
TDA Progress Report 42-85

N86-28279

January-March 1986

Maximum Likelihood Estimation of Signal-to-Noise Ratio

and Combiner Weight

S. Kalson and S. J. Dolinar

Communications Systems Research Section

.J ----\

An algorithm for estimating signal-to-noise ratio and combiner weight parameters for

a discrete time series is presented. The algorithm is based upon the joint maximum likeli-

hood estimate of the signal and noise power. The discrete-time series are the sufficient

statistics obtained after matched filtering of a biphase modulated signal in additive white

i gaussian noise, before maximum likelihood decoding is performed, t

I. Introduction and Problem Model

This article investigates maximum likelihood estimation of

signal-to-noise ratio and combiner weight parameters for a dis-

crete time series. The discrete time series are the sufficient

statistics obtained after matched filtering of a biphase modu-

lated signal (Ref. 1). In order to show the underlying assump-

tions and limitations of the estimation problem, we first

examine the communication system that gives rise to the

discrete time series.

-,//-;-,,ck --"0"G = (2)

We take as our model that given in Fig. 1. The channel

encoder maps the binary digital source encoder output {lk)

into the binary channel symbols {Ck}, where the channel

symbols are produced with rate 1/T. The modulation is

biphase. That is, the modulator produces the baseband signal

s(t) = Z Akqk(t) (1)

k

where the {Ak ) are chosen according to

Here, E s is the channel symbol energy, and the (qk(t)) are

orthonormal basis functions. We assume that the (qk (t)} are

time-displaced replicas of a single function of duration T,

namely,

qk(t) = q(t- (k - 1)T) (3)

where

q(t) = O, t<Oort> T (4)

T

f q(t) 2 dt= 1
(5)

The baseband signal s(t) is transmitted over an additive

white gaussian noise channel with one-sided noise spectral
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density N o. The received baseband signal is represented by x(t)
in Fig. 1. This received signal is demodulated by matched filter-

ing (integrate and dump)to produce a discrete time series {xk):

kT

xk = f(k-1)7" x(t)q(t - (k- 1)T) dt
(6)

Assuming such ideal channel and receiver characteristics as

perfect phase tracking and channel symbol synchronization,
no channel symbol interference, etc., the output time series
from the demodulator are the sufficient statistics for maxi-

mum likelihood decoding. Referring to Eqs. (1)-(6), we see
that this time series can be written in the form

x k : rntrueak + Otruebk (7)

where the (ak} are either +1 or -1 depending upon whether
the channel symbol transmitted was a "1" or "0," {bk) are
independent and identically distributed gaussian random vari-

ables with zero mean and unit variance, and mtrue and Otrue

are given by

mtrue = X/_s (8)

Otrue = V_o/2 (9)

The parameters mtrue and Otrue represent the true values of the

signal and noise amplitudes, respectively. We note that atrue

and rntrue are by definition non-negative.

In order to make the problem mathematically tractable, we

make the assumption that the {ak} are independent and take
on the values +1 and -1 with equal probability. For a commu-

nication system employing coding, this assumption is not cor-

rect. Thus, the effect of coding on the estimation algorithm

given here needs to be determined.

II. Parameters to be Estimated

Our starting point for all further analysis is the time series

{xk} defined in Eq. (7), with the assumed probabilistic models

for the sequence of random variables {ak} and (bk}. Our
objective is to find maximum likelihood estimates of the

signal and noise parameters mtrue and O'true or of other param-
eters of interest that are embedded in the model. Two such

parameters are signal-to-noise ratio and combiner weight.

The signal-to-noise ratio (SNR) at the receiver is defined as

SNR = E/N o (10)

SNR is a fundamental parameter of interest for a variety of

reasons. For example, SNR is needed to optimally choose the

quantization levels of the demodulator so that the "best" dis-

crete channel is provided to the channel encoder-decoder
(Ref. 2). We find it convenient to define a signal-to-noise

ratio parameter Ptrue for the demodulated time series as

,Otrue = m2true/_rue (11)

In terms of Ptrue' the SNR at the receiver is simply

SNR = Ptrue/2 (12)

