NASA CR-177,022

NASA-CR-177022 19860019441

A Reproduced Copy

OF

NASA CR-177,022

, **.**

• • . . •

Reproduced for NASA

by the

NASA Scientific and Technical Information Facility

NF01701

LIBRARY COPY

DEC 8 1986

LANGLEY RESEARCH CENTER LIBRARY, NASA HAMPTON, VIRGINIA

FFNo 672 Aug 65

JIAA TR - 74

ANALYTICAL OBSERVATIONS ON THE AERODYNAMICS OF A DELTA WING WITH LEADING EDGE FLAPS

BY

Sejong Oh and Domingo Tavella

Stanford University Department of Aeronautics and Astronautics Stanford, CA 94305

MARCH 86

N86-2891

ABSTRACT

The effect of a leading edge flap on the aerodynamics of a low aspect ratio delta wing is studied analytically. The separated flow field about the wing is represented by a simple vortex model composed of a conical straight vortex sheet and a concentrated vortex. The analysis is carried out in the cross-flow plane by mapping the wing trace, by means of the Schwarz-Christoffel transformation into the real axis of the transformed plane. Particular attention is given to the influence of angle of attack and flap deflection angle on lift and drag forces. Both lift and drag decrease with flap deflection, while the lift-to-drag ratio increases. A simple coordinate transformation is used to obtain a closed form expression for the lift-to-drag ratio as a function of flap deflection. The main effect of leading edge flap deflection is a partial suppression of the separated flow on the lesside of the wing. Qualitative comparison with experiments is presented, showing agreement in the general trends.

i

ACKNOWLEDGEMENT

F TO THE KALLET COM

11.

This work was supported by NASA grant NCC 2-74

医骨骨骨骨 化乙烯酸

۸,

Statistic for a discussion and the definition of the second second second second second second second second s

:3

Į,

and the state the second second C. S. Salar States

TABLE OF CONTENTS

Abstract i
Acknowledgement ii
Table of contents iii
Nomenclature iv
1. Introduction 1
2. Mathematical model 3
2.1 Methodology 3
2.2 Analogy between 2-D unsteady flow and 3-D conical flow
2.3 Vortex modelling
2.4 Aerodynamic forces12
2.4.1 Resultant force
2.4.2 List-to-Drag ratio
2.4.3 Normal force16
3. Results and Conclusions
3.1 Results
3.1.1 Conformal mapping20
3.1.2 Aerodynamic forces
3.2 Conclusions
References
Figures
Appen lix
A 1. Numerical procedure for conformal mapping
A 1.1 Wolfe method
A 1.2 Integration at singlular points
A 2. Numerical procedure for the vortex positions
A 2.1 Newton-Raphson method for complex functions
A 2.2 Integration path for the mapping function
A 2.3 Velocity at the vortex location
A 3. Derivation of the axial velocity component
Fortran program for the transformation
Fortran program for the aerodynamic forces

üi

NOMENCLATURE

operturbation velocity potential

 Γ vortex strength

a; exponent in the Schwarz-Christoffel transformation

a angle of attack

 ϵ half apex angle of a main delta wing

 δ flap deflection angle

 σ coordinate of the physical plane

 σ_v vortex position in physical plane

 η coordinate of the transformed plane

 η_v vortex position in the transformed plane

 η_i transformation coefficients

U uniform velocity

F complex potential

k the ratio of the span length of the main wing to the total span length

U uniform velocity

n normal vector of the flap surface

R resultant force

 R_w resultant force on the main wing

 R_F resultant force on the flap surface

u, v, w velocity components

 C_L lift coefficient

 C_D drag coefficient

 C_p pressure coefficient

 C_N normal force coefficient

 ΔC_L lift increment; C_L flap - C_L without flap

N normal force

iv

1. INTRODUCTION

It is a well known phenomenon that above the lecside of a low aspect ratio delta wing at incidence there occurs a vortical flow originating from leading edges, and that this vortical flow is stable up to certain angle of attack. This vortical flow causes an enhancement of lift, called vortex lift, especially needed during maneuvering as well as in take-off and landing. Leading edge flaps have been suggested as a control device of this vortical flow to retain the necessary aircraft stability and control. This application of the leading edge flap is suitable for subsonic-transonic tactical delta wing aircraft, as well as aircraft having both supersonic cruise efficiency and high maneuverability.¹

Coe and Weston² made experimental investigations on the effects of leading edge flaps. From their flow visualization it was found that leading edge deflection was effective in partly suppressing the formation of leading edge vortices and promoting attached flow condition. Hoffler and Rao³ conducted experiments and theoretical studies using the vortex panel method, including the effect of tabbed flaps. Their results indicated an increase of lift-to-drag ratio. From the experimental results known so far we conclude that during flap deflection the drag is reduced conciderably and the vortical flow is partially suppressed. The former contributes to an increase of lift-to-drag ratio and the latter causes a detrimental effect on lift. The second effect has been overcome by the use of flap tabs.^{3,4,5}

Although many theoretical studies on the delta wing configuration have been conducted,^{6,7,8,9} the flapped delta wing has not been analyzed outside the panel method context.³ Moreover, the panel method does not provide a satisfactory explanation for the experimentally observed changes in the lift-to-drag ratio. In the present study we attempt to assess the trends of the effect of a leading edge flap on the aerodynamic characteristics of a slender delta wing. For mathematical convenience the conical geometry of the delta wing and the flap are chosen as shown in Fig. 1. The analysis is conducted in the cross-flow plane normal to the wing with the assumption that the flow field is also conical. For this purpose the simplest model for the separated flow⁹ is chosen. This model is composed of a concentrated vortex and a straight vortex sheet, as shown in Fig. 2. In this model the analysis is carried out in a plane normal to the wing surface, which is

shown in Fig. 1. By means of a simple coordinate transformation the aerodynamic forces are resolved into lift and drag. A closed-form expression for the lift-to-drag ratio is found, which indicates that this ratio must increase with flap deflection. Comparison between theory and experiment shows generally similar trends for the aerodynamic coefficients.

2. MATHEMATICAL MODEL

2.1 Methodology

C. #

To study the qualitative trends of the effect of a leading edge flap on the aerodynamic characteristics of a low aspect ratio delta wing, the simplest model for the vortex sheet, suggested by Brown and Michael⁹, is chosen. This model, as shown in Fig 2, simply assumes the rolled-up shear layer to consist of a straight vortex sheet and a singular vortex core and requires this singularity system to be force free in a global sence.

The trace of the wing in the cross-flow plane is transformed into the horizontal axis of the transformed plane by the Schwarz-Christoffel transformation. The advantage of this transformation is that the boundary condition on the wing surface is satisfied automatically in the mapping plane.

In this chapter the following effects of flap deflection are calculated and compared with experiments.³

- The influence of pressure forces acting on the flap surface on the lift-to-drag ratio.
- The drag on the main wing and the fiap surface.
- The lift increment on the main wing and the flap surface.
- The influence of flap deflection angle on the vortex position and the force normal to the wing.

2.2 Analogy between 2-D unsteady flow and 3-D conics. flow

In this section a comparison between the three dimensional vortex sheet growing conically in space and the two dimensional vortex sheet growing in time is made. For the detailed mathematical procedure, refer to the paper by Küchmann and Weber.⁶

For an incompressible inviscid and irrotational flow the governing equation is

$$\nabla^2 \bar{\otimes} = 0 \tag{1}$$

where Φ is the perturbation of the velocity potential due to the wing and the associated vortex sheets originating at the leading edges.

For a conical flow the perturbation of the velocity potential and the geometry of the vortex sheet can be written

$$\bar{\Phi}(x,r,\theta) = x \phi(\bar{r},\theta)$$
(2)

$$S(x,r,\theta) = r - z f(\theta)$$
(3)

where $\bar{r} = r/x$ is the conical parameter.

In conical coordinates (1) becomes

$$\frac{1}{\bar{r}}\frac{\partial\phi}{\partial\bar{r}} + (1+\bar{r}^2)\frac{\partial^2\phi}{\partial\bar{r}^2} + \frac{1}{\bar{r}^2}\frac{\partial^2\phi}{\partial\theta^2} = 0 \quad . \tag{4}$$

The condition for the vortex sheet to be a streamline is

$$\mathbf{V} \cdot \nabla S = \mathbf{0} \quad , \tag{5}$$

Combining (5) with (2) and (3) gives

$$\left(\partial + \phi - \overline{r} \frac{\partial \phi}{\partial \overline{r}}\right) f - \frac{\partial \phi}{\partial \overline{r}} + \frac{f'}{f} \frac{\partial \phi}{\partial \theta} = 0 \tag{6}$$

where $\phi - \overline{\tau}(\partial \phi / \partial \overline{r}) = v_x$.

.,

The Bernoulli equation on the vortex sheet, postulating that no pressure difference across the vortex sheet exists, has the form

$$-\frac{p-p_o}{\rho/2} = 2U\left(\phi - \overline{r}\frac{\partial\phi}{\partial\overline{r}}\right) + \left(\phi - \overline{r}\frac{\partial\phi}{\partial\overline{r}}\right)^2 + \left(\frac{\partial\phi}{\partial\overline{r}}\right)^2 + \frac{1}{\overline{r}^2}\left(\frac{\partial\phi}{\partial\theta}\right)^2 \quad . \tag{7}$$

For an unsteady two dimensional flow, the potential function and the geometry of the vortex sheet can be written

å

$$\Phi(t,r,\theta) = \frac{R^2}{T} \left(\frac{t}{T}\right)^{2m-1} \phi(\bar{r},\theta)$$
(8)

$$S(i, \gamma, \theta) = r - R\left(\frac{t}{T}\right)^m f(\theta)$$
(9)

where $\overline{r} = \left(\frac{r}{R}\right) / \left(\frac{t}{2^{*}}\right)^{m}$ is Prandtl's unsteady similarity variable, and T and R

are a characteristic time and length.⁶

For the unsteady case we finally have the velocity potential equation as

$$\frac{1}{\overline{r}}\frac{\partial\phi}{\partial\overline{r}} + \frac{\partial^2\phi}{\partial\overline{r}^2} + \frac{1}{\overline{r}^2}\frac{\partial^2\phi}{\partial\theta^2} = 0 \quad . \tag{10}$$

Boundary condition for the vortex sheet

$$m f - \frac{\partial \phi}{\partial \bar{r}} + \frac{f' \partial \phi}{f \partial \theta} = 0 \quad . \tag{11}$$

Bernoulli equation for the vortex sheet

$$-\frac{p}{\rho/2} = \left(\frac{R}{T}\right)^2 \left(\frac{t}{T}\right)^{2(m-1)} \left(2(2m-1)\phi - 2m\overline{r}\frac{\partial\phi}{\partial\overline{r}} + \left(\frac{\partial\phi}{\partial\overline{r}}\right)^2 + \frac{1}{\overline{r}^2} \left(\frac{\partial\phi}{\partial\theta}\right)^2\right) . (12)$$

Let's compare the velocity potential equation, the boundary condition and the Bernoulli equation on the vortex sheet for the usersteady case ((10),(11),(12)) with those of the conical case ((4),(6),(7)). First, the equations for the velocity potential in the two cases become identical if $\overline{r} \ll 1$. Next, the boundary condition and Bernoulli equation on the vortex sheet become equal if m = 1 and $v_z = \phi - \overline{r}(\partial \phi/\partial \overline{r}) \ll 1$. Finally we must get the relationship between x and t. This relationship can be obtained by returning the potential equation in both cases to the original variables. This gives

$$x\left(\frac{x^2}{r^2}\phi_{rx} + \frac{1}{r}\phi_r - 2\frac{x}{r}\phi_{xr} + \phi_{rr} + \frac{1}{r}\phi_r + \frac{1}{r^2}\phi_{\theta\theta}\right) = 0$$
(13)

$$t\left(\frac{t^2}{m^2r^2}\phi_{ll} - \frac{2-3m}{rm}\phi_r + \frac{1}{r^2}\frac{2m^2 - 3m + 1}{m^2}\phi + \frac{t}{r^2}\frac{2-2m}{m^2}\phi_l - 2\frac{t}{r}\phi_{lr} + \frac{1}{r^2}\phi_{0\theta} + \frac{1}{r}\phi_r + \phi_{rr}\right) = 0 \quad . \tag{14}$$

With m = 1 and x = Ut these two equations become identical.

Now we see that the three dimensional conical flow could be calculated from the two dimensional unsteady flow if the following criteria were satisfied

(1) $\overline{r} \ll 1$, meaning that the flow is geometrically slender.

(2) $v_z \ll 1$, meaning that the flow is corredynamically slender

If these two conditions are satisfied, we can solve the conical flow problem from a 2-D unsteady problem with the substitution of x = Ut and m = 1.

The flow around a low aspect ratio delta wing satisfies these two conditions except near the vortex core, where v_z is close to U. Then, this analogy can be applied to slender delta wings with caution. Moreover, in concentrated vortex models, the axial velocity becomes singular at the core location, making the analogy more restrictive.

2.3 Vortex modelling

In the present model, composed of a straight vortex sheet and a singular vortex core as shown in Fig. 2, the vortex sheet and the vortex core do not follow streamlines; that is to say the vortex sheet and the vortex core are not independently force free. Thus, Joukowsky forces act both on the vortex sheet and the vortex core. In Brown and Michael's method these two forces are required to balance each other out, meaning that the whole system is force free.⁹ Using the unsteady analogy derived in 2.2 and from Fig. 2c, we can find a force free condition for the whole vortex system. In the unsteady flow, the force free condition is

$$\rho U : \Gamma_i \left(\frac{d\sigma_{vi}}{dt} - V_{\sigma_{vi}} \right) + \rho \frac{d(i\Gamma_i)}{dt} (\sigma_{vi} - \sigma_{oi}) = 0 \quad , \tag{15}$$

where Γ_i is the *i*th vortex strength,

 σ_{ni} is the position of i^{th} vortex,

 $V_{\sigma_{vi}}$ is the velocity at the i^{th} vortex position excluding its own induced velocity, σ_{oi} is the origin of the straight vortex sheet

The first term is the force acting on the vortex core, the second is that acting on the vortex sheet. The term $d\sigma_{vi}/dt - V_{\sigma_{vi}}$ is the relative velocity causing the Joukowsky force on the concentrated vortex core. The rate of change of the i^{th} vortex strength is $d(i\Gamma_i)/dt$ and this amount of vorticity is supplied through the straight vortex sheet having uniform strength, which connects the points from σ_{oi} to σ_{vi} .

