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1. INTRODUCTION

The purpose of this paper is to review the various ways in which propagating tidal components
excited in the mesophere and below affect the structure of the thermosphere and ionosphere above
100 km. Dynamo effects are not treated here, as they will be addressed separately in the paper by
A. D. Richmond.

We begin by examining the physical processes affecting the propagation of upward propagating
tides, and how they are interrelated in the context of a numerical model. Propagating diurnal and
semidiurnal tides which reach thermospheric heights are excited primarily by insolation absorption
by tropospheric water vapor (0-15 km) and stratospheric/mesospheric ozone (40-60 km), respec-
tively. Simulation of these oscillations requires consideration of mean zonal winds and meridional
temperature gradients, and the damping effects of turbulent and molecular dissipation, radiative
cooling, and ion drag. These effects must be considered on a spherical rotating atmosphere ex-
tending from the ground to above 300 km, as they are in the model developed by Forbes (1982 a,
b) depicted schematically in Figure 1.

2. WINDS AND TEMPERATURES

Figure 2 illustrates amplitudes and phase vertical structures at 0°, 18°, 42°, and 60° latitude for
the solar diurnal westerly wind at equinox from the Forbes model. In-situ EUV excitation above
90 km is included in these simulations. The following features are worth noting:

(1) Below 100 km at low latitudes the exponential amplitude growth and phase progression O,
~ 30 km) with height are characteristic of the (1, 1) diurnal propagating tide. The (1, 1) mode at-
tains its peak amplitudes near 110 km and decays rapidly above this height due to molecular
dissipation.

(2) Below 100 km at high latitudes the relative absence of amplitude growth and phase progres-
sion with height is indicative of the (1, -2) trapped mode. Superposition of the (1, 1) and (1, -2)
modes accounts for the illustrated changes in vertical structure of the diurnal tidal winds and
temperatures.

(3) Amplitudes and phases of u, v, and 6T are asymptotic to constant values above 200 km.
This behavior is consistent with the dominance of diffusion in the upper thermosphere, and with
the condition that there be no sources of heat or momentum in the upper thermosphere.

(4) Diurnal tidal oscillations in the 90-150 km region receive about equal contributions from up-
ward propagating and in situ excited components.
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Item (4) is examined in detail in Figure 3 where the northerly velocity at 18° latitude is separated
into relative contributions due to the (1, 1) propagating tide (predominant below 150 km) and that
excited in-situ by EUV and UV solar radiation absorption (predominant above 150 km). Note the
transition from a 30-km vertical wavelength phase progression with height below 150 km indicative
of the (1, 1) mode to phase and amplitude constancy with height indicative of fast molecular dif-
fusion and in situ excitation. _

Figures 4 and 5 illustrate amplitude and phase vertical structures at 0°, 18°, 42°, and 60°
latitude for the solar and lunar semidiurnal westerly winds at equinox from the Forbes model. For
the solar component the transition to shorter vertical wavelengths between 80 and 100 km, the ef-
fects of dissipation on the upward propagating components between 110 and 150 km, and the
asymptotic behavior characteristic of the upper thermosphere are clearly illustrated. The upper
thermosphere velocity and temperature fields, which typically range between 10-50 m sec! and
20-40 K with the larger values at low latitudes, originate with about equal weighting from three ex-
citation sources: (1) in situ EUV excitation, (2) ion-drag momentum coupling with the diurnal tidal
winds, and (3) upward propagating modes excited below 100 km. Although the lunar gravitational
excitation consists of some (2, 4) in addition to the predominant (2, 2) forcing, the excitation of
the higher-order (2, 4) and (2, 5) modes are due almost exclusively to mode coupling due to
mesospheric mean winds and meridional temperature gradients. Winds (temperatures), in fact,
reach amplitudes of order 10-15 m sec’! (10-15 K) in the lower thermosphere, and 5-10 m sec'! (5-10
K) in the upper thermosphere, and may thus account for a significant portion of day-to-day
variability reported in measurements of the solar semidiurnal tide.

