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FORMATION OF ASYMMETRIC SEPARATED FLOW PAST SLENDER BODIES OF
REVOLUTION AT LARGE ANGLES OF ATTACK

M. G. Goman, A. N. Khrabrov

Central Institute of Aerohydrodynamics

.The problem under investigation is about the stationary /1%

positions of pairs of vortices of unequal intensity within
the flow, behind a cylinder, modeling the asymmetric separa-
tion flow around a slender body at high angles of attack.

The calculation is being carried out for possible non-
symmetric stationary positions of two vortices and their
stability is defined in the presence of small perturbations.
The bifurcation flow fields are being analyzed in the course
of change of the vortex intensity. The possible applications
of the obtained results, pertaining to the calculations of the
separation flows around a slender body, are being discussed.

Of great interest in recent times is the appearance of con-
siderable lateral forces and moments exerted on slender bodies -
the missiles, elongated fuselage within the aircraft configuration,
at high angles of attack and zero slip angle. The experimental data
which has been reviewed in the studies [1, 2] indicate: =hat the
appearance of non-symmetric effect at the zero slip angle is associated
with the development within a specific range of high angles of attack,
of a stationary, asymmetric vortex structure. At small angles of
attack, as the flow separates at the tip of a slender body, a sym-
metric pair of vortex flows is formed, which, as the angle of attack
increases, becomes non-symmetric. The appearance of asymmetric
vortex structure commences at the angles of attack which exceed the
double halfanglé of the tip for each particular body [3].

Oﬁéj@;familiar with a model [4] which explains the appearance of

the lateral load via'the development of several vortices, the position

*Numbers in the margin indicate pagination in the foreign text.




of which in/ space is analogous to the pulse Karmann trail, swept
along the longitudinal axis of the body. The reasons however remain
unclear as to the cause of the appearance of asymmetry, for example,

on the tip of the fuselage, where we have, during the separation flow,
only two asymmetric vortices. There are several points of view in this
regard. One of them assumes that the cause of the asymmetry is the non-
symmetric flow separation which actually results in the development of
non-symmetric vortices. According to another point of view, it is
assumed that with the increase of the angle of attack, with the con-
current increase in the intensity of the symmetric pair of vortices,

at some moment in time this vortex structure becomes unstable, with

the development of non-symmetric structure.

The results of the study [5] favor the latter point of view
in which the authors, by assigning the a priori symmetric lines of /2
separation at the cone, have obtained the non-symmetric solutions

for a set of modeled vortices.

In a number of cases, it is permissible to utilize the simplest
flow diagram which describes a planar separation flow of an ideal
noncompressible liquid around the cylinder. The separation zone in
the wake of the cylinder is being modeled by two point vortices with
different directional circulation. The possibility of the existence
of such established separation flow, utilizing such approach is
associated with the cases of stationary position of the vortices.
Within the symmetric framework, when the vortices are equal in
magnitude but opposite in the directional circulation, such problem
was analytically solved in the study [6]. The details of this solution
can be found in [7]. 1In the study [8] this model, on the assumption
that the method of planar cross—section is valid, wasutilized forthe approxi-
mate calculation of the symmetric separation flow around a slender

body at high angles of attack.

Let us consider this approach inits application to the flow around a
cylinder without assuming that the position of the vortices is symmetric and



that the magnitudes of directional circulation are equivalent.

Let us assume that in the complex plane of variable z=x+iy, the

position of vortices is assigned by Zy and z,

flow potential may be obtained by takihg into

with the reverse circulation at the l/z*l and

with respect to the cylinder, the requirement

values. The complex
account the vortices
l/z§ points, reflected

which is necessary to

satisfy the no-flow conditions at the cylinder:

{

W(z)::Uw(z—{— —;—) +
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where z¥*, 23 are the complex-conjugated quantities with respect
to zZyr 2, and Pl and P2 are the circulations of vortices. To
calculate the speed of vortex movement, one should keep in mind
that the vortex exerts no effect on itself and therefore, the
complex-conjugated speed of motion of j vortex (j=1, 2) will be

expressed as follows:

dz T
J 1 _5/_“{____ . ) 1
= lim ( - i z__zj). (2)

By introducing the dimensionless coordinates of vortices

_ . Uy : S -
zj—zj/R, the time 1= = t and circulatory movement Y= 2nU_R’

where R is the cylinder radius and U_ is the speed of incoming
flow, we will obtain the relationships which define the vortices

speed of motion as a function of their position:
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The differential equations (3) describe the position of
vortices in time. This autonomous dynamic system is a Hamiltonian
one, and the vortex coordinates along the Ox and Oy axes may be

transformed into the canonically conjugated variables

dx; 1 oH dyj 1 oH
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where the Hamiltonian system of equations (4)
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defines the magnitude of kinetic energy, associted with the
relative position of the vortices which is being preserved in the

course of their movement.