From 2.2, the relationship between the 3-D conical flow and the 2-D unsteady flow is

$$\frac{d}{dt} = U \frac{d}{dx} \tag{16}$$

and from the geometry of a delta wing, the conical relationship gives

 $k = z\epsilon \tag{17a}$

$$\frac{d\Sigma}{dx} = \frac{\Sigma}{x} = \frac{\epsilon}{k}\Sigma$$
(17b)

where Σ stands for any quantity associated with the kinematics of the flow field, and k is defined in Fig. 3 and ϵ is the half apex angle of the main delta wing. Then the force free condition on the i^{th} vortex system can be rewritten

$$\frac{U\epsilon}{k}(2\sigma_{vi}-\sigma_{oi})=V_{\sigma_{vi}} \tag{184}$$

$$\overline{V}_{\sigma_{\tau i}} = \frac{d}{d\sigma} \left(F - \frac{i\Gamma_i}{2\pi} log(\sigma - \sigma_{vi}) \right) \quad . \tag{185}$$

where F is the total complex potential of the flow field.

In our case we have a system of four vortices fed by vortex sheets emanating from the leading edges and from the flap junctions. Since only the symmetrical configurations are treated, the analysis considers one half of the cross flow plane. Thus $\sigma_{o1} = i (k + (1 - k)e^{i\delta})$ for the leading edge vortex and $\sigma_{o2} = i k$ for the flap junction vortex. Then the force free conditions for both vortex systems are

$$\frac{U\epsilon}{k} \left(2\overline{\sigma}_{v1} + i(k + (1 - k)e^{-i\delta}) \right) = \frac{d}{d\sigma} \left(F - \frac{i\Gamma_1}{2\pi} \log(\sigma - \sigma_{v1}) \right) \Big|_{\sigma \to \sigma_{v1}}$$
(19)

$$\frac{U\epsilon}{k} \left(2\overline{\sigma}_{v2} + ik \right) = \frac{d}{d\sigma} \left(F - \frac{i\Gamma_2}{2\pi} log(\sigma - \sigma_{v2}) \right) \Big|_{\sigma = \sigma_{v2}} .$$

The derivation of the complex potential is facilitated by transforming the trace of the wing, together with its line of symmetry, into the real axis of a transformed plane. To perform this transformation the Schwarz-Christoffel transformation is used. The mapping procedure is shown in Fig. 3.

The general form of Scwarz-Christofiel transformation is

$$\frac{d\sigma}{d\eta} = A \prod_{i=1}^{n} (\eta - \eta_i)^{\alpha_i} , \qquad (21)$$

(20)

In integral form

$$\sigma = C + A \int_{\eta_o}^{\eta} \prod_{i=1}^{n} (\eta - \eta_i)^{\alpha_i} d\eta \quad , \qquad (22)$$

where $\alpha_i = k_i/\pi - 1$, k_i is the angle at the *i*th vertex of the polygon, and η_i is the corresponding point of σ in the mapping plane. A and C are complex constants.

From Fig. 3, we get

$$k_1 = \pi$$
, $k_2 = \pi/2$, $k_3 = \pi - \delta$, $k_3 = 2\pi$, $k_5 = \pi + \delta$, $k_6 = \pi/2$, (23)

then

$$\alpha_1 = 0$$
, $\alpha_2 = -1/2$, $\alpha_3 = -\delta/\pi$, $\alpha_4 = 1$, $\alpha_5 = \delta/\pi$, $\alpha_6 = -1/2$. (24)

From Riemann's mapping theorem we can arbitrarily choose two points. Let these two points be

 $\eta_4 = 0 \tag{25a}$

$$\eta_0 = \eta_2 \tag{25b}$$

These conditions imply that the leading edge is transformed to the origin and the initial point of the integration is taken arbitrarily at η_2 . Requiring that the velocity in both planes be equal at infinity, we have

$$\frac{d\sigma}{d\eta}\Big|_{\sigma\to\infty} = 1 \quad . \tag{26}$$

With (25) and (26), the transformation function becomes

$$\sigma = \int_{\eta_2}^{\eta} \frac{\eta}{\sqrt{(\eta-\eta_2)(\eta-\eta_3)}} \left(\frac{\eta-\eta_5}{\eta-\eta_3}\right)^{\delta/x} d\eta \quad . \tag{27}$$

The constants η_2 , η_3 , η_5 , η_6 can be obtained by matching the four corresponding points in the physical and the transformed plane

$$\sigma_3 = ik \rightarrow \eta_3 \tag{28a}$$

$$\sigma_6 = ik(1 + (1 - k)c^{i0}) \rightarrow 0 \qquad (28b)$$

 $\sigma_5 = ik \rightarrow \eta_5 \tag{28c}$

 $\sigma_6 = 0 \quad \rightarrow \quad \eta_6 \quad . \tag{28d}$

Here lengths are normalized with the half span length a(x). Applying (28),

$$k + \int_{\eta_2}^{\eta_3} \frac{\xi}{\sqrt{(\eta_5 - \xi)(\xi - \eta_2)}} \left(\frac{\eta_5 - \xi}{\eta_3 - \xi}\right)^{\delta/\pi} d\xi = 0$$
(29a)

$$1 - k + \int_{\eta_3}^0 \frac{\xi}{\sqrt{(\eta_6 - \xi)(\xi - \eta_2)}} \left(\frac{\eta_5 - \xi}{\xi - \eta_3}\right)^{\delta/r} d\xi = 0$$
(29b)

$$1 - k - \int_0^{\eta_3} \frac{\xi}{\sqrt{(\eta_6 - \xi)(\xi - \eta_2)}} \left(\frac{\eta_5 - \xi}{\xi - \eta_3}\right)^{\delta/\pi} d\xi = 0$$
(29c)

$$k - \int_{\eta_5}^{\eta_6} \frac{\xi}{\sqrt{(\eta_6 - \xi)(\xi - \eta_2)}} \left(\frac{\xi - \eta_5}{\xi - \eta_5}\right)^{\delta/\pi} d\xi = 0 \quad . \tag{29d}$$

This system is colved numerically for η_2 , η_3 , η_5 , η_5 as shown in Appendix 1.

From Fig. 3 we see that the complex potential in the transformed plane is the sum of the potentials of a unform velocity and that of four vortices, two of which are the image vortex systems needed to satisfy the boundary condition on the wing surface. Here we neglect the influence of the vortex sheet on the flow field.

Then the complex potential in mapping plane is

$$F(\eta) = U\alpha\eta + \frac{i\Gamma_1}{2\pi} log\left(\frac{\eta - \eta_{v1}}{\eta - \overline{\eta}_{v1}}\right) - \frac{i\Gamma_2}{2\pi} log\left(\frac{\eta - \eta_{v2}}{\eta - \overline{\eta}_2 v}\right) \quad , \tag{S0}$$

and the complex velocity in the physical plane is

$$\frac{dF}{d\sigma} = \frac{dF}{d\eta} \frac{d\eta}{d\sigma} = \left[U\alpha + \frac{i\Gamma_1}{2\pi} \left(\frac{1}{\eta - \eta_{v1}} - \frac{1}{\eta - \overline{\eta}_{v1}} \right) - \frac{i\Gamma_2}{2\pi} \left(\frac{1}{\eta - \eta_{v2}} - \frac{1}{\eta - \overline{\eta}_{v2}} \right) \right] \frac{d\eta}{d\sigma} , \quad (31)$$

where

$$\frac{d\eta}{d\sigma} = \frac{\sqrt{(\eta - \eta_3)(\eta - \eta_2)}}{\eta} \left(\frac{\eta - \eta_3}{\eta - \eta_5}\right)^{\delta/\pi} \quad . \tag{32}$$

According to (32) the velocity becomes singular at the leading edge, $\eta = 0$, and at the flap junction, $\eta = \eta_5$. To avoid this singularity we apply the Kutta condition at these two points. The two equations for the Kutta condition are

$$U_{\alpha} \div \frac{i\Gamma_1}{2\pi} \left(\frac{1}{\overline{\eta}_{v1}} - \frac{1}{\eta_{v1}} \right) - \frac{i\Gamma_2}{2\pi} \left(\frac{1}{\overline{\eta}_{v2}} - \frac{1}{\eta_{v2}} \right) = 0 \quad , \tag{33}$$

$$U\alpha + \frac{i\Gamma_1}{2\pi} \left(\frac{1}{\eta_5 - \eta_{v1}} - \frac{1}{\eta_5 - \overline{\eta}_{v1}} \right) - \frac{i\Gamma_2}{2\pi} \left(\frac{1}{\eta_5 - \eta_{v2}} - \frac{1}{\eta_5 - \overline{\eta}_{v2}} \right) = 0 \quad . \quad (34)$$

With the complex potential F the force free conditions given by (19) and (20)

become

State of the second second

$$\frac{U\epsilon}{k} \left(2\overline{\sigma}_{v1} + i(k+(1-k)e^{-i\delta}) \right) = \left[U\alpha - \frac{i\Gamma_1}{2\pi} \frac{1}{\eta_{v1} - \overline{\eta}_{v1}} - \frac{i\Gamma_2}{2\pi} \left(\frac{1}{\eta_{v1} - \eta_{v2}} - \frac{1}{\eta_{v1} - \overline{\eta}_{v2}} \right) \right] \times \left(\frac{\sqrt{(\eta_{v1} - \eta_6)(\eta_{v1} - \eta_2)}}{\eta_{v1}} \left(\frac{\eta_{v1} - \eta_3}{\eta_{v1} - \eta_5} \right)^{\delta/\pi} \right) + \frac{i\Gamma_1}{2\pi} \frac{d}{d\sigma} \left[log(\eta - \eta_{v1}) - log(\sigma - \sigma_{v1}) \right]_{\sigma \to \sigma_{\pi 1}}$$
(35)

$$\frac{U\epsilon}{k} \left(2\overline{\sigma}_{v2} + ik \right) = \left[U\alpha - \frac{i\Gamma_1}{2\pi} \left(\frac{1}{\eta_{v2} - \eta_{v1}} - \frac{1}{\eta_{v2} - \overline{\eta}_{v1}} \right) + \frac{i\Gamma_2}{2\pi} \frac{1}{\eta_{v2} - \overline{\eta}_{v2}} \right] \times \left(\frac{\sqrt{(\eta_{v2} - \eta_6)(\eta_{v2} - \eta_2)}}{\eta_{v2}} \left(\frac{\eta_{v2} - \eta_3}{\eta_{v2} - \eta_5} \right)^{\delta/\pi} \right) - \frac{i\Gamma_2}{2\pi} \frac{d}{d\sigma} \left[log(\eta - \eta_{v2}) - log(\sigma - \sigma_{v2}) \right]_{\sigma \to \sigma_{v2}} \right]$$
(36)

Combining (33) and (34) with (35) and (36), we get the following two complex equations for the vortex positions.

$$\frac{\epsilon}{k\alpha} \left(2\overline{\sigma}_{v1} + i\left(k + (1-k)\epsilon^{-i\delta}\right) \right) = \left[1 - \frac{D-B}{CB-AD} \frac{1}{\eta_{v1} - \overline{\eta}_{v1}} - \frac{C-A}{CB-AD} \left(\frac{1}{\eta_{v1} - \eta_{v2}} - \frac{1}{\eta_{v1} - \overline{\eta}_{v2}} \right) \right] \times$$
(37)
$$\left(\frac{d\sigma}{d\eta} \right) \bigg|_{\sigma = \sigma_{v1}} + \frac{D-B}{CB-AD} \frac{d}{d\sigma} \left(log(\eta - \eta_1) - log(\sigma - \sigma_{v1}) \right) \bigg|_{\sigma = (\sigma_{v1})}$$

11

¢

$$\frac{\epsilon}{k\alpha} \left(2\overline{\sigma}_{v2} + ik\right) = \left[1 + \frac{D - B}{CB - AD} \left(\frac{1}{\eta_{v2} - \eta_{v1}} - \frac{1}{\eta_{v2} - \overline{\eta}_{v1}}\right) + \frac{C - A}{CB - AD} \frac{1}{\eta_{v2} - \overline{\eta}_{v2}}\right] \times , \quad (38)$$
$$\left(\frac{d\sigma}{d\eta}\right)\Big|_{\sigma = \sigma_{v2}} + \frac{A - C}{CB - AD} \frac{d}{d\sigma} \left(\log(\eta - \eta_{v2}) - \log(\sigma - \sigma_{v2})\right)\Big|_{\sigma \to \sigma_{v2}}$$

where

$$A = \frac{1}{\overline{\eta}_{v1}} - \frac{1}{\eta_{v1}} \tag{39c}$$

$$B = \frac{1}{\overline{\eta}_{v2}} - \frac{1}{\eta_{v2}} \tag{39b}$$

$$C = \frac{1}{\eta_5 - \eta_{v1}} - \frac{1}{\eta_5 - \overline{\eta}_{v1}}$$
(39c)

$$D = \frac{1}{\eta_5 - \eta_{v2}} - \frac{1}{\eta_5 - \overline{\eta}_{v2}} \quad . \tag{39d}$$

In the absence of flaps the only governing parameter would be the ratio of ϵ/α . In the present case two additional parameters δ and k, are included in the group $\epsilon/(k \alpha)$. The flap deflection angle δ does not appear explicitly but through the transformation parameters η_2 , η_3 , η_5 and η_6 , which are functions of δ and k.

A Newton-Raphson method is used to solve the above two equations, the detailed numerical procedure is given in Appendix 2.

