NASA
 Technical Memorandum

```
NASA TM-86552
```

HUBBLE SPACE TELESCOPE METEOROID/DEBRIS PROTECTION ANALYSIS

By Jennifer Horn and Juan Maldonado Structures and Propulsion Laboratory

June 1986

| (NASA-TM-86552) | HUBBLE SPACE TELESCOPE | N86-29737 |
| :--- | :---: | :---: | :---: |
| METEOFOID-DEEKIS FROTFCTICN ANALYSIS (NASA) | | |
| 38 p | CSC 03A | |

G3/89 43219

National Aeronautics and
Space Administration

George C. Marshall Space Flight Center

TABLE OF CONTENTS

Page

INTRODUCTION 1
ANALYSIS METHODS 1
TESTING 3
TESTING/ANALYSIS INTEGRATION FOR ST STRUCTURES 4
RESULTS 5
CONCLUSIONS 5
REFERENCES 10
APPENDIX 1. 11
APPENDIX 2 13
APPENDIX 3. 21
APPENDIX 4. 24
APPENDIX 5 27
APPENDIX 6 29

LIST OF TABLES

Table Title Page

1. Straylight Requirements 4
2. Meteoroid Analysis-No Straylight Violations 6
3. Debris Analysis-No Straylight Violations 7
4. Meteoroid Analysis-No Critical Penetrations 8
5. Debris Analysis-No Critical Penetrations 8
6. Overall Probability of No Critical Penetrations 9

TECHNICAL MEMORANDUM

HUBBLE SPACE TELESCOPE METEOROID/DEBRIS PROTECTION ANALYSIS

INTRODUCTION

An increasing concern with the consequences of meteoroid/debris impacts on space vehicles has brought to attention the threat of critical damage to the Hubble Space Telescope (ST). This report contains an analysis of the ST's structure and components, determining the probability of the occurrence of a critical penetration. The analysis also shows the region of the ST most likely to be critically penetrated.

A critical penetration is one which will reduce the ST's ability to operate as a facility on orbit, or will significantly reduce the quality of science data. A critical penetration could cause (1) damage to a component of a major support subsystem, or (2) straylight contamination of the ST's light shield, forward shell, aft shroud, or aperture door. Straylight is any light which enters the ST other than the light from the object(s) being viewed. Therefore, a penetration of the outer shell would allow straylight to interfere with the ST's observation capabilities.

ANALYSIS METHODS

Analysis of the ST began with calculation of the probability of no penetration for each unique component or structural region (Fig. 1). These probabilities are based on the time the ST will be exposed to the meteoroid/debris environment, the meteoroid/debris flux at the ST's 500 km altitude, and the ST area exposed to the environment [1]. This analysis determines the particle sizes and respective velocities that the specific structure or component can defeat. This structural characteristic is called the "ballistic limit" of the structure or component. The ballistic limit for a single-wall structure is the thickness required to stop a projectile of a given mass at a specified velocity. For a double-wall structure, the ballistic limit is defined as the required total thickness for the front and back plates that stop the specified particle from going through both plates. The ballistic limit depends on the structure's material density, the plate spacing, and the particle size, velocity, and density.

Components

The critical or noncritical status of the components of the major ST support subsystems is based on the following criteria: (1) the components are housed inside the ST structural walls; (2) the components have small exposed areas to the meteoroid/ debris environment; (3) the components are orbital replacement units (ORU); and/or (4) the components have high damage tolerances.

Those components housed inside the ST structure are surrounded by structural walls and materials which are sufficiently massive to allow us to assume that these components would be virtually unaffected by meteoroid/debris impact.

Figure 1. Hubble Space Telescope.

The components which have small areas exposed to the meteoroid/debris environment have negligible probabilities of penetration because the small areas provide less target area for the particles (see Appendix 1). These components include the high gain antenna dish, and the high gain antenna feed.

The ORU's are not considered critical to the ST's operation since, by definition, they can be replaced if damaged [2]. Therefore, we did not include these in our calculations: the low gain antenna, the solar arrays, the OTA (optical telescope assembly) equipment section, and the space support module equipment section.

