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Current models of the low latitude electric field are largely based on data from incoherent scat-
ter radars. We are extending these observations through the addition of the rather extensive high
quality electric field measurements from the Ion Drift Meter (IDM) aboard the Atmosphere Ex-
plorer (AE) spacecraft. We present here some preliminary results obtained from the Unified
Abstract files of satellite AE-E. This satellite was active from the end of 1975 through June 1981
in various elliptical and circular orbits having an inclination near 20°. The resulting data can be ex-
amined for the variation of ion drift with latitude, longitude, season, solar cycle, altitude, and
magnetic activity. The results presented here will deal primarily with latitudinal variations of the
drift features.

Figure 1 shows data from a single AE-E orbit. Of particular interest is the upward ion drift
enhancement at 2:38 UT. This corresponds to 18:30 solar local time (SLT). This enhancement of
the upward drift after sunset prior to reversal is a classic pattern that is often seen both by
ground-based radar and satellite. However, on many occasions this prereversal enhancement
(PRE) is absent. In order to investigate the reasons for these and other variations of the observed
drift features it is of course necessary to deal with large quantities of data.

Figures 2a and 2b show the type of data presentation used in this study. Figure 2a is a ‘‘mass
plot’’ of vertical drift data from AE-E obtained from the 15-second average values of the Unified
Abstract files. All vertical drifts in the file between —20° and 20° dip latitude (DLAT) for the
August-September 1978 time period are plotted versus SLT. In all there are some 6987 points.
Figure 2b shows the same data averaged into 30-minute bins. The dotted line represents the 24-hr
average vertical drift. For comparison, Figure 3 shows some incoherent scatter radar results from
Jicamarca for the July-August 1968-1971 time period (Fejer et al., 1979). In both cases we see the
same general features: downward flow at night reversing at 0600 SLT, a daytime peak followed by
a decline to a prereversal enhancement between 19 and 20 SLT, and a reversal to downward flow
at night.

Figures 4a and 4b cover May-July 1979 from —20°to 20° DLAT. The satellite was in a near-
circular orbit during this period within altitudes of 450-475 km. There are some 17,000 points plot-
ted on Figure 4a, most falling in a band some 75 m/s wide. The exception is the large spread in
velocity in the post-sunset time period.

The next four figures take the data set of Figure 4 and break it up into 10 degree wide bins of
dip latitude. Figures 5 through 8 cover the ranges 10° to 20° DLAT, 0°to 10° DLAT, —10° to
0° DLAT, and —20°to 10° DLAT, respectively. The raw data plots indicate generally a much
smaller spread in the vertical ion velocity at any given local time. The averaged plots indicate a
systematic variation of the average velocity with latitude. The largest average upward velocity is
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found in the most northerly latitude bin (summer hemisphere). The most southerly bin (winter
hemisphere) has a net downward velocity. Other features also show latitude dependence; the even-
ing prereversal enhancement is strong in the summer hemisphere and weak or nonexistent in the
winter hemisphere.

Figures 9 and 10 show a similar pattern for the Nov 77 - Jan 78 time period. Figure 9 shows the
10° to 20° DLAT bin (winter hemisphere). Figure 10 shows the —20° to —10° DLAT bin (sum-
mer hemisphere). As before there is a generally upward bias of the drift in the summer
hemisphere and a downward bias in the winter hemisphere.

One possible interpretation of this pattern is that the dynamo induced ion velocities are being
modified by neutral wind flow, the meridional component of which flows generally from the sum-
mer to winter hemisphere under solstice conditions. Dachev and Walker, 1982, calculated the ver-
tical ion drift velocity imposed by dynamo electric fields and the zonal and meridional winds in
the 19-22 SLT range (Figure 11). These calculated patterns give good qualitative agreement with
the data presented. This model also predicts longitudinal variations in the ion drift. This has not
yet been tested for in the AE-E data set. Such tests should provide a useful check on this propos-
ed mechanism. The preliminary results presented here indicate that IDM data from the AE and
the more recent Dynamics Explorer B spacecraft should continue to disclose some interesting and
previously unobserved dynamical features of the low-latitude F-region.
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Figure 1. Data from AE-E orbit 13406 showing the sunset behavior of N; and V, at low dip latitudes at 315 km altitude in the
Atlantic longitude sector on 22 April 1978. The post-sunset enhancement and reversal of Vy is clearly visible in this example of
our routinely processed data.
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Figure 11. Contours of vertical ion drift velocity calculated for D
months (northern hemisphere winter). A realistic model of the
magnetic field at 300-km altitude is used for magnitude, inclina-
tion, and declination. The electric field is assumed to be constant
and eastward at a value of 0.6 mV m-!, The wind field varies
linearly with geodetic latitude as indicated on the right-hand side
of the figure. The dashed line denotes the geomagnetic equator,
and the letter J refers to the Jicamarca Observatory. Regions of
maximum upward drift velocity are shaded. Their locations cor-
respond to the distribution of depleted plasma regions observed
at winter solstice and shown in Figure 6.
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Figure 12, Vertical ion drift velocity calculated for northern
hemisphere summer (J months). The wind field is the same as
that used in Figure 11, with appropriate seasonal changes.
Regions of maximum upward drift are shaded; their distribution
corresponds closely to the observations of depleted plasma
regions shown in Figure 7.
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