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ON THE SOLUTION OF INTEGRAL EQUATIONS 
WITH STRONGLY SINGULAR KERNELS 

by 

A.C. Kaya and F. Erdogan 
Lehigh University, Bethlehem, PA 

Abstract 

In this paper some useful formulas are developed to evaluate integrals 
having a singularity of the form (t-x)-m, m>1. Interpreting the integrals 
with strong singularities in Hadamard sense~ the results are used to obtain 
approximate solutions of singular integral equations. A mixed boundary value 
problem from the theory of elasticity is considered as an example. Parti
cularly for integral equations where the kernel contains, in addition to the 
dominant term (t-x)-m, tenns whi"ch become unbounded at the end points, the 
present technique appears to be extremely effective to obtain rapi d1y con
vergi ng numer; cal results. 

1. Introduction 

The mixed boundary value problems in physics and engineering may gener
ally be. expressed in terms of a "singular" integral equation of the form 

J k(!,~)f(~)d! = g{~) , ~ED (1) 

o 
where g is a known bounded function and the kernel k is usually singular. 
The nature of singularity of k is dependent. on the choice of the density 
function f in formulating the problem. For example, in one dimensional 
integral equations arising from potential theory if f(t) is selected to be 
a IIflux", then k has an ordinary Cauchy singularity (t_x)-l. On the other 
hand iff is a potenti a1, then k has a strong s ingu1 ari ty of the form 
(t-x)-2. Particu11a'r1y in two dimensional integral equations, formulating 
the problem in terms of a potential rather than a flux type quantity has 
certain advantages. Because of this it is worthwhile to develop effective 
techniques for evaluating singular integrals with strong singularities. In 
actual physical problems the density function f is either bounded or may 
have integrable singularities on the boundary of D. Thus, in one dimensional 
integral equations the integral on the left hand si de of (1) may be i nter
preted in Cauchy principal value sense for a Cauchy kernel, whereas it would 
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be unbounded in the case of a strong singularity (t-x)-2. Despite this 

in the latter case the physical problem can still be solved provided the 

integral is interpreted in Hadamard sense by retaining the finite part 

on ly. 

The concept of finite part integrals was first introduced by Hadamard 

[1] in connection with divergent integrals of the form 
x 

f f( t) dt 
(x-t)P+~ , 

a 
(2 ) 

where f is bounded and p is an intege-r. In spite of this relatively early 

beginning, the adoption of the concept in applications has been rather 

slow [2,3]. It is mainly due to Kutt's work [4J-[6J that in recent years 

the idea is finding relatively wide applications. To demonstrate Hadamard's 

basic idea we consider the following integral 

b 

So(x) = J dt 1 = 2(b-x)~ , (x<b) , (3) 
x (t-x)~ 

from which, differentiating both sides separately, it follows that 

b 

-.! S (x) = 1 I dt - 1 I - - 1 1 , (x <b ) ( 4 ) 
dx 0 2 (t_x)'lz (t-x)t t=x {b-X)2 

x 

In (4) it is seen that the derivative of So (which is bounded) is the dif

ference between a di vergent integral and an unbounded integrated term. 

Noting that the integrated term is independent of b, we may now consi der 

the derivative of So as being the "finite part" of the divergent integral 

and defi ne 

b 
1 dt = 
J (t-x)% x 

lim 
c+x 

b 

[J dt 2 1 J = 
(t-x)% - (c-x)~ 

c 

Fa 11 Oiling are sane other examp 1 es : 
b b 

2 (x<c<b) • 
(b-x)t, ' 

(5) 

f dt = lim [J dt 
x {t_x)a+l c+x c (t_x)a+l 

1 1 ] = _1 {b-xfa , (a>O), (6) 
a (c-x)a . a 
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b b 

f t~tx = lim [J t~tx + log(c-x)] = log(b-x) , 
x c-+x c 

(7) 

b 

f dt - 1 -1 (a<x<b), 
(t_x)2 - - b=X - x-a ' 

( 8) 

a 

b b 

d~ J f(t)loglt-xldt = - f fLtJ dt , (a<x<b) , (9) 

a a 

b b 

dd I ftC t) dt = f ~ dt , (a <x <b) , ( 10) 
x J -x (t-x) 

a a 

b b 

dx
d f f(t) dt = f', .1.. [ 1 ]f(t)dt, (a<x<b, a>O) (11) 

a (t_x)a+l a ax {t_x)a+l 

In this paper first sorre useful formulas for the evaluation of certain 

singular integrals are developed. The results are then used to obtain 

effective numerical solutions to integral equations having kernels with 

strong singularities and some examples are given. 