The remaining critical components of the ST which are exposed to the meteoroid/ debris environment are the magnetic torquers, the waveguides for the high gain and low gain antennas, and the few exposed electrical cables (see Appendix 2). The cables, however, are redundant and thus have high damage tolerance. The magnetic torquers also have a high tolerance to damage since they are small in area, and have thick walls which resist penetration. The waveguides have none of the four characteristics above. They have their own unique characteristics in that they can withstand penetration resulting in a 0.5 - to $0.75-\mathrm{in}$. diameter hole, but cannot tolerate surface ripples introduced by lesser impacts. For this case, impacts resulting in surface ripples cannot be predicted without more extensive testing than has been completed at this time. Therefore, only an analysis which predicts penetration for the hole sizes above was completed for the waveguides.

Structural Regions

One method of analyzing the meteoroid/debris protection capability of the structural regions of the ST is to assume that any penetration would be critical; that any straylight would critically reduce the telescope's visual capability. With this assumption, we calculated the probability that no penetration would occur on any ST structural region (see Appendix 3). The regions include the aperture door, the light shield, the forward shell, four unique aft shroud regions, and the aft shroud bulkhead. First, each region was assessed for plate material, plate thickness, and number of plates, and whether it had any additional protection, such as multi-layer insulation (MLI) or fozar tape [2,3]. Next, ballistic limit equations were used to find the particle mass and velocity which would penetrate each region [4]. Finally, the probability that this particle size and larger would impact (and thus penetrate) the structure was found with the flux calculated for this particle size [1,5-8] (see Appendix 4).

TESTING

Hypervelocity impact tests were required to validate the ballistic limit analyses of the ST structures. Small-bore, light-gas guns were used in the tests for their ability to shoot small particles at large velocities, approximating particle impact (see Appendix 5).

The tests show the effects of impact on each unique structure. Particle material, velocity, and mass were recorded for each shot. Corresponding penetration hole sizes were also measured and recorded for one of each structure type.

The test results were integrated with the previously mentioned analysis techniques. In the analysis it was assumed that any penetration would be critical. In contrast, in the test/analysis integration, the "critical penetration" is one which would allow an amount of straylight into the ST structure causing a decrease in the ST observation capabilities. Straylight is that light entering the ST from other than the light path from the direction being viewed. Therefore, penetration of smaller particles resulting in smaller holes and less straylight, could be allowed.

The allowable penetration hole sizes for minimally degraded, degraded, and severely degraded performance levels were determined by the Optical Systems Branch, EB 23 , MSFC. The hole sizes which result in minimally degraded performance levels were defined by straylight allowances and determined for each ST region (Table 1). Degraded performance is a level 10 times the minimal, and severely degraded is a level 100 times the minimal [9].

The particle sizes from testing were adjusted so that the respective hole sizes for each region affected by straylight would equal the hole sizes of the performance levels. With the adjusted sizes, the fluxes and then the probabilities of having one critical penetration were found for each of these regions: the light shield, the aft shroud, the aft shroud bulkhead, and the aperture door $[1,5-8]$.

The particle sizes mentioned above were adjusted by assuming that the kinetic energy of a particle is proportional to the hole size it will produce upon impact. Since the performance levels are defined by hole sizes allowed in each region, the allowed hole sizes were directly compared to the hole sizes measured from the tests. Then, the test-mass measurements were adjusted to larger or smaller masses by the factor resulting from the hole comparison. This method resulted in one mass for each performance level, for each ST region. In turn, these masses were used to calculate the fluxes, and then the probabilities of penetration. An example of one particular probability is "the probability of one or less meteoroid penetration which would cause a minimally degraded performance in the visual capabilities of the Light Shield over a 2-year period." The probabilities were calculated for service times of two, five, ten, and fifteen years, and for both meteoroid and debris protection.

The areas used in the calculations are the areas exposed to the environment. They are dependent on the particle type. For meteoroids, the surface area was used; for debris, the "effective" area was used. The effective area, based on the directional particle flux of debris, is calculated by using "flux factors" [5].

