 6 ug-at I isopleth of nitrate

(Figs. 4b, 4c) between 24-26 February and 5-6 March. Similarly, at

least a doubling of the algal biomass took place within the euphotic

zone of the inner and middle shelves between 1-2 April and 11-12 April

(Figs. 5i, 5j).

In contrast, a strong "northeaster" of 29 March was followed by

the appearance of a bolus of sub-surface 4°C water on the Long Island

shelf (Fig. 3d), extending seaward near the bottom and presumably

originating from the north on the colder shelf off Martha's Vineyard

(Figs. 3h, 3i). Impoverished nitrate conditions (<0.5 ug-at N0_ a )

were then found in the euphotic zone, resulting from both a lack of

physical replenishment and previous biological uptake, while a

suggestion of downwelling of nutrient-poor water was found at

mid-shelf (Fig. 4d). Three regions of chlorophyll maxima were found

near-bottom in the cross-shelf transects taken after imposition of

this northeast wind forcing.

More than 10 ug I of chlorophyll were found near the bottom

within 20-40 km of the coast, upstream off Martha's Vineyard

(Fig. 5i). A similar amount of near-bottom algal biomass was found

downstream at mid-shelf off Long Island (Fig. 5d). Finally, a third

pool of >2 yg chl I of near-bottom chlorophyll was found at the

shelf-break off Long Island (Fig. 5d). These particular spatial

patterns of chlorophyll within a downwelling circulation, caught by

the relatively instantaneous vertical sampling (2 days) of the

shipboard transects, may reflect snapshots of a gradual seaward

translation of biogenic particles from the coast to the shelf-break,

over the winter-spring bloom of -100 days (WALSH et al., 1987a).
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A shorter time series (Fig. 7) of F/CTD vertical profiles at the

60 m isobath, south of Long Island, provides additional insight into

the likely trajectory of phytoplankton cells after wind events within

the mid-Atlantic Bight. During the weak wind conditions of 2-3 April

1984 (Fig. 6), the phytoplankton had evidently sunk out of the water

column, to constitute a near-bottom fluorescence maximum, measured on

4 April 1984 at 0008 with the F/CTD (Fig. 7) and at 0030 with a bottle

cast of less vertical resolution (Fig. 8). In response to the 8 April

1984 wind forcing from the northwest (Fig. 6), the algal biomass was

evidently resuspended off the bottom, formed a surface maximum to be

detected by remote sensing (Fig. 13), and sank within 12 hours to the

middle of an unstratified water column (Figs. 7 and 8).

The continuous vertical profiles of the F/CTD time series, as

well as the bottle casts, suggest a sinking rate of 20-40 m day on

7-8 April 1984, similar to other FTD observations in March 1979 (WALSH

et al., 1987a). Furthermore, the four estimates of depth integrated

biomass of phytoplankton, in suspension above the 60 m isobath on

7-8 April 1984, were only 54-72% of that sunk out on 4 April 1984,

i.e., a loss of biomass had apparently occurred during the 8 April

1984 resuspension event (Fig. 7). Grazing stress removes less than

10-30% of the daily primary production of the mid-Atlantic Bight at

this time of year (DAGG and TURNFJl, 1982; WALSH, 1983; SMITH and LANE,

1987), suggesting that seaward export of phytoplankton biomass may

have occurred.

After offshore transport events off Peru, the depth integral of

algal biomass over the upper 40 m of the water column similarly
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decreased by 10-25% in 1976 and 50-75% in 1977 (WALSH, WHITLEDGE,

ESAIAS, SMITH, HUNTSMAN, SANTANDER and DeMENDIOLA, 1980). A sampling

rate of 6 cross-shelf sections taken by a ship over -50 days, of

course, cannot capture the biological response to every change of wind

forcing, let alone resolve the Nyquist frequency of one wind event

(>0.5 day ), except for the above F/CTD and Niskin bottle time

series. Higher sampling rates in both the horizontal and temporal

dimensions during SEEP-I did corroborate, however, the inferences

drawn from our vertical sampling program.

Aircraft Perspective

An aircraft overflight provides 20-fold more surface temperature

or chlorophyll measurements within 2 hours than can be provided by a

ship over -200 hours of routine sampling at hydrographic stations, to

be later contoured as surface maps of the thermal (Fig. 9a) and

phytoplankton (Fig. 9b) fields. The April 1984. aircraft overflights

_2
were taken after the northwest wind events of 1.0-1.5 dynes cm

intensity on 1 and 8 April (Fig. 6). The areal extent of these

overflights, with respect to the simultaneous Oceanus survey, is

demarcated by the rectangle in Fig. 9b of the shipboard chlorophyll

field.

The aircraft thermal fields from 2 (Fig. 10) and 8 (Fig. 11)

April 1984 were similar to the 5-day shipboard temperature composite

(Fig. 9a). Cold water of 5°C temperature was found near the mooring

at the 60 m isobath south of Long Island (the moorings are denoted by

A in Figs. 10-13), while the shelf-break front, represented by the



ORIGINAL PAGE-IS
OF POOR QUALITY

NEW YORK I CONNECTICUT

"V— -

-_A— ;

1-5 APRIL 1984
SURFACE TEMPERATURE

0 20 «0

KILOMETERS

./-r

></ -\ •( i
• ^rr -X M
S-/ • K^ '

1-5 APRIL 1984
SURFACE CHLOROPHYLL

Figure 9. The surface distribution of a) temperature (°C) and of
b) chlorophyll (yg i"1), measured aboard R/V Oceanus
during 1-5 Apri^ 1984.



10°C isotherm, was detected along the moorings at the 400 m isobath.

With the exception of the 7°C isotherm, which exhibited wave-like

characteristics'from one overflight (Fig. 10) to the next (Fig. 11),

the relative cross-shelf positions.of the isotherms did not change

after an increase in the northwest wind forcing, from 1.0 dyne cm on

_2
1 April to 1.5 dynes cm on 8 April.

The aircraft phytoplankton fields on 2 XFig. 12) and 8 (Fig. 13)

April 1984 were apparently different, however, with shelf plumes of

3-4 pg chl I extending out over the slope during the latter

overflight, compared to seaward tongues of 1-2 jig chl I encountered

during the former. Both phytoplankton fields contained algal

biomasses of 6-7 yg chl I at the landward edge of the overflight

pattern (Figs. 12, 13), similar to the right half of the shipboard

chlorophyll composite (Fig. 9b).

Note that the seaward tongues of 1-2 ug chl £ were captured by

the coarse sampling grid of the ship during 1-5 April 1984 as well.

Since the hydrographic stations were occupied on Oceanus from east to

west (Fig. 1), however, and a major southwesterly wind event of
_2

4.5 dynes cm occurred on 5 April 1984 (Fig. 6), between the two

northwest wind events, the shipboard composite (Fig. 9b) is badly

aliased. As a result, the left half of the 1-5 April 1984 chlorophyll

map from the Oceanus survey is very different from the aircraft

overflight of 2 April 1984 (Fig. 12).

The aircraft sampling of chlorophyll on 8 April 1984 (Fig. 13)

occurred during a northwest wind event, while the overflight of

2 April 1984 (Fig. 12) took place 24 hours after a previous northwest
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event. The higher chlorophyll values encountered over the slope

during the second overflight may represent phytoplankton cells which

had yet to sink out of the water column. Recall the ~30 m day

sinking rate inferred from the F/CTD and rosette time series on

8 April 1984 at the 60 m isobath (Figs. 7 and 8), during a time when

downwelling of water would have been minimal. After 24 hours of such

a sinking rate in a shelf region seaward of the resuspension area,

algal biomass would no longer be detected at the surface of the sea by

the aircraft's Lidar fluorosensor.

The high chlorophyll biomass, detected by the aircraft at

mid-shelf, may reflect a combination of in situ growth and

resuspension of phytoplankton, previously sunk and/or downwelled out

of the water column (Fig. 14). Such an accumulated, near-bottom algal

biomass of 25 mg chl m (Fig. 14) within a 10 m bottom layer at the

50 m isobath, together with a minimal amount of 0.5 mg chl m within

the upper 40 m before a resuspension event (Fig. 5b or 5c), would
-3

yield a mean concentration of 5.4 mg chl m after vertical

homogenization. A growth rate of 0.5 day for the spring bloom

(WALSH et al., 1987a) would lead to a total chlorophyll concentration

of 8.1 mg chl m within one day after an upwelling event, i.e., the

amount detected at mid-shelf during both aircraft overflights. It

appears that rapid vertical exchange processes may be of great

biological consequence within the mid-Atlantic Bight (WALSH et al.,

1987b), in addition to the horizontal fluxes, mainly measured by the

moored arrays.

10
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In situ perspective

a) Surface fluxes

A few geographic locations in the mid-Atlantic Bight during

SEEP-I were sampled 4 times by aircraft, 6 times by ship, and -5000

times by the moored arrays of current meters, thermistors,

fluorometers, and transmissometers. The cross-shelf response of the

water column at -13 m depth to each wind event (Fig. 6) can be

inferred from time series of temperature at three of the moorings on

the 60 m, 80 m, and 120 m isobaths south of Long Island (Fig. 15).

Among 17 wind events from the northwest during the 1984 winter-spring

bloom, the offshore movement of cold shelf water, in response to those

storms detected by the ship time series, was traced at the moorings

(Fig. 15) by the seaward displacement of the 7°C isotherm on

22 February, 3 March, and of the 5°C isotherm on 1 April. Similarly,

among the 6 "northeasters" (Fig. 6), the onshore movement of warmer

water was clearly depicted on 9 March, and at just the dates of the

cross-shelf sections, by the landward displacement of the 6°C isotherm

on 29 March (Fig.. 15).

The current meter record of surface flow (-15 m) past the array

at the 80 m isobath south of Martha's Vineyard (Fig. 16) provides

confirmation of the inferences about water circulation drawn from

the temperature data off Long Island (Fig. 15). For example, the

diabathic component of flow here (Fig. 16a) was offshore at 1-10 cm

sec during 2-6 March and 1-4 April 1984 after the northwest forcing,

and onshore at 5-15 cm sec during 27-30 March in response to the

strong northeasterly wind event. The temperature (Fig. 16b> and

11



74« 73' 70«

1-5 APRIL 1984
BOTTOM CHLOROPHYLL

3 40°

Figure 14. The bottom distribution of chlorophyll (pg a~ ) measured
aboard R/V Oceanus with 5£ Niskin bottles "during 1-5 April
1984.



chlorophyll concentrations (Fig. 16c) both declined here during the

offshore surface flow on 2-6 March and 1-4 April 1984, as well, with a

contrasting increase of temperature and algal biomass during the

onshore flow on 27-30 March. Averaging over all of these wind events

during the SEEP-I experiment, the net transport of chlorophyll, uP, at

the 80 m isobath south of Martha's Vineyard, was onshore at -2.5 ng

chl cm"2 sec'1 (Fig. 16d).

Seaward of the shelf-break at the 400 m isobath, south of

Martha's Vineyard, the surface flow was stronger, the temperature

gradients were greater, but less variation in algal biomass was

observed (Fig. 17). The sense of the wind event response within the

time series at the 80 m isobath was retained within those at the 400 m

isobath, e.g., the 2-6 March northwest wind event, but other physical

forcing was evident as well. The symmetric reversals here of the

25 cm sec diabathic current (Fig. 17a), and of the temperature

(Fig. 17b), between 26 March and 2 April suggest passage of a warm

core ring, for example, with a systematic reduction in the amount of

chlorophyll within surface slope waters, i.e., the lowest found in

this record (Fig. 17c). The cumulative mean transport, uP, of algal .

biomass was also onshore at the 400 m isobath (Fig. 17d) and about the

-2 -1same value, 2.5 ng chl cm sec , as at the 80 m isobath.

At the shelf-break mooring on the 120 m isobath (Fig. 18), south

of Long Island and away from the mid-shelf resuspension area, the

chlorophyll concentrations at the 13 m depth were lower than those at

the 80 m isobath (Fig. 16). The temperature gradients and the current

velocities here were also intermediate between the records obtained at

12
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the 80 m and 400 m isobaths. Offshore surface flow of 5-15 cm sec

occurred during the 2-6 March and 1-3 April northwest wind forcings,

with stronger onshore flow, up to a mean of 30 cm sec , observed

during the "northeaster" on 27-30 March (Fig. 18a). The temperatures

of this record also increased and decreased with onshore and offshore

reversals of the cross-shelf flow (Fig. 18b), similar to changes in

chlorophyll concentrations (Fig. 18c) during the second half of the

record. For most of this time series, the cumulative transport of

chlorophyll, uF, was offshore at the shelf-break, e.g., ~4.5 ng chl

cm sec for 2 weeks, except for the last 8 days of the record, when

chlorophyll biomass was lower and the strong onshore transport events

dominated this running mean calculation (Fig. 18d).

Considering the apparent rapid sinking rate of diatoms during the

1984 spring bloom and the differences in physical forcing of shelf and

slope waters, it is not surprising that chlorophyll fluctuations

within the euphotic zone were poorly correlated at these moorings
2

(Fig. 19). The coefficient of determination, r , of the 2-hr.

low-passed surface (13 m) chlorophyll data at E8 (80 m isobath south

of Martha's Vineyard - Fig. 16c) with those downstream at W12 (120 m

isobath south of Long Island - Fig. 18c), for example, was only 0.046

at a zero time lag. A 40-hr, low-pass filter of these data at zero

time lag removed more of the high frequency fluctuations in these
2

chlorophyll records (Fig. 19), such that the r of the data at E8 and

2W12 then became 0.125. The r of 40-hr, low-passed chlorophyll

records of 13 m at E8 with W8 (0.019), and W8 with W12 (0.002), were

even less, despite this reduction in variance (Fig. 19).

13
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The downstream, or parabathic, component of the surface flow

(15 m) at the W12 mooring was, at times, greater than 40 cm sec

(Fig. 20), while the mean vector flow along a trajectory from E8 to

W12 (Fig. 1) during SEEP-I was -15 cm sec . Over a separation

distance of 80 km between these two moorings and a flow of 15-20 cm

sec , a particle would take ~4-6 days to move from E8 to W12, if it

2
were retained within surface waters. The r of the 40-hr, low-passed,

surface chlorophyll data between E8 and W12 (Fig. 19) at 4- and 5-day

time lags, in fact, became much less, respectively 0.001 and 0.004.

The flow near the bottom at W12 was weaker (Fig. 20), with a

parabathic mean of only 1.6 cm sec and a diabathic mean of 1.0 cm

sec . Within such a flow regime, a near-bottom particle would exit

first at the shelf-break, 20 km south of E8, before arriving 60 km

farther downstream at W12, if if were not resuspended higher in the

water column.

The poor coherence of these surface (13 m) chlorophyll records

over the presumed transit time suggests both that sinking of

phytoplankton is rapid in the mid-Atlantic Bight, and that

resuspension of near-bottom particles does not occur within the

euphotic zone on the outer part of the shelf. The memory of algal

population changes is thus not maintained here throughout the whole

water column, to be later recorded, downstream of a propagation event,

at a near-surface depth of 13 m. This is in contrast to our other

Eulerian studies in the South Atlantic Bight and the Bering Sea, where

over a similar separation distance, but at bottom depths of only

2
15-45 m, time-lagged r of near-surface fluorometer records were as

14
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high as 0.1-0.2, i.e., two orders of magnitude larger than those of

the outer mid-Atlantic Bight.

b) Bottom fluxes

The fluorometer records from instruments overlying each other at

13 m, 23 m, and 81 m depths on the 120 m isobath (Fig. 21), south of
>

Long Island, showed high correlations, however, compared to the low
2

spatial coherence of surface algal biomass. For example, the r of

the 40-hr, low-passed records of algal biomass between 13 m and 23 m

at W12 was 0.38, again two orders of magnitude greater than between

2the 13 m records at W12 and W8. Over the whole water column, the r

of the 13 m and 81 m chlorophyll records at W12 was somewhat less,

0.28, because the near-bottom phytoplankton were entrained within a

different flow regime, moving onshore when the surface water was

advected seaward and moving offshore when the surface flow was onshore

(Fig. 20).

An increase of chlorophyll within the aphotic zone during

"northeasters" (Figs. 5 and 21) implies either downwelling of surface

algal biomass, and/or seaward movement of near-bottom chlorophyll from

shallow sources (Fig. 14), during the intense longshore and offshore

movement of the near-bottom water, e.g., on 9-10 March, 17-18 March,

and 29-30 March (Fig. 20). The temperature records at 3-5 m above the

bottom on the 60 m, 80 m, and 120 m isobaths, south of Long Island,

trace these near-bottom flow events, with seaward displacement of the

7°C isotherm, for example, on 9-10 March, 17-18 March, and 29-30 March

15
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(Fig. 22). High chlorophyll was also observed at 5 m above the bottom

on the 80 m isobath after the 17-18 March northeaster (Fig. 23).

Evidence for resuspension of both chlorophyll and fine-grain

sediments during these offshore flow events of near-bottom water was

also provided by the transmissometer records at the 80 m (Fig. 23) and

120 m (Fig. 25) isobaths. In response to each of the bottom offshore

transport events (Fig. 23a), the extinction coefficient of the

near-bottom water, k, increased, with little difference in maximum

value (-1.75 m ) at the beginning or end of this record at the 80 m

isobath (Fig. 23c). In contrast, the chlorophyll record (Fig. 23b)

exhibited here an order of magnitude increase in biomass with time,

reflecting the seasonal buildup, seaward export, and sinking to the

2bottom of the spring bloom. The r of zero lag between the 40-hr.

low-passed chlorophyll records of 13 m and 75 m depths at W8 was 0.32,

similar to the vertical coherence at W12. Some of these near-bottom
i

increments of algal biomass might thus be in response to northwest

wind forcing, surface export, and then sinking, e.g., 1-3 April, while

other occurred after "northeasters" and near-bottom export, e.g.,

29-30 March.

To perhaps distinguish between surface and bottom export events

of phytoplankton, we first computed those parts of the light

extinction attributed to phytoplankton (0.0852 x chl) and coastal

surface water (0.459 m ), and then subtracted them from the

concurrent observations obtained by the moored transmissometers

(Fig. 24). At 5 m above bottom on the 80 m isobath (Fig. 24c), for

example, the abiotic particles were apparently a major component of

16



\
01

U

0)
3

•Lo

E8 DEPTH 13M

15
Feb

W8 DEPTH 13M

W12 DEPTH 13M
4BHLP

20 25 1
Mar
1984

15 25 1
flpr

10 15
Rpr

Figure 19. A time series of 40-hr, low-passed chlorophyll (pg £ ) at
13m depth on the 80m isobath, south of Martha's Vineyard,
and on the 80m and 120m isobaths, south of Long Island,
during 17 February - 11 April 1984.



light extinction after offshore flow events on 28 February,

9-10 March, 17-18 March, 24 March, 29-30 March, and 5 April, i.e.,

those prominent within the temperature time series as well (Fig. 22).

During northwest wind events on 2-6 March and 1-4 April, however, the

abiotic contribution to light extinction was negligible (Fig. 24c),

similar to the transmissometer observations during most of the time at

23 m below the surface on the 120 m isobath (Fig. 24a).

The same biotic sinking events, after northwest wind forcing,

were also captured by another transmissometer, moored 3 m above the

bottom on the 120 m isobath. The abiotic signal was much weaker 40 m

above the bottom at this isobath (Fig. 24b), however, suggesting that

most of the export of fine-grain particles, and perhaps of

phytoplankton, occurred within the lower third of this water column.

For example, summing over these surface and bottom Ekman transport

events, the cumulative chlorophyll transport, uP, at 75 m depth on the

80 m isobath was a net se;

all of SEEP-I (Fig. 23d).

-2 -180 m isobath was a net seaward export of 3.0 ng chl cm sec during

DISCUSSION

Using a mean C/chl a ratio of 45/1 for live phytoplankton within

the spring bloom of the mid-Atlantic Bight (MALONE, HOPKINS, FALKOWSKI

and WHITLEDGE, 1983), this near-bottom chlorophyll flux of 2.67 g chl

-2 -1 2 -2 -1m day implies a net daily carbon export of 1.2 x 10 g C m day

past the 80 m isobath during February-April 1984. Such an export

reflects, of course, the previous accumulation on the inner shelf of

phytoplankton carbon within a water parcel, during its trajectory from

17
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the coast to the slope. At this export and a mean primary production

rate of 1 g C m"2 day"1 during March-April 1984 (P. FALKOWSKI,

personal communication), with no grazing losses, an accumulation

interval, or a residence time, of 120 days on the mid-Atlantic shelf

is derived for the winter-spring bloom of phytoplankton. Within a

mean offshore flow regime of 1 cm sec (0.86 km day ), successive

daughter cells of a diatom population could, in fact, transit the

100-km wide mid-Atlantic shelf after 116 days, departing Georges Bank

in January and arriving at our Long Island moorings in April.

Imposition of a seasonal grazing stress on the primary producers

would both increase the presumed residence time of this algal

population on the shelf, and introduce detrital carbon to the spring

ecosystem. Use of a larger C/chl a ratio, reflecting such

phytodetritus, for conversion of the fluorescence records would

decrease, however, the required residence time, i.e., more carbon

would be exported per unit chlorophyll over the same time period. To

place the daily estimates of grazing and sinking losses of

phytoplankton made during SEEP-I in perspective, we thus computed the

local daily rate of change of chlorophyll, —7— , in the aphotic

zone.

We used the cumulative mean transports, uP, at 75 m on the 80 m

isobath (Fig. 23d) and at 81 m on the 120 m isobath (Fig. 25d) for

this calculation. The 40-hr, low-passed chlorophyll records of zero

2
lag at these depths (Figs. 23b and 25b) had an r of 0.32, as high as

the vertical coherence between the surface and deepest fluorometers at

these isobaths. Recall that the r2 was only 0.002 for the W8 and W12

chlorophyll records at 13 m (Fig. 19). This hundred-fold difference

18
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in horizontal coherence between the surface and near-bottom

chlorophyll time series at W8 and W12 underscores the importance of

vertical transfer processes on this shelf, i.e., a particle can no

longer sink when at the bottom boundary.

The mean diabathic flow past the current meter at 84 m on the

120 m isobath was weakly onshore (Fig. 25a), however, while the flow

past the meter at 78 m on the 80 m isobath was offshore (Fig. 23a).

These current meter records suggest that a convergence of water at

78-84 m depths might have occurred somewhere over the ~12 km

separation distance, between W8 and W12, to satisfy the bottom Ekman

layer constraints on the predominantly downstream parabathic flow

(Fig. 20). Recall that the mean diabathic, near-bottom (118 m) flow

at W12 was also offshore at 1.0 cm sec during February-April 1984,

similar to an offshore flow of 1.4 cm sec near the bottom on the

outer shelf during February-May 1979-80. Downwelling of water, in

addition to passive sinking of phytoplankton, may thus be involved in

particle transport on the mid-Atlantic shelf (WALSH et al., 1987b).

Without additional vertical resolution of the flow field,

however, we can only make an estimate of the mean horizontal flux over

(uPW8 " uPW12)time at 75-81 m depths in finite difference form, with !1£— z±±-.
u2v

We obtain 0.26 ug chl I day from this expression and Figures 23d

and 25d, or 11.9 mg C m"3 day" with the C/chl a ratio of 45/1. Since

the primary production, daily grazing losses, and organic matter

caught with sediment traps are usually reported as depth integrals, a

depth range of possible carbon export must now be specified.
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A simulation model of the 1979 spring bloom (WALSH et al., 1987b)

suggested that as much as 90% of the algal export from the

mid-Atlantic Bight might occur within the lower third of the water

column. Over a 30-40 m bottom layer at the 120 m isobath, we thus

further estimate that the daily horizontal algal export might have

-2 -1
been 0.35-0.47 g C m day from the mid-Atlantic shelf during

February-April 1984. It is based on the above moored temperature,

current meter, fluorometer, and transmissometer data at the 80 and

120 m isobaths, south of Long Island.

Such possible carbon fluxes of algal export constitute 78-100% of

the 1984 March mean primary production, 0.45 g C m day" , and 23-30%

of that during April 1984, 1.55 g C m"2 day'1 (P. G. FALKOWSKI,

personal communication). During these same Oceanus cruises, the

biomass of the dominant zooplankton herbivore, Calanus finmarchicus.

was observed to increase 8-fold over a 33-day period of the 1984

spring bloom, ingesting a daily mean phytoplankton ration of 0.18 g C

m"2 day"1 in March and 0.50 g C m"2 day"1 in April (SMITH and LANE,

1987). Assuming that the seaward horizontal export of phytoplankton

occurred over only the lower 30 m of the water column at the shelf

-2 -1break, i.e., 0.35 g C m day , the physical and biological losses of

algal carbon (export and pelagic grazing) would have consumed 118% of

the March primary production and 55% of the April fixation of carbon.

Sediment traps, moored 10 m and 70 m off the bottom on the outer

shelf at W12 during March-April 1984 (G. T. ROWE, personal

communication), caught respectively 0.16 and 0.10 g C m day , about

half that estimated from the moored instruments within the lower part

20
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of the water column. This sediment trap flux represents presumably a

combination of the daily vertical fallout of both fecal pellet carbon

and phytodetrital carbon, as well as the particulate matter

resuspended off the bottom from previous inputs. At a herbivore

assimilation efficiency of 60%, as much as 0.20 g C m day of the

April grazing flux might sink as fecal pellets, at rates of 150 m

day , to be caught in these near-bottom sediment traps. The slower

1-20 m day sinking flux of phytoplankton might instead have been

advected past these sediment traps on the shelf.

Earlier estimates of benthic metabolism during August-October on

the mid-Atlantic shelf (FLOREK and ROWE, 1983) suggested that, as the

bottom of the water column warms from its seasonal minimum in March,

the benthos might consume an average of 0.16 g C m day (WALSH,

1983). This would be 25% of the April 1984 primary production not

lost to horizontal export or pelagic grazers, if ingested directly by

the benthos. A more recent analysis (ROWEj THEROUX, PHOEL, QUIMBY,

WILKE, KOSCHORECK, WHITLEDGE, FALKOWSKI and FRAY, 1987) of benthic

metabolism during SEEP-I suggests that a similar amount of 0.15 g C

-2 -1m day would be required by the benthos, i.e., less than the

potential fecal pellet flux and equal to that caught near the bottom

at the 120 m isobath.

Finally, bacterioplankton productivity is less than 2% of the

spring algal production in the mid-Atlantic Bight (DUCKLOW, KIRCHMAN

and ROWE, 1982), decomposing perhaps 20% of the organic carbon caught

in sediment traps (DUCKLOW, HILL and GARDNER, 1985). Bacterioplankton

may be a carbon sink in coastal food webs (DUCKLOW, PURDIE, WILLIAMS
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and DAVIES, 1986), however, with little carbon or nitrogen passed to

other organisms in the form of food for higher trophic levels. A

recent nitrogen'budget (WALSH, WHITLEDGE, O'REILLY, PHOEL and DRAXLER,

1987c) suggests, furthermore, that the secondary production of

bacterioplankton can be maintained from dissolved organic matter

excreted each day by phytoplankton in the mid-Atlantic Bight. These

heterotrophs may thus be a sink for dissolved not particulate carbon,

with little direct remineralization of algal biomass.

We conclude that the immediate fate of shelf algal carbon during

SEEP-I may now be known, with ~5Q% of the March-April 1984 primary

production exported to the slope and caught in sediment traps on the

500 and 1250 m isobaths (BISCAYE and ANDERSON, 1987). Annual

estimates of Pb and C mixing rates, combined with vertical carbon

gradients in the surface sediments (WALSH, PREMUZIC, GAFFNEY,

ROWE, BALSAM, HARBOTTLE, STOENNER, BETZER and MACKO, 1985) suggest

that the average daily carbon accumulation rate in slope sediments off

-2 -1
the mid-Atlantic Bight might be 0.03 g C m day , i.e., <10% of our

export estimate. Some of the slope import of carbon must be

remineralized by the local benthos, although the benthic biomass and

metabolism is lower on the slope than on the shelf, i.e., 0.005 g C

~2 -1
m day at 1800 m (ROWE et al., 1987). Marked seasonal fluxes of

particulate matter were observed, however, with sediment traps moored

on the slope during SEEP-I (BISCAYE and ANDERSON, 1987). During

-2 -1April, for example, 0.08-0.26 g C m day were found respectively

within sediment traps 50 m above the bottom at the 1250 and 500 m

isobaths, compared to ten-fold less during August to November.
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Little import of phytoplankton carbon may thus occur on the slope

during summer and fall, with most of the annual carbon loading as the

result of the spring bloom. If the annual accumulation rate of

carbon, estimated by C and Pb mixing rates on the continental

slope, were actually to occur over only 100 days, the daily sediment

accumulation rate on the slope during the spring bloom would then be

_2 -i
0.11 g Cm day , i.e., 31% of our export estimate and similar to

that measured in the April 1984 sediment trap samples on the slope.

Future experiments are planned by us to further examine the

geographical nature of this shelf export, but we believe that the

results of SEEP-I provide the first direct measurements of a flux of

algal carbon from a continental shelf.

A set of shipboard and aircraft observations, sparsely sampled in

time, and a set of moored data, sparsely sampled in space, provide

corroboration of initial hypotheses of shelf export of phytoplankton

from the mid-Atlantic Bight (WALSH, ROWE, IVERSON and McROY, 1981;

MALONE et al., 1983; WALSH et al., 1985; WALSH et al., 1987a). Within

the vertically homogeneous water column of the inner shelf (<60 m

isobath), algal biomass which has previously sunk out, is evidently

resuspended and transported seaward within a surface Ekman layer in

response to northwest wind events. Within the vertically stratified

waters of the outer shelf (60-100 m isobaths), where the shelf-break

front impedes vertical exchange in the middle of the water column

(Fig. 26), near-bottom phytoplankton are evidently resuspended and

transported seaward within a bottom Ekman layer in response to

northeast wind events. We have sketched this process in Figure 26,
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Figure 26. A schematic trajectory of surface Ekman transport of a
particle within the homogeneous water column of the inner
shelf, and bottom Ekman transport within the stratified
water column of the outer shelf during the spring bloom.in
the mid-Atlantic Bight.



where the shelf export of phytoplankton carbon is estimated to be a

surface process at mid-shelf (WALSH et al., 1987a) and a sub-surface

phenomenon at the shelf-break (WALSH et al., 1987b). A SEEP-II

experiment off the Delmarva peninsula will provide confirmation of our

present estimates of shelf export from the mid-Atlantic Bight.
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