2. Evaluation of Finite Part Integrals 

With an eye on applications to one dimensional mi'xed boundary value 

problems, in this section we will describe some simple techniques for evalu

ating the finite part integrals having (t_x)-2 as the kernel. Let F{t) be 

a bounded function with continuous first and second deri'vatives and the 

interval be normalized s-uch that -l<[x,tl<l. The singular integral may then 

be exp resse d as 

1 1 

f 
... 1 

F{t}w{t) dt = J [F{t)-F(x)-{t-x)F'{x)] ~ dt 
{t-x}2 -1 (t-x) 

1 1 
+ F(x)f w{t)dt + F'{x)f w(t)dt , (-l<x<l) , 

(t_x)2 t-x 
-1 -1 

(12) 
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where wet) is the fundamental function of the corresponding mixed boundary 
value problem and may be determined by using a suitable function theoretic 
method [7J. For simple physical problems w is given by 

( 13) 

One may now note that the first integral on the right hand side of (12) is 
bounded (the integrand approaches .J. F"(x)w(x) as t-+x) and the remaining 
integrals may be evaluated by using the following expressions: , 

I ~ = 10g11-XI J t-x 1 +x ' 
-1 

1 
i dt _ 1 1 r, (t_x}2 - - 1-x - l+x ' 

1 
I II-t2" dt = -71"X, (-1 <x<l) , J t-x 
-1 

1 

f ;r:rz dt = -71" , (-l<x<l) , 
(t-x)2 

-1 

1 

f dt = 0 , (-l<x<1) , 
-1 (t-x)v'I-'t7 

1 

f dt = 0 , (- 1 <x ~ 1) , 
-1 (t-x)2;r:::tz 

1 

f 11-t 7I'i ( 1 II-X ) ( ) t-x dt = -2vi: 1 -"2 --r log B , x<l , 
-1 

1 

f ll-f 1 1 r2' ) ~~2 dt:; -12 (1+x +4v'~ log B), (x<l , 
-1 (t-x) x 
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(16) 

(17) 

( 18) 

(19) 
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1 
1 dt = _l_ log B , (x<l) , 
~1 (t-x)1r.=f ;r::x 

(22) 

1 

f dt _.f2 1 1 f2 2 - l-x (- 1+x + 4J,..:x log B), (x<l) , 
-1 (t-x) II-'"f 

(23) 

1 1 

f ;r::t dt = - 212'" (_l)m + 2m-5 f ;r:t d 
-1 (t_x)m (m-l)(1-x)(1+x)m-1 2(m-l}(1-x) -1 (t_x)m-l t, 

(x<l) , (24) 

1 m 1 

f dt - -
(t-x)mlr-t 

-1 

12'" (-1) + 2m-3 f dt 
(m-l)(l-x){l+x)m-l 2(m-l)(1-x) -1 (t_x)m-11T=t ' 

(x<l) , (25) 

where m is an integer (m>2) and 

B = (l +j12X}/(l -J12X ) • (26) 

In solving integral equations it is often convenient to express the 

unknown function F(t} in terms of a polynomial with undetermined coefficients. 

In such problems the following expressi ons may be qui te usgful: 

1 

f poet) dt = - 2Q (x) 
t-x n' 

-1 

(27) 

1 

f 
Pn(t) 2{n+~) 
--"""2 dt = - [xQn(x)-Qn+l (x)] , 

-1 (t-x) l-x 
(28) 

1 

f Un ( t) If=t7 dt = - T ( x) (n >0 ) , 
t-x 7T n+l ' 

-1 

(29) 
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1 

f
Un ( t ) If:tL 

(t-x)2 dt = -iT(n+1) Un(x) , (n~O) , 
-1 

(30) 

1 

f 
Tn(t) j 0 , (n=O) 