TABLE 1. STRAYLIGHT REQUIREMENTS

Region of Spacecraft
Aft Shroud
Forward Shell
Light Shield
Aperture Door

Allowed Area Penetration

$10^{-2} \mathrm{~mm}^{2} / \mathrm{m}^{2}$
$2 \mathrm{~mm}^{2} / \mathrm{m}^{2}$
$10 \mathrm{~mm}^{2} / \mathrm{m}^{2}$
$10 \mathrm{~mm}^{2} / \mathrm{m}^{2}$

In the aperture door analysis, an assumption was made to account for lack of test data. It was assumed that the aperture door has at least the ability of the light shield to stop a given particle. Therefore, the particle and resulting penetration hole size used in the light shield analysis were also used in the analysis of the aperture door.

The forward shell was not included in the straylight analysis because any complete penetration would violate the straylight criteria. Therefore, the ballistic limit probabilities for no penetration of the forward shell were the critical ones, and were used in the final overall probability calculations (see Appendix 6).

RESULTS

The results of the analysis of the Hubble ST meteoroid/debris protection capabilities are shown in Tables 2 through 6. The area of a component or components exposed to the meteoroid/debris environment is a major factor in determining the probabilities. The larger areas are more likely to be hit by a particle, and more likely to be critically damaged, than smaller areas (assuming other factors remain constant). Also, the components which have thinner walls and/or less spacing between inner and outer walls are more likely to be hit by a particle and critically penetrated.

Straylight Violations

Table 2 shows probabilities of no straylight violations considering meteoroid penetrations only, with the worst probabilities being for the aft shroud bulkhead, ranging from 0.0519 to 0.9999 (from minimal to severe degradation of the ST's observation capabilities in 2 years). Table 3 shows probabilities of no straylight violations considering debris penetrations. Again, the worst probabilities are for the aft shroud bulkhead, ranging from 0.2744 to 0.9986 (from minimal to severe degradation of the ST's observation capabilities in 2 years).

No Critical Penetrations

Tables 4 and 5 show the probabilities of no critical penetrations by meteoroids and debris, respectively. From these two tables, the magnetic torquers have the worst probabilities of critical damage [0.9625 (meteoroids) and 0.9897 (debris)].

Total Penetrations

Table 6 shows the combined total probabilities for the ST's meteoroid/debris protection capability. This table shows that the probability of penetrations by meteoroids is greater than by debris (meteoroid particles are more numerous and have greater impact velocities). All the probabilities of no penetrations decrease with increasing time; and they increase with increasing allowable damage.

CONCLUSIONS

This report shows that the Hubble ST will have a probability of no critical penetrations of 92.25 percent for a 2 -year service life. This probability is for the most severe amount allowed of degradation of the ST's observation capabilities.

Since the aft shroud area is most likely to be critically penetrated, the development of a straylight leakage repair technique is recommended for this area. Fozar tape and MLI (multi-layer insulation) blankets have been suggested as possible repair materials.