Another quantity of interest is the combiner weight needed

for symbol stream combining. For example, suppose L differ-

ent time series (or symbol streams) are available from L
different receiver-demodulators,

xik = mia k +aibik , i = 1,2 ..... L (13)

where, as before, {ak) are either +1 or -1, and {bik} are

independent, identically distributed gaussian random variables
with zero mean and unit variance. It can be shown (Ref. 3)

that maximum likelihood decoding of the L time series (xik}

is equivalent to maximum likelihood decoding of a single

time series (vk), where

L

Yk = E OtiXik

i = 1

(14)

and the combiner weights (c_i} are chosen to be proportional

to (mi/o _). Thus, we are interested in estimating for any given
time series a combiner weight parameter defined by

Oltrue = mtrue/O2true (15)

In different applications, we may desire to estimate one,

two, or several parameters simultaneously. However, we

should always be aware that our assumed problem model

has exactly two independent unknown parameters. This

implies that any estimate of a single parameter (such as SNR)
must be aided by an implicit estimate of an independent

auxiliary parameter, and that simultaneous estimates of more

than two parameters are not all independent. In particular,

maximum likelihood estimation as applied to our problem

must produce a joint maximum likelihood estimate of a pair

of independent parameters.

Fortunately, it is not necessary to re-solve the maximum

likelihood equations for every combination of parameters of

interest. If two pairs of parameters are related by a one-to-one
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transformation,thenthecorrespondingjointmaximumlikeli-
hoodestimatesarerelatedbythesametransformation(Ref.4).
Thus,weproposefindingthejointmaximumlikelihoodesti-
mateof the signalandnoiseparametersmtrue and o.true ,

which we denote as _ and _, respectively. Then (ignoring a

singularity at o.true = 0 or _ = 0) we can define the corre-
sponding maximum likelihood estimates of the signal-to-noise

ratio parameter ,Otrue and the combiner weight parameter

O_true as

_, = _2/_2 (16)

= t_/e 2 (l 7)

III. The Log-Likelihood Function

Let us denote a set of N measurements (x], x 2 .... , x_/)
by the vector x. The probability density function of x condi-

tioned on mtrue = m and 0"true = 0" is

p(xlm, o.) =

N
1 1

k=l

t _% - m) 2 -(x k + m)21
exp + exp

2o.5 i;7 J
(18)

which after a little algebra becomes

N -X_ -m s mx k
p(xlm, o.) = H _ exp -- exp _ cash --

k= 1 _ 202 2o"2 o.5

(19)

Taking the natural logarithm of both sides of Eq. (19) gives
the log-likelihood function:

In p(xlm, o.) =
N

I
-Nln 2q'_--n- N ln o. - -- E x_

2o'2 k= I

N • mx k
_ Nm___J+ E In cash

o 22o 2 k=l
(20)

IV. The Set of Feasible Solutions

Consider the o. - m plane where o. is the abscissa and m is

the ordinate. The joint maximum likelihood estimate (MLE)

of Otrue and mtrue is the ordered pair (_, r_) in the o. - m

plane where In p(xlm, o.) obtains its maximum. Let us define

a set of feasible solutions to the MLE problem as a set of

ordered pairs in the o. - m plane of which the MLE (_', _) is a
member. We wish to find a set of feasible solutions that is as

small as possible. Since O'true and mtrue are non-negative, we
can restrict the set of feasible solutions to lie in the first quad-

rant, including the non-negative o. and m axes.

A necessary condition for a function to obtain its maxi-

mum at some point in the interior of a closed, bounded

region is that its partial derivatives at that point are zero.

Although the first quadrant of the o. - m plane is not bounded,

one can observe from Eq. (18) that for finite (x_),p(xlm, o.)
approaches zero for large o and m. Thus, the maximum of
ln p(xlm, o.) must be contained in some bounded region.
Therefore, we include in our set of feasible solutions those

points in the first quadrant (excluding the non-negative axes)

at which both partial derivatives of In p(xlm, o.) with respect
to o. and m vanish.

We must separately consider if the maximum might occur

on the non-negative axes. Thus, a set of feasible solutions

consists of those points in the first quadrant of the o. - m

plane where both partial derivatives of ln p(xlm, o.) vanish,

and those points on the non-negative axes where In p(xlm, o.)
obtains a local maximum. Let us first consider the latter.

