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The expected value and the variance of the Baseband Assembly symbol signal-to-noise /

ratio (SNR) estimation algorithm are derived. The SNR algorithm treated here is desig-

nated as the Split Symbol Moments Estimator (SSME). It consists of averaging the first

two moments of the integrated half symbols. The SSME is a biased, consistent estimator. :

! The SNR degradation factor due to the fitter in the subearrier demodulation and symbol i
synchronization loops is taken into account. Curves of the expected value of the SNR 1

i estimator versus the actual SNR are shown. _51

I. Introduction

The Baseband Assembly 1 uses a Split Symbol Moments

Estimator (SSME) algorithm to estimate the symbol signal-

to-noise ratio (SNR) of the input signal. Here we describe the

SSME algorithm and give the expected value and the variance

of the SNR estimator. Two numerical examples corresponding

to the Voyager and the Pioneer missions are included to

illustrate its performance. As in previous Baseband Assembly

analyses (Refs. 1 and 2), Nyquist sampling rate is assumed.

where

q

n., _
t!

unitless random variable whose amplitude is propor-

tional to the information signal voltage

unitless random variable whose amplitude is propor-

tional to the rms noise voltage

The first two moments of Yii are

E_vii) =V_-- (2)

II. Statistics of the SNR Estimator

Figure 1 is a flow chart representation of the SSME algo-

rithm. Referring to this figure, the input to the SNR estimator

is a string of signal samples modeled as

Yii sii + nil (1)

IDeep Space Network/Flight Project Interface Design Handbook, JPL

internal document 810-5, Rev. D, 1981.

E{0,ii)2}= s + 02. (3)

It is assumed that E{ni/} = 0

i = 1,2 ..... N s Nyquist samples per symbol

/' = 1,2 ..... n symbols

The variance of the noise process is assumed to be

°2n = NoB (4)
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where N O is the one-sided noise spectral density, and B n is the
one-sided baseband noise-equivalent bandwidth.

As shown in Fig. 1, in the upper "arm" the samples from

the first half of a symbol are summed to produce Y,_j. In the
lower "arm" the samples of the second half of a symbol are

summed to produce Y_j. In this analysis, it will be assumed
that the number of samples in both summers are equal at the

instants when Ycq and Yl3j are sampled. For this reason, Yaj

and Y#j have identical statistics. Making YcH = Y_j = YJ, the

mean value and the variance of Yj will be, assuming that the
samples are independent,

=E{ j} = =5- (5)

A N
_ = S 0" 2

/ n

(6)

The factor dj, designated as the SNR degradation factor, is
due to the phase jitter and timing jitter in the subcarrier

demodulation and symbol synchronization loops, respectively.

In general,

0 < dj < 1 (7)

It can be shown that

dj= (I--_-) (l-2pT'_bj._2 '_'-_-I)2
(8)

where

_j--phase error in the subcarrier demodulation loop
during the jth symbol

rj = timing error in the symbol synchronization loop
during the jth symbol

PT = probability of symbol transition

T = symbol time

In this preliminary analysis, it will be assumed that there is no

doppler stress in the tracking loops and that Cj and zj are
functions of the phase and timing jitter only. With this assump-

tion, ¢j and rj will be constant during one update interval,
and the subscript j can be dropped, i.e., we will assume that

during the estimation interval

dj = dl.+l = d (9)

and, consequently, the statistics of Yi will be equal to those of
r]'+l •

In the SSME algorithm, the random variables Ya and Y#

are combined to create two new random variables Xp and
Xss in the following way:

Xp = Y Y# (10)

and

x = (\ + Yp= (11)

Then, as shown in Fig. 1, n samples of Xp and Xss are averaged
i i .

in the second pair of summers to produce mp and rnss. Finally,
t

rnp and rn_s are scaled and combined to produce the random
variable R*, which is the SNR estimator of the SSME algo-
rithm, namely,

m t

R* = P (12)

m;/
The statistics of R* can be determined from the statistics of

the random variables along the two paths in Fig. 1. These
statistics are obtained in what follows.