The joint presence of molecular viscosity, thermal conductivity, anisotropic ion drag, and rota-
tion on a sphere renders the viscid tidal equations inseparable with respect to height and latitude,
whereas in an inviscid atmosphere where the background temperature is independent of latitude
the equations are separable, and classical tidal theory applies. In classical tidal theory the eigen-
solutions (Hough functions) of Laplace’s tidal equation define the horizontal structures of each
mode, and the eigenvalues (equivalent depths) fix each mode’s vertical structure. Thus, besides
alteration of the vertical tidal structures from exponential growth (for propagating tides) or decay
(for trapped tides) to asymptotically constant solutions inthe upper thermosphere, the region
where x, the ratio of the wave period to the dissipative time scale, approaches unity is also
characterized by a transition from tidal solutions that are separable with respect to height and
latitude to one in which vertical structures for a particular ‘modal extension’ into the thermosphere
vary with height. This behavior is illustrated in Figures 7 and 8, which depict the horizontal shapes
of the (2, 2) and (2, 4) Hough mode extensions (HME) of the semidiurnal temperature oscillation
at various heights. Note that the node at 15° latitude for (2, 4) disappears and the (2, 2) horizontal
shape broadens considerably at progressively greater heights in the thermosphere.

An illustration of how upward-propagating tides affect the local-time structure of the thermo-
sphere is illustrated in Figure 9, taken from Garrett and Forbes (1978). These authors superimposed
in-situ diurnal simulations with theoretical semidiurnal ‘Hough mode extensions’ calibrated to
observational data. Note the high degree of structure exhibited below 200 km. The hour of max-
imum amplitude shifts to earlier times with increasing altitude, indicating the presence of upward
propagation waves. A 12-hour period is particularly evident below 150 km.

At solar minimum, the upward propagating components can be expected to exert a greater in-
fluence on thermospheric structure, due to the relatively smaller contribution from in-situ EUV
sources. An example of how this influence can be reflected in midlatitude exospheric temperatures
is illustrated in Figures 10 and 11, where temperatures measured at Millstone Hill during 1974
(SSMIN) and 1980 (SSMAX) are depicted. Note the predominance of a diurnal component at
SSMAX whereas the SSMIN curve exhibits structure containing semidiurnal and terdiurnal

components.
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Another manifestation of upward propagating tides occurs via the nonlinear coupling between
the semidiurnal thermospheric oscillation (which originates via in-situ as well as lower atmosphere
contributions) and the diurnal variation of ion drag to produce a terdiurnal component to the
thermospheric temperature and density, particularly at low latitudes where the coupling is strong.
The nonlinear coupling between tidal winds and ion drag has been invoked by Mayr et al (1974) to
explain spurious anamalous increases in the equatorial neutral temperature around midnight ob-
served by the NATE experiment on AE-E, as illustrated in Figure 12. The semidiurnal component
receives strong contributions from (a) diurnal winds interacting with the diurnal ion drag and (b)
upward propagating modes excited by O, insolation absorption. The semidiurnal fields interacting
with the diurnal component of ion drag, in turn, generate a substantial terdiurnal component. The
synthesis of all contributions can yield the signature of a midnight temperature maximum in the
upper thermosphere as illustrated in Figure 12.

3. ACCELERATION AND HEATING OF THE LOWER THERMOSPHERE DUE TO
DISSIPATING TIDAL WAVES.

In the zonal mean, the atmosphere can be accelerated and heated by the deposition of momen-
tum and thermal energy by the so-called ‘eddy’ or ‘perturbation’ motions of the atmosphere. Since
gravity wave and tidal amplitudes grow exponentially with height, it has often been suggested that
these motions might contribute significantly to the mean momentum and energy budget of the
lower thermosphere. These effects enter in the zonal mean momentum equation as a divergence of
the eastward eddy momentum flux:

1 0 19
F, = — (u'v'cos?¢p)- — —pu'w’
acos? ¢ d¢p p 0z

and in the thermal energy equation as a divergence of the thermal eddy momentum flux:

_ 1 0 19
Fr =- —(v’<I>Z’cos¢>)———pw’<I>’,
acos ¢ d¢ p 0z
where

a = radius of the earth

¢ = latitude

z = altitude

p = pressure

u’ = perturbation westerly velocity

v’ = perturbation northerly velocity

w' = perturbation vertical velocity

& = perturbation geopotential

N

Miyahara (1978) has investigated the deposition of mean momentum and heat in the lower
thermosphere connected with the dissipating (1, 1) and (2, 4) tidal modes using the above equa-
tions. In Figure 13 Miyahara’s calculation of F, and the resulting mean zonal wind are illustrated.