With the vortex positions known we get the vortex strengths from

$$\frac{i\Gamma_1}{2\pi} = \frac{D-B}{CB-AD} U\alpha \tag{40a}$$

$$\frac{i\Gamma_2}{2\pi} = \frac{C-A}{CB-AD} U\alpha \quad . \tag{40b}$$

2.4 Aerodynamic forces

54

2.4.1 Regultant force

To calculate the resultant force on each surface we consider the pressure coefficient.

$$C_p = 1 + \alpha^2 - (u/U)^2 - (v/U)^2 \quad , \qquad (41)$$

where the v and w components are given by

$$v = \frac{\partial \Phi}{\partial y} \tag{42a}$$

$$= \operatorname{Re}\left(\frac{\partial F}{\partial y}\right) \tag{425}$$

$$= \operatorname{Re}\left(V \; \frac{\partial \sigma}{\partial y}\right) \tag{42c}$$

$$= \operatorname{Re}\left[\left(U\alpha + \frac{i\Gamma_{1}}{2\pi}\left(\frac{1}{\eta - \eta_{v1}} - \frac{1}{\eta - \overline{\eta}_{v1}}\right) - \frac{i\Gamma_{2}}{2\pi}\left(\frac{1}{\eta - \eta_{v2}} - \frac{1}{\eta - \overline{\eta}_{v2}}\right)\right) \times \left(\frac{\sqrt{(\eta - \eta_{6})(\eta - \eta_{2})}}{\eta}\left(\frac{\eta - \eta_{3}}{\eta - \eta_{5}}\right)^{\delta/\pi}\right)\right], \qquad (42d)$$

$$\omega = \frac{\partial \Phi}{\partial z} \tag{43a}$$

$$= \mathbf{F} \mathbf{e} \left(\frac{\partial F}{\partial \eta} \frac{d\eta}{d\sigma} \frac{\partial \sigma}{\partial z} \right)$$
(43b)

$$= \operatorname{Re}\left(i V\right) \tag{43c}$$

here $\sigma = y + i z$ and $V = (\partial F/\partial \eta)(\partial \eta/\partial \sigma)$ i.e. the complex velocity in the cross-flow plane.

The u component is best obtained from the conical flow condition

$$u = U + \frac{1}{x} \left(\bar{\Psi} - y \frac{\partial \bar{\Psi}}{\partial y} - z \frac{\partial \bar{\Psi}}{\partial z} \right)$$

$$= U + \frac{\epsilon}{k} \operatorname{Re} \left[U \alpha \eta + \frac{i\Gamma_1}{2\pi} log \left(\frac{\eta - \eta_{v1}}{\eta - \overline{\eta}_{v1}} \right) - \frac{i\Gamma_2}{2\pi} log \left(\frac{\eta - \eta_{v2}}{\eta - \overline{\eta}_{v2}} \right) - yv - zw \right] (44b)$$

The presence of the feeding sheet induces a discontinuity in the *u* component of the velocity, as demonstrated in Appendix 3.

The resultant force is given by

12

$$R = \int_{each \ surface} p \ d\sigma \tag{45}$$

This integration is carried out numerically in the physical plane.

2.4.2 Lift-to-Drag ratio

Most experiments^{2,5,5} show an increase of lift-to-drag ratio with flap deflection. Before we calculate the lift-to-drag ratio we must consider the normal vector on the flap surface. The rotation of the leading edge flap about the flap hinge axis causes the normal vector to have a component opposite to the free stream. Associated with this component there is a force tending to decrease the drag, which is responsible for the increase in C_L/C_D . This component can be obtained by performing the following transformations:

Let's take the longitudinal axis of the wing as z, the axis normal to the wing surface as y and the starboard direction as -z, as shown in Fig. 1. e_x, e_y, e_z denote the unit vectors along axis x, y, z. With the rotations shown in Fig. 4, these vectors are expressed as

14

$$\begin{pmatrix} \mathbf{e}_{\mathbf{X}_1} \\ \mathbf{e}_{\mathbf{y}_1} \\ \mathbf{e}_{\mathbf{y}_1} \end{pmatrix} = \begin{pmatrix} \cos \epsilon & 0 & \sin \epsilon \\ 0 & 1 & 0 \\ -\sin \epsilon & 0 & \cos \epsilon \end{pmatrix} \begin{pmatrix} \mathbf{e}_{\mathbf{X}} \\ \mathbf{e}_{\mathbf{y}} \\ \mathbf{e}_{\mathbf{s}} \end{pmatrix}$$
(46)

$$\begin{pmatrix} \mathbf{e}_{\mathbf{X}_2} \\ \mathbf{e}_{\mathbf{y}_2} \\ \mathbf{e}_{\mathbf{z}_3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \delta & \sin \delta \\ 0 & -\sin \delta & \cos \delta \end{pmatrix} \begin{pmatrix} \mathbf{e}_{\mathbf{X}_1} \\ \mathbf{e}_{\mathbf{y}_1} \\ \mathbf{e}_{\mathbf{z}_1} \end{pmatrix} .$$
(47)

Identifying n with the normal vector to the flap surface we have

$$\mathbf{n} = \mathbf{e}_{\mathbf{y}_2} \quad . \tag{43}$$

Then

STATISCHER STREET

$$\mathbf{n} = \cos \delta \mathbf{e}_{y_1} + \sin \delta \mathbf{e}_{z_2}$$

= $\cos \delta \mathbf{e}_{y_1} + \sin \delta (-\sin \epsilon \mathbf{e}_x + \cos \epsilon \mathbf{e}_s)$ (49)
 $\simeq -\epsilon \sin \delta \mathbf{e}_x + \cos \delta \mathbf{e}_y + \sin \delta \mathbf{e}_s$

The first term in the last line shows the forward component of the normal vector. This term contributes to the increase of the lift-to-drag ratio when the flap is deflected. The first component, $-\epsilon sin\delta$, gives the thrust force and is of higher order than the other two. As the flap is deflected the vortex comes closer to the wing surface, causing a considerable change in drag.

On the main wing the resultant force is normal to the wing surface. Then the lift and the drag components are

$$L_w = R_w \tag{50a}$$

SELE: TL 4

$$D_{\omega} = R_{\omega} \alpha \tag{505}$$

where R_w is the resultant force on the main wing.

On the flap surface there are all three components of force, as indicated by (49)

$$R_{Fx} = -R_F \epsilon \sin \delta \tag{51a}$$

$$R_{Fy} = R_F \cos\delta \tag{51b}$$

 $R_{Fz} = R_F \epsilon \sin \delta \tag{51c}$

where R_F is the resultant force on the flap surface.

Since the R_{Fz} component is cancelled by symmetry, only R_{Fz} and R_{Fy} contribute to lift and drag

$$L_F = R_{Fy} - R_{Fx} \alpha \tag{52a}$$

$$D_F = R_{Fy} \alpha + R_{Fz} \cos \delta \quad . \tag{52b}$$

From (51a) and (51b)

$$R_{Fx} = -\epsilon \tan \delta R_{Fy} \quad . \tag{53}$$

From $(51)_1(52)$ and (53) we get the drag and lift on the flap

$$L_F = R_{Fy} \left(1 + \epsilon \alpha \, ianb \right) \tag{54a}$$

()):201211

$$D_F = \alpha R_{Fy} \left(1 - \frac{\epsilon}{\alpha} \tan \delta \right)$$
 (54b)

The total lift and drag are

$$L = R_w + R_{F_{u}}(1 + \epsilon \alpha \tan \delta)$$
(55)

$$D = \alpha \left(R_w + R_{Fy} \left(1 - \frac{\epsilon}{\alpha} \tan \delta \right) \right) \quad . \tag{56}$$

(55) and (56) show the influence of the forward component of force on the lift and the drag. Due to this thrust component the lift increases by an amount of order α^2 , while the drag is reduced by almost the same order as the drag itself. This increases the lift-to-drag ratio during flap deflection.

For moderate deflection angle the lift-to-drag ratio is

$$\frac{L}{D} = \frac{1}{\alpha} \left[\left(1 + \frac{R_{Fy}}{R_{w} + R_{Fy}} \frac{c}{\alpha} ian \delta \right) + O(\alpha^2) \right].$$
 (57)

Numerical results show that the lift itself also decreazes with flap deflection while the lift-to-drag ratio increases.

2.4.3 Normal force

As mentioned in the previous section the lift decreases with flap deflection. By considering the normal force we can infer the reason for this reduction.

The normal force can be calculated by considering the momentum change in the cross-flow plane

$$N = -\rho U \int \int \left(\frac{\partial \overline{\oplus}}{\partial y} - U\alpha\right) \, dy dz \tag{58}$$

Applying Stokes' theorem

$$N = -\rho U \int_{c} \Phi dz \tag{59}$$

In terms of the complex potential and the real stream function

$$N = -\rho U \int_{c} \operatorname{Im} \left(F \, d\sigma - i \, \Psi \, d\sigma \right) \tag{60}$$

Since the contour is a streamline

$$N = -\rho U \int_{c} \operatorname{Im} \left(F \, d\sigma \right) \tag{61}$$

15

Substituting for F

$$N = -\rho U \operatorname{Im} \int_{c} \left(U \alpha \eta + \frac{i \Gamma_{1}}{2\pi} \log \left(\frac{\eta - \eta_{v1}}{\eta - \overline{\eta}_{v1}} \right) - \frac{i \Gamma_{2}}{2\pi} \log \left(\frac{\eta - \eta_{v2}}{\eta - \overline{\eta}_{v2}} \right) \right) \frac{d\sigma}{d\eta} d\eta \qquad (62)$$

To perform this integral we first express the part containing the logarithmic terms on a circle of infinite radius, where $d\sigma/d\eta = 1$

$$\int_{c} \left(\frac{i\Gamma_{1}}{2\pi} log \left(\frac{\eta - \eta_{v1}}{\eta - \overline{\eta}_{v1}} \right) - \frac{i\Gamma_{2}}{2\pi} log \left(\frac{\eta - \eta_{v2}}{\eta - \overline{\eta}_{v2}} \right) \right) \frac{d\sigma}{d\eta} d\eta$$

$$= \int_{r=\infty} \left(\frac{i\Gamma_{1}}{2\pi} log \left(\frac{\eta - \eta_{v1}}{\eta - \overline{\eta}_{v1}} \right) - \frac{i\Gamma_{2}}{2\pi} log \left(\frac{\eta - \eta_{v2}}{\eta - \overline{\eta}_{v2}} \right) \right) d\eta \quad .$$
(63)

We see that in the transformed plane the normal force arising from the logarithmic terms does not depend explicitly on the wing trace, but implicitly through the vortices positions and strengths. This equation shows that the normal force is just the sum of the rate change of impulse of two pairs of vortices. Then the result could be simply obtained by considering the impulse of a pair vortices, or by integrating around the vortex sheet as shown in Fig. 5a. Following this second approach gives

$$\int_{r=\infty} \frac{i\Gamma_1}{2\pi} \left(\log(\eta - \eta_{v1}) - \log(\eta - \overline{\eta}_{v1}) \right) d\eta$$

$$= \frac{i\Gamma_1}{2\pi} \left[\int_{\overline{\eta}_{v1}}^{\eta_{v1}} \log(\eta - \eta_{v1})|_p - \log(\eta - \overline{\eta}_{v1})|_p - i \ 2\pi \ d\eta$$

$$+ \int_{\eta_{v1}}^{\overline{\eta}_{v1}} \log(\eta - \eta_{v1})|_p - \log(\eta - \overline{\eta}_{v1})|_p \ d\eta \right]$$

$$= \Gamma_1 \left(v_{1,1} - \overline{v}_{1,1} \right)$$
(64)

Then the normal force originating from the logarithmic terms is

$$N_{c} = \operatorname{Im} \rho U [\Gamma_{1}(\eta_{v1} - \overline{\eta}_{v1}) - \Gamma_{2}(\eta_{v2} - \overline{\eta}_{v2})] \quad . \tag{65}$$

This force is associated with the separated flow field about the wing.

The component of normal force from the the first term in (62) has a singularity at infinity. This component could be identified with the force produced by the wing if the flow were attached. Integrating along the wing trace, as shown in Fig. 5b, we find

$$\begin{split} &\int_{c} \frac{\eta^{2}}{\sqrt{(\eta - \eta_{0})(\eta - \eta_{2})}} \Big(\frac{\eta - \eta_{5}}{\eta - \eta_{3}}\Big)^{\delta/\pi} d\eta \\ &= \int_{\eta_{2}}^{\eta_{3}} \frac{\eta^{2}}{\sqrt{(\eta - \eta_{0})(\eta - \eta_{2})}} \Big|_{p} \Big(\frac{\eta - \eta_{5}}{\eta - \eta_{3}}\Big)^{\delta/\pi}\Big|_{p} d\eta \\ &+ \int_{\eta_{3}}^{\eta_{3}} \frac{\eta^{2}}{\sqrt{(\eta - \eta_{0})(\eta - \eta_{2})}} \Big|_{p} \Big(\frac{\eta - \eta_{5}}{\eta - \eta_{3}}\Big)^{\delta/\pi}\Big|_{p} \frac{1}{c^{i2\delta}} d\eta \\ &\div \int_{\eta_{3}}^{\eta_{6}} \frac{\eta^{2}}{\sqrt{(\eta - \eta_{0})(\eta - \eta_{2})}} \Big|_{p} \Big(\frac{\eta - \eta_{5}}{\eta - \eta_{3}}\Big)^{\delta/\pi}\Big|_{p} \frac{e^{i2\beta}}{c^{i2\delta}} d\eta \\ &+ \int_{\eta_{6}}^{\eta_{3}} - \frac{\eta^{2}}{\sqrt{(\eta - \eta_{6})(\eta - \eta_{2})}} \Big|_{p} \Big(\frac{\eta - \eta_{5}}{\eta - \eta_{3}}\Big)^{\delta/\pi}\Big|_{p} \frac{e^{i2\delta}}{c^{i2\delta}} d\eta \\ &+ \int_{\eta_{3}}^{\eta_{3}} - \frac{\eta^{2}}{\sqrt{(\eta - \eta_{6})(\eta - \eta_{2})}} \Big|_{p} \Big(\frac{\eta - \eta_{5}}{\eta - \eta_{3}}\Big)^{\delta/\pi}\Big|_{p} \frac{e^{i4\delta}}{c^{i2\delta}} d\eta \\ &+ \int_{\eta_{3}}^{\eta_{2}} - \frac{\eta^{2}}{\sqrt{(\eta - \eta_{6})(\eta - \eta_{5})}} \Big|_{p} \Big(\frac{\eta - \eta_{5}}{\eta - \eta_{3}}\Big)^{\delta/\pi}\Big|_{p} \frac{e^{i4\delta}}{c^{i4\delta}} d\eta \\ &= 2\Big(\int_{\eta_{2}}^{\eta_{3}} + \int_{\eta_{5}}^{\eta_{6}} + \cos 2\delta \int_{\eta_{3}}^{\eta_{3}}\Big) \frac{\eta^{2}}{\sqrt{(\eta - \eta_{6})(\eta - \eta_{2})}} \Big|_{p} \Big(\frac{\eta - \eta_{5}}{\eta - \eta_{3}}\Big)^{\delta/\pi}\Big|_{p} \int_{\eta_{3}}^{\eta_{4}} \frac{\eta}{\sqrt{(\eta - \eta_{5})}} \int_{\eta_{3}}^{\delta/\pi} \frac{\eta}{\sqrt{(\eta - \eta_{5})(\eta - \eta_{3})}} \Big|_{p} \int_{\eta_{3}}^{\eta} \frac{\eta}{\sqrt{(\eta - \eta_{5})(\eta - \eta_{3})}} \int_{\eta_{3}}^{\eta} \frac{\eta}{\sqrt{(\eta - \eta_{5})(\eta - \eta_{3})}} \Big|_{p} \int_{\eta_{3}}^{\eta} \frac{\eta}{\sqrt{(\eta - \eta_{5})(\eta - \eta_{3})}} \Big|_{q} \int_{\eta_{3}}^{$$

(66)

where subscript p represents the principal value that means all values must be calcualted in the same Riemann surface.

