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The expected value and the variance of the Baseband Assembly symbol signal-to-;JD

ratio (SNR) estimation algorithm are derived. The SNR algorithm treated here is desig-
nated as the Split Symbol Moments Estimator (SSME ). It consists of averaging the first
two moments of the integrated half symbols. The SSME is a biased, consistent estimator.
| The SNR degradation factor due to the jitter in the subcarrier demodulation and symbol |
synchronization loops is taken into account. Curves of the expected value of the SNR

| estimator versus the actual SNR are shown.
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I. Introduction

The Baseband Assembly! uses a Split Symbol Moments
Estimator (SSME) algorithm to estimate the symbol signal-
to-noise ratio (SNR) of the input signal. Here we describe the
SSME algorithm and give the expected value and the variance
of the SNR estimator. Two numerical examples corresponding
to the Voyager and the Pioneer missions are included to
illustrate its performance. As in previous Baseband Assembly
analyses (Refs. 1 and 2), Nyquist sampling rate is assumed.

Il. Statistics of the SNR Estimator

Figure 1 is a flow chart representation of the SSME algo-
rithm. Referring to this figure, the input to the SNR estimator
is a string of signal samples modeled as

Yi T Sty (1)

]Deep Space Network/Flight Project Interface Design Handbook, JPL
internal document 810-5, Rev. D, 1981.
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where

S = unitless random variable whose amplitude is propor-
tional to the information signal voltage

n; = unitless random variable whose amplitude is propor-
tional to the rms noise voltage

The first two moments of y;; are
Elj =5 @)
E{G,)} = S+0} 3)
It is assumed that E{nij} =0
i =1,2,...,N;Nyquist samples per symbol
j=1,2,...,nsymbols
The variance of the noise process is assumed to be

2 _
on B NOBn (4)



where N, is the one-sided noise spectral density, and B,, is the
one-sided baseband noise-equivalent bandwidth.

As shown in Fig. 1, in the upper “arm” the samples from
the first half of a symbol are summed to produce Y, ;. In the
lower “arm” the samples of the second half of a symbol are
summed to produce Y. In this analysis, it will be assumed
that the number of samples in both summers are equal at the
instants when Y, and Yg; are sampled. For this reason, Y, ;
and Yg; have identical statistics. Making Ya,- = Yg; = 1}, the
mean value and the variance of ¥; will be, assuming that the
samples are independent,

— A s
ANTMETIMEE SCCINNE
2 é 27 = v \2 _Ns 2
o; = E{(Ya]—Yai)} E{(YB/-YB/)}—TUn

(6)
The factor d;, designated as the SNR degradation factor, is
due to the phase jitter and timing jitter in the subcarrier

demodulation and symbol synchronization loops, respectively.
In general,

0<d <1 (7)

It can be shown that
lo,1\* 7,1\’
d]. = |1- 7 1-2p, _TT (8)

¢i = phase error in the subcarrier demodulation loop
during the jth symbol

where

7. = timing error in the symbol synchronization loop
during the jth symbol

p; = probability of symbol transition

Ts = symbol time

In this preliminary analysis, it will be assumed that there is no
doppler stress in the tracking loops and that ¢; and 7; are
functions of the phase and timing jitter only. With this assump-
tion, ¢; and 7; will be constant during one update interval,
and the subscript j can be dropped, i.e., we will assume that
during the estimation interval

d=d. . =d ®

and, consequently, the statistics of Y] will be equal to those of
V.

In the SSME algorithm, the random variables Y, and Y
are combined to create two new random variables Xp and
X, in the following way:

Xp =Y, YB (10)
and
_ 2
Xss = (Ya + Yﬁ) (11)

Then, as shown in Fig. 1, n samples of X}, and X are averaged
in the second pair of summers to produce m;, and m;S‘ Finally,
my, and mgg are scaled and combined to produce the random
variable R*, which is the SNR estimator of the SSME algo-

rithm, namely,

R¥ = — P (12)

The statistics of R* can be determined from the statistics of
the random variables along the two paths in Fig. 1. These
statistics are obtained in what follows.

Using Eqgs. (6) and (7) and the fact that Y, and Yj are
independent, the first two moments of their product defined
in Eq. (10) will be

X, = N? Sd/f4 (13)
¥2 = (A2 2 /932
Xp = (N, Sd/4+Ng,/2) (14)
The first two moments of X, defined by Eq. (11) are obtained

using Eq. (A-2) of Appendix A with yu = N, +/Sd and o2 =
N;02, namely,

X, =B
= N?Sd + N o2 (15)
X, = E(G)
= 3N? o} +6N? Sd o2+ N* §? d* (16)

Referring to Fig. 1, and using Eq. (A-5), the first and second
moments at the outputs of the second pair of summers will be

’

m, =X, a7
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(ml',)2 = X? (18)
= Xy (19)
(m)? = X (20)

The variances of ml', and m,; are obtained using Eq. (A-6)
with the moments obtained in Eqgs. (13) through (16), namely,

Nl 2 v
var (my) = o O = (0, )
2 52
= —‘4n—" WV, 8d + 02) (21)
' 1 =35 v
var (m}) =~ (X2 - (X_ ]
2Ns203 )
= (2N, Sd + a)) (22)
The covariance of X and X, is, by definition, -
cov (X, X,) = E{(X;-X) (X, -X )} (23)

E(Q(+ Yl - (Y, + Y 1Y, Y, - ¥, ¥}

It

) 2 2
E{[YOI-YO[)+(Y‘3 -Yﬁ)

(Y, Y-, TIIY, Y, -Y, V1)
= Yﬂ(Yi-{a YhH+y (Yg-Yﬁ YD)
+2 (P2 Y- (Y ) (V,0) (24)

Using Eqs. (6) and (7) in Eq. (A-2), the third moment of Y,
and Yy is

3 - v3 = 3
Y= vi=SN

1
; VSdo + & NSV (25)

Inserting Egs. (6), (7), and (25) in Eq. (24) and dividing by
n, we obtain the covariance of’ m,', and ms'x. namely,

N? g2

5 n

cov (m;,ms's) =5, (2N, S, + 0?) (26)
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Having obtained the moments of m' and m__, we now are
5

ready to determine the statistics of the estimator R*. Using
Eq. (A9), the expected value of R* defined by Eq. (12) is

— 2 px 2p%
RF=RY| +3 TR ar (m’y + 2R var (my,)
PT am™
D S8
mp mp
— —
55 §§
3%R* b
Bm!')ams's cov(mp,m ss) + ...
m
P
ss @
(27)

Inserting Eqs. (A-16), (A-18), (A-19),(21),(22), and (26) in
Eq. (27) and ignoring higher order terms, we obtain

R* =R +711‘(2§”) (28)

where

(29)

is the degraded symbol SNR at the input to the SNR esti-
mator. From Eq. (28) we observe that R* is a biased but
consistent estimator (i.e., the bias goes to zero when » goes to
infinity).

The variance of R* is obtained using Eq. (A-10), namely ;

_ [ 3R* \? o OR*\ 2 )
var (R*) = (am' ) var (mp) + (am' ) var(mss)
D §8
mP mp
m.N' mSS’

OR*OR* v
+2 W cov (mp ’mss) (30)




Inserting Egs. (A-15), (A-17), (A-19), (15), (16), and (26) in
Eq. (30), we obtain

var (R*) = ;11—(1+4fz+2§2) (31)
By defining the SNR of our estimator as the ratio
SNR (R*) = (o (32)
var (R*)
we see that
lim SNR (R*) = - (33)
R—0 n
lim _ SNR(R¥) ¥ +2 (34)

R

ill. Evaluation of d

Assuming that there are no doppler or quantization errors,
the SNR degradation factor defined in Eq. (8) is a function of
the phase jitter in the subcarrier demodulation loop and the
timing jitter in the symbol synchronization loop. Both jitter
processes, ¢ and 7, are modeled as Gaussian random variables
having zero mean and variance og, and o2, respectively.

According to Ref. 2, the variance of the phase error in the
subcarrier demodulation loop at update instants is

N S TN N S
¢ 4K E N

Repeating the steps of Ref. 2, it can be shown that the variance
of the timing error in the symbol synchronization loop at
update instants is

2
g% = (TLB“%) % [l +2 (——Es )'(a +a ):l
T 8Kal E \2 No 12

o)

(36)

where

BL]. =one sided noise-equivalent bandwidth, j = 1 for

subcarrier loop, j = 2 symbol synch loop

TL = loop update time, assumed to be identical for both
loops

K = number of symbols between updates
Ts = symbol time = 1/r

Es/No =ratio of energy per symbol to noise spectral
density

(37)

a, = M/N = ratio of the width of the middle portion of
a symbol to the total symbol length
(typically 1/2)

8
"
t~
S~
=
Il

ratio of the width of the transition portion
of a symbol to the total symbol length
(typically 1/4)

The expected value of d in Eq. (8) will be

- 1 lpl\? @2
d—m% -[_, (l-ﬂ/—z) exp(— O—)dd)

2
¢

N —

1 = I71\? 1 72
X 1-2p ——-—) exp [-= dr  (38)
Ving, _[ ( T 2 012,

o0

[ AT [ Sl

s

(39)

In Appendix B two numerical examples are given for
parameter values typical of the Voyager and Pioneer missions.

In general, the bias in R*can be reduced by increasing n
(number of symbols in the estimator). Of course, we can
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improve our knowledge of R if we compensate for the effects
of the bias and the degradation factor in Eq. (28), i.e.. we may
assume that the actual input SNR is

where (R*) is the average value of many R.* and d is our esti-
mate of d.

IV. Conclusions

In this article the expected value and the variance of the
SSME SNR estimator was derived. This estimator was shown
to be biased and consistent.

Figures 2 and 3 illustrate the numerical results for the
Voyager and Pioneer missions. At high signal SNR, the posi-
tive bias of the estimator dominates over the degradation
effect due to phase jitter in the tracking loops. At low SNR,
it is the other way around. Figure 4 is for the ideal case when
there is no jitter in the tracking loops (d = 1).
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EXPECTED VALUE OF ESTIMATOR R*
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Appendix A

Gaussian Moments

1. Relation Between Statistical and
Probabilistic Moments

Given a random variable x with Gaussian pdf G(u,0?) and
defining the rth moment as

W, = E X7 (A-1)
the first four probabilistic moments of x will be
T
Wy, = ul+ao’
wy = 30%u
/.1; = 3¢ + 60%u? +u* (A-2)

Defining mr' as the rth statistical moment of a random variable

=]
m = — Z () (A3)
and the variance of m/ as
(1< I*
N o= ]2 r_ ' ;
var (m) = E ( . (x}.) ur‘ (A-4)
j=1
Chapter 10 of Ref. 3 shows that
E{m} =y (A-S)
and
' l ' ’
var (m) = = [u, - ()] (A-6)
This is an exact result.
Given a function g of K random variables x, ,
g(x) = glx, x,, ..., %) (A-7)
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with means

., 0 (A-8)
it can be shown (Prob 10.17, Ref. 3) that
K

2
Eig00)=80)r 3 3. g0

k=1 Xk

var (x, )

x = 8

I & = ag(x)
5—2 28 cov(xl.,x].)+...
=1 j= -
o X = 6
i#j (A-9)
The variance of g(x) will be (Eq. (10.12) of Ref. 3)
5o
var {g(x)} = 2 |:—aTg(x)]2 var (x,)
- X
k=1 o
K K 4
+ Zl Z a—xl-g(x) g(x) cov (x, X))+ ..
=1 j=
Y X = 8
(A-10)

2. Evaluation of the Derivatives
of the Estimator

In the SSME algorithm R* is computed from m; and
m; , namely,

",
R* = A-11
2 (-l— m’ —m') ( )
4 ss D
It can be shown that
o _:_l_ 2
E {mp} =m, = N; Sd (A-12)
and
E{m} =m] = N}Sd+N, o (A-13)




L R (A-17)

Let OR* =
om' T 2
La Eim} N, sd o
R TR s (A-14) pr s
~—m - 20
2F l4 mSS m ‘
The following derivati f the estimator R* evaluated: 2 2
ing derivatives o imator R* are ate 32R* . 21 B (A-18)
* ~ om? o g:N
%R_, = ——(1+2R) (A-15) S "
" — — 9, Ns Pl
mp ' mss
2px% 2 -
0°R = (1+2R) (A-16) 32R* 1 .2 ~
am' ngs _— =) (1+4R) (A-19)
p |_ ampamss — 03 N,
ml; ymoo p’ Mss
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In order to illustrate the performance of the SSME esti-
mator, two cases are considered.

(1) Voyager
Data rate r
Update time 7,
K=n
T B

L™L

Noise bandwidth Bn
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Appendix B

Constants Used to Derive Figs. 2—4

20,000 symbols/second
2.5 seconds

2.5 X 20,000 symbols/loop
update

0.4153 (from Table 1, Ref. 1
for both tracking loops

3.75 MHz

(2) Pioneer

r = 8 symbols/second
TL = 2.5 seconds
K=n = 2.5X 8 symbols/loop update
T,B, = 0.4153 for both tracking loops
B, = 135kHz

The performance of R* for the Magellan mission will be
better than for Voyager.

Using Egs. (35), (36), (39). (28), (29), (31), and (32),
Figs. 2 and 3 are obtained.