----dt = 
-1 (t~x)1f="tZ" l iTUn_l(x) , (n>1) , 

( 31) 

1 Tn (t) r 0 , (n=O, 1 ) f dt = 1 -1 (t-X)2/f=t7 \ 1-:2 [- nZl Un(x) + n;l Un-2(x)J, (n2:2), (32) 

where Pn, Qn and Tn,Un are the Legendre and Chebychev polynomials of 

first and second kind, respectively. Also 

1 

Bn(x) = ~ f 
-1 

1 

Cn(x) = ; f 
-1 

1 

Dn (x) = ~ f 
-1 

1 

En(x) = : f 
-1 

1 

nll-F n+l 
t - t dt = 2: b xk , ( n >0 ) 

t-x k=O k 

tn/j":'fL n k 
' (n>O) (t-x}2 dt = E ckx 

k=O 

t n dt r 0 , (n=O) 
= 1 n-l k ( ) (t-x)1f.=tT r dkx , n2:l 

k=O . 

n r 0 , (n=O, 1) , 
t dt - n 2 k 

(t-X)21'f'=t2" -1k~0 ekx ,(n2:.2) 

1 
nlr-t A 

~(x) = f t -t dt = E (A~m) xn-A+m f 
(t-X)A 1TFl -1 -1 
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(t-x) 

(33) 

(34 ) 

(35) 

(36) 
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dt 

n-A 
+ L SA Xn- A- k, (x<l, n>O) , 

k=O k 
(38) 

where the coefficients bk, ck ' dk , e k, A~, s~ and the expressions for the 

polynomials Sn' en' On and En for n=0, ••• ,5 may be found in Appendix .0... 

In (37) and (38) A is a positive integer, (\~m) is the binomial coefficient 

and the integrals in the summations can be obtained from (20)-(26). 

Even though there are also Gaussian type integration 

by Kutt [5J for the evaluation of the singular integral 

b 

f f( t) dt, 
(t_X}A 

x 
A> 1 , 

formulas developed 

(39) 

they are not very convenient for solving integral equations by using the 

standard quadrature method whi ch requires the use of fi xed stations t i , 

since in Kutt's fonnulas' ti vary as x is changed (see also [8J). 

3. Solution of Integral Equations 

Let us now assume that the mixed boundary value problem is reduced 

to the following one di'mensional integral equation: 

b I [ks(t,x) + k(t,x)]f(t)dt = g(x), (a<x<b) , 

a 
(40 ) 

where the kernel k is square integrable in [a,b] and g is a known bounded 

function. If the unknown function f is a "potential" type quantity, then 

the singular kernel ks has a strong singularity (i".e., it contains tenns 

of the order (t_x)-n, n>l). The fundarental (or the weight) function wet) 

of the problem may be determined from ks and fmay be expressed as 

f(t} = F(t)w(t) , a<t<b , ( 41} 

-.] .... 



where F is an unknown bounded function. In solving the integral equations 

with strong singularities the application of quadrature formulas do not 

seem to be very practical. In these problems the simplest and the most 

effective techni que appears to be to approximate the unknown function F 

by a truncated seri es as 

(42) 

and to determine the coefficients an by a weighted residual method. Here 

~n may be any convenient complete system of functions. Substituting from 

(41) and (42) into (40) we obtain 

N 

where b b 

Gn(x) = f ks(t,x)~n(t)w(t)dt + f k(t,x)~n(t)w(t)dt 
a a 

The coefficients an may then be determined from the following system of 

algebraic equations: 

b b 

(43) 

(44) 

N 
n~o anI Gn(X)Wj(x)wj(x)dx = J g(X)Wj(x)wj(x)dx, (j=O,l , ••• ,N), (45) 

a a 

wher.e Wj is a coordinate functi on in a complete system (e. g., a set of 

orthonormal polynomi als) and Wj is the correspond; ng wei ght. The functi ons 

~n (t) and Wj (x) are usually selected in such a way that their orthogonal ity 

properties may be uti li zed. In practi ce one may use· trigonorretri c func

tions, Legendre polynomials, Chebychev polynomials, delta functions or 

any linearly independent set of polynomials such as t n and xj. Quite 

clearly the nurrerical work in (45} may be reduced considerably if we 

select 

(46) 
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By doing so we can use a sirrple collocation method to reduce (43) to the 
following algebraic system: 