TABLE 2. METEOROID ANALYSIS PROBABILITY OF NO STRAYLIGHT VIOLATIONS

Region	Years	Minimal	Degraded	Severe
Aft Shroud 2C	$\begin{array}{r} 2 \\ 5 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & 0.6164 \\ & 0.1557 \\ & 0.0100 \\ & 0.0005 \end{aligned}$	$\begin{aligned} & 0.9968 \\ & 0.9819 \\ & 0.9366 \\ & 0.8746 \end{aligned}$	$\begin{aligned} & 0.9999 \\ & 0.9999 \\ & 0.9997 \\ & 0.9993 \end{aligned}$
Aft Shroud 2B	$\begin{array}{r} 2 \\ 5 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & 0.2470 \\ & 0.0088 \\ & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.9879 \\ & 0.9364 \\ & 0.8034 \\ & 0.6546 \end{aligned}$	$\begin{aligned} & 0.9999 \\ & 0.9997 \\ & 0.9988 \\ & 0.9973 \end{aligned}$
Aft Shroud (MAG-MLI)	$\begin{array}{r} 2 \\ 5 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & 0.6164 \\ & 0.1557 \\ & 0.0100 \\ & 0.0005 \end{aligned}$	$\begin{aligned} & 0.9968 \\ & 0.9819 \\ & 0.9366 \\ & 0.8746 \end{aligned}$	$\begin{aligned} & 0.9999 \\ & 0.9999 \\ & 0.9997 \\ & 0.9993 \end{aligned}$
Aft Shroud (AL-AL)	$\begin{array}{r} 2 \\ 5 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & 0.2470 \\ & 0.0088 \\ & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.9879 \\ & 0.9364 \\ & 0.8034 \\ & 0.6546 \end{aligned}$	0.9999 0.9997 0.9988 0.9973
Aft Shroud Bulkhead	$\begin{array}{r} 2 \\ 5 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & 0.0519 \\ & 0.0001 \\ & 0.0000 \\ & 0.0000 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.9657 \\ & 0.8372 \\ & 0.5779 \\ & 0.3644 \\ & \hline \end{aligned}$	0.9999 0.9991 0.9963 0.9920
Light Shield	$\begin{array}{r} 2 \\ 5 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & 0.9999 \\ & 0.9999 \\ & 0.9999 \\ & 0.9999 \end{aligned}$	$\begin{aligned} & 0.9999 \\ & 0.9999 \\ & 0.9999 \\ & 0.9999 \end{aligned}$	$\begin{aligned} & 0.9999 \\ & 0.9999 \\ & 0.9999 \\ & 0.9999 \end{aligned}$
Aperture Door	$\begin{array}{r} 2 \\ 5 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & 0.9999 \\ & 0.9999 \\ & 0.9999 \\ & 0.9999 \end{aligned}$	$\begin{aligned} & 0.9999 \\ & 0.9999 \\ & 0.9999 \\ & 0.9999 \end{aligned}$	$\begin{aligned} & 0.9999 \\ & 0.9999 \\ & 0.9999 \\ & 0.9999 \end{aligned}$
Total	$\begin{array}{r} 2 \\ 5 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & 0.0012 \\ & 0.0000 \\ & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.9363 \\ & 0.7076 \\ & 0.3271 \\ & 0.1194 \end{aligned}$	$\begin{aligned} & 0.9993 \\ & 0.9981 \\ & 0.9931 \\ & 0.9851 \end{aligned}$