A. m-Axis Solutions

In the limit as o. -_ 0 (m-axis), we see from Eq. (18) that

p(xlm, o.)is proportional to the product of delta functions
given below:

N

limp(xlm, o.)_ H (8(xk-m)+8(Xk+m)) (21)
O"-_0 k = 1

In this case, one can see that if there exists some constant c

such that [xkl = c for all k, thenp(xlm, o.)is zero everywhere
on the m-axis except at m = c, where it is unbounded. Con-

versely, if the (xk) are not all equal in magnitude, then
p(xlm, o.) is zero on the entire m-axis. Thus, since p(xlm, o.)

is bounded everywhere except possibly the m-axis, we can
state that

(_,, t_) = (0, c) (22)

if and only if there exists a c such that IXkl = c for all k.

B. o-Axis Solution

For m = 0 (o.-axis), we have from Eq. (18)that
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p(xlm o) = H 1 exp --
k=l _ 2o 2

(23)

This is just a unimodal gaussian density function with mean

zero. It is well known (Ref. 4) that this function obtains its
maximum at

k=l

Thus, the only point on the o-axis that we need to include in
the set of feasible solutions is

_,0
k=l

(24)

C. Interior First Quadrant Solutions

The other members of the set of feasible solutions are the

points in the first quadrant of the o - m plane (excluding the

non-negative axes) where the partial derivatives of In p(x Im, o)
with respect to o and m vanish. Thus, we must find those

ordered pairs (o, m) for which both o and m are positive and
simultaneously satisfy

a
a--o lnp(xlm, o) = 0 (25)

and

a
am lnp(xlm, o) = 0 (26)

Performing the indicated partial derivatives on Eq. (20)
leads to

N

N N m 2 1
ao lnp_xlm, o) = ---+ -- + -- Ex_

o 03 (73 k = 1

_ 2m N mx k
oa EXk tanh _ (27)

k=l O2

a lnp(xlm, o) = -Nm + 1 N mxg
a---m o2 o--2 E xk tanh -- (28)

k = 1 0"2

Setting Eq. (28) equal to zero leads to the relation between
m and o:

1 N mx k
rn =-_ E xk tanh-

o 2k=!

(29)

Using Eq. (29), we can simplify the rightmost term in Eq. (27).

Consequently, setting Eq. (27) equal to zero leads to the
second relation between m and o:

N
1 2

o2 +m2 =N'Z Xk

k=l

(30)

For simplicity of notation, let us make the definition

N

<x2>_, _x 1 2= N E x; (31)
k=l

For now, since we are only considering positive o and m, we see

from Eq. (30) that the feasible solutions (o, m) in the first

quadrant (excluding the non-negative axes)must satisfy

0 < o < _ and 0 < m < _. Using Eq. (30) to

solve for o in terms of m and substituting into Eq. (19), we
obtain a transcendental equation in one unknown:

1 N mx k
m =-_ E Xk tanh , 0<m<_

k=l _--X2> N - m 2

(32)

Thus, given the measurements xk, k = 1, 2, ..., N, a set

of feasible solutions in the interior first quadrant consists of

ordered pairs of the form (X/<,x2> N - m 2, m), where m

satisfies Eq. (32). Equivalently, m is one of the roots of the
function F(m, x) = m - f(m, x), where

f(m,x) a 1 N mx k
= _r E Xk tanh

k=l _--.X2_ N - m 2
(33)

V. Finding the Roots of F(m,x)

Rather than,.____:___findingthe roots of F(m, x) in the range
0 < m < X/_>N , let us extend this range to 0 _< rn
_< _N" At first, one may think that we have needlessly
increased the size of the set of feasible solutions defined in

the last section. However, we will see in this section that

finding the roots of F(m, x) in this new range of m includes
the feasible solutions on the o and m axes.
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Finding the roots of F(m, x) can be tricky. For example,

looking for roots by investigating when F(m, x) changes sign

may fail since F(m, x) may contain two or more roots very

close together, or may in fact not change sign at a root. How-

ever, insight can be gained by observing that the roots of

F(m, x) are just the intersection of the curves:

z = m (34)

and

z = f(m,x) (35)

where m is restricted to 0 _< m _<_N"

It is interesting to note that f(m, x) is an even function in

x k. That is, f(m, x) depends on each x k via its absolute value.
This is not surprising since one can see that the conditional

probability density function p(xlm, o) in Eq. (18) depends

only on ixkl. Thus, the absolute values of-{xk}constitute a
sufficient statistic and the sign bit ofx k is not needed. Impor-
tant properties of f(m, x) are listed in Table 1, where for
notational convenience we have made the definitions:

N
1

<lxl>N =N E Ixkl (36)
k=1

N

<.x4>2v _ 1 E 4
k=l

(37)

We shall now show that the roots of F(m, x) in the range

_< m _<_N include the feasible solutions on the m and0

o axes, as given in Eqs. (22) and (24). First, we verify Eq. (24),

which specifies the feasible solution on the o-axis. We see
from Table 1, property (i), that m = 0 is always a root of

F(m, x) for all x. But when m = 0, we have from Eq. (30)

that o = _. Thus, the feasible solution (_N' 0)
on the o-axis can be obtained from finding the roots ofF(m, x)

in the range 0 _< m _<'V/'-_-_N.

