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SUMMARY

The Denavit-Hartenberg parameters define the relative location of joint axis
systems in a robot arm. A recent criticism is that one of these parameters aD-
proaches infinity as the rotational axes of two successive joints approach a parallel
condition. This causes an ill-conditioned transformation matrix and locates a joint
axis system far away from the joint itself. This paper introduces a simple modifica-
tion of these parameters to easily overcome this criticism. This modification (which
entails the constraint that a transverse vector between successive joint rotational
axes be normal to one of the rotational axes, instead of both) leads to modified
Denavit-Hartenberg parameters that more favorably locate successive joint axis
systems.

An example is given with respect to the rotational axes of the elbow and shoul-
der joints in a robot arm. The regular and modified Denavit-Hartenberg parameters
that locate the axis system of the elbow joint relative to the axis system of the
shoulder joint are extracted in the example by an algebraic method with simulated
measurements of three different locations of a point on a robot arm. For small mis-
alignments of the elbow- and shoulder-joint rotational axes from a parallel condi-
tion, the regular Denavit-Hartenberg parameters, unlike the modified parameters, were
found to be extremely sensitive to measurement accuracy.

INTRODUCTION

The motion of a robot hand is the result of joint movements in the robot arm.
To transform operator commands to the robot hand into joint movements and to pass
sensor information along the arm, the relative location of successive joint axis sys-
tems must be known. By far, the most popular way to describe the relative location
and orientation of one joint axis system with respect to another is to use the well-
known Denavit-Hartenberg parameters (ref. I), which define the elements in transfor-
mation matrices. However, these parameters have been criticized recently (refs. 2
and 3) as unsuitable in the case where successive rotational axes approach a parallel
condition. Specifically, several of the elements in the transformation matrix
approach infinity, and a joint axis system is located far away from the joint itself.

The purpose of the present paper is to modify the Denavit-Hartenberg parameters
to overcome the aforementioned criticism. The algebraic method in reference 4 is
extended to extract the modified parameters.

SYMBOLS

_,{,_ measurement vectors from world coordinate system to a point on robot arm

Ai_li homogeneous transformation matrix from coordinate system i to i - I

ai length of _i

.
ai common normal vector between Zi_1 and Zi; intersects Zi at 0i



.

C. vector from world coordinate system to center of circular trajectory of a1
point on robot arm about line of rotation of joint i

+

D. constrained transverse vector from Zi_I to Zi1

E elbow of robot arm

.
e i unit vector normal to both Zi_ 1 and Zi that, by definition, points

along Xi

H hand of robot arm

_. location of Oi from Oi_I in coordinate system i - 1l

i integer
+

£i vector from world coordinate system to a point on line of rotation for
joint i

N neck of robot arm

+
N vector normal to circular trajectory plane of point on robot arm

O base of robot arm

Oi,Ow origin of coordinate system i for joint i + I and of world coordinate
system, respectively

Q,QI,Q2,Q(x,y,z) points in three-dimensional space
+

R. vector from 0w to 0iz

Ri rotational transformation matrix from coordinate system i to i - Ii-I

ri coordinate along Zi_1 of Oi
.

ri vector from Oi_1 to coordinate along Zi_I of 0i

S shoulder of robot arm

.
ui unit vector along positive rotational axis of joint i

_ normal vector between lines of rotation for joints 2 and 3

W wrist of robot arm

Xi axis directed along common normal between Zi_I and Zi

Xw'Yw'Zw world coordinate axes

Yi axis directed to complete right-hand axis system with Xi and Zi

Zi axis of positive rotation of joint i + I

ai angle between Zi_I and Zi, measured positive about Xi

8i constant bias angle, which yields joint angle 8' when summed with joint
angle 8. 11
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+ + +

@A,@B,@C joint angle corresponding to measurement vectors A, B, and C,
respectively

@i joint angle with initial value (0°) corresponding to initial position of
robot arm

8_ joint angle between Xi_I and Xi, measured positively about Zi_Il

A8 incremental positive change in @il

_. real variable in vector line equation for joint il

Pi radius of circular trajectory of point on robot arm about line of rotation
of joint i