N 
l: an Gn ( xJ

") = g (X
J
") , (j ~O , 1 , •• os N) 

n=O 
( 47) 

Although the collocation points Xj can be selected arbitrarily, in general 
they are chosen as the roots of Legendre or Chebychev polynomials. Even 
though there is no restriction on the choice of Xj ' a syrrmetric distribu
tion with respect to the origin with more points concentrated near the 
ends seems to help. One may also note that in case of a resulting ill
conditioned system one could select (M+l) coordinate functions ~j with 
M>N in (45) or (46) and detennine (N+l) unknowns an from a set of (M+l) 
equations by using the rre~hod of least squares. 

Needless to say, if the integral equation (40) contains only a domi
nant kernel {t-x)-l or (t_x)-2, one may always obtain the closed form solu
tion by expanding the functions g(x) and F(t) into appropriate series 
and by using the results given in the previous section and Appendix A. 

4. Application: A Crack in an Infinite Strip 

In fracture mechanics the problem of an infinite strip containing a 
crack perpendicular to its boundaries has been of wide interest since 
this geometry can be used as an approximation to a number of structural 
components and laboratory specimens. The related boundary value problem 
will be discussed below and the numerical treatment of the resulting 
singular integral equation will be given to demonstrate the solution tech
nique that was outlined in the previous section. 

As shown in Fig. 1, the crack lies perpendicular to the stress-free 
boundaries and is under prescribed surface tractions p(x}. The problem 
requires solving the Navier's equations 

subject to 
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cr12(x,0) = ° , (O<x<h) , 

cr22(x,0) = p(x), (a<x<b) l 
u2(x,0) = ° , (O<x<a, b<x<h) J 

(49) 

(50) 

(51 a,b) 

where ul ' u2 are the X,y components of the displacement vector, crij is the 
stress tensor referred to x,y coordinates and K is an elastic constant 
(K=3-4v for plane strain and K=(3-v)/(1+v) for plane stress, v being the 
Poisson's ratio. The stress and displacement components are related through 

cr·· = ll(U, .+u .. ) + AUk kO .. , (i,j,k=1,2) , J 1,J J, , ,1 J (52) 

where fl and A are Lame's constants. The solution of (48) satisfying the 
symmetry condition (50) may be expressed as [9] 

c 1 2 . 
= u· + u. + U,. , (,=1,2), , , 

b 

= 2TI(~+K) f V(t)[-(K-l) x;i + 4(x~E)y2Jdt 
a 

b 

u~(x,y) = 2TI(~+K) J V(t)[(K-l) -f:r + 4f4
3
Jdt . 

a 

r2 = (x-t)2 + y2 , 

ex) 

u~ (x,y) = ; J [Al + (: + x)~]e -aX cosayda 
o 

ex) 

ui(x,y) = ; J (Al +A2x)e-ax sinayda 
o 

-10-
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(55) 

(56) 

(57) 
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0:> 

u~(x,y) = - ~ I [B1 + (~ + h-X)B2]e-S(h-X) cosSydS (59 ) 

o 

0:> 

u~(x,y) = ; J [B1+B2(h-x)]e-S(h-X) sinsyds (60) 
o 

where V is the auxiliary function defined by 

Vex) = u2(x,+o) - u2(x,-0) , (a<x<b) • (61) 

In this solution u~, u~ and u~ are respectively associ ated with an infinite 
plane with a crack and the half planes x>O and x<h. Using the homogeneous 
boundary conditions (49), the unknown functions A1(a), A2(a), B1(S) and 
B2( 6) can be expressed in tenns of Vex) and the mixed boundary conditions 
(51) may be shown to reduce to the following integral equation [9]: 

b b f (~~~~2 dt + J V(t)k(t,x)dt = -TI (\+;)p(x) , a<x<b , (62) 
a a 

where the kernel k(t,x) is given by 

(63) 

() 1 12x 12x2 
k1 t,x = - (t+x)2 + (t+x)3 - (t+X}4 , (64) 

0:> 

k
2
(t,x) = f [f1(t,x,a)e-a (t+x) + f

2
(t,x,a)e-a (2h+x-t)]da , (65) 

o 
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-2ah 2 ] - 3a[2h+t+xJ+5+e [-2a tx+3a(t+x)-5 } , 

-2ah [( ) + a[-10h+t-xJ+3+e a x-t -3]} , 

(66a-x) 

Note that for h~ k2 vanishes and the integral equation for the half plane 
is recovered. 