Next, we show that finding the roots of F(m, x) within

the range 0 _< m _ V/-_-_N also specifies the feasible solu-
tion on the m-axis as given by Eq. (22). It is not too difficult

to see from Eq. (22)"that (0, x/_'2">N ) is the joint MLE if

and only if there exists a ¢ such that Lxkl = c for all k. How-

ever, it is easily verified that IXki = C for all k implies;

x/--_-r>_v = <lxl> N (38)

in which case we have using property (ii) of Table 1 :

f(_N 'x) = <IxL>IV = _N (39)

Thus, m = V/-_->N is a root of F(m,x,_mz.._w_henever [xk[ = c

for all k. Furthermore, for m = X/<X'>N, we have from
Eq. (30) that o = 0. It thus follows that whenever the

ordered pair (0, _N) is the joint MLE, it can always

be obtained b_ing for the roots of F(rn, x) in the range
0 <_m <_x/<x'> N"

Having justified extending the_search for the roots of

F(m, x) to the range 0 <_ m _< X/'<Xe>N , let us state what

we currently know regarding the roots within this range. As
mentioned before, m = 0 is always a root of F(m, x). Are

there any nonzero roots? To answer this question, we first
note that the curve z = f(m, x) is not above the curve

z = m at m = _N" This is easily verified by invoking

Jensen's inequality

<lxl> g < x/--_T>-2v (40)

and using property (ii) of Table 1 to yield

f(_N 'x) = <IXI>N _< _N (41)

Next, we observe that from property (vi) of Table 1, the curve

z = f(m, x) rises above the curve z = m sufficiently near

m = 0 if and only if the following critical condition is
satisfied:

<X4>N < 3 2 2<x >;v (42)

Thus, if Eq. (42) is satisfied, the curve z = f(m, x) must inter-

sect the curve z = m for some nonzero m less than or equal to

_'_-7-_N"

The condition in Eq. (42) is interesting because it parallels

an easily verifiable relationship between the corresponding

ensemble averages, namely, E {x4 } < 3 E (x z _ for mtrue > 0,

and E (x 4 } = 3 E (x2) 2 for mtrue = 0. Thus, a nonzero root of
F(m, x) is guaranteed whenever' the sample moments

<X4>N, <X2>IV bear the same relationship as that relation-
ship between ensemble moments which distinguishes the
nonzero-mean case from the zero-mean case.

Finally, we state one more property that is known concern-

ing the roots of F(m, x)z. As mentioned before, Ixkl -- c for
all k implies that m =_; is a root of F(m, x). The con-

verse is also true. lfx/<x2> N is a root ofF(m, x), then
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=
and thus from property (ii) we have

<lxt>N=

which implies Ixk I = c for all k, because this is the only condi-
tion under which Jensen's inequality, Eq. (40), can be satisfied
with equality.

Let m* denote the largest root of F(m, x), where 0 _< m *
(43) _< x/-_-_ev. A graphical representation of the algorithm for

finding m* is given in Fig. 3. At the ith iteration, m (0 is some

estimate of m*, where m (0 >t m*. As the figure indicates, the

better estimate m (i+1) is obtained by following the paths
(44) labeled (1), (2), and (3). One can see that the estimate m (i+D

is closer to m* than the previous estimate m (0, but is still

larger than m*. From Fig. 3, we see that m (/+1) is given simply
by the recursion

We summarize our results in this section in the following
theorem:

Theorem 1

(1) The feasible solutions are of the form

(x/<x2 >N - m 2, m), where m is a root ofF(m, x) in the

range [0,_].

(2) (a) F(m, x) always has the root m = 0 for all x.

(b) F(m, x) has the root m = _ if and only if
Ixkl = x/--_-_v for all k.