Then the total normal force is

$$N = \operatorname{Im} \left(\rho U \Gamma_{1}(\eta_{v1} - \overline{\eta}_{v1}) - \rho U \Gamma_{2}(\eta_{v2} - \overline{\eta}_{v2}) \right) - \rho U^{2} \alpha \operatorname{Im} \int_{c} \frac{\eta^{2}}{\sqrt{(\eta - \eta_{5})(\eta - \eta_{2})}} \left(\frac{\eta - \eta_{5}}{\eta - \eta_{5}} \right)^{\delta/\pi} d\eta$$
(67)

The normal force is composed of two parts; the normal force from equivalent attached now and that from the separated flow.

Dividing this total normal force by the dynamic pressure $\rho U^2/2$ and the projected area $k a(x) (k + (1 - k)\cos \delta)/\epsilon$, we get the normal force coefficient

$$C_{N} = \frac{\epsilon}{k} \frac{1}{k + (1 - k)\cos\delta} \times$$

$$\operatorname{Im} \left[2\Gamma_{1}(\eta_{v1} - \overline{\eta}_{v1}) - 2\Gamma_{2}(\eta_{v2} - \overline{\eta}_{v2}) - 4\alpha \left(\left(\int_{\eta_{2}}^{\eta_{3}} + \int_{\eta_{3}}^{\eta_{6}} + \cos 2\delta \int_{\eta_{3}}^{\eta_{5}} \right) \frac{\eta^{2}}{\sqrt{(\eta - \eta_{6})(\eta - \eta_{2})}} \left(\frac{\eta - \eta_{5}}{\eta - \eta_{3}} \right)^{\delta/x} \Big|_{p} d\eta \right) \right]$$

$$(66)$$

where the vortex intensity and η have been normalised with $U a(\pi)$ and $a(\pi)$ respectively.

Here all the values of the integrand are the principal values. This shows explicitly the effect of the flap angle on the normal force. The region from η_3 to η_5 is the flap surface.

For flap deflection angles much larger than the angle of attack, it is conceivable that the vortex may be located underneath the wing surface.⁶ In this case the dominant component in the cross flow plane is not $U \alpha$ but the projection of \overline{U} on a plane normal to the flap surface. This fact imposes a limit to the flap angles for which this theory is expected to apply.

S. RESULTS AND CONCLUSIONS

111

1

3.1 Results

3.1.1 Conformal mapping

The following table shows the transformation coefficients η_2 , η_3 , η_4 and a_5 for varying flap deflection angle δ , with b = 0.6 and $\epsilon = 35.95^{\circ}$.

δ(deg.)	72	73	75	516
40.	0.6369	-0.5160	0.9785	1.301
36.	-0.6729	-0.5441	0.6659	1.277
32.	-0.7091	0.5722	0.9513	1.251
28.	-0.7456	-0.6004	0.9355	1.223
24.	-0.7824	0.6284	0.9483	1.195
20.	-D.B1B1	-0.6352	<i>0</i> _9997	1.165
16.		0.5335	0.0794	1.134
12.	-0.6024	0.7105	0.6583	1.162
9.	—D. 9736	-0.7371	0.2753	1.069
4.	-0.9544	D.7623	0.6130	1.035
2.	-0.9822	0.7755	0.2010	1.016

Table I

We see that as $\delta \to 0$, $\eta_2 \to -1$ and $\eta_3 \to 1$, which correspond to the Brown and Michael case.

2.1.2 Acrodynamic forces

To compare with the experimental results of ref. [3] a wing with $c = 15.95^{\circ}$ and k = 0.6 is chosen. The angle of attack is varied from 0° to 20° .

Fig. 6 shows the contribution to the drag of the main wing. It can be seen that the model overestimates the drag, particularly at higher angles of attack.

Fig. 7 shows the contribution to the drag of the flap. Notice that this component of drag can reach negative values. This is due to the forward force component discussed above. Fig. 8 and 9 show the increment of lift on the main wing and flap respectively. The abrupt departure from experiments observed at about 12° appears to suggest vortex breakdown in the experiments.

Fig. 10 shows the evolution of the resultant drag. The negative values of drag arise from the conical assumptions, where no trailing vortices and associated drag are considered.

Fig. 11 depicts the total lift change. Again, the sudden departure from the experimental trends may indicate that those measurements were affected by vortex breakdown.

Fig. 12 shows the change in the C_L/C_D ratio. No experimental values were available. The no-deflection case is included for comparison.

Fig. 13 shows the positions of vortices for varying flap deflection. For flap deflections less than 16° the secondary vortex almost disappears. The vortex positions in the physical plane are shown in Fig. 14. We notice that flap deflection causes the secondary vortex to move away from the surface and the leading edge vortex to approach the surface.

Fig. 15 describes the strength of both vortices as function of flap deflection. Flap deflection strengthens the secondary vortex and weakens the leading edge vortex. The strength of leading edge vortex reduces by a half in 40° flap deflection.

Fig. 16 shows the different components of normal force. We notice that flap deflection acts primarily on the leading edge vortex component of the normal force. The secondary vortex has a negligible effect c_{1} the total force.

3.2 Conclusions

A conical delta wing with leading edge flaps was analyzed using a simple vortexfeeding-sheet model consisting of two pairs of vortices with corresponding vortex sheets. One pair originates at the leading edges and the other at the flap junctions. The leading edge vortex pair is much stronger and responsible for most of the lift and drag changes that take place during flap deflection. In agreement with experimental evidence, it was found that flap deflection causes a decrease of lift and drag, and an increase of the lift-to-drag ratio. A closed form expression exhibiting the lift-to-drag ratio increase was derived. The rapid reduction in drag is attributable to a thrust force component developed by the flaps, while the main reason for the lift reduction is the partial suppression of the vortical flow. There is agreement with experiments in the general trends.

The two main sources of limitation of the theory are the crudness of the vortex system representation, and the assumption that a cross-flow plane can be suitably defined. The latter aspect becomes relevant in highly warped wings, which in this case amounts to flap deflections that are large and comparable to the angle of attack, where the notion of a plane normal to the wing becomes meaningless.

22

1

References

- 1. J.E. Lamar and J.F. Campbell, " Vortex Flaps Advanced Control Devices for Supercruise Fighters ", Aerospace America, Jan., 1984
- P.L. Coe, Jr. and R.P. Weston, "Effects of Wing Leading-Edge Deflection on Low-Speed Aerodynamic Chracteristics of a Low-Aspect- Ratio Highly Swept Arrow-Wing Cinfiguration ", NASA TP 1434, 1979
- 3. K.D. Hoffler and D.M. Rao, " An Investigation of the Tabbed Vortex Flap ", J. Aircraft, Vol. 22, No. 6, pp 490-497, 1985
- D.M. Rao, "Vortical Flow Management for Improved Configuration Aerodynamics - Recent Experiences ", AGARD CP 342, 1983
- 5. L.P. Yip and D.G. Murri, " Effect of Vortex Flaps on the Low-Speed Aerodynamics of an Arrow Wing ", NASA TP 1914, 1931
- 6. D.Küchmann and J. Webber, "Vortex Motions", Zeithschrift Für Angewandte Mathematik und Mechanik, 45, pp 457 - 474, 1965
- 7. D. Küchmann, The Aerodynamic Design of Aircraft, Pergamon press, 1979
- 8. R.T. Jones, " Properties of Low-Aspect-Ratio Pointed Wings at Speeds below and above the Speed of Sound ", NACA Rep. No. 635, 1946
- 9. C.E. Brown and W.H. Michael, Jr., " On Slender Delta Wings with Leading-Edge Separation ", NACA TN 3450, 1955

đ

Fig. 1. Overview of the

22

and and a Sugar an arrest

• •

.//

• •

Alter at a star at a second and a second at the

1

And the second second to the second second

e + 11

0.1

The state of the low state of the state of the

•.

. . .

٩,

ពី

0.1

1

0gS

S K

Fig. 4. Coordinate rotation in flap deflection

j.

•,

5

T.

APPENDIX

A 1. Numerical procedure for conformal mapping

A 1.1 Welfe method

Wolfe's method is just a variation on the secant method for systems of nonlinear equations. This method has the advantage that as the solution becomes closer to the root, the convergence speed is much faster than that of Newton-Raphson methods. For a single equation the secant method is equvalent to solving the following two equations, with two initial guesses

$$p_1 + p_2 = 1$$
 (A1.1c)

$$p_1f(x_n) + p_2f(x_{n-1}) = 0$$
 (A1.1b)

The solution is updated as

$$x_{n+1} = p_1 x_{n-1} + p_2 x_n \qquad (A1.1c)$$

For a system of n equations a set of n+1 equations must be solved with n+1 vectors of initial guerses,

$$\sum_{j=1}^{n+1} p_j = 1$$
 (A1.2a)

$$\sum_{j=1}^{n+1} p_j f_i(x_1^j, x_2^j, \cdots, x_n^j) = 0 \quad i = 1, 2, \cdots, n \quad . \tag{A1.2b}$$

For the solution update we ignore the vector x^j which gives the maximum residue.

$$\mathbf{x}^{j}|_{k+1^{th} \ slep} = \sum_{j=1}^{n+1} p_{j} \, \mathbf{x}^{j}|_{k^{th} \ slep} \quad , \tag{A1.3}$$

where $\pi^{j} = (x_1^{j}, x_2^{j}, \cdots, x_n^{j}).$

38

This procedure is repeated until the maximum residue becomes smaller than a given value.

A 1.2 Integration at singular points

The integrand of the mapping function is singular at the points $\xi = \eta_2, \eta_3, \eta_5$. To perform the numerical integration, the integrand is expanded to 1st order in Taylor series about those points. For example, at $\xi = \eta_2$

$$\int_{\eta_{2}}^{\eta_{2}+s} \frac{\xi}{\sqrt{(\eta_{5}-\xi)(\xi-\eta_{2})}} \left(\frac{\eta_{5}-\xi}{\eta_{3}-\xi}\right)^{\delta/\pi} d\xi$$

$$= \int_{0}^{\xi} \frac{\xi+\eta_{2}}{\sqrt{\xi(\eta_{5}-\xi-\eta_{2})}} \left(\frac{\eta_{5}-\xi-\eta_{2}}{\eta_{5}-\xi-\eta_{2}}\right)^{\delta/\pi} d\xi$$

$$\approx \frac{\eta_{2}}{\sqrt{\eta_{6}-\eta_{2}}} \left(\frac{\eta_{5}-\eta_{2}}{\eta_{3}-\eta_{2}}\right)^{\delta/\pi} \int_{0}^{\xi} \frac{1}{\sqrt{\xi}} d\xi$$

$$= \frac{2\eta_{2}}{\sqrt{\eta_{6}-\eta_{2}}} \left(\frac{\eta_{5}-\eta_{2}}{\eta_{3}-\eta_{2}}\right)^{\delta/\pi} \sqrt{\varepsilon}$$
(A1)

where $\varsigma = \xi - \eta_2$.

Romberg integration is used on the rest of the range.

A 2. Numerical procedure for the vortex positions

A 2.1 Newton - Raphson method for complex functions

Consider the system of real equations

$$\mathbf{f}(\mathbf{x}) = \mathbf{0} \tag{A.2.1}$$

.4)

The general form of the Newton-Rapheon method is

$$\mathbf{x}_{n+1} = \mathbf{x}_n - J^{-1}[\mathbf{f}(\mathbf{x}_n)] \mathbf{f}(\mathbf{x}_n)$$
 (A.2.2)

where $J[f(x_n)]$ is the Jacobian of f(x) at x_n .

Ċ

In the case of a system of complex equations

$$\mathbf{x} = (x_1 + iy_1, x_2 + iy_2, \cdots, x_n + iy_n)$$
 (A.2.3)

Applying the scheme to the real and imaginary parts of f we get

$$\begin{pmatrix} z_1 \\ y_1 \\ z_2 \\ y_3 \\ \vdots \\ z_n \\ y_n \end{pmatrix}_{n+1} = \begin{pmatrix} z_1 \\ y_1 \\ z_2 \\ y_2 \\ \vdots \\ z_n \\ y_n \end{pmatrix}_n - J^{-1} \begin{pmatrix} \operatorname{Ro}f_1 \\ \operatorname{Im}f_1 \\ \operatorname{Ro}f_2 \\ \operatorname{Im}f_2 \\ \vdots \\ \operatorname{Re}f_n \\ \operatorname{Im}f_n \end{pmatrix}_n$$
 (A.2.4)

with

$$J = \begin{pmatrix} \operatorname{Re}\left(\frac{\partial f_{1}}{\partial z_{1}}\right) & \operatorname{Re}\left(\frac{\partial f_{1}}{\partial y_{1}}\right) & \dots & \operatorname{Re}\left(\frac{\partial f_{1}}{\partial z_{n}}\right) & \operatorname{Re}\left(\frac{\partial f_{1}}{\partial y_{n}}\right) \\ \operatorname{Im}\left(\frac{\partial f_{1}}{\partial z_{1}}\right) & \operatorname{Im}\left(\frac{\partial f_{1}}{\partial y_{1}}\right) & \dots & \operatorname{Im}\left(\frac{\partial f_{1}}{\partial z_{n}}\right) & \operatorname{Im}\left(\frac{\partial f_{1}}{\partial y_{n}}\right) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \operatorname{Re}\left(\frac{\partial f_{n}}{\partial z_{1}}\right) & \operatorname{Re}\left(\frac{\partial f_{n}}{\partial y_{1}}\right) & \dots & \operatorname{Re}\left(\frac{\partial f_{n}}{\partial z_{n}}\right) & \operatorname{Re}\left(\frac{\partial f_{n}}{\partial y_{n}}\right) \\ \operatorname{Im}\left(\frac{\partial f_{n}}{\partial z_{1}}\right) & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial y_{1}}\right) & \dots & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial z_{n}}\right) & \operatorname{Re}\left(\frac{\partial f_{n}}{\partial y_{n}}\right) \\ \end{pmatrix}_{\mathrm{Re}\left(\frac{\partial f_{n}}{\partial z_{1}}\right) & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial y_{1}}\right) & \dots & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial z_{n}}\right) & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial y_{n}}\right) \\ \end{pmatrix}_{\mathrm{Re}\left(\frac{\partial f_{n}}{\partial z_{1}}\right) & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial y_{1}}\right) & \dots & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial z_{n}}\right) & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial y_{n}}\right) \\ \end{array}\right)_{\mathrm{Re}\left(\frac{\partial f_{n}}{\partial y_{1}}\right) & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial y_{1}}\right) & \dots & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial z_{n}}\right) & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial y_{n}}\right) \\ \end{array}\right)_{\mathrm{Re}\left(\frac{\partial f_{n}}{\partial y_{1}}\right) & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial y_{1}}\right) & \cdots & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial z_{n}}\right) & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial y_{n}}\right) \\ \end{array}\right)_{\mathrm{Re}\left(\frac{\partial f_{n}}{\partial y_{n}}\right) & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial y_{1}}\right) & \cdots & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial z_{n}}\right) & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial y_{n}}\right) \\ \end{array}\right)_{\mathrm{Re}\left(\frac{\partial f_{n}}{\partial y_{n}}\right) & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial y_{n}}\right) & \cdots & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial z_{n}}\right) & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial y_{n}}\right) \\ \end{array}\right)_{\mathrm{Re}\left(\frac{\partial f_{n}}{\partial y_{n}}\right) & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial y_{n}}\right) & \cdots & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial y_{n}}\right) & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial y_{n}}\right) \\ \end{array}\right)_{\mathrm{Re}\left(\frac{\partial f_{n}}{\partial y_{n}}\right) & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial y_{n}}\right) & \cdots & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial y_{n}}\right) & \operatorname{Im}\left(\frac{\partial f_{n}}{\partial y_{n}}\right) \\$$