Normal; z; ng the i nterva 1 (a,b) by def; n; ng 

(67) 

Vet) = (b2a)f(r) (68) 

the integral equation (62) becomes 
1 1 

f (~f~j2 dr + J f(r)K(r,s)dr = g(s), -1<5<1 , 
-1 -1 

(69 ) 

where 

K(r,s) = (b2a)2 k(t,x) , g(s) = 'fT( l;;)p(x) (70) 

The cases a>O and a=O represent the internal and the edge crack, respec
tively, a~d these two problems will be treated separately. In each case 
the solution will be assumed to be of the form 

f( r) = F( r)w( r} (71) 

where the fundamental solution w(r} can be determined from the dominant 
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behavior of the singular kernels in the integral equation and is found 
to be 

w(r) = ~ , internal crack 

w( r) = IT::r , edge crack. 

Internal Crack: a>O 

(72) 

(73) 

Following the procedure described in the previous section, F(r) is 
now approximated in terms of a truncated series of Chebychev polynomials, 

N 
F ( r) = r an Un ( r) , 

n=O 
(74) 

By substituting from (71), (72) and (74) -into (69) and by using (30) we 
obtain 

N 
E an[-'lT(n+l)U (s)+h (s)] = g(s) , -l<s<l , 

n=O n n 

where 1 

h (s) 
n . = J 

-1 

The unknown coefficients an are then determined from equation (75) by 
selecting a convenient set of collocation points such as 

( . ) _ _ (2j + 1 'IT) ( • _ ) Tn+l Sj - 0 , Sj - cos ~~ , J-O,l, ••• ,N , 

(75 ) 

(76) 

( 77) 

Once the solution is obtained, the stress intensity factors which are the 
main parameters of interest in fracture problems, can be calculated from 

k,(a) = lim f2(a-x) 
x-+-a 

°22(x,O) , (x<a) 

= (K
2:, ) lim V{t} (t>a) 

t-+-a 12 ( t-x) 

= (}~) !y F(-l) , (78) 

-13-



= lim 12(x-b) cr22(x,0) , x>b 
x-+b 

= (}:l) 1 im V(t) ,t<b 
t4b /2{b-t) 

- (211) b-a F(1) 
- K+l 2 (79) 

Equations (78) and (79) are obtained from (62) by observing that the 1eft
hand side in (62) gives the stress component cr22(x,0) outside as well as 
inside the cut (a,b). 

Table 1 shows the stress intensity factors for an internal crack in 
a half-plane under uniform loading, p(x) = -Po as an example. 

(b+a) 
b-a 

Table 1. Normalized stress intensity factors for an intema1 
crack in a half-plane. (N+l) terms are used in 
approximating the unknown function. 

k1 (a) kl (b) 
N+1 

b":a b-a 
Po -2- Po -2-

1.01 3.6387 103298 15 
1.05 2.1547 1.2536 10 
1.1 1. 7585 1.2108 10 
1.2 1.4637 1.1626 6 
1.3 1.3316 1. 1331 6 
1.4 1.2544 1.1123 6 
1.5 1.2035 1.0967 4 
2.0 1.0913 1.0539 4 
3.0 1.0345 1.0246 4 
4.0 1.0182 1.014

1

1 4 
5.0 1.0112 1.0092 4 

10.0 1.0026 1.0024 4 
20.0 1.0006 1.0006 4 
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Edge Crack: a=O 

The solution of the integral equation (62) for a=O needs more care. 
Thi sis due to the fact that the kernel k(t ,x) becorres si ngu1 ar as t and 
x approach 0 simultaneously (similarly in (69) K(r,s) becomes unbounded 
as rand s approach -1.) 

For a weight function Il"'="'r certain relations involving singular inte
grals of power series have been presented in Section 2. Therefore, if 
we express the unknown function F(r) as 

N 
F(r) = E an rn 

n=O 
, 

the singular integrals may be evaluated from (37) by letting A=2, The 
integral equation (69) now becomes 

N 

(80) 

E an Gn(s) = g(s) ,-l<s<l , (81) 
n=O 

where 1 1 

= f (r-sF dr + 
-1 

rnv"l-r f 
-1 

or using the notation of (37), 
1 

rn;r:r K(r,s)dr , 

Gn (s) = Rn 2(S) + f rn;r:r K( r,s) dr • 
-1 

(82) 

(83) 

The integral in (83) can be evaluated numerically, however, as s~l, the 
value of the integral becomes unbounded. It may be observed that for s=-l 
Rn 2 (rs.) is also unbounded resulting in a bounded value for Gn(-1). To 
determine the coefficients an the collocation points may be selected as 

in (77). 
For h~ the kernel K(r,s) is simply 

, (84) 
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from which it follows that 

In the limiting case we find 

Gn(-l+<J) = -12 (4n+l}(-l)n • 

The stress intensity factor is given by 

kl ( b) = 1 i m 12 ( x -b ) a 22 ( x ,0 ) , x >b 
x~ 

= (2].1) lim Vet) ,t<b 
K+l· t~ 12 (b-t) 

= (k) to F(l) K+l 2 

(86) 

(87) 

As a first example we again consider a semi-infinite plane with an 
edge crack. In this case the kernel of the integral equation is given in 
closed form (see (69) and (84» and the numerical analysis can be carried 
out quite accurate ly. For a uni form crack surface pressure p(x) = -Po 
and for various values of N the calculated stress intensity factor k(b) 
and the relative crack opening displacement V(O) are given in Table.2. The 
table also shows the correct value of k(b) which was calculated from the 
infinite integral given in [10] (see Appendix B). It is seen that the 
convergence of the method is extremely good. 

j 

The second exa!1ll1e is concerned with a long strip of finite width h 
which contains an edge crack of length b and is subjected to a uniform 
tension Po (p(x)=-Po) (table 3) or pure bending M (p{x) = - ~ (1 - 2hX) 
(table 4) away from the crack region. In the numerical analysis the num
ber of collocation points was increased until the accuracy of the last 
significant digits given in tables 3 and 4 were verified. In no case 
more than 20 points were needed. 

Aside from providing accurate answers to some very practical ques
tions, the results given in Tables 3 and 4 are important in that they follow 

-16-



Table 2. Normalized stress intensity factor and crack open
ing displacement for an edge crack in a half-plane. 

N+l 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

15 

20 

""l 

k
1

(b), 

Pot"D 

1.062652 

1.126950 

1.124283 

1.121818 

1.121442 

1.121451 

1.121483 

1. 121504 

1.121514 

1.121518 

1.121522 

1.121522 
10121522* 

(k)~ 1+K P 
0 

1.502816 

1.423476 

1.457747 

1.455918 

1.454520 

1.454224 

1.454211 

1.454241 

1.454264 

1.454278 

1.454298 

1.454298 

*The correct value of stress intensity factor (calculated 
from the infinite integral given by Koiter [10J • 
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Table 3. Normalized stress intensity factor and crack open
ing displacement for an edge crack in a strip under 
un; form tension. 

b/h 
kl(b) 

(2 ) ~ 
Pol{) . 

1+ p 
0 

~o 1.12152226 
0.00001 1.121522 0.14543xl0-4 

0.001 1.121531 0.14543xlO-2 

O. 1 1.1892 0.15490 
0.2 1.3673 0.36543 
0.3 1.6599 0.70358 
0.4 2.1114 1.3048 
0.5 2.8246 2.4702 
0.6 4.0332 4.9746 
0.7 6.3569 11.246 
0.8 11.955 31.840 
0.85 18.628 63.288 
0.9 34.633 158.94 
0.95 99.14 708.8 
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Table 4. Normalized stress intensity factor and crack open
ing di sp1acement for an edge crack in a strip 
under pure bending. an=6M/h2 

b/h 
k1(b} 

( 2~ ) V(O) 
avO l+K an h 
n 

-+0 1.12152226 
0.00001 1.1215 0.14543x10-4 

0.001 1~ 1202 O. 14535x1 0-2 
~ 

0.1 1.0472 0.14529 
0.2 1.0553 0.31822 
0.3 1.1241 0.56141 
0.4 1.2606 0.94130 
0.5 1.4972 1.5924 . 

0.6 1.9140 2.8387 
0.7 2.7252 5.6432 
0.8 4.6764 13.989 
0.85 6.9817 25.990 
0.9 12.462 60.965 
0.95 34.31 253.7 
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routinely from the technique presented in this paper, for very deep cracks 

(b>0.8h) are not available in literature, and are extremely difficult to 

obtain by using other methods. For example, the solution of the corres

ponding singular integral equation having a Cauchy type dominant kernel 

by using a Gauss ian i ntegrati on fonnul a requi res much greater computati ona 1 

effort than the technique presented here for the same accuracy and for 

b>0.8h has an extremely s low convergence. 
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APPENDIX A 

The coefficients given in the equations (33)-(38): 

b = k 

r 0 , for n-k = even, 

< (n~O, n>k) , l 1 r(n-k) 

c -k -

d = k 

e = k 

- 2 , for n-k = odd , 
21rr r(n-~+3) 

r 0 , for n-k = odd 

<l (n-k-1) 
(k+1) r 2 _ 

n-k+2 ' for n-k - even 
21rr r( 2 ) 

r 0 , for n-k = even 

< 
l 1 r(n2k) 
-- , for n-k = odd 
.;; r(n-~+l) 

r 0 , for n-k = odd 

< 

l (n-k-1) 
(k+l) r 2 
-'---'-- ---:;;..- , for n-k = even 
I; r(n2k) 

(n>O, n>k) , 

, k' 1 k j k f2,j 
AA = 412 (n- -) l: (-1) {Jo} .l::..L2j+3' (n>O) 
k A-1 j=O 

A _ n-k-l k j k ~ 
Bk - 2 ~ ( ),.-1 ). l: (-l) (Jo) 2Jo + 1 ' (n~O) 

J=O 

where (~) is the binomial coefficient and for the gamma function we have 

r(- -1:) = -2r(!) = -21;. 

Some examples of the polynomials Bn , en' On and En are given below 

[see (33)-(36)]: 
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Bo = -x Co = -, , , , 
B, = -X2 +- C, = -2x 2 ' , 

B2 = -x 3 + ~ C = 
, 

2 ' 2 -3x2 + 2" ' 

B = x2 , C - -4x3 
3 -x4 + "2 + 8" ' 3 - + x , 

x3 X C - -5x4 + ~ x2 + 1 B4 = -xs + "2 + 8" ' 4 - 2 8 ' 

B5 -x6 x4 x2 , 
C = -6x 5 + 2x3 +~ = + "2+l3+l"'6, 5 4 

, 

D = 
0 

0 , E = 0 
0 

, 

D, = 1 E, = 0 , 

D2 = x E2 = , , 
D = 3 

x2 + 1 
2 ' E = 3 2x , 

D - x3 + ~ E = 3x2 1 
4 - 2 ' 4 + "2" ' 

D = X4 x2 3 E = 4x 3 + X 5 + 2" + 8"' 5 . 
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APPENDIX B 

Stress Intensity Factor for the Edge Crack 
Calculated from Koiter's Results 

The edge crack problem in a semi-infinite plane has been considered in 
the literature many times and mostly for comparison reasons. The stress 
intensity factor 1.1215 has become a standard when comparing numerical 
techniques for the solution of singular integral equations. For uniform 
pressure Po applied on the crack surface, a closed form expression for 
the stress intensity factor in terms of an infinite integral is given by 
Koiter [10]: 

~ = I2{B+1) 

Po vb .fIT A 
, 

where A is calculated from 
00 

log A = - 1 III og( a si nh 'ITa ) da 
'IT 0 l+a

Z 
iBZ+aZ [COSh'ITa-2a2-1J 

and B is an arbitrary constant greater than 1. 
The result is independent of the choice for B and numerical calcula

tions show that 

1.12152226 , 

where there may be an error only in the last digit. 
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Fig. 1 A Crack in an Infinite Strip 
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