(c) If <.x4> N < 3 <.x2>_, then there exists a non-

zero root of F(m, x) less than or equal to

In Fig. 2, we have sketched z = m and a hypothetical

z = f(m, x) satisfying Eq. (42). For sake of simplicity, we have

drawn the curves so that there are only two intersections.

Unfortunately, Theorem 1 is all that we know regarding
F(m, x). Several pertinent questions are: If Eq. (42) is satis-

fied, is there only one non-zero root? If Eq. (42) is not satis-

fied, are there any non-zero roots? And, finally, when there is

more than one root, which one corresponds to the MLE?

These questions have been very difficult to answer analy-

tically. It would be "nice" if there were only one non-zero

root when Eq. (42) is satisfied, and no non-zero roots other-

wise. A few plots of F(m, x) indicate that this might be so.

Properties of F(m, x) which might give some indication about

the number of roots are currently being investigated. We are

also in the process of looking for counterexamples.

VI. An Algorithm for an Upper Bound
of the MLE

Although Theorem 1 is somewhat incomplete concerning

the number of roots of F(m, x), we can nevertheless give an

algorithm for finding the largest root, which provides an upper

bound to our signal-to-noise ratio and combiner weight esti-

mators. We suspect that this upper bound is indeed the MLE

and we show later that this is true in the large SNR case.

m (i+D = f(m (i), x) (45)

The zeroth estimate of m* is

m(°) = _v

Thus, performing Eq. (45) for i = 0, 1 .... , generates the
sequence of estimates m O) > m (2) > .... It can be shown

that this sequence converges to m*. Since m* is the largest

root of F(m, x), we see that upper bounds to our estimators
are

= m^2 < lim [m(O 12 (46)

52 _® <X2>N _ [m(O] 2

m (i)= r_ _< lim
(47)

To obtain a qualitative understanding of how the rate of

convergence of such an algorithm depends on SNR, let us
make the definition:

A(0 _ m(0_ m* (48)

By the mean value theorem, there exists some m o between
m* and m (i) such that

, af
A (i+D = m (/+l) - m* =f(m ('), x) -f(m*, x) =_--m A(i)

rrl=m 0

(49)

Equation (49) gives us some idea about the rate of convergence
of the algorithm. For example, in the case of high SNR, m*

should be close to _ and in this case the partial deriva-

tive off(m, x)should be close to zero. Thus, one can see from

Eq. (49) that A(O would approach zero very rapidly. On the

other hand, for low SNR, one would expect that m* would be

closer to zero, and consequently the partial derivative of

f(m, x) would be closer to its derivative at the origin, which is
one. In this case the convergence would be very slow.
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An algorithm for finding a root close to m* is given by the

flow diagram in Fig. 4. The variable TOL is a pre-assigned
tolerance for the difference between two successive estimates

of m*. Also, a limit to the number of iterations of the algo-

rithm is set by the variable NUM. This is needed in the low
SNR case where the convergence of the estimate to m* may be

asymptotically slow.

VII. The High SNR Case

It is interesting to consider the high SNR case, especially

since this serves as a check on our method. In the high SNR

case, the (x k) will most likely be nearly equal in magnitude.

Then, from Jensen's ine_ Eq. (40), <txl> N would be
close to, but less than _/<x'> n. Thus, from Fig. 3,we expect
the intersection of the curves z = m and z = f(m, x) to be close

to x/'-_-_ N, in which case just one iteration of the algorithm
of Fig. 4 would yield a close estimate of m*, given below.

m* =" mO) : f(X,/-_-_N , x) = <IxI> N, for SNR--_*

(50)

If we use the above for m*, then the signal-to-noise ratio
estimate is

<lxl>_r
=_ (51)

<x2> N - <lxl>_

which asymptotically equals the usual signal-to-noise ratio
estimate for the high SNR case (Ref. 5).

VIII. Summary

The main result of this memo is an algorithm for finding

upper bounds to the maximum likelihood estimates of signal-

to-noise ratio and combiner weights. Further work is needed

to determine if these upper bounds equal the maximum
likelihood estimates.
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Table 1. Properties of f(m,x)

f(O,x) = 0 (i)

lim f(m,x) = <Ix'> N

m .--*-_N

(iO

(ifi)

am

m_ _N

= 0 (iv)

f (m, x) is monotonically increasing in m (v)

To third order in m:

m3[ t/(re, x) ~ m+ 1 2 2
<X2>N 3 <x >N

(vi)
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