For the present problem we have two equations for the vortex positions, or a 4×4 matrix. The reason why the Newton - Raphson method is used here is that for Wolfe methods we need one more initial guess than for the Newton - Raphson method, which gives 6×6 matrix. A more important reason is that the Wolfe method needs very accurate initial guesses for good convergence.

A 2.2 Integration path for the mapping function

In using Newton - Raphson method to solve the equations for the vortex positions we need to calculate the corresponding points between the physical plane and the transformed plane by carrying out the transformation

$$\sigma = \int_{\eta_3}^{\eta} \frac{\eta}{\sqrt{(\eta - \eta_2)(\eta - \eta_6)}} \left(\frac{\eta - \eta_5}{\eta - \eta_3}\right)^{\delta/\pi} d\eta \quad . \tag{A2.6}$$

If we take the integration path as a straight line connecting η_2 with the assumed vortex position, we encounter the following problem: when the vortex position is

very close to the real axis, which is the case when α is small, the integration path almost passes through the singular points η_5 and η_6 . To avoid this possible numerical singularity, the integration path is taken in the following way:

 $\eta_2 \rightarrow \eta_2 + i 2 \rightarrow assumed \Re_0 \eta_v + i 2 \rightarrow assumed \eta_v$ (A2.7)

The maximum imaginary value is taken as 2, which is large enough to calculate the vortex positions.

A 2.3 Velocity at the vortex location

(37) and (38) in chapter 2 contain terms of the form

$$\frac{d}{d\sigma} \Big[log(\eta - \eta_{vi}) - log(\sigma - \sigma_{vi}) \Big]_{\sigma \to \sigma_{vi}} , \qquad (A2.8a)$$

which can be written as

$$\frac{d}{d\eta} \Big[\log(\eta - \eta_{vi}) - \log(\sigma - \sigma_{vi}) \Big]_{\eta \to \eta_{vi}} \frac{d\eta}{d\sigma} \Big|_{\sigma_{vi}}$$
(A2.6b)

In terms of finite differences this quantity can be appreximated by

$$\begin{bmatrix} \left(\log \frac{\eta_{vi} + \Delta \eta_{vi} - \eta_{vi}}{\sigma(\eta_{vi} + \Delta \eta_{vi}) - \sigma_{vi}} - \log \frac{\eta_{vi} - \Delta \eta_{vi} - \eta_{vi}}{\sigma(\eta_{vi} - \Delta \eta_{vi}) - \sigma_{vi}} \right) / (2\Delta \eta_{vi}) \end{bmatrix} \frac{d\eta}{d\sigma} \Big|_{\eta_{vi}}$$

$$= \begin{bmatrix} \left(\log \frac{\sigma_{vi} - \sigma(\eta_{vi} - \Delta \eta_{vi})}{\sigma(\eta_{vi} + \Delta \eta_{vi}) - \sigma_{vi}} \right) / (2\Delta \sigma_{vi}) \end{bmatrix} \frac{d\eta}{d\sigma} \Big|_{\eta_{vi}}$$

$$(A2.9)$$

This is done in the transformed plane to avoid inverting (A 2.6).

A 3. Derivation of the axial velocity component

In 2.4 we derived the axial velocity component under conical flow assumptions

$$\mathbf{u} = U + \frac{1}{x} \left(\bar{\mathbf{Q}} - y \frac{\partial \bar{\mathbf{Q}}}{\partial y} - z \frac{\partial \bar{\mathbf{Q}}}{\partial z} \right)$$
(A3.1a)

$$= U + \frac{\epsilon}{k} \operatorname{Re} \left[U \simeq \eta + \frac{i\Gamma_1}{2\pi} \log \left(\frac{\eta - \eta_{v1}}{\eta - \overline{\eta}_{v1}} \right) - \frac{i\Gamma_2}{2\pi} \log \left(\frac{\eta - \eta_{v2}}{\eta - \overline{\eta}_{v2}} \right) - yv - zw \right] (A3.1t)$$

Here we have logarithmic branch points at η_{v1} , η_{v2} , $\overline{\eta}_{v1}$, $\overline{\eta}_{v2}$. To numerically evaluate functions across branch cuts care must be exercised since computers usually give the argument of a complex variable between $-\pi$ and π while the value of interest here is between 0 and 2π . As an example we consider two branch points at η_{v1} and $\overline{\eta}_{v1}$, as shown in Fig. 5a

$$log(\eta - \eta_{v1}) = \begin{cases} log(\eta - \eta_{v1})|_{p} = log(\eta - \eta_{v1})|_{c} + i 2\pi & \text{in I},\Pi,\Pi,\Pi,V \\ log(\eta - \eta_{v1})|_{p} + i 2\pi = log(\eta - \eta_{v1})|_{c} + i 4\pi & \text{in V} \end{cases}$$

(A3.2c)

$$log(\eta - \overline{\eta}_{v1}) = \begin{cases} log(\eta - \overline{\eta}_{v1})|_{p} = log(\eta - \overline{\eta}_{v1})|_{c} + i \ 2\pi & \text{in I} \\ log(\eta - \overline{\eta}_{v1})|_{p} + i \ 2\pi = log(\eta - \overline{\eta}_{v1})|_{c} + i \ 4\pi & \text{in II}, \text{III}, \text{IV}, \text{V} \end{cases}$$

(A3.2b)

where the subscript p means the principal value and c means the value calculated from the computer. Actually the values are calculated only in region IV,V and half of III due to the symmetry of the flow.

A 4.	Fortran program for the Schwarz-Christoffel transformation
	IMPLICIT REAL*8 (A-H, O-Z) DIMENSION SS (10, 10), WORK (10), OA (10, 10), Z (10), IPVT (10), XF (10)
*	, FNRM (10), X (10, 10), XZ (10), B (10), XX (10), VX (10), SX (10)
	DATA PI/3.141592654/
	DATA ERR. EPS/1.D-8,1.D-2/
c	DATA XRTO / .6153846154 /
C700	FORMAT(5X, 'FLAP ANGLE = ', $D15.6$)
	DO 1 J=1, JMAX
1 .	READ(35,*)(X(I,J),I=1,IMAX)
111	READ(5,*) DLTAD
	DLTA=DLTAD*PI/180.
5	N=0 D=0 2 $I=1$ $II/4$ $N=0$
	DO 3 I=1, IMAX
3	VX(I) = X(I, J)
	CALL MATEL (VX, IMAX, JMAX, PI, XRTO, DLTA, ERR, EPS, SX)
4	SS(I, J) = SX(I)
_	SS(JMAX, J) = 1.
2	CONTINUE DO 6 I=1 TMAX
6	B(1)=C.
	B(JMAX) = 1
	CALL DECOMP (10, JMAX, SS, COND. IPVT, WORK, OA, Z, ZNORM)
	EO 7 I=1, IMAX
	XX(I) = 0.
7	$XX (I) = XX (I) + X (I \cup J) + XZ (J)$
•	CALL NORM (OA, IMAX, JMAX, FMX, FNRM, XLOG, JC)
	IF(XLOG.LT10.) CO TO B
	DO 10 I=1.IMAX
10 .	X(I, JC) = XX(I)
	N=N+1 WRITE (6.5(Y)) (Y (1.1C) Y=1.1MAY)
	X(1, JC) = -DABS(X(1, JC))
	X(2, JC) = -DABS(X(2, JC))
	X(3, JC) = DABS(X(3, JC)) X(4, JC) = DABS(X(4, JC))
	IF (X (2, JC) LT.X (3, JC)) CO TO 300
	CXX=X(2, JC)
	X(2, JC) = X(3, JC)

X(3,JC)=CXX C0 TO 300 IF (X (3, JC) .LT.X (4, JC)) GO TO 400 300 CYY=X(4, JC)X(4, JC) = X(3, JC)X(3, JC) = CYYCO TO 400 CO TO 5 400 9 WRITE (6, 100) GO TO 11 WRITE (6, 500) N, (XX (I), I=1, IMAX) 8 CO TO 11 WRITE (30, 202) DLTAD, (XX (I), I=1, IMAX) 11 IF (XRTO.GT.2.) GO TO 130 GO TO 111 130 STOP FORMAT (3X, 'DLTA', 9X, 'A2', 14X, 'A3', 14X, 'A5', 14X, 'A6', 1X/) FORMAT (1X, 'MORE THAN 50 ITERATION') 121 100 202 FORMAT(1X, F8.5, 4(1X, D15.6)) 500 FORMAT(1X, 12, 4(1X, D15.6))END SUBROUTINE MATEL (X, IMAX, JMAX, PI, XRTO, DLTA, ERR, EPS, Y) IMPLICIT REAL*S (A-H, O-Z) DIMENSION X(10), Y(10) A2=X(1) A3=X(2) A5=X(3) A6=X(4) A2P=A2+EPS A3M=A3-EPS A3P=A3+EPS A6M=A6-EPS CALL ROMBRG (1, A2, A3, A5, A6, A2P, A3M, ERR, DLTA, PI, XINT1) CALL ROMERG (2, A2, A3, A5, A6, A3P, O., ERR. DLTA, PJ, XINT2) CALL ROMBRG (2, A2, A3, A5, A6, O., A5, ERR, DLTA, PI, XINT3) CALL ROMBRG (3, A2, A3, A5, A6, A5, A6M, ERR, DLTA, PI, XINT4) Y(1)=XRTO+XINT1+2.*A2*((A5-A2)/(A3-A2))**(DLTA/P1) *DSQRT (EPS/ (A6-A2)) +A3* (A5-A3) ** (DLTA/PI) *EPS**(1.-DLTA/PI)/((1.-DLTA/PI)*DSQRT((AG-A3) * (A3-A2))) Y(2) = 1. - XRTO +XINT2+A3* (A5-A3) ** (DLTA/PI) *EPS** (1. -DLTA/PI) / ((1.-DLTA/PI) *DSORT((A6-A3) * (A3-A2))) Y(3) = 1. - XRTO - XINT3Y(4) = XRTO - XINT4 -2.*A6*((A6-A5)/(A6-A3))**(DLTA/PI)*DSQRT(EPS/(A6-A2)): RETURN END

120:10.2

ي معر و و ا

الوادهي جاري رجاعجة الدبح بالمحرب محدان الرباط الدام

SUBROUTINE NORM (X, IM, JM, XMAX, XLOR, XLOC, N) IMPLICIT REAL*8(A-H,O-Z) DIMENSION X (10, 10), XNRM (10) XMAX=O. N=1 DO 2 J=1, JM XNRM(J) = 0. DO 1 I=1, IM XNRM(J) = XNRM(J) + X(I, J) * 21 IF (XMAX.GT.XNRM(J)) GO TO 2 XMAX=XNRM(J) N=J CONTINUE 2 XLOG=DLOG (XMAX) RETURN END SUBROUTINE DECOMP (NDIM, N, A, COND, IPVT, WORK, CA, Z, ZNORM) IMPLICIT REAL*8 (A-H, O-Z) DIMENSION A (NDIM, N), WORK (N), OA (NDIM, N), Z (N), IPVT (N) INTEGER NM1, I, J, K, KP1, KB, KM1, M DO 1 I=1,N DO 1 J=1,N CA(I,J) = A(I,J)1 CONTINUE IPVT (N) =1 IF (N.EQ.1) CO TO 80 NM1=N-1 ANORM=0. DO 10 J=1.N T=0. DO 5 I=1,N T=T+ABS(A(I,J))CONTINUE 5 IF (T.CT. ANORM) ANORM=T 10 CONTINUE DO 35 K=1,NM1 KP1=K+1 M=K DO 15 I=KP1,N IF (ABS (A (I, K)) . GT . ABS (A (M, K))) M=I 15 CONTINUE IPVT (K) =M IF (M.NE.K) IPVT (N) = -IPVT (N)T=A (M, K) A(K,K) = A(K,K)A(K,K) = TIF (T.EQ.O.) CO TO 35 DO 20 I=KP1,N A(I,K) = -A(I,K)/T43