81



Che (1, 1) mode is apparently capable of producing an easterly jet (~ 60 m sec’!) in the equatorial
lower thermosphere, and a westerly flow of order 30 m sec! at midlatitudes. Results for the (2, 4)
mode in Figure 14 indicate mean zonal winds of order 10-15 m sec’!, which are smaller but not
negligible compared with the (1, 1) mode. The zonal flow generated by the dissipating tidal modes
is comparable to the flow generated by direct solar heating in this altitude regime as computed by
Dickinson et a/ (1975).

Recent calculations by Groves and Forbes (1984) indicate that the effects of tidal heating on
thermospheric temperature structure appear secondary to the influence of tidal accelerations on the
zonal mean wind field of the 90-150 km region.

4. TIDAL EFFECTS ON COMPOSITION

Mayr and Harris (1977) and Forbes (1978) have investigated tidal variations in thermospheric O,
O,, N,, Ar, He and H using models that take into account the effects of tidal temperatures,
horizontal and vertical tidal winds, photo- and ion-chemistry, exospheric transport, and thermal
diffussion. Hydrogen tidal variations are dominated by vertical flow due to lateral transport in the
exosphere, but wind induced diffusion is the single most important process for causing deviations
from diffusive equilibrium (temperature-dominated) solutions of tidal variations in O, O,, N,, Ar,
and He in the thermosphere. The effects of ion- and photo-chemistry on the variations of O and
O,, and exospheric transport on He, are found to be of secondary or negligible importance above
120 km. Measurements of neutral composition and temperature aboard the AE-E satellite have
been analyzed to determine the semidiurnal and terdiurnal variations of O, N,, He and Ar from
145-295 km (Hedin ef a/, 1980). The semidiurnal variations of O and N, are illustrated in Figures
15 and 16, respectively, along with predictions from the MSIS model, the Forbes model, and the
Mayr ef a/ (1979) model. For O variations, the Forbes and Mayr et al models predict the overall
phase and ampltitude structures quite well, with some overestimate of amplitude. Surprisingly, the
empirical MSIS does not fit the measurements as well as the theoretical models. On the other
hand, the MSIS model provides a much better fit to the semidiurnal amplitude of N, whereas the
other models overestimate its amplitude. The semidiurnal phases for N, are adequately reproduced by
Forbes and MSIS models, but the Mayr et a/ model yield phases about 2 h too late above 200 km.

It is well known that winds exert an important influence on the height and density of the F-layer
peak. A pronounced example is the dynamic behavior of the nighttime Arecibo ionosphere, par-
ticularly the so-called ‘midnight collapse’ phenomenon, which receives its primary drive from the
semidiurnal tide propagating upward from the lower atmosphere. A simulation of the Arecibo
ionosphere from the model of Crary and Forbes (1984) is shown in Figure 17. The post-midnight
descent (or ‘collapse’) of the F-layer peak is shown by these authors to be precipitated by a sudden
abatement of southward winds determined by a reinforcement of the in-situ excited diurnal com-
ponent, an upward propagating semidiurnal component, and a terdiurnal component which these
authors conjecture to arise from ion-drag coupling between the semidiurnal wind and the diurnal
component of ion drag. In addition, the bunching of contours in the bottomside F-region as il-
lustrated in Figure 17 is due to the vertical shear of the semidiurnal wind field, and may produce
electron density gradients sufficient to excite the ExB gradient drift instability.
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to Boston University.
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Figure 1. Schematic describing the numerical model of atmospheric tides
developed by Forbes (1982 a, b).
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Figure 4. Solar semidiurnal westerly winds from the Forbes (1982 a, b) model.
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