Using Eqs. (6) and (7) and the fact that Ya and YO are
independent, the first two moments of their product defined

in Eq. (10)will be

X-- = N 2s Sd/4 (13)

X 2 = (N2s Sd/4 +NO2n/2) 2
P

(14)

The first two moments of Xss defined by Eq. (11) are obtained

using Eq. (A-2) of Appendix A with _ = Ns _and o2 =

Nsa2n, namely,

=

= N2Sd + N o2 (15)
S $ tl

B

X 2 = E (A_ss)$$

= 3N25 04+6N35 SdO2n+N 4S 2d 2 (16)n $

Referring to Fig. 1, and using Eq. (A-5), the first and second
moments at the outputs of the second pair of summers will be

m'p = L (17)
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m

(m;) 2 = X 2p (18)

tm = X (19)
SS S3

(m'ss)2 = _ (20)

t

The variances of r@ and ross are obtained using Eq. (A-6)
with the moments obtained in Eqs. (13) through (16), namely,

1var (m_) = n

N 2 (/2
s n

4n (Ns Sd + O2n) (21)

1 [_282s- (X_)2 ]vat(m's$)=7

2N 2 (/2
S n

n
(2N s Sd + o2) (22)

The covariance of Xss and Xp is, by definition, •

A -- -L)} (23)cov(Xs,X ) = E{(Xs-Xs)(X

= e([(q +r_)=-(q + r_)] [q r_ - q re]

• 2(r r_- L r_)l t\ r_-L r_l_

+2 (112 y_ _(_)2 (y_)2) (24)

Using Eqs. (6) and (7) in Eq. (A-2), the third moment of Ya

and Y_ is

y3=--a _y_=__3 NZs x/'Sd-(/2 + gl N3s (36) 3/2 (25)

Inserting Eqs. (6), (7), and (25) in Eq. (24) and dividing by
t ¢

n, we obtain the covariance of mp and mss, namely,

coy (m;, m;s ) - 2 n (2N Sa + o2) (26)

! t

Having obtained the moments of rnp and mss , we now are
ready to determine the statistics of the estimator R*. Using

Eq. (A-9), the expected value of R* defined by Eq. (12) is

R* = R* ;1 _2 , O2R, ,

+ TLa--_2 var(m )+ _var(ms)3m,s2s

t
m

p

t
m

$3

t

mp

m t

83

_}2R*

+ _m'_m' cov(m'p,m_$)
p 8s

t
m

p

t

ms s •

(27)

Inserting Eqs. (A-16), (A-18), (A-19), (21), (22), and (26) in
Eq. (27) and ignoring higher order terms, we obtain

= /_ + 1 (2/_ + 1) (28)
n

where

t

^ A m NSd
R = p _ s - R d (29)

._ (1 --'7- g) 2o2- mss -

is the degraded symbol SNR at the input to the SNR esti-

mator. From Eq. (28) we observe that R* is a biased but

consistent estimator (i.e., the bias goes to zero when n goes to

infinity).

The variance of R* is obtained using Eq. (A-10), namely,;

= [ OR* ] 2

var (R*)_ _--_ ] \ SSl

t
m

p

t
m

$$

2

var(m_s)

¢
m

p

t
m

88

aR*OR*
+ 2 am'Ore'

p $s
cov(m'p,m'ss) (30)
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Inserting Eqs: (A-15), (A-17), (A-19), (15), (16), and (26) in

Eq. (30), we obtain

1
(R*) = n (1 + 4R + 2/_ 2) (31)var

By defining the SNR of our estimator as the ratio

(_-*):
SNR (R*) - var (R*) (32)

we see that

1
lim SNR (R*) = -- (33)
R_0 n

n

lim SNR (R*) = -_- + 2 (34)
R ---__

III. Evaluation of d

Assuming that there are no doppler or quantization errors,

the SNR degradation factor defined in Eq. (8) is a function of

the phase jitter in the subcarrier demodulation loop and the

timing jitter in the symbol synchronization loop. Both jitter
processes, _band 7, are modeled as Gaussian random variables

having zero mean and variance a_ and a 2, respectively.

where

BLI = one sided noise-equivalent bandwidth, j = 1 for
subcarrier loop, j = 2 symbol synch loop

TL = loop update time, assumed to be identical for both
loops

K = number of symbols between updates

T = symbol time = 1/r

E/N o = ratio of energy per symbol to noise spectral
density

a 1

a:

NS
= R -

202
n

(37)

= M/N = ratio of the width of the middle portion of
a symbol to the total symbol length

(typically 1/2)

= L/N = ratio of the width of the transition portion
of a symbol to the total symbol length
(typically 1/4)

The expected value of d in Eq. (8) will be

1 _ (1 ]_b[) 2 (_2 _2_d¢d - X/_ % - n/2 exp a_ ]

According to Ref. 2, the variance of the phase error in the

subcarrier demodulation loop at update instants is __f i(1 ( •)_×_o - ApT_] exp -1 or2

ae_ =\ 4K ] [ Es ] 2 1+_o- 0 (35) 2/_-[0¢)_ 0 2 21_ [0\
= - 4 4--_- k--_-] + 4 1-44--_PTtV)

\No]

Repeating the steps of Ref. 2, it can be shown that the variance

of the timing error in the symbol synchronization loop at
update instants is

+ 4p_[ °r fl

(38)

(39)

I--I

\No!

(36)

In Appendix B two numerical examples are given tbr

parameter values typical of the Voyager and Pioneer missions.

m

In general, the bias in R'can be reduced by increasing n

(number of symbols in the estimator). Of course, we can
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improve our knowledge of R if we compensate for the effects
of the bias and the degradation factor in Eq. (28), i.e., we may

assume that the actual input SNR is

._, = (R*) (40)

where (R*) is the average value of many R.* and d'is our esti-
l

mate of d.

IV. Conclusions

In this article the expected value and the variance of the
SSME SNR estimator was derived. This estimator was shown

to be biased and consistent.

Figures 2 and 3 illustrate the numerical results for the

Voyager and Pioneer missions. At high signal SNR, the posi-
tive bias of the estimator dominates over the degradation

effect due to phase jitter in the tracking loops. At low SNR,

it is the other way around. Figure 4 is for the ideal case when

there is no jitter in the tracking loops (d = 1).
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Fig. 1. Split symbol SNR estimator algorithm
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Appendix A

Gaussian Moments

1 Relation Between Statistical and
Probabilistic Moments

Given a random variable x with Gaussian pdf G(#,o 2) and

defining the rth moment as

ur = E (x5

the first four probabilistic moments of x will be

t

gl =g

' = 122 + 0 2g2

/_ = 3o2/.t + _3

(A-l)

t

bt 4 = 30 .4 + 60.2g 2 +/14 (A-2)

Defining rn_ as the rth statistical moment of a random variable

?1

m' 1
r = _ E (x)r (A-3)

j=l

(A-4)

and the variance of m_ as

1 ° ,I:var (m_) = E E (xj)r _ tz
j=l

Chapter 10 of Ref. 3 shows that

E {m;} = //

and

(A4)

p

1 [_U2r-0a'r)/]var (m_) = -_

This is an exact result.

Given a function g of K random variables x k,

g(x) = g(x,, x z ..... xK)

(A-6)

(A-7)

with means

E {xK) = oK

0 A 01,0 z ..... OK

it can be shown (Prob 10.17, Ref. 3) that

1 k 32E _(x)} = g(O) + "_ _--_-2g(x) var %)

x = 0

(A-8)

K K

1 3g(x)

i=] ]=1

i_i

coy (xi, x.) +...

X = O

The variance ofg(x) will be (Eq. (10.12) of Ref. 3)

var _g(x))

K

= _ g(x 2 var(xg)

X = 0

(A-9)

K K
3 3

+E E_ g(x)_g(x)
i=1 j=l t 1

COV (Xi, 5) + . . .

X = 0

(A-10)

2. Evaluation of the Derivatives
of the Estimator

t

In the SSME algorithm R* is computed from mp and
' namely,

ross,

P
m

R* = P (A-11)

2(+ '-m;)mss

It can be shown that

--7 1
e {G}= m =7 sN=sa (A-12)

and

;0 ' = N:sd+< 0.:E {m = mss s n (A-13)
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Let

R z_ E {m'p) N s Sd" = - (A-14)

tlm' -%1 2q2EI4 ss

2
(A-17)

The following derivatives of the estimator R* are evaluated:

0R*

_)m'
p

_ 2 (1 + 2/_) (A-15)
o 2 N

n $

a2R *

Om '2
,$$

1 2

(A-18)

b2R*

_m '2
p

= (1 + 2/_) (A-16) a2R *

m'p, m;s

= -2 [____l 2 (1 + 4/_)

- -- _qNt
(A-19)
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Appendix B

Constants Used to Derive Figs. 2-4

In order to illustrate the performance of the SSME esti-

mator, two cases are considered.

(1) Voyager

Data rate r

Update time T_.

K=n

Noise bandwidth B

-- 20,000 symbols/second

; 2.5 seconds

= 2.5 × 20,000 symbols/loop

update

-- 0.4153 (from Table 1, Ref. 1

for both tracking loops

= 3.75 MHz

(2) Pioneer

r = 8 symbols/second

TL = 2.5 seconds

K= n = 2.5 × 8 symbols/loop update

TLB L = 0.4153 for both tracking loops

B = 135 kHz
n

The performance of R* for the Magellan mission will be

better than for Voyager.

Using Eqs. (35), (36), (39), (28), (29), (31), and (32),
Figs. 2 and 3 are obtained.
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