 \sim \sim \wedge \wedge \wedge \wedge \wedge \wedge

20	CONTINUE
	$\mathbf{L} = \mathcal{A} \left[(\mathbf{U}, \mathbf{U}) \right]$
	$A(\mathbf{m},\mathbf{u}) = A(\mathbf{n},\mathbf{u})$
	A(K,J) = 1
	IF (T.EQ.0.) CO IO 30
	DO 25 J=RP1.N
	A(I,J) = A(I,J) + A(I,K) + T
25	CONTINUE
30	CONTINUE
35	CONTINUE
•••	DO 50 K=1,N
	T=0.
	IF (K.EQ.1) GO TO 45
	KM1=K-1
	DO 40 I=1,KM1
	T=T+A(I,K) *WORK(I)
40	CONTINUE
45	EK=1.
	IF (T.LT.O.) EK=-1.
•	IF (A(K,K).EQ.O.) GO TO 90
	WORK $(K) = -(EK+T) / \Lambda(K, K)$
50	CONTINUE
•••	DO 60 KB=1, NM1
	K=N-KB
	T=0.
	KP1=K+1
• •	DO 55 I=KP1,N
	T=T+A(I,K) *NORK(K)
55	CONTINUE
	WORK(K) = T
	M=IPVT(K)
	IF (M EQ. K) GO TO 60
	T=WORK (M)
	WORK(M) = WORK(K)
	WORK(K) = T
60	CONTINUE
	YNORM=O.
	DO 65 I=1,N
	YNORM=YNORM+ABS (WORK (I))
65	CONTINUE
	CALL SOLVE (NDIM.N.A. WORK, IPVT.Z)
	ZNCRH=O.
·	DO 70 $I=1,N$
	ZNORM=ZNORM+ABS(Z(I))
70	CONTINUE
	COND=ANORM*ZNORM/YNORM
	IF (COND.LT.1.) COND=1.
	RETURN

COND=1. 80 IF (A(1,1) .NE.O.) RETURN COND=1.E+32 90 RETURN END SUBROUTINE SOLVE (NDIM, N, A, B, IPVT, X) IMPLICIT REAL®6 (A-H. O-Z) DIMENSION IPVT (N), A (NDIM, N), B (N), X (N) DO 1 I=1,N X(I) = B(I)CONTINUE 1 IF (N.EQ.1) GO TO 50 NM1=N-1 DO 20 K=1,NM1 KP1=K+1 M=IPVT(K) T=X(M)X(M) = X(K)X (K) =T DO 10 I=KP1,N X(I) = X(I) + A(I,K) * T10 CONTINUE 20 CONTINUE DO 40 KB=1, NM1 KM1=N-KB K=KM1+1 X(K) = X(K) / A(K, K)T=-X(K)DO 30 I=1.,KM1 $X(I) = X(I) + A(I, K) ^{\circ}T$ 30 CONTINUE 40 CONTINUE 50 X(1) = X(1) / A(1, 1)RETURN

7.8 975

11/1

a de la company de la comp

ł.

END

30

SUBROUTINE ROMERG (N, A2, A3, A5, A6, A, B, ERR, DLTA, PI, RES) IMPLICIT REAL*8 (A-H, O-Z) DIMENSION Z (10, 10) I=1 DEL=B-A IF (N-2) 30, 40, 50 Z (1, 1) = .5*DEL* (FUN1 (A, A2, A3, A5, A6, DLTA, PI) +FUN1 (B, A2, A3, A5, A6, DLTA, PI)) GO TO 10

ć5

 $Z(1,1) = .5^{\circ}DEL^{*}(FUN2(A,A2,A3,A5,A6,DLTA,PI)$ 40 +FUN2(B, A2, A3, A5, A6, DLTA, PI)) GO TO 10 Z(1, 1) = .5 * DEL * (FUN3 (A, A2, A3, A5, A6, DLTA, PI) 50 +FUN3(B, A2, A3, A5, A6, DLTA, PI)) GO TO 10 J=IFIX(2.**(1-1)) 10 DEL=DEL/2. I=I+1 $Z(I,1) = .5^{\circ}Z(I-1,1)$ DO 1 K=1,J X=A+(2.*FLOAT(K)-1.)*DEL IF (N-2) 60,70,80 60 Z(I, 1) = Z(I, 1) + DEL + FUN1(X, A2, A3, A5, A6, DLTA, PI)CO TO 1 Z(I, 1) = Z(I, 1) + DEL + FUN2(X, A2, A3, A5, A6, DLTA, PI)70 CO TO 1 $Z(I, 1) = Z(I, 1) + DEL^{+}FUN3(X, A2, A3, A5, A6, DLTA, PI)$ 80 GO TO 1 CONTINUE 1 DO 2 K=2,I Z(I,K) = (4,**(K-1)*Z(I,K-1)-Z(I-1,K-1))/(4,**(K-1)-1.)CONTINUE 2 DIFF=DABS (Z(I, I) - Z(I, I-1))IF (DIFF.LT.ERR) GO TO 20 GO TO 10 20 RES=Z(I,I)RETURN END FUNCTION FUN1 (X, A2, A3, A5, A6, DLTA, PI) IMPLICIT REAL*8 (A-H.O-Z) FUN1=X*((A5-X)/((.3-X))**(DLTA/PI)/DSQRT((A6-X)*(X-A2))RETURN END FUNCTION FUN2 (X, A2, A3, A5, A6, DLTA, PI) IMPLICIT REAL*3 (A-H, O-Z) FUN2=X*((A5-X)/(X-A3))**(DLTA/PI)/DSORT((A5-X)*(X-A2)) RETURN END FUNCTION FUN3 (X.A2,A3,A5,A6,DLTA,P1) IMPLICIT REAL*8 (A-H, O-Z) FUN3=X* ((X-A5) / (X-A3)) ** (DLTA/PI) /DSQRT ((A6-X) * (X-A2)) RETURN END €6

A 5. Fortran program for the acrodynamic forces C С 0000 DELTA WING WITH FLAP PROBLEM WITH ONLY ONE VORTEX FROM LEADING EDGE USING NEWTON-RAPHSON METHODS WITH DIFFERENT INTEGRATING PATH С C* IMPLICIT INTEGER*4(I-N) COMPLEX*15 XI, X, Z, W REAL °O ERR, PI, ALP, APX, XK1, XK2, DLT, A2, A3, A5, A6, CAM, ALPD CL3, CLW, CDW, CLF, CDF, CLT, CDT, CLL, TCL, TCD, RTOR, RTO DIMENSION Z (10), W (10), GAM (10) COMMON /DATA1/ IMAX, JMAX COMMON /DATA2/ XI, ERR, PI COMMON /DATA3/ ALP, APX COMMON /DATA4/ X(10) COMMON /DATA5/ XK1, XK2, DLT COMMON /DATAS/ A2, A3, A5, A6 DO 100 I=1,10 CALL DATA (ALPD) CALL NEWTON (Z, W) CALL VORTEX (W, GAM) C CALL FRESSURE (W, GAM) CALL LIFT (GAM, W, CL3) CALL LIFTI (GAM. W, CLN, CDN, CLF, CDF, CLT, CDT, CLL, C C C C C C TCL, TCD, HTOR, RTO) WRITE (SC. 300) ALPD, CL3, CLW, CDW, CLF, CDF, CLT, CDT, CLL ,TCL, TCD, RTOR, RTO 100 CONTINUE FORMAT(1X, F5.2, 1X, D11.4/5X, 6(1X, D11.4)/5X, 5(1X, D11.4)) FORMAT(2X, 'DLT', 5X, 'VORTEX POSITION', 9X, 'GAM', 9X, 'CLL', 9X, 'CLV', 9X, 'CLT'/) 300 200 STOP END

SUBROUTINE DATA (ALPD)

INPUT OF DATA USED IN THE WHOLE PROGRAM С : RNAK OF MATRIX 1.0. THE NUMBER OF UNKNOWNS IMAX С : 5 FOR NEWTON-RAPHSON METHODS (I-1, J), (I+1, J), (I, J-1) С JMAX (I, J+1), (I, J)С : SQRT (-1) С XI : CONVERGENCE OF ROMBERG INTEGRATION С ERR С PI : 3.14.... С ALP : ANGLE OF ATTACK С APX : HALF OF APEX ANGLE OF MAIN DELTA WING C C C C C X(I) : INITIAL GUESS : RATIO OF MAIN DELTA WING TO TOTAL SPAN LENGTH (=1) ΧК DLT : FALP DEFLECTION ANGLE С A2, A3, A5, A6 : COEFF. OF SCHMARTZ-CHRISTOFFEL TRANSFORMATION С IMPLICIT INTEGER*4(I-N) COMPLEX*16 XI,X ERR, PI, ALP, APX, XK1, XK2, DLT, A2, A3, A5, A6, ALPD, DLTD REAL*8 COMMON /DATA1/ IMAX, JMAX COMMON /DATA2/ XI, ERR, PI COMMON /DATA3/ ALP, APX COMMON /DATA3/ ALP, APX COMMON /DATA4/ X(10) COMMON /DATA5/ XX1, AX2, DLT COMMON /DATAG/ A2, A3, A5, A6 DATA ERR, PI / 1.D-6, 3.141592654 / DATA XI / (0.,1.) / DATA IMAX,JMAX / 1, 5 / DATA ALP, APX / .17453278 , .2685121925 / DATA XK1, XK2 / .6153846154, .8846153846 / С DATA A2, A3, A5, A6 / -0.636893, -0.515968, С 0.978499, 1.3006 WRITE (6, 1) READ(5,*)DLTD READ(5, *) ALPD С DLT=DLTD*PI/190. WRITE (6, 2) READ(5,*)A2,A3,A5,A6 WRITE (34, 100) ALP, APX, XK1, XK2, DLT, A2, A3, A5, A6 WRITE (6,600) READ(5, *) (X(I), I=1, IMAX) FORMAT(1X, 'DLT') FORMAT(1X, 'TRANS. COEFF.') FORMAT(/5X, '1. GIVEN DATA '/ * 8X, 'ANGLE OF ATTACK = ',D11.4/ 8X, 'APEX ANGLE = ',D11.4/ 1 2 100 EX, 'FLPA RATIO = '.D11.4/8X, 'TAP F 8X, 'ELAP ANGLE RATIO = '.D11.4/ = ',D11.4/ BX, 'TRAN. COEFF. :',4(2X,D11.4)/)

and the

	· · · · · · · · · · · · · · · · · · ·
600	CONTRACTOR CONTRACTOR CONTRACTOR
600	FORMAT(IX, ' INITIAL GUESS')
	RETURN
•	END
	SUBBOUTINF NEWTON (V7 V4)
c	CALCULATION OF VORTEX ROCITION
	CALCULATION OF VORTEX POSITION
	IMPLICIT INTEGER 4 (I-N)
	COMPLEX*16 XI, X, W, WN, Z, ZM, DER, DERM, VZ, VH
	DEAT 40 FRO DI LED ADY YK1 YK2 DET &2 A3 A5 LG SS B YZ OA
	TENETON MALA IN
	$\frac{1}{100} \frac{1}{100} \frac{1}{2} \frac{1}{100} \frac{1}{2} \frac{1}{100} \frac{1}{2} \frac{1}{100} \frac{1}{2} \frac{1}{100} \frac{1}{2} \frac{1}{100} \frac{1}$
	(10), 2(10), DER(10), DER(10), DER(10, 10), DER(10, 10)
	SS(10, 10), B(10),
	* IPVT (10), OA (10, 10), XZ (10),
	• VZ (10) , VH (10)
	COMMON /DATA1/ IMAX, JMAX
	COMMON /DATA2/ XI.ERR.PI
	CONSON (DATA3/ SLP APX
	COMMON (ENTRAL X(10)
	CONTROL VIATAS / VIA
	COMMON /DATRS/ AAT, ARZ, DET
•	CONTAR /DAIAS/ AZ, AS, AS
100	CALL NEWPNI(X,W)
	DO 4 I=1,IMAX
	DO 5 J=1, JMAX
5	WN(J) = W(I, J)
	CALL ZCALC (VN. 2. DER)
	$DQ \in J=1, JMAX$
· · · · ·	7M(1, 1) = 7(1)
6	
0 A	
7	CONTINUE
	CALL MATEL (M, ZM, DEIGH, SS, B)
	1F (N.GT.50) CO TO 11
	IF (XLOG.LT7.) GO TO 11
	CALL DECOMP (SS, IPVT, OA)
-	CALL SOLVE (SS, B, IPVT, XZ)
	CALL NEXPNT (X, XZ)
	WRITE (6, 113) N. XLOG. (20(1, 5), Y=1, IMAX), (W(1, 5), T=1, IMAX)
	N=N+1
11	WRITE $(6, 113)$ N, XLOO, $(ZM(1, 5), I=1, IMAX)$. $(W(1, 5), I=1, IMAX)$
	DO 12 I=1,IMAX
	VZ(I) = ZM(I, 5)
	$V_W(T) = W(T, S)$
12	
12	WRITE(34, 200), VZ(1), VW(1)

è

-

113 200	FORMAT(1X, 12, 5X, 'MAXNRM = 5X, 'Z=', 2D15.6/ 5X, 'W=', 2D15.6) FORMAT(/5X, '2, VORTEX POSIT 8X, 'VORTEX POSITION 8X, 'VORTEX POSITION RETURN END	'.D15.6/ CION. '/ N IN Z-PLANE : '.2D11.4/ N IN W-PLANE : '.2D11.4/)
	· · · · · · · · · · · · · · · · · · ·	
	SUEROUTINE NEWPNT(XN,YN) IMPLICIT INTEGER*4(I-N) CCMPLEX*1S XN,YN,XI REAL*8 ERR,PI,XRE,XIM DIMENSION XN(10),YN(10,10) CCMMON /DATA1/ IMAX,JMAX COMMON /DATA1/ IMAX,JMAX	
1	DO 1 I=1, IMAX XRE=DREAL (XN(I))/100. XIM=DIMAG (XN(I))/100. YN(I,1)=XN(I)-XRE YN(I,2)=XN(I)+XRE YN(I,3)=XN(I)+XI*XIM YN(I,4)=XN(I)+XI*XIM YN(I,5)=XN(I) RETURN END	
	SUEROUTINE MATEL (X, Z, DER, S IMPLICIT INTEGER*4(I-N) COMPLEX*16 X, Z, DER, XI, A, B, C REAL*8 S, EB, ERR, PI, ALP DIMENSION X(10, 10), Z(10, 10) COMMON /DATA2/ XI, EFR, PI COMMON /DATA3/ ALP, APX COMMON /DATA5/ XK1, XK2, DLT COMMON /DATA5/ XK1, XK2, DLT COMMON /DATA6/ A2, A3, A5, A6 A=(FUN2(X(1,2), Z(1,2), DER(1 * FUN2(X(1,1), Z(1,1), DER(1 * FUN2(X(1,3), Z(1,3), DER(1 * (X(1,4)-X(1,3))*(-XI)) O=FUN2(X(1,5), Z(1,5), DER(1	.BB) D.FUN2 .APX.XK1.XK2,DLT.A2,A3,A5,A6).DER(10,10),S(10,10),BB(10) 1.2))- 1.1)))/ 1.4))- 1.3)))/ .5))
		50

یکنی ماهد اد د S(1.1)=DREAL(A) S(1.2)=DREAL(B) S(2.1)=DIMAG(A) S(2.2)=DIMAG(B) EB(1)=-DREAL(O) BB(2)=-DIMAG(O) RETURN END

SUBROUTINE NORM (X. XLOG) IMPLICIT INTEGER *4 (I-N) IMPLICIT REAL *8 (A-H, O-Z) DIMENSION X (10) COMMON /DATA1/ IMAX.JMAX IM=IMAX *2 XNORM=0. DO 2 J=1.IM XNORM=XNORM * (DABS (X (J))) **2 XLOG=DLOG10 (XNORM) RETURN END

SUBROUTINE NEXPNT(X,Y) IMPLICIT INTEGER*4(I-N) COMPLEX*16 X,XI REAL*8 Y.ERR.PI DIMENSION X(10),Y(10) COMMON /DATA2/ XI.ERR.PI X(1)=X(1)+Y(1)*XI*(2) X(1)=DREAL(X(1))*XI*(DABS(DIMAG(X(1)))) RETURN END

SUBROUTINE ROMERG (IS, A, B, RES) IMPLICIT INTEGER*4(I-N) COMPLEX*16 A, B, RES, XI, Z, DEL, FUN1, X, DIFF, FUN3 REAL*8 ERR, PI DIMENSION Z (10, 10) COM4ON /DATA2/ XI, ERR, PI I=1 DEL=B-A IF (IS, EQ, 1) GO TO 111 Z(1, 1) = .5*DEL* (FUN5 (A) *FUN5 (B)) GO TO 10 Z(1, 1) = .5*DEL* (FUN1 (A) +FUN1 (B)) J=IFIX (2.**(I-1))

51

-

and the second of the second o

2

111

10

1.