The stationary positions of the vortices correspond to the
specific points within the dynamic system (4) for which
dx4
dt dr
point (5): VH=0. As one can see, the problem of finding the

=0, j=1, 2, and coincide with the critical Hamiltonian

stationary positions of the vortices is reduced to the solution
of a system of nonlinear algebraic equations. Within the non-
symmetric framework, it is not possible to obtain the analytical
solution and therefore the calculation of possible stationary

position of the vortices is accomplished numerically.

The effective method of calculating a system of nonlinear
equations which are parameter-dependent is the method of con-

tinuous extension of the solution.



In the course of a continuous change of one of the parameters,
the solution also changes, forming within the expanded space of the
phase variables and the parameter a continuous trajectory. The cal-
culation of such a trajectory in selecting its length as an indepen-
dent variable may be realized by integrating the corresponding system
of differential equations, in the presence of starting conditions
X-X

u=u, which are the solution of the system of equations

0’ 0
E(&O, uo):O, which we are considering, where §€Bn, EﬁRn, ueRr.
The general concept of using such calculation method can be found

in the study [10].

It is also possible to extend the continuous calculation through
the points on the trajectory, limiting with respect to the parameter
and corresponding to the bifurcation values of the parameter in which
one has the sign inversion within the Jacobian system of equations
de

Ien

oF ) . .
I §§|] and the directional change of the parameter. This makes

it possible to handle the calculations which are ambiguous and
obtain the solutions which are continuously interrelated within the

expanded space of the variables and the parameter in guestion.

In calculating the stationary positions of the vortices, we
have considered the transformed, dimensionless parameters I' and H
which will be, according to the mean values of the dimensionless
circulatory vortices and the relative magnitude of their asymmetry,

as follows: T==%r0n—~19’ andu U B I The inverse
11_",'_’ -

relationships are also valid y,=1(1+7%), {,=—71(—2»).

We are considering here the following regions of change in the
selected parameters ye (0, =), HE(-1l, 1). The equations (3), and

also the Hamiltonian (5) will not change when we replace H by -H if

we replace the il=x2, §l=—y2, i2=xl, §2=—yl, which reflect the /4
coordinate position with respect to the Ox axis. Therefore, for

the solution in question, it would suffice to handle only the

positive H parameter.



Figure 1 shows the examples for calculation of lines for the
stationary position of vortices, as one changes the y and H para-
meters. As the y parameter changes and E=0, the stationary positions
of the vortices move along the dashed lines which correspond to the
symmetric solution. As y»0, the vortices get closer to the cylinder

and as y+», they move towards infinity, along the asymptotes
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Figure 1.
Key: 1. Symmetric solutions H=0; 2. Bifurcational solutions
= c e . Fi i . -3
H Hblf’ 3 irst group of solutions for 0<H<Hblf,
4. Second group of solutions 0<H<Hbif; 5. Bifurcational solution
H=Hpie

The change of H parameter for a fixed value of y=1 results in
the asymmetric displacement of vortices with respect to Ox axis.
There is a limiting - bifurcational value of H=H, .. parameter, after
which, during the continuous extension of the solutions, the H value
begins to decrease. This branch corresponds to the second solutions,

existing when O<H<H As H decreases, the stationary positions of

bif”’
the vortices move toward infinity, being displaced downward along the

asymptote y=- % H.



In the limiting case, when H+0, the vortices approach the
stationary position, with the magnitude being the same and the
directional circulation being opposite within a uniform flow, since
the effect of the cylinder, at some distance from it, is significantly
less pronounced.

As the H values approach the stationary position of the

H, .
bif’
vortices pair gets closer and closer (1 and 1' for H=0.25H

bif’
: ' f = = - ] i
2 and 2' for H 0’75Hbif) and at H Hy ¢ they will merge. Figure 1
shows the positional lines for a pair of vortices when H =H and

bif

different values of y parameter. When H>H the stationary

bif’
position of vortices in the cylinder wake is absent. The magnitude
of Hbif quantity depends on y parameter. Keeping in mind the

possibility of having the non-symmetric solutions in which <H< 0,

~H, .
within the plane of dimensionless circulation of vortices Yy :;g Yor /5
there is a region of parameters for which there will be two different
stationary positions of the vortices in the cylinder wake and there
also will be a number of parameters in the presence of which there

are no stationary positions of vortices in the cylinder wake (Figure
2). The equations (3) will also have some other and special points,
when the vortices may be on Oy axis, either on the same side of the
cylinder or on both sides, and will also be found within the flow,

in front of the cylinder. These solutions are not being considered
since it is known a priori that they cannot be utilized for the

description of separation flow.