TABLE 3. DEBRIS ANALYSIS PROBABILITY OF NO STRAYLIGHT VIOLATIONS

Region	Years	Minimal	Degraded	Severe
Aft Shroud 2C	$\begin{array}{r} 2 \\ 5 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & 0.8624 \\ & 0.5193 \\ & 0.1664 \\ & 0.0457 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.9959 \\ & 0.9766 \\ & 0.9196 \\ & 0.8439 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.9999 \\ & 0.9995 \\ & 0.9978 \\ & 0.9952 \end{aligned}$
Aft Shroud 2B	$\begin{array}{r} 2 \\ 5 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & 0.6920 \\ & 0.2313 \\ & 0.0244 \\ & 0.0019 \end{aligned}$	$\begin{aligned} & 0.9882 \\ & 0.9368 \\ & 0.8043 \\ & 0.6635 \end{aligned}$	$\begin{aligned} & 0.9998 \\ & 0.9983 \\ & 0.9936 \\ & 0.9861 \end{aligned}$
Aft Shroud (MAG-MLI)	$\begin{array}{r} 2 \\ 5 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & 0.8624 \\ & 0.5193 \\ & 0.1664 \\ & 0.0457 \end{aligned}$	$\begin{aligned} & 0.9959 \\ & 0.9766 \\ & 0.9196 \\ & 0.8439 \end{aligned}$	$\begin{aligned} & 0.9999 \\ & 0.9995 \\ & 0.9978 \\ & 0.9952 \end{aligned}$
Aft Shroud (AL-AL)	$\begin{array}{r} 2 \\ 5 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & 0.6920 \\ & 0.2313 \\ & 0.0244 \\ & 0.0019 \end{aligned}$	$\begin{aligned} & 0.9882 \\ & 0.9368 \\ & 0.8043 \\ & 0.6635 \end{aligned}$	$\begin{aligned} & 0.9998 \\ & 0.9983 \\ & 0.9936 \\ & 0.9861 \end{aligned}$
Aft Shroud Bulkhead	$\begin{array}{r} 2 \\ 5 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & 0.2744 \\ & 0.0119 \\ & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.9462 \\ & 0.7630 \\ & 0.4475 \\ & 0.2347 \end{aligned}$	$\begin{aligned} & 0.9986 \\ & 0.9918 \\ & 0.9699 \\ & 0.9379 \end{aligned}$
Light Shield	$\begin{array}{r} 2 \\ 5 \\ 10 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & 0.9999 \\ & 0.9999 \\ & 0.9996 \\ & 0.9991 \end{aligned}$	$\begin{aligned} & 0.9999 \\ & 0.9999 \\ & 0.9999 \\ & 0.9999 \end{aligned}$	$\begin{aligned} & 0.9999 \\ & 0.9999 \\ & 0.9999 \\ & 0.9999 \end{aligned}$
Aperture Door	$\begin{array}{r} 2 \\ 5 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & 0.9999 \\ & 0.9999 \\ & 0.9997 \\ & 0.9993 \end{aligned}$	$\begin{aligned} & 0.9999 \\ & 0.9999 \\ & 0.9999 \\ & 0.9999 \end{aligned}$	$\begin{aligned} & 0.9999 \\ & 0.9999 \\ & 0.9999 \\ & 0.9999 \end{aligned}$
Total	$\begin{array}{r} 2 \\ 5 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & 0.0977 \\ & 0.0002 \\ & 0.0000 \\ & 0.0000 \end{aligned}$	$\begin{aligned} & 0.9163 \\ & 0.6385 \\ & 0.2448 \\ & 0.0736 \end{aligned}$	$\begin{aligned} & 0.9978 \\ & 0.9872 \\ & 0.9531 \\ & 0.9031 \end{aligned}$

*Debris Environment not imposed on ST spec.

TABLE 4. METEOROID ANALYSIS COMPONENTS NOT AFFECTED BY STRAYLIGHT

Years	Probability of No Critical Penetrations			
	2	5	10	15
HGA (Waveguide) Mast (For 1 of 2) Magnetic Torquers (For 1 of 2)	0.9988	0.9971	0.9942	0.9913
LGA Waveguides (Total) Forward Shell	0.9625	0.9090	0.8262	0.7510
Total	0.9996	0.9991	0.9981	0.9972

TABLE 5. DEBRIS ANALYSIS COMPONENTS NOT AFFECTED BY STRAYLIGHT

Years	Probability of No Critical Penetrations			
	2	5	10	15
HGA (Waveguide) Mast (For 1 of 2)	0.9999	0.9999	0.9998	0.9997
Magnetic Torquers (For 1 of 2)	0.9897	0.9744	0.9494	0.9251
LGA Waveguides (Total)	0.9999	0.9999	0.9999	0.9999
Foward Shell	0.9985	0.9962	0.9924	0.9887
Total	0.9880	0.9705	0.9419	0.9143

*Debris environment not imposed on ST spec.

TABLE 6. OVERALL PROBABILITY OF NO CRITICAL PENETRATIONS (WITH NO REPAIRS)

	Years	ST Performance Levels		
		Minimal	Degraded	Severe
Meteoroid	2	0.0012	0.8644	0.9225
	5	0.0000	0.5797	0.8177
	10	0.0000	0.2195	0.6663
	15	0.0000	0.0656	0.5415
Debris*	2	0.0965	0.9053	0.9858
	5	0.0002	0.6197	0.9581
	10	0.0000	0.2306	0.8977
	15	0.0000	0.0673	0.8257
Combined Total	2	0.0001	0.7825	0.9094
	5	0.0000	0.3592	0.7834
	10	0.0000	0.0506	0.5981
	15	0.0000	0.0044	0.4471

*Debris environment not imposed on ST spec.