DEL=DEL/2. I=I+1 $Z(I,1) = .5 \cdot Z(I-1,1)$ DO 1 K=1,J X=A+(2.*FLOAT(K)-1.)*DEL IF (IS.EQ.1) GO TO 3 Z(I,1) = Z(I,1) + DEL*FUNS(X)CO TO 1 $Z(I, 1) = Z(I, 1) + DEL^{*}FUN1(X)$ CONTINUË DO 2 K=2,I Z(I, K) = (4, **(K-1) * Z(I, K-1) - Z(I-1, K-1)) / (4, **(K-1) - 1.)CONTINUE DIFE=Z(I,I) - Z(I,I-1)IF (CDABS (DIFF) .LT.ERR) GO TO 20 CO'TO 10 RES=Z(I,I) RETURN END FUNCTION FUN1 (X) IMPLICIT INTEGER*4(I-N) COMPLEX*16 X.XI.FUN1 ERR, PI, XK1, XK2, DLT, A2, A3, A5, A6 REAL*S COMMON /DATA2/ XI.ER.PI COMMON /DATA5/ XXI.KK2.DLT COMMON /DATA6/ A2.A3.A5.A6 FUN1=X* (X-A5) ** (DLT/P1) / (CDSQRT (X-A2) *CDSQRT (X-A6) * (X-A3) ** (DLT/PI)) RETURN END SUBROUNINE ZCALC (V.Z.DER) IMPLICIT INTEGER 4 (I-N) COMPLEX*16 V, Z, DER, XI, EPS, SINC, B, DB, BP, EM, A2P, RB, RBP, REM. P2, P3P, P3M, XINT, XINT1, XINT2, XINT1P, XINT2P. XINT1M, XINT2M, ZM, ZP, C1, C2, C3 REAL*8 ERR. PI, XK1, XK2, DLT, A2, A3, A5, A6 DIMENSION V(10), Z(10), DER(10) COMMON /DATA1/ IMAX,JMAX COMMON /DATA2/ XI,ERR.PI COMMON /DATA5/ XX1,XK2,DLT COMMON /DATA6/ A2,A3,A5,A6 EPS=0.01*XI C1=A2-A5 C2=A2-A6 C3=A2-A3

З

1

2

20

EPRING MOL

BORNEL STREET, S

52

CONTRACTOR OF STREET

1 - 1

CONTRACTOR AND ADD

SING=2.*A2*C1** (DLT/PI) *CDSQRT(EPS)/ (CDSQRT(C2) *C3**(DLT/PI)) DO 1 I=1. JMAX B=V(I)DB=B/100. BP=B+DB BM=B-DB A2P=A2+EPS RB=DREAL(B) RBP=DREAL (BP) REM=DREAL (BM) P2=A2+2.*X1 P3=RB+2.°XI P3P=RBP+2.*XI P3M=REM+2.°XI CALL ROMERG (1, A2P. P2. XINT) CALL ROMERG(1, P2, P3, XINT1) CALL ROMBRG (1, P3, B. XINT2) CALL ROMBRG (1, P2, P3P, XINT1P) CALL RCMBRG (1, P3P, BP, XINT2P) CALL ROMBRG (1, P2, P3M, XINTIM) CALL RONERG (1, F3M, EM, XINT2M) ZM=XINT+XINT1M+XINT2M+SING Z(I)=XINI+XINT1+XINT2+SING ZP=XINT+XINT1P+XINT2P+SING $DER(I) = ((CDLOG((Z(I) - ZM) / (ZP - Z(I)))) / (2.°DB))^{\circ}$ (CDSQRT (B-A6) *CDSQRT (B-A2) * (B-A3) ** (DLT/PI)/ (B* (B-AS) ** (DLT/PI))) CONTINUE RETURN END FUNCTION FUN2 (X1.Z.DER) IMPLICIT INTEGER*4(I-N) COMPLEX*16 X1.Z, DER. XI, FUN2 ERR, PI, ALP, APX, XK1, XK2, DLT, A2, A3, A5, A6 REAL*8 COMMON /DATA3/ XI.ERR.PI COMMON /DATA3/ ALP.APX COMMON /DATA5/ XK1.XK2.DLT CONTION /DATAG/ A2.A3.A5.A6 EUN2=APX*(2.*DCONJG(Z)+XI*(XK1*(1.-XK1)*CDEXP(-XI*DLT)))/ (XK1*ALP) -(1.-1./((1./X1-1./DCONJG(X1))*(X1-DCONJG(X1)))) * (CDSQRT (X1-A6) *CDSQRT (X1-A2) * (X1-A3) ** (DLT/PI) / (X1* (X1-A5) ** (DLT/PI))) -DER/(1./X1-1./DCONJG(X1)) RETURN END 53

117

1

4

1

٤.

SUBROUTINE VORTEX (W, CAM) IMPLICIT INTEGER *4(I-N) COMPLEX*16 W.XI REAL⁹⁸ ERR, PI, CAM, ALP, APX DIMENSION W(10), GAM(10) COMMON /DATA2/ XI, ERR, PI COMMON /DATA3/ ALP, APX GAM(1)=2.*PI*ALP/DREAL(XI*(1./W(1)-1./DCONJG(W(1)))) WRITE (34, 100) GAM (1) FORMAT (/5X, '3. VORTEX STRENGTH'/ 8X, 'VORTEX STRENGTH = ',D11.4/) 100 RETURN END SUBROUTINE LIFT1 (GAM, VW, CLW, CDW, CLF, CDF, CLT, CDT, CLL , TCL, TCD, RTOR, RTO) IMPLICIT INTEGER *4 (I-N) COMPLEX*16 VV, X1, X2, X3, X4, ES, A2P, A3M, A3P, A6M, A5M, A5P, SING5, SING6, SING7, SING8, C1, C2, C3, C4, C5, C6, C7, C8, C9, Z2, Z, XI, SING1, SING2, SING3, SING4, Z1, Z2, Z3, Z4, C10, C11, C12, C13, C14, C15, C16, X5, X6, Z5, Z6 REAL*8 GAM, A2, A3, A5, A6, U, V, W, CP, ERR, PI, XK2, XK1, DLT, ALP, APX, CL1, CL2, CL3, CL4, CLW, CDW, CLF, CLT, CDT, CDF, CLL, RTOR, RTO, TCL, TCD, CLS, CL6 DIMENSION VW (10), GAM (10), Z (700), CP (700) COMMON /DATA2/ XI.ERR,PI COMMON /DATA3/ ALP,APX COMMON /DATA5/ XK1, XK2, DLT COMMON /DATA6/ A2, A3, A5, A6 ES = (A6 - A2) / 200. A2P=A2+ES A3M=A3-ES A3P=A3+ES A6M=A6-ES ASM=AS-ES ASP=A5+ES C1=A2-A5 C2=A2-A6 C3=A2-A3 C4=A3-A5 C5=A3-A6 C6=A3-A2 C7=A6-A5 C8=A6-A2 C9=A6-A3 C10=-A6 C11=-A2 C12=-A5

54

ć,

C13=-A3 C14=A5-A6 C15=A5-A2 C16=A5-A3 SING1=2. *A2*CDSORT(ES) *C1** (DLT/PI)/ (CDSQRT(C2) *C3** (DLT/PI)) SING2=-PI*A3*C4**(DLT/PI)*(-ES)**((PI-DLT)/PI)/ ((PI-DLT)*CDSQRT(C5)*CDSQRT(C6)) SING3=PI*A3*C4**(DLT/FI)*ES**((PI-DLT)/PI)/ ((PI-DLT) *CDSORT (C5) *CDSORT (C6)) SING4=-2. A6*C7** (DLT/PI) *CDSQRT (-ES)/ (CDSQRT(C8) *C9**(DLT/PI)) SING5=-C12** (DLT/PI)* (-ES)**2/ (CDSQRT (C10) *CDSQRT (C11) *C13** (DLT/PI) *2) SING6=C12** (DLT/PI)*ES**2/ (CDSORT (C10) *CDSORT (C11) *C13** (DLT/PI) *2) SING7=-A5'PI*(-ES) **((PI+DLT)/PI)/ (CDSQRT(C14) *CDSQRT(C15) *C16** (DLT/PI) * (PI+DLT)) SINC8=A5°PI'ES**((PI+DLT)/PI)/ (CDSQRT(C14) *CDSQRT(C15) *C16** (DLT/PI) * (PI+DLT)) DO 10 I=1,101X1=A2P+(A3M-A2P) *FLOAT(I-1)/100. CALL ROMBRG (1, A2P, X1, Z1) Z(I) = Z1 + SING1ZZ=Z(I) CALL VEL (VW, CAM, X1, ZZ, U, V, W) 10 CP(I)=1.+ALP**2-U**2-V**2-W**2 DO 20 I=102,202 X2=A3P+(-.357-A3P)*FLOAT(I-102)/100. CALL ROMERG (1, A3P, X2, Z2) Z(I)=XI*XK1+SING3+Z2 ZZ=Z(I) CALL VEL (VW, GAM, X2, ZZ, U, V, W) CP(I)=1.+ALP**2-U**2-V**2-N**2 20 DO 25 I=203,303 X3=-.357+(-ES+.357) *FLOAT(I-203)/1CO. CALL ROMERG (1, A3P, X3, Z3) Z(I) =XI *XK1 +SING3+Z3 ZZ=Z(I) CALL VEL (VW, GAM, X3, ZZ, U, V, W) CP(I)=1.+ALP**2-U**2-V**2-W**2 25 DO 30 I=304,404 X4=ES+(.475-ES) *FLOAT(I-304)/100. CALL ROMBRG(1, ES, X4, Z4) Z(I)=XI*(XK1+(1.-XK1)*CDEXP(XI*DLT))+SING6+Z4 ZZ=Z(I)CALL VEL (VW, GAM, X4, ZZ, U, V, W) CP(I)=1.+ALP**2-U**2-V**2-W**2 30 DO 40 I=405,505 X5=.475*(A5M-.475)*ELOAT(I-405)/100.CALL ROMERG(1, ES, X5, Z5)

17 (17) J	NIN CON	a se a comparta de la comparta de la La comparta de la comp
	an Nine Sura Bandurak	
		Z(I) = XI ° (XK1+(1, -XK1) ° CDEXP (XI ° DLT)) + SING6+25
n		ZZ=Z (I)
5		CALL VEL (VW, GAM, X5, ZZ, U, V, N)
(.	40	CP (1)=1.*AL2**2-0**2-V**2-W**2 DO 50 I=505 605
		X6 = A5P + (A6M - A5P) + FLOAT (I - 505) / 100.
		CALL ROMPRG (1, A5P, X6, Z6)
	•	Z(I) = XI + XK1 + SINCB + Z6
-		22=2(1) CALL VEL(VW.GAM.X6.ZZ.U.V.W)
	50	$CP(1) = 1. + ALP * 2 - U^{\circ} 2 - V^{\circ} 2 - W^{\circ} 2$
		CALL SIMP (Z, CP, CL1, CL2, CL3, CL4, CL5, CL6)
		CLW = (-CL6 + CL1)
	•	CLF = (-CLS + CL2) * DCOS (DLT) * (1, *ALP * APX * DTAN (DLT))
	·	CDF=(-CL5+CL2) *DCOS(DLT) * (ALP-APX*DTAN(DLT))
		CLT = (-CL4 + CL3) * DCOS (DLT) * (1 + ALP * APX * DTAN (DLT))
1		CLL=CLW+(-CL5+CL2-CL4+CL3) *DCOS(DLT)
		TCL=CLW+CLF+CLT
		TCD=CDW+CDF+CDT
•		RTOR=1./ALL' RTO=TCL/TCD
	С	WRITE (34, 100)
-	C	DO 46 I=1,406,5
	C46	WRITE (34, 200) Z(I), CP(I) WRITE (34, 200) CIM CDW CVE (CDT CVE (CCT (CCT (CCT DCC)))
	100	FORMAT $(20X, 'Z', 21X, 'Cb', 2X/)$
	200	FORMAT (10X, 2D11.4, 5X, D11.4)
	300	FORMAT (//7X, 'G. LIFT BY INTEGRATION OF PRESSURE '//
		10X, LIFT OF MAIN WING = ', D11.4/
- [• $10X$, 'LIFT OF FLAP = '.D11.4/
-		* 10X, 'DRAG OF FLAP = '.D11.4/
		= 10X, LIET OF TAP = 011.4/
		* $10X$, CHECK FOR LIFT = ',D11.4/
1		• 10X, 'TOTAL LIFT = '.D11.4/
1		$\begin{array}{cccc} \bullet & 10X, TOTAL DRAG & = 1, D11.4/\\ \bullet & 10Y, TET DRAG RATIO & = 1, D11.4/\\ \end{array}$
		+ 10X, 'IDEAL RATIO = ', D11.4)
		RETURN
		END
	•	
1		
		SUBROUTINE SIMP (Z, CP, CL1, CL2, CL3, CL4, CL5, CL6)
l		IMPLICIT INTEGER * 4 (I-N)
4		$\frac{100}{100} = \frac{100}{100} = $
		DIMENSION 2 (700), CP (700)
•4		
		56
ं। ब		
7		
ھ		
		1