+

_i,ni,_i components of D. with respect to coordinate system i - 1 whenl

0i = 0o

Mathematical notations:

• dot or scalar product

x cross or vector product

T superscript to indicate transpose

I I length of a vector or absolute value

ANALYSIS

The regular Denavit-Hartenberg parameters are first described and then the dif-
ficulties encountered with their use in practical robotic applications are discussed.
The basic set of parameters is then modified such that the criticism is no longer
valid. Next, an algebraic approach, adapted from reference 4, is extended to extract
the modified set of parameters. Parameters are then extracted for near-parallel
rotational axes in a simulated robot arm.

Denavit-Hartenberg Parameters

+

In figure 1, ai (component of ai along Xi), ri (component of Hi along
Zi-1)' ei' and 8! referred to as the Denavit-Hartenberg parameters, completelyl
characterize the relative location of successive joint axis systems.

Joint axis systems.- Figure 1 illustrates the axis systems associated with
joints i and i + I. By convention, joint i is associated with the coordinate
system i - I. Hence, joint i corresponds to the axis system with origin at Oi_I,
whereas joint i + 1 corresponds to the adjoining axis system with origin 0i. By
definition, the axis of rotation for joint i always lies along the associated

+ and
Zi_I. The vector ai, directed .toward Zi, is the normal vector between Zi_I
Zi_ The intersection point of ai with Zi locates.the origin 0i. The axis Xi
orlginates from Oi in the same direction as ai. In the event that Zi_I and+

Zi intersect (fig. l(b)), ai is the zero vector, and Xi is then directed from
this intersection in the direction of the cross product obtained by multiplying a

.

unit vector along Zi_1 by a unit vector along Zi. The vector ri is from the
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origin Oi_I to the intersection of a+i with Zi_I (fig. 1(a)); for intersecting.

lines of rotation, ri is a vector along Zi_1 from Oi_I to Oi (fig. 1(b)).

The angle ei is the angle between a line parallel to Zi_I through the origin Oi
and Zi, being measured positive about Xi (fig. 1). Finally, the joint angle 8!1
is the angle between Xi_I and a line parallel to Xi through Oi_ I and is mea-
sured positive about Zi_I (fig. I). For clarity, the axes Yi and Yi-1' which
simply complete right-hand axis systems, are omitted.

Relationship between joint angles @i and 8[.- In general, the joint angle 8!l
is not equal to the joint angle 8i, which is referenced to the initial position of
the robot arm (e.g., the position of the robot arm in fig. 2). Corresponding values
of 8i and 8_ are assumed to be related by the linear equationl

8'._= o._.+ 8i (I)

where 8i is a constant bias, reflecting an initial offset in 8_, because 8! and

8..iare generally measured from different starting positions. Th_ joint angleI 8i
zs measurable prior to establishing the joint axis systems, but @_ is not yet
measurable. 1

Basic coordinate transformation.- The relative joint geometry dictates the basic
transformation equations between adjacent joints. The coordinates of an arbitrary
point Q(x,y,z) with respect to the coordinate system i can be transformed to co-
ordinates of Q with respect to the coordinate system i - I by using the relation

[i]= Ai
i-I (2)

I i-I i

with

[ i 1
i Ri_I th.1!

= (3)
Ai-1 0 0 0 ! I

I

where

cos 8_ -cos ei sin 81 sin ei sin 81

1 1 1

Rii-1= isin 8i' cos _i cos 8'i -sin ei cos 81_I (4)L0 sin ei cos ei
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is the rotational transformation matrix that relates coordinate system i to i - I
with respect to orientation, and where

ai cos 811

hi = ai sin 8 (5)

ri

is the location of Oi from Oi_I in coordinate system i - I. As can be seen, thel

elements in the basic transformation matrix Ai_ 1 are expressed in terms of the
Denavit-Hartenberg parameters.

Criticism of Denavit-Hartenberg Parameters

A criticism of the Denavit-Hartenberg parameters is that l_il . _ as _. . 0°.l
(See fig. 1(b).) Indeed, this criticism is justified in that this behavior causes:

(I) Sensitivity of the parameter ri to errors in misalignment from a parallel con-
dition (ei = 0°); (2) Ill-conditioned transformation matrices (ri terms and matrix
products approach infinity as ei . 0°); and (3) Excessive displacement of the axis
system from the robot arm. The intent in this paper is to eliminate these weaknesses
by modifying the Denavit-Hartenberg parameters.

Modified Denavit-Hartenberg Parameters

In this paper, the regular Denavit-Hartenberg parameters are modified by only
insisting that a transverse vector between successive joint rotational axes be normal
to one of the axes instead of to both axes. This simple modification leads to a more
favorable location of successive joint axis systems.

As with the regular Denavit-Hartenberg parameters, let Zi be the axis of rota-
tion for joint i + 1, let Xi point in a direction that is normal to both Zi_1
and Zi, and let Yi complete the right-hand coordinate system. The angle between
Zi_1 and Zi is ei' measured positive for rotation about Xi. The difference
between the regular and modified parameters is in how Oi is located from Oi_1.

.

In figure 3, _i and ui+1 are unit vectors along _he lines of rotation for
joints i and i + I, respectively. A_so in figure 3, Ci+I (determined later) is
a vector from Ow to a point o_ Zi; Ri_1 and Ri locate Oi_I and Oi from
Ow, respectively. The vector Di is from a point on Zi_I to a point on Zi. The
origin Oi is removed from Oi_I by

. . .
hi = riui + Di (6)



where

. . . .

Di = Ri - Ri_I - riui (7)

and where ri is the coordinate of Oi along Zi_1.
+

When used in equation (3), hi is expressed in the coordin&te system i - 1.
When @i 0°f

i = qi (8)

_i + ri/

+ .

where (using Di and ei_1 for the condition 8i = 0°)

+ +

_i = Di " ei-1 (9)

.

Hi = Di I+ +• ui x ei_I) (10)

and

_i = Di " ui (11)

+ +

denote the projections of Di along Xi_l, Yi-1' and Zi_1, respectively, and ei_I
is a unit vector along Xi_I. The parameters _i' Hi' _i' and ri now take the
place of the regular Denavit-Hartenberg parameters ai and ri. As joint i
rotates, the location of 0i from Oi_I changes with @i as

icesn>i = sin Oi + qi cos 8 (12)

_i + ri

which is used in equation (3). Equation (12) reduces to equation (5) if _i = ai'
qi = _i = 0, and 8i = 8[.1
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Transverse vector normal to both Zi and Zi_ 1 for regular Denavit-Hartenberg
+

parameters.- When constrained to be normal to both Zi_ 1 and Zi, Di is located

from QI to Q2 in figure 3. Then, ri becomes the location of the point QI+

along Zi_ I • The direction of D i is along Xi, and its component is a i. Since+

Xi is simply Xi_ I rotated by 8! about Zi_1, Di with components in coordinate1
system i - I is

ai cos @/

Di = ai sin 8 (13)

0

where 8_ is 8. measured from an initial zero position where Xi_1 and Xi are+

parallel% Then,lfrom equation (6), hi is the same as equation (5) for the regular
Denavit-Hartenberg parameters.

+

The problem with constraining Di to be normal to both Zi_I and Zi is that
ri can shift 0i far away from its associated joi_t on the robot arm. Conse-
quently, two alternate constraints are imposed on Di in this paper. They are+ .

(I) Only constraining Di to be normal to Zi_I and (2) Only constraining Di to
be normal to Zi.

.

Transverse vector normal to Zi_l.- The transverse vector Di is given by
equation (7), with

. . .

Ri = Ci+I + li+1 ui+I (14)

+

where Ci+I (discussed subsequently_ is a point on Zi. The value of Ii+1, which
simply moves the terminal point of Ri along Zi, is chosen to satisfy the
constraint

. .

Di • ui = 0 (15)

+

That is, Di is normal to Zi_I. Equations (7), (14), and (15) show that

< ii .  i.i).+ r.u. - • u.
i i l (16)li+I = + +
ui+I • u.1

Equations (9) to (12) then yield hi. Since Di is normal to Zi_1, _i = 0. The
parameter ri is now arbitrary and is chosen to shift 0i to a favorable location.



+

Transverse vector normal to Zi.- The transverse vector Di is given by equa-
+

tion (7), with Ri given by equation (14), where _i+I is chosen to satisfy the
constraint

. .

Di • ui+1 = 0 (17)

.

That is, Di is normal to Zi. Equations (7), (14), and (17) yield

. + .

li+1 [Ri-1 + riui Ci+I) += - • ui+I (18)

+

Equations (9) to (12) then yield hi, and ri is a free parameter that is chosen to
shift Oi to a favorable location.

Algebraic Method To Extract Modified Denavit-Hartenberg Parameters

Measurement data needed to extract the relative joint parameters is generated by
individually varying the joint angles in the robot arm and measuring the location of
a point on the robot hand or other extension. (See ref. 4.) Each joint angle is
measured relative to a selected zero position; for example, see the position of the
robot arm in figure 2.

Any point on the robot arm (except a point on the line of rotation) generates a

circular trajectory as the joint angle 8i is varied, and the location of a point on
the robot arm is measured relative to a world reference axis system. As subsequently
shown, three locations of the point on the circular trajectory, along with the corre-

sponding values of @i' are enough to determine the unit vector _i along the line.

of rotation for joint i and the vector Ci from the world axis system to the cen-
ter of the circular trajectory of the point. With _i and C+i for successive
joints, the relative joint parameters are computed. First, joint i is rotated to.

obtain _i and Ci. Then, with 8i = 0°, joint i + I is rotated to obtain _i+I.

and Ci+I. The process is initiated by assuming a fictitious joint with a rotational
axis along Zw.

Circular trajectory center.- Let _, {, and _ denote three positions of a
point on a robot arm as the point moves in a circular trajectory about the line of

rotation for joint i (fig. 4) and let 8A, 8B, and 8c be the corresponding val-' +

ues of 8i. The objective is to compute the vector Ci from the world axis system
to the center of the circular trajectory. Let the radius of the circle be Pi' then

(_ + + 2- ci) " %) = (19)

(B- C'+i) " (B- _i) = p2 (20)



(_ + + 2-ci)"(J-ci]=_i (21)

That is, all points are located at a distance Pi from the center of the circle.
Equations (19) to (21) constitute three equations in four unknowns (Pi and the three.

components of Ci). A fourth equation (mistakenly neglected in ref. 4) results from+

the constraint that the tip of Ci lies in the plane of the data points; that is,
one of the equations

- • N = 0 (22)

(_i {] .- • N = 0 (23)

(%- ° N = 0 (24)

where

+N= (_- _) x (_- _) (25)

is a normal vector to the circular trajectory plane.

Eliminating Pi from equations (19) and (20) by using equation (21) results in
the following equations:

(_ . (_ . (_ . (_ .- Ci] • - C.l) : - C.I) ° - C.I) (26)

(_ . . .c.)•(gc.) (_ )•(__.) (27)1 1 1 1

Equations (22), (26), and (27) are three linear equations in three unknowns (the com-
. .

ponents of Ci). An equivalent matrix equation for computing the components of Ci
is

N(1) N(2) N(3) /Ci(1) N • A. .

= °C- A
- - - 2) y(C _) (28)C(I) A(1) C(2) A(2) C(3) A(3) Ci( 1 +

\1+ + + /
• C- B

C(1) - B(1) C(2) - B(2) C(3) - B(3 \Ci(3) _(C {)

+ 2
Once Ci is known, any one of equations (19) to (21) yields Pi"
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+

Unit vector ui.- Figure 5 shows the circular trajectory of a point on the robot
+ +

arm and two position vectors A and B, along with the incremental joint angle

A0i = 8B - 8A (29)

between these position vectors. A unit vector normal to the plane of the circular

trajectory a_d passing through point Ci (whose coordinates are the components of
the vector Ci) is

- C x - C.
+ 1 1

ui = 2 (30)
Pi sin 48.1

With 0° < AOi < #' _i in equation (30) is in the same direction as the rotational+

vector of joint i. An average ui should be used to reduce the effects of measure-
ment errors.

Axis Xi.- The direction of Xi is defined by a unit vector eS (fig. 3) that
is normal to both the line of rotation for joint i and the line of rotation for
joint i + I. Such a unit vector is given by

+ + + )/I+ + Iei I x ui x (31)= ui ui+I ui+1

+

if U+ix ui+I # 0, or by

+ +/i.iei = Di Di (32)

+ .

if ui+I x ui = 0.. The vector.cross product in equation (31) gives a vector which is
normal to both ui and ui+1 if the lines of rotation for joints i and i + I
are not parallel. If the rotational lines are parallel, equation (32) is used.

.

Alternatively, ei is any nonzero solution to the simultaneous linear
homogeneous equations

. .

ui ° ei = 0 (33)

and

. .

ui+I • ei = 0 (34)

whether or not ui and ui+I are parallel.
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Axes Zi and Yi'- By convention, Zi points in the direction of positive+

rotation for joint i + 1, that is, in the direction of ui+I. Yi completes a
right-hand axis system with Xi and Zi.

Equation for tan O[.- The equation for tan O_ isl

+ + ) .
tan O! = ei-1 x ei " ui (35). +

l ei_1 . ei

The numerator in equation (35) shows the cross product of a vector _i along Xi_I

and a vector _i along Xi. Forming the dot product of this result an_ a unit+

vector ui along Zi_I produces sin O_ with the correct sign for a positive rota-
+ l

tion about Zi_I (or equivalently ui) The denominator is equivalent to cos Ol.
Hence the fraction represents tan 0_ where 0° _ 0! _ 2n. The joint angle 0_I in

' l' 1 . l
equation (35) corresponds to the fixed position of joint i after ui has been+

determined and when joint i + I is being varied to obtain ui+I. The bias 8i in
equation (I) is just the calculated value of O_ when Oi = 0°.1

Tan _i with Xi in direction of _i'- The appropriate equation is

[+ + ) +]/+ +tan _i = (ui x ui+I • ei ui • ui+1

The right-hand side of this equation shows the cross product of a vector along Zi_I
(or . +ui) and a vector along Zi (or u1+1), and then the dot product of this result.

and a unit vector along Xi (or ei) glves sin ei" The dot product in the denomi-
nator yields cos ei.

.

Parameters _i' Hi' _i' and ri.- At Oi = 0°, the components of Di in coor-
dinate system i - 1 are _., n., and _. in equations (9) to (11), respectively,l 1

and ri .is a free parameter chosen•for favorable.location of 0_ The transverse
vector Di is computed in equation (7) with Ri from equation 4), where li+I. .

depends on how Di is constrained. If Di is constrained normal to Zi_1, equa-.

tion (16) is used for ii+1, but if Di is constrained normal to Zi_1, equa-
tion (18) is used. In use, the constant parameters _i' _'' _°, and r. appear in. 1 1 1

equation (12) for hi, _hich only varies with the joint angle Oi (or O_x- 8.,x
eq. (I)). The vector hi is then used in equation (3).

EXAMPL_

For the robot arm depicted in figure 2, this example focuses on determining the
relative location of the elbow-joint axis system with respect to the shoulder-joint

axis system. A transverse vector between the rotational axis Z2 of the elbow joint
and the rotational axis Z1 of the shoulder joint is used in locating the elbow-
joint axis system.

11



Transverse-Vector Constraints

Three ways to locate the axis system result from three separate constraints on
the transverse vector, which is constrained to be either (I) Normal to both rota-

tional axes ZI and Z2, (2) Normal to the elbow-joint rotational axis Z2, or
(3) Normal to the shoulder-joint rotational axis Z1. The first constraint leads to
the well-known Denavit-Hartenberg parameters.

Transverse vector normal to both ZI and Z_.- The rotational axes of the

shoulder and elbow joints in figure 2 are parallel. The Denavit-Hartenberg parame-

ters are e2 = 0°' r2 = SN along Z1, a2 = ES in the X2 direction, which is
normal to both Z1 and Z2, and 8_ = 02 + 82, where 82 = 90° is the angle be-
tween XI and X2. These parameters locate the elbow-joint axis system as shown at
the point E. Such is not the case, however, when the axes are not parallel. For

example, suppose Z2 is rotated counterclockwise by 0.1° about Y2" The Denavit-
Hartenberg parameters then become e2 = 0"I° (angle between ZI and Z2),
r2 = -9734 in. (intersection of Z2 with Z1 along Zl), and a2 = 0 (since Z2
intersects Zl). Thus, the elbow-joint axis system is moved away (by r2) from the
robot arm by about 811 ft. This does not happen with the modified parameters intro-
duced in this paper. Indeed, the elbow-joint axis system remains located at the
desired point E.

Transverse vector normal to ZI.- When the transverse vector is normal to ZI

(fig. 6(a)), the point E is located by distances _2 along Xl, q2 along YI,
and r2 + _2 along Z1, where r2 is now the desired location of the elbow-joint
axis system. For this example, in which e2 = 0.1°, these parameters are as follows:

_2 = 0, q2 = ES = 17 in., _2 = 0 (by the constraint on the transverse vector, _2
is always zero and need not be determined), and r2 = SN = 6 in. (by choice).

Transverse vector normal to Z2.- When the transverse vector is normal to Z2
(fig. 6(b)), the parameters that locate the elbow-joint axis system are as follows:

_2 = 0, q2 = ES = 17 in., _2 = -ES/tan e2 = -0.030, and r2 = SN -_2 = 6.060 in.
Hence, r2 + _2 = SN = 6 in.

Simulated Measurements

In figure 7, assume that the waist- and shoulder-joint axis systems have been
determined. Now the problem is to determine the elbow-joint axis system by using
simulated locations of a point on the robot arm for three distinct elbow-joint
angles. Specifically, locations of the point W are assumed to be measured with
respect to the waist-joint axis system (which, in this example, coincides with the

world reference axis system) for three distinct values of 83. The simulated mea-
surements are based on the following dimensions (in inches): NO = 26, SN = 6, and
ES = WE = 17. Examples of simulated measurements are as follows:

I i.000h
@A = 0, _ = .000)

I
60.000/

12



. 111"021_@B = 450' B = .009}
\55.021/

17.000

ec = 90 °, C = 6.030

43.000/

These measurements give the location of point W to the nearest one-thousandth of an

inch as 83 takes on the values of 8A, @B' and ec. In computing the simulated

vector positions _, B, and _ (see appendix), the fact that e2 = 0"I° is assumed
to be unknown. The following vectors are known:

R I =

NO

. .

C2 = R I

These vectors are expressed in the waist (or world) axis system. The vector from 0
+ .

to N is R1; C 2 is the vector from the center of the circular trajectory of point
W as the shoulder joint is rotated; e I is a unit vector normal to Z0 and ZI+

that defines Xl; and u 2 is a unit vector in the direction of rotation of joint 2
(shoulder) in base coordinates.

13



Also, based on the simulated measurement data,

/0.o00
C3 =_ 6.030)

\43.000!

and

0"000

+

where C2 is a vector to the center of the circular trajectory from the waist coor-+

dinate system and u 3 is a unit vector along Z2 (the line of rotation of the elbow
joint) in the waist coordinate system.

Location of Origin of Elbow-Joint Axis System
by Denavit-Hartenberg Parameters

For the regular Denavit-Hartenberg parameters, the transverse vector, which is.

D2 in the notation of the text, is normal to both of the lines of rotation of the
elbow+and shoulder_joints. Specifically (from ref. 4, pages 9 to 11, with i = 2
and D2 = v'*),2

. . +

D2 = £3- £2 (37)

where

+ +

£2 = C3 + 13_3 (38)

and

+ + .

£I = C2 + 12u2 (39)

with

I_'3 _-'2) [+ I+ + )+ ]- o u2 - u3 • u 2 u 3
t 1 = (40)+ + 2

- (u3 • U2)
14



+ . . . .In2Ic3 c21Cu3 lu3u2= (41)
12 + + 2

I - (u3 • u 2 )

+ . + .

That is, 11 and 12 are such that D2 • u2 = 0 and D2 • u3 = 0.

The regular Denavit-Hartenberg parameter r2 is the component of

+ + +
= ~o2 _ RI (42)r2

along ZI; that is,

+ + (43)
r2 = r2 • u2

The regular Denavit-Hartenberg parameter a2 is the component of

+ + .

a2 = £3- £2 (44)

along X2, that is,

+ + (45)
a2 = a2 • eI

Based on the simulated measurement data, r2 = -9789.719 in. and

a2 = 0.298 in. The true values are r = -9734.273 in. and a2 = 0 in. Hence, the
calculated values of r2 and a2 are in absolute error by 55.446 in. and 0.298 in.,
respectively.

Different values of e2 are shown in the first column of table I, and the
Denavit-Hartenberg parameters r2 and a2 that locate the origin of the elbow-joint
axis system are shown in the second and third columns, respectively. Note that

a2 = 0 because the lines of rotation..°f the elbow.and shoulder joints intersect.
For measurements (components of A, B, and C) rounded off to the nearest ten-
thousandth, one-thousandth, and one-hundredth of an inch, table I shows the absolute

errors in the computed values of the parameters r2 and a2. As the elbow and
shoulder joints approach a parallel condition (a2 . 0°), two important observations
from table I are as follows: (I) The elbow-joint axis system is located far off the

robot arm (large value of r2), and (2) The error in the computed value of r2 is
excessively large, even for very accurate measurements.

15



Location of Origin of Elbow-Joint Axis System by Modified Parameters

In this example for the modified parameters, the transverse vector from the
elbow-joint axis of rotation to the shoulder-joint axis of rotation is normal to the

elbow-joint axis of rotation. By choice, r2 = SN = 6 in. in this example. The

true modified parameters are shown in table II for different values of e2 (angle
between rotational axes of the elbow and shoulder joints) to locate the elbow-joint
axis system at point E in figure 7. Errors in the calculated parameters using
measurement data rounded off to the nearest ten-thousandth, one-thousandth, and one-
hundredth of an inch are also shown. In addition to locating the elbow-joint axis
system at the desired point E in figure 7, the modified parameters can be accu-
rately calculated even as the lines of rotation of the elbow and shoulder joints
approach a parallel condition (e2 . 0°)"

CONCLUDING REMARKS

At present, the most popular way to describe the relative location of successive
joint axis systems in a robot arm is to use the Denavit-Hartenberg parameters. How-
ever, a recent justifiable criticism is that one of these parameters approaches infi-
nity when two successive joints have nearly parallel rotational axes. Geometrically,
this parameter removes the joint axis an excessive distance from the robot arm; com-
putationally, this large parameter leads to an ill-conditioned transformation matrix.
In this paper, a simple modification in the location of this axis system easily over-
comes this criticism. This modification results by insisting that a transverse vec-
tor between successive joint rotational axes be normal to one of the rotational axes
instead of to both axes. This simple modification leads to modified Denavit-

Hartenberg parameters that favorably locate successive joint axis systems.

An example is given with respect to the rotational axes of the elbow and shoul-
der joints in a robot arm. The regular and modified Denavit-Hartenberg parameters
(that locate the elbow-joint axis system relative to the shoulder-joint axis system)
are extracted by an algebraic method via simulated measurement data.

A point near the robot hand (off the line of rotation) generates a circular
trajectory as the elbow joint is rotated. Three position vectors to this point and
the corresponding three elbow joint angles (referenced to an initial position) are
simulated for the extraction process.

For small misalignments of the shoulder and elbow joints away from a parallel
condition (i.e., parallel rotational axes), the Denavit-Hartenberg parameters locate
the elbow-joint axis system far away from the robot arm; the modified parameters lo-
cate the axis system at the desired place on the robot arm. In addition, for a given
accuracy of the measurements used in the parameter-extraction process, the extracted
values for the Denavit-Hartenberg parameters yielded considerably larger errors than
did the extracted values for the modified parameters. It appears that the modified
parameters provide a more natural location of successive joint axis systems and are
useful in the industrial calibration of robot arms.

NASA Langley Research Center
Hampton, VA 23665-5225
March 13, 1986
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APPENDIX

EQUATIONS FOR SIMULATED MEASUREMENTS

By Euler's theorem (re,. 5), a vector { rotated by an angle @ about a line
(or unit vector _) becomes

{' = cos 8 + + _ • _(1 - cos 8)_ - ({ x _) sin 8 (AI)

This equation is applied to obtain an expression for the location of point W on the
robot arm in figure AI with respect to the waist axis system as the elbow joint 83
is rotated for a specified value of e2"

For the position of the robot arm in figure A1, and with respect to the X, Y,
and Z axes, let { = (0, WE, 0)T be a vector from E to W, and let
. +

= u3 = (sin a2, 0, cos _2)T be a vector along the rotational axis of the elbow
joint. Moreover, let 8 = 83 be the elbow-joint angle• Then {' gives the new
location of W as a function of 83 and e2" The location of W with respect to
the waist axis system is then simply

W= SN + r_ (A2)

0 + ES/ \r_/

where r_, r_, and r_ are the components of {' (or coordinates of W) along the
X, Y, and Z axes.

+ + + +

Simulated measurement vectors A, B, and C are the same as W, except 83 is

replaced by 8A, @B' and @C' respectively. For the example in the text of this
report, @A 0° 8B 45°, and 8C 90°8 = = •
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TABLE I.- ERRORS IN CALCULATED DENAVIT-HARTENBERG PARAMETERS THAT
LOCATE ORIGIN OF ELBOW-JOINT AXIS SYSTEM FOR ROBOT ARM

Simulated measurements to point on robot arm correspond]to elbow-joint angles of 0°, 45°, and 90° J

Simulated point Absolute error inTrue simulated value of -
measurements computed value of -
rounded off to

_2' deg r2, in. a2, in. nearest - r2, in. a2, in.

0.01 -97396.82 0.00 10-4 11.22 0.30
.01 -97396.82 .00 10-3 6410.25 1.83
.01 -97396.82 .00 10-2 97406.82 6.51

0.10 -9734.27 0.00 10-4 9.58 0.00
.10 -9734.27 .00 10-3 55.45 .30
.10 -9734.27 .00 10-2 808.07 1.82

1.00 -967.93 0.00 10-4 0.37 0.00
1.00 -967.93 .00 10-3 1.10 .00
1.00 -967.93 .00 10-2 4.46 .28

10.00 -90.41 0.00 10-4 0.00 0.00
10.00 -90.41 .00 10-3 .04 .01
10.00 -90.41 .00 10-2 .25 .03
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TABLE II.- ERRORS IN CALCULATED MODIFIED PARAMETERS THAT LOCATE ORIGIN

OF ELBOW-JOINT AXIS SYSTEM FOR ROBOT ARM WHEN TRANSVERSE VECTOR
IS CONSTRAINED NORMAL TO ELBOW-JOINT ROTATIONAL AXIS

Simulated measurements to point on robot arm correspond]to elbow-joint angles of 0°, 45°, and 90° J

Simulated point Absolute error in
True simulated value of - measurements computed value of -

rounded off to

a2, deg _2' in. n2, in. r2, in. nearest - _2' in. _2' in.

0.01 0.00 17.00 6.00 10-4 0.0005 0.0005
.01 .00 17.00 6.00 10-3 .0006 .0006
.01 .00 17.00 6.00 10-2 .0028 .0028

0.10 0.00 17.00 6.00 10-4 0.0001 0.0001
.10 .00 17.00 6.00 10-3 .0006 .0006
.10 .00 17.00 6.00 10-2 .0028 .0028

1.00 0.00 17.00 6.00 10-4 0.0002 0.0002
1.00 .00 17.00 6.00 10-3 .0003 .0003
1.00 .00 17.00 6.00 10-2 .0041 .0067

10.00 0.00 17.00 6.00 10-4 0.0001 0.0001

10.00 .00 17.00 6.00 10-3 .0004 .0006

10.00 .00 17.00 6.00 10-2 .0022 .0035
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