REFERENCES

1. Frost, V. C.: Meteoroid Damage Assessment. Aerospace Corporation, NASA SP-8042, May 1970.
2. LMSC/D974197, "ST Systems Description Handbook," June 1984.
3. LMSC /D668777A, Addendum No. 1, "ST System Meteoroid Analysis," SE-03, Section 0, Part 2, January 1982.
4. Nysmith, C. Robert.: An Experimental Impact Investigation of Aluminum Double-Sheet Structures. AIAA Paper No. 69-375, May 1969.
5. Elfer, N. and Kovacevic, G.: Design for Space Debris Protection. Martin Marietta Michoud Aerospace, 3rd Annual AIAA Greater New Orleans Section Symposium, University of New Orleans, November 1985.
6. NASA TMX-73331, "Natural Environment Design Requirements for the Space Telescope," September 1976.
7. NASA TMX-64627, "Space and Planetary Environment Criteria Guidelines for Use in Space Vehicle Development," MSFC, Huntsville, Alabama, November 1971.
8. NASA SP-8013, "Meteoroid Environment Model-1969," March 1969.
9. Memo No. EB 23(143-85), December 3, 1985, from D. B. Griner, Guidance, Control and Optical Systems Division, Marshall Space Flight Center, Huntsville, Alabama.

APPENDIX 1

HIGH GAIN ANTENNA DISH

$$
\begin{gathered}
\text { PARABOLIC AREA }=\frac{2 \pi}{3 p}\left[\sqrt{\left(\frac{d^{2}}{4}+p^{2}\right)^{3}}-p^{3}\right] \\
\text { WHERE } p=\frac{d^{2}}{8 h}
\end{gathered}
$$

INNER SURFACE	OUTER SURFACE			
		$d=51.2^{\prime \prime}$ $d=50.76^{\prime \prime}$		
$h=12.69^{\prime \prime}$			\quad	$h=12.94^{\prime \prime}$
:---	:---			

$$
\begin{aligned}
& >\text { INNER SURFACE } \quad p=\frac{(50.76)^{2}}{8(12.69)}=25.38 \\
& \quad A=\frac{2 \pi}{3(25.38)}\left[\sqrt{\left(\frac{(50.76)^{2}}{4}+25.38^{2}\right)^{3}}-25.38^{3}\right] \frac{1}{144}
\end{aligned}
$$

$$
=17.13 \mathrm{FT}^{2}=1.59 \mathrm{~m}^{2}
$$

$$
>\text { OUTER SURFACE } \quad p=\frac{(51.2)^{2}}{8(12.94)}=25.32
$$

$$
A=\frac{2 \pi}{3(25.32)}\left[\sqrt{\left(\frac{(51.2)^{2}}{4}+25.32^{2}\right)^{3}} \quad-25.32^{3}\right] \frac{1}{144}
$$

$$
=17.49 \mathrm{FT}^{2}=1.625 \mathrm{~m}^{2}
$$

THE HGA DISH IS . $25^{\prime \prime}$ THICK HONEYCOMB GRAPHITE EPOXY.
ASSUME THE MATERIAL ACTS SIMILAR TO ALUMINUM WITH A THICKNESS OF . $25^{\prime \prime}, .635 \mathrm{~cm}$.

$$
t=K_{1} m^{.352} v^{.875} \rho^{1 / 6}
$$

FOR METEOROID:

$$
\begin{aligned}
.635 & =.57 \mathrm{~m} .352 \quad 20^{.875} .5^{1 / 6} \\
m & =.00110 \mathrm{~g}
\end{aligned}
$$

MET. FLUX:

$$
\begin{aligned}
\mathrm{Nc} & =2.88325 \times 10^{-15}(.00110)^{-1.213} \\
& =1.11 \times 10^{-11} / \mathrm{m}^{2} . \mathrm{SEC} \\
\mathrm{Po}_{\mathrm{o}} & =\mathrm{e}^{\mathrm{NAT}}=\mathrm{e}^{\cdot\left(1.11 \times 10^{-11}\right)(3.215)\left(6.3072 \times 10^{7}\right)} \\
& =.9979
\end{aligned}
$$