	CL1=0.	
	CL2=0.	
	CL3=0.	
	CL5=0.	
	CL6=U.	
	DO 10 I=1,100	
10	CL1=CL1+CDABS(Z(I+1)-Z(I))*(CP(I+1)+CP(I))/2.	
	DO 20 I=102,201	
20	CL2=CL2+CDABS(Z(I+1)-Z(I))*(CP(I+1)+CP(I))/2.	
	DO 30 I=203,302	
30	CL3=CL3+CDABS(Z(I+1)-Z(I))*(CP(I+1)+CP(I))/2.	
	DO 40 I=304,403	
40	$CL4=CL4+CDABS(Z(I+1)-Z(I))^{\circ}(CP(I+1)+CP(I))/2.$	
	1050 = 12405,504	
50	CL5=CL5+CDABS(2(1+1)-2(1))*(CP(1+1)+CP(1))/2.	
CO	$\frac{1}{12} \frac{1}{12} \frac$	
60	$CLO=CLO+CDADD(2(1*1)^2 C(1))^2(CF(1*1)^{+}CF(1))/2.$	
	RE I URN	
	LIND	
		_
	SUBROUTINE PRESSURE (VW, GAM)	
	IMPLICIT INTEGER*4 (I-N)	
	COMPLEX*16 VN, X, ES, A2P, A3M, A3P, AGM, C1, C2, C3, C4, C5, C6,	
	 C7, C6, C9, XI, SING1, SING2, SING3, SING4, Z1, Z2, 	Z
	REAL*8 CAM, A2, A3, A5, A6, U, V, H, C9, ERR, PI, KK1, XK2, DI	T
	* , ALP, APX	
	DIMENSION VW (10), GAH (10)	
•	COMMON /DATA2/ XI, ERR, PI	
	COMMON /DATA3/ ALP, APX	
	COMMON /DATA5/ XK1, XK2, DLT	
	COMMON /DATA6/ A2,A3,A5,A6	
•	WRITE (34, 100)	
	DO 200 I=1,41	
	X=A2+(A6-A2) *FLOAT(1-1)/40.	
	$L^{2}(DREAL(X), EQ.AZ.OR.DREAL(X), EQ.AS.OR.$	
	$= \text{DREAL}(X) \cdot EQ \cdot O \cdot OR \cdot DREAL(X) \cdot EQ \cdot AB \cdot OR \cdot$	
	$= \frac{DREAL(X) \cdot EQ.AG}{200} = 0.00000000000000000000000000000000$	
	A 3D=A 3+FS	
	A6M=A6-ES	
	C1=A2-A5	
	C2=A3-A6	
	C3~82_83	

Û

....

/		
1.4.1.		Martin Martin and a set and a set of the set
		C5=A3-A6
		C6=A3-A2
		C7=A6-A5
	· .	C8=A6-A2
		$\bullet \qquad (CDSORT(C2) * C3 * * (DLT/P1))$
		SING2=-PI*A3*C4** (DLT/PI) * (-ES) ** ((PI-DLT) /PI) /
		* ((PI-DLT) *CDSQRT(C5) *CDSQRT(C6))
		SING3=PI*A3*C4**(DLT/PI)*ES**((PI-DLT)/PI)/
		* (PI-DLT) * CDSQRT (C5) * CDSQRT (C6))
		SING4=-2. *A5"C/** (DLT/PI) *CDSQRT(-ES)/
		$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$
		IF (DREAL (X) . LT . DREAL (A3M)) GO TO 1
		IF (DREAL (X) . LE . DREAL (A3P)) GO TO 200
		IF (DREAL (X) . I.T. DREAL (M6M)) GO TO 2
	٦	GO TO 200 CALL ROWBEC (1 ADD Y 71)
	*	Z=21+SINO1
		CO TO 300
	2	CALL ROMBRG (1, A3P, X, Z2)
	200	Z=XI*XK1+SING3+Z2
	300	
	С	WRITE (6. *) Z. CP. U. V. W
	•	WRITE (34, 400) Z, CP, U, V, W
	200	CONTINUE
	100	FORMAT (/5X, '4. PRESSURE DISTRIBUTION '/
	600	$ \begin{array}{c} \mathbf{FORM} \mathbf{F} \left[\mathbf{A} \mathbf{Y} \right] \mathbf{X} \mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} \mathbf{Y} Y$
	100	RETURN
		END
		SUEDOUTINE VEL (VW, GAM, X, Z, U, V, N)
		IMPLICIT INTEGER*4(I-N)
		COMPLEX*16 VW.A.FUN4.X.Z.XI
		REAL*8 GAM, U, V, W, ERR, PI, ALF, APX, XKI, XKZ, DLT DIMENSION MU(10) CAM(10)
		COMMON /DATA2/ XI FR. PI
		COMMON /DATA3/ ALP, APX
		COMMON /DATA5/ XK1, XK2, DLT
		A=SUN4(VW(1), GAM(1), X)
		$V = D \times C \times$
		IF(DREAL(X), GT.O.) GO TO 1
		U=1.+DREAL (ALP * X+XI * GAM(1) * (CDLOG (X+VW(1)) -
		<pre>CDLOG(X-DCONJG(VW(1)))+2.*PI*XI)/(2.*PI)</pre>
	• .	• -DREAL (Z) *V-DIMAG (Z) *N) *APX/XK1
	7	U = 1 + DREAT. (ALP * Y * Y * C > M(1) * ((T) T C : (Y + V + (1)) = 0
	. →	$-\mathbf{r} \cdot \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r}$
	•	58

1

. .(

CDLCG(X-DCONJG(VW(1)))/(2.*PI)-DREAL (2) + V-DIMAG (2) + W) + APX/XK1 2 RETURN END FUNCTION FUN4 (V.G.X) IMPLICIT INTEGER #4 (I-N) COMPLEX*16 V, X, FUN4, XI REAL*8 G.ERR, PI, ALP, APX, XK1, XK2, DLT, A2, A3, A5, A6 COMMON /DATA2/ XI, ERR, PI COMMON /DATA3/ ALP, APX COMMON /DATA5/ XK1, XK2, DLT COMMON /DATA6/ A2, A3, A5, A6 FUN4=(ALP+XI*G*(1./(X-V)-1./(X-DCONJG(V)))/(2.*PI)) *CDSQRT(X-A6)*CDSQRT(X-A2)*(X-A3)**(DLT/PI)/ (X* (X-AS) ** (DLT/PI)) **RE'IURN** END SUBROUTINE LIFT (GAM, W, CL) IMPLICIT INTEGER*4(I-N) COMPLEX*16 W, XI, A2P, A3M, A6M, ES, C1, C2, C3, C4, C5, C6, C7. C8, C9, C10, XINT1, XINT2, XINT3, SING1, SING2, SING3, SING4, CLL REAL*8 GAM, CL1, CL2, CL, ALP, APX, XK1, XK2, DLT, A2, A3, A5, A6, ٠ ERR, PI DIMENSION GAM(10), W(10) COMMON /DATA2/ XI, ERR, PI COMMON /DATA3/ ALP, APX COMMON /DATA5/ XK1, XK2, DLT COMMON /DATA6/ A2, A3, A5, A6 ES=(A6-A2)/100.C1=A2-A5 C2=A2-A5 C3=A2-A3 C4=A3-A5 C2=73-79 C6=A3-A2 C7=A6-A5 C8=A6-A2 C9=A6-A3 C10=A5 A2P=A2+ES 59

- 1

A314=A3-ES A6M=A6-ES CL1=2. °GAM(1) °DIMAG(W(1) -DCONJG(W(1))) °APX/ (XI(1* (XI(1+(1.-XI(1)*DCOS(DLT))) CALL ROMERG (2, A2P, A3M, XINT1) CALL ROMERG (2, A3P, C10, XINT2) CALL ROMERG (2, C10, ASM, XINT3) SING1=2.*A2**2*C1** (DLT/PI) *CDSQRT(ES)/ (CDSQRT(C2) °C3° (DLT/PI)) SING2=-PI*A3**2*C4**(DLT/PI)*(-ES)**((PI-DLT)/PI)/ ((FI-DLT) *CDSQRT(C5) *CDSQRT(C6)) ÷ SINC3=-2.*A6**2*C7** (DLT/PI) *CDSQRT(-ES)/ ¢ (CDSQRT(C8) *C9"* (DLT/PI)) SING4=PI*A3**2*C4** (DLT/PI)*ES**((PI-DLT)/PI)/ ((PI-DLT) *CDSQRT(C5) *CDSQRT(C6)) CLL=XINT1+SING1+SING2+XINT3+SING3 ÷ + (XINT2+SING4) °DCOS (2. °DLT) CL2=-4. *ALP*DIMAG (CLL) *APX/(XK1*(XK1+(1.-XK1) *DCOS (DLT))) CL=CL1+CL2 WRITE (6, *) CL1, CL2, CL WRITE (34, 100) CL1, CL2, CL FORMAT (/5X, 'S. LIFT COEFFICIENTS. '/ 8X, 'LIFT FROM VORTEX = ',D11.4/ 8X, 'LIFT FROM ATTACHED FLOW = ',D12.4/ 100 SX. ' TOTAL LIFT = ',D11.4/) RETURN END FUNCTION FUNS(X) IMPLICIT INTEGER 4 (I-N) COMPLEX*18 FUNS,X,XI REAL*3 ERR, PI, XK1, XK2, DLT, A2, A3, A5, A6 COMMON /DATA2/ XI, ERR, PI COMMON /DATA5/ XK1, XK2, DLT CCUMON /DATA6/ A2, A3; A5, A6 IF (DREAL (X) . EQ.O. . OR . DREAL (X) . EQ. A5) GO TO 1 FUN5=X**2* (X-A5) ** (DLT/PI)/ (CDSQRT (X-A6) *CDSQRT (X-A2) * (X-A3) * * (DLT/PI)) co to 2 FUNS=0. RETURN END

1.1

1 2 $= \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2} - \frac{1}{2} \right)$

à

SUBROUTINE DECOMP (A, IPVT, OA) IMPLICIT INTEGER +4(I-N) IMPLICIT REAL*8 (A-H, O-Z) DIMENSION A (10, 10), WORK (10), OA (10, 10), Z (10), IPVT (10) COMMON /DATA1/ IMAX, JMAX N=2*IMAX DO 1 I=1,N DO 1 J=1,N OA(I,J) = A(I,J)CONTINUE IPVT (N) =1 IF (N.EQ.1) CO TO EO MM1=N-1 ANORM=0. DO 10 J=1,N T=0. DO 5 I=1,M T=T+DABS(A(I,J))CONTINUE IF (T. GT. ANORM) ANORM=T CONTINUE 10 DO 35 K=1,NM1 KP1=K+1 N≕K DO 15 I=KP1,N IF (DABS (A(1, K)).GT.DABS (A(M, K)) M=1CONTINUE IPVT(K)=M IF (M.NE.K) IPVT (N) =- IPVT (N) T=A(M,K)A(M,K) = A(K,K)A(K,K) = TIF (T.EQ.O.) CO 10 35 DO 20 I=RP1,N A(I,K) = -A(I,K)/TCONTINUE DO 30 J-KP1,N T=A(M.J) A(M,J) = A(K,J)A(K,J) = TIF (T.EQ.O.) GO TO 30 DO 25 I=K91,N A(I,J) = A(I,J) + A(I,K) *T25 CONTINUE 30 CONTINUE 35 CONTINUE DO 50 K=1,N T=0. IF (K.EQ.1) CO TO 45 KM1=K-1 61

11

5

1

15

Ũ

20

 $\mathbb{P}^{\mathbb{N}}$

40 45	DO 40 I=1, KM1 T=T+A(I,K) * WORK(I) CONTINUE EK=1. TE(T) IT O) EX=1
	IF (A (K, K) .EQ.O.) GO TO 90
50	WORK $(K) = -(EK+T)/A(K, K)$ CONTINUE
	DO 60 KB=1, NM1
	T=0.
	KP1=K+1 DO 55 I=KP1.N
.	T=T+A(I,K) *WOPK(K)
55	WORK (K) =T
	M=IPVT(X)
	IF (M.EQ.K) CO TO 60 T=VO3K (M)
	WORK (M) =WORK (K)
60	WORK (K) =T CONTINUE
	YNORM=O.
	YNORM=YNORM+DABS (WORK (1))
65	CONTINUE CNIL SCLVE (A MORK TEVE Z)
	ZNOPM=0.
	DO 70 I=1,N ZNORM=ZNORM+DABS(Z(I))
70	CONTINUE CONTENECTION CONTENE
	IF (COND.LT.1.) COND=1.
80	RETURN COND=1.
~~~	IF (A(1,1).NE.O.) RETURN
90	CONLEI.E+32

21.2.40

Ą

Ъ.

4

COND=1.E+32 RETURN END SUBROUTINE SOLVE (A, B, IPVI

SUBROUTINE SOLVE (A, B, IPVT, X) IMPLICIT INTEGER*4(I-N) IMPLICIT REAL*8(A-H, O-Z) DIMENSION IPVT(10), A(10, 1C), 5(10), X(10) COMMON /DATA1/ IMAX, JMAX N=2*IMAX DO 1 I=1, N X(I)=B(I)

62

6

ł,

10 D0 30 I=1.1011 X(I)=X(I) +A(I,K) *T CONTINUE N.EQ.1) CO TO 50 X (1) =X (1) /A (1, 1) RETURN FRO (K) = X (K) / X (K, K)40 Harl, Nat. TWN TE X (N) = X (K)X (N) = TN = =IPVT(K) AUNITHO I V THOM -X (K) CONTINUE CONTINUE IE (N.EQ.1 7 X(E) =X (F) ဂ္ဂ TINU 3-10 2 2 E 8 0 8 ρ ଚ୍ଚି ଚ୍ଚି ସ୍ପ 202 

and the

- -

3

_____

# End of Document