It is of interest to analyze the stability of motion of the
vortices. As has been shown in [6] the symmetric solutions are
stable if we are to consider only the symmetric perturbations and
are unstable in the presence of small, non-symmetric perturbations,

with respect to the stationary position of the vortices.

The analysis of the perturbed motion of the vortices and its
stability with respect to the non-symmetric stationary positions
were conducted by numerical calculations of the roots of the

characteristic equation within the set of linearized equations of



motion (4) in the vicinity of such specific points. The calculation
of Jacobian nonlinear edquations (4) in such special points, which

is the matrix of equations for a linear approximation, is necessary
for the development of continuous method in calculating the stationary
positions. Therefore, in parallel with the calculation of stationary
solutions, it was also necessary to calculate the Jacobi numbers
themselves. Since the dynamic system (4) is a Hamiltonian one, the
range of these numbers is symmetric with respect to the real and
imaginary axes. This property made it possible to control the

accuracy in obtaining these numbers, in the course of calculations.

The eigennumbers for -
symmetric solutions are
on an imaginary and real

'ﬁ—— 1. pewsenisn [5] yd 3 axis, and the absolute

-y
e

5 values of these numbers

| gtz pewenus depends on y parameter

(Figure 3, a). A pair of

b purely imaginary numbers

- : Al’2=iw correspond to the
~/// symmetric shape of the

| | I i vortices perturbations,

not increasing in time,
and the presence of
positive and real number

Figure 2.
=+f speaks of unstable

Key: 1. Solution 6 ; 2. Two solutions; 13,4
3. No solutions motions in the presence of
non-symmetric perturbations.
As the circulatory motion increases, the spectrum is preserved
qualitatively, approaching the beginning of the coordinates (Figure

3, aj.

In the case of the first group of non-symmetric solutions, when

O<H<H g

spectrum of symmetric solutions. As the H parameter increases, the

the spectrum of these eigennumbers is analogous to the



eigennumbers move along the imaginary and real axes toward the

beginning of the coordinates and at H=H - we will have the

bif
quadruple zero root. Figure 3, b, shows the behavior of the /6

eigennumber as a function of H at y=2.

The other group of non-symmetric solutions qualitatively has
another spectrum, which can be seen in Figure 3, b. The equilibrium
positions also are not stable, but the instability nature is of
oscillatory character and this is due to the presence of complex-
conjugated pair of eigennumbers Al,2=gtim, part of which is positive
and real. As the H parameter increases, the eigennumbers first
increase and then begin to decrease down to zero at H=Hbif (see

Figure 3, b).
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Key: 1. Non-symmetric solution; 2. lst group of solutions;
3. 2nd group of solutions



The stability considerations of the stationary separation
flow within the framework of such simple planar system, unquestionably,
cannot be transposed on the tridimensional separation flows, even
within the range of the theory of a slender body. Nonetheless, this
general concept as to the stability may turn out to be useful in

considering more complex flow systems.

The different depiction of the flow fields will correspond to
the stationary conditions in the equations (4). To comprehend the
physical meaning of the obtained stationary solutions, it is necessary
to have the general idea about them. Therefore, it was necessary to
calculate and construct the most significant flow lines which define
the general nature of the wake. Among these lines, one should first
of all mention the flow lines along which the flow braking to zero /7
velocity takes place. Such points may be found on the cylinder surface
as well as within the free flow. Their number and position define

the qualitative structure of the flow field.

The magnitude of the flow function which is an imaginary part
of the complex potential W(z) (1): v(x, y)=Im W(z) remains constant
along the flow lines. In constructing the special flow lines, the
values of the flow function at the point of the flow braking was
determined, after which it was possible to construct the level of
the lines along which the flow function will be computed. This made
it possible to construct the flow lines which form within the flow
field the saddle points.

We shall consider different values of y and H parameters, in the
presence of which the stationary flow around the object is possible. /8
The constructed flow fields are shown in Figure 4. The upper series
shows the cases of symmetric cylinder wake flow and a pair of vortices
in the wake for different circulatory vy (H=0). The cases which are
considered topologically are analogous and are characterized by the
presence of two centers at the points of the positioning of vortices,

for half-saddles A, B, C, D on the cylinder and one saddle E within

10



the flow wake. 1In the symmetric case, all saddle points are at the

same level of the flow function y=0.

As the symmetry appears H>0, the E point is elevated to a
certain level ¢=¢0>0, and as a result of this, in the wake of the
flow, one will observe a flow gap which is shaded in the picture.
The C and D half-saddles begin to approach each other and as the

bifurcation state approaches H=H they will merge, forming one,

bif’
degenerated half-saddle F. When the asymmetry parameter H increases,
the E saddle first will be elevated, and the flow gap will expand.
In the course of further increase of H, the gap begins to decrease.

At the level of bifurcation H=H and small vy, the merging of C and

D points will take place when tﬁéflevel of the flow function at the
point E is still positive. For large y in the case of bifurcation
solution at the point E the negative flow function will be displaced
and the flow gap will be observed on the other side of the cylinder.
There is an intermediate value of y=y*:0.57, when the bifurcation
solution will have no flow gap: a zero flow line will pass through
the saddle E. 1In the case when y>y*, the disappearance of the flow
gap (the zero value of the flow function at the point E) occurs when

the value of H is close to H The picture of such wake flow for

bif"
such H is shown in ‘the column for y>y* among the first non-symmetric

solutions.

The second non-symmetric solutions are topologically different
from the first ones. They are characterized by the presence of two
points of G and E saddle type within the flow, and the flow lines
here are forming two isolated and closed regions, separated by the
flow gap. Let us note that the structural difference in the first
and second types of flows within the framework of non-symmetric
solutions is accompanied by different stability spectra, applicable

to these solutions.

Let us consider the flows with closed vortex regions, adjoining

the cylinder. 1In the case of small y parameter, there is only one

11
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Key: 1. Symmetric solution; 2. First non-symmetric solutions;

3. Bifurcation value; 4. Second non-symmetric solutions



symmetric solution. For the circulatory levels of y>y* - there are
three solutions without flow gaps: one symmetric and two non-
symmetric - for H>0 and H<0. It should be noted that the non-
symmetric solutions, in a certain sense, are less "stable," something
which is manifested in the lower positive real root (see Figure 3, b)

when compared to the symmetric solution.

The study [11] presents the experimental data in regard to the
flow field around the cylindrical body, with the ogive nose cone,
in the course of appearance of non-symmetric separation flow. The
non-symmetric position of vortices is associated with the separation
of the flow line which emerges from the saddle point, within the flow,
away from the body. 1In this case, it embraces one of the vortices
and is moved away along the flow gap. The flow fields observed in [11]

are similar to those which are considered in Figure 4.

If one is to assume that in a real wake flow, the viscous flow
effect will prevent the flow gaps, of all possible solutions, we
could select the flows with closed vortex regions. At the tip of
a slender body, where the circulatory motion of the vortices is
small, something which is being observed experimentally, we have a
symmetric vortex structure. As one moves further away from the nose,
the vortex circulatory activity increases, and at a certain distance,
the transition towards one of the non-symmetric solutions may become

possible.

The study [9] (page 102) which involved the slender rotational
bodies, shows the dimensionless intensity of vortices Tv/2wuV0R as /9
a function of the dimensionless parameter a(x—xo)/R which are
introduced for considerations of similarity (Fv is the circulation
of vortices, o is the angle of attack, VO is the speed of incoming
flow, R is the radius of rotating body, x is the coordinate along

the body, x, is the coordinate of the point at which the vortex

0
commences to move from the tip of the body).

13



Within the framework of the flow diagrams under consideration
and utilizing the method of planar bodies, Uw=V0a. By assuming that
xOxO, and by replacing x/R by 1/e, where ¢ is the half-cone angle of
the nose for a given body, the relationships presented in [9] may be
represented as a linear dependence y=k%, where k=0.3 is a constant,

empirically determined from the curve.

If the body is such that along all its length the dimensionless
circulation of vortices y<y*, the appearance of asymmetric vortex
structure, utilizing these assumptions, is impossible. If however,
within a certain range of the angles of attack, the intensities of
vortices toward the end of the body become greater than y*, one may
be faced with asymmetry. This may take place when y==%%>y* or if

: *
the angles of attack a>t By substituting into this relationship

“IE .
the critical value of y£<parameter vy*¥.0.57 and the empirical value of
kx0.3, we will end up with the development of asymmetric vortex
structure at the tail end of the body, in the form of a>1.9¢.

This correlates with the experimental data, indicating that the
lateral loads will begin to appear when the angles of attack are

greater than the double half-cone angle of a given body.

14
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