FOR DEBRIS:

$$
\begin{aligned}
.635 & =.57 \mathrm{~m}^{.352} 10^{875} 2.81^{1 / 6} \\
\mathrm{~m} & =.00272 \mathrm{~g} \rightarrow \text { dia. }=.1227 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
\text { Aeff } & =\left(1.86 \pi r^{2}\right)+(1.19)(2 / 3 \mathrm{hd}) 2 \\
& =\pi(51.2)^{2}(.0929 / 144)(1.86)+(1.19)(2 / 3 \times 12.94 \times 51.2)\left(\frac{.0929}{144}\right)=3.48
\end{aligned}
$$

DEBRIS FLUX:

$$
\begin{gathered}
\text { LOG Nc }=-2.52 \text { LOG }(.1227)-5.46 \\
N c=6.8566 \times 10^{-4} / \mathrm{m}^{2} . \mathrm{YR} \\
P_{0}=\mathrm{e} \cdot\left(6.8566 \times 10^{-4}\right)(3.48)(2)=.9952
\end{gathered}
$$

TOTAL PROB. OF NO PENETRATION $=(.9956)(.9979)=. \underline{931}$

MAGNETIC TORQUERS

STAINLESS STEEL

$$
\text { HOLLOW, } \mathrm{t}=.035^{\prime \prime}=.0889 \mathrm{~cm} \quad \begin{aligned}
\mathrm{A} & =2 \pi \mathrm{rh}+2 \pi \mathrm{r}^{2} \\
& =2 \pi(1.125)(98)+2 \pi(1.125)^{2} \\
\mathrm{t} & =\mathrm{K}_{1} \mathrm{~m}^{.352} \rho^{1 / 6} \mathrm{v} .875
\end{aligned} \quad=4.87 \mathrm{ft}^{2}=.452 \mathrm{~m}^{2}
$$

FOR METEOROID:

$$
\begin{aligned}
.0889 & =.32 \mathrm{~m}^{.352}(.5)^{1 / 6} 20^{.875} \\
\mathrm{~m} & =.0000213 \mathrm{~g} \\
\mathrm{Nc} & =2.88325 \times 10^{.15}(.0000213)^{-1.213} \\
\bullet 2 \text { YRS: } \quad \text { Po } & =\mathrm{e}^{. \mathrm{NAT}}=\mathrm{e}^{.\left(1.339 \times 10^{-9}\right)(.452)\left(6.3072 \times 10^{7}\right)} \\
& =.9625 \\
5 \text { YRS: } \quad \text { Po } & =.9090 \\
10 \text { YRS: } \quad \text { Po } & =.8262 \\
15 \text { YRS: } \quad \text { Po } & =.7510
\end{aligned}
$$

*SQUARE THE PROBABILITY TO GET THE TOTAL FOR 2.

FOR DEBRIS:

```
.0889 =. .32 m.352 (2.81 1/6})(1\mp@subsup{0}{}{.875}
    m =.0000527g
    d=(\frac{6m}{\pi\rho}\mp@subsup{)}{}{1/3}=(\frac{6(.0000527)}{\pi(2.81)}\mp@subsup{)}{}{1/3}
    d = .0330 cm
LOG \(N=-2.52\) LOG (.0330) \(\cdot 5.46\)
\[
N=.01876 / \mathrm{m}^{2} . Y R
\]
\[
\text { Aeff }=\left((2.25 \times 98) \times 1.86 \times \frac{.0929}{144}\right)+\left(\pi(2.25)^{2} \times 1.19 \times \frac{.0929}{144}\right)
\]
\[
=.2646+.0122=.2768 \mathrm{~m}^{2}
\]
2 YRS: \(P o=e^{-(.01876)(.2768)(2)}\)
\[
=.9897
\]
5 YRS: \(P o=.9744\)
10YRS: \(\mathrm{Po}=.9494\)
15 YRS: \(\mathrm{Po}=.9251\)
```

WAVEGUIDES - IT WAS ASSUMED THAT A PARTICLE PRODUCING GREATER THAN A 1/2INCH DIAMETER HOLE WOULD BE CRITICAL.

- HGA MAST - (ALSO ACTS AS A WAVEGUIDE)

GRAPHITE AI (ASSUME AI BEHAVIOR)

$$
\begin{aligned}
\text { AREA } & =(1.7 \times 2 \times 141.15)+(3.4 \times 2 \times 141.15) \\
& =1439.73 \mathrm{iN}^{2}=10.0 \mathrm{FT}^{2}=.93 \mathrm{~m}^{2}
\end{aligned}
$$

FOR A $1 / 2^{\prime \prime}$ HOLE, D $=1 / 2^{\prime \prime}=1.27 \mathrm{CM}$
$d=$?
$\mathrm{t}=.048 \mathrm{IN} .=0.122 \mathrm{~cm}$
$V=20 \mathrm{~km} / \mathrm{s}$

$$
\mathrm{D} / \mathrm{d}=\left(0.9+0.45 \vee(\mathrm{t} / \mathrm{d})^{2 / 3}\right)
$$

FOR METEOROID: GUESS $\mathrm{d}=.138 \mathrm{~cm}$-PARTICLE DIAMETER

$$
1.27 / .138=0.9+(.45)(20)(.122 / .138)^{2 / 3}
$$

$$
9.20=9.19
$$

$$
m=\rho V=(.5)\left(\pi \frac{.138^{3}}{6}\right)=.000688 \mathrm{~g}
$$

$$
\text { FLUX: } N c=2.88325 \times 10^{-15}(.000688)^{-1.213}
$$

$$
=1.976 \times 10^{-11} / \mathrm{m}^{2} \cdot \mathrm{sec}
$$

$$
2 \text { YRS: Po }=e^{\cdot\left(1.976 \times 10^{-11}\right)(.93)\left(6.3072 \times 10^{7}\right)}
$$

$$
\text { Po }=.9988
$$

5 YRS: \quad Po $=.9971$
10 YRS: \quad Po $=.9942$
15 YRS: \quad Po $=.9913$

FOR DEBRIS: GUESS d = . 47

$$
\begin{gathered}
D / d=\left(0.9+0.45 V(t / d)^{2 / 3}\right) \\
2.7=2.7 \\
m=\rho V=(2.81)\left(\pi \frac{.47^{3}}{6}\right)=.15276 \mathrm{~g}
\end{gathered}
$$

FLUX:
LOG Nc $=-2.52($ LOG d) -5.46

$$
\mathrm{Nc}=2.32 \times 10^{-5} / \mathrm{m}^{2} . Y R
$$

EFFECTIVE AREA:

$$
\begin{aligned}
\text { Aeff } & =\left[(141.15 \times 3.4) \times\left(\frac{.0929}{144}\right) \times 1.86\right]+\left[2(141.15 \times 1.7) \times\left(\frac{.0929}{144}\right) \times 1.19\right] \\
& =.944 \mathrm{~m}^{2}
\end{aligned}
$$

2YRS: $P P_{0}=e^{-N A T}=e\left(2.32 \times 10^{-5}\right)$ (.944) (2)

$$
=.9999
$$

5 YRS: Po $=.9999$
10 YRS: $P o=.9998$
15 YRS: $P_{0}=.9997$

FOR DEBRIS: \quad Aeff $=(1.19)(2.775)(2)[(608.5-563.35)+(563.35-455.3)+((300-228) X$ $\pi / 180(60.6+3.33))]$
$+(1.86)(4.925)[(608.5-563.35)+(563.35-455.3)+(1300-228) X$ $\pi / 180(60.6+3.33))]$
$=10.71+14.86=25.57 \mathrm{FT}^{2} \quad$ (ASSUMING WORST CASE)
*AREA IS A CLOSE APPROXIMATION, NOT EXACT

TOTAL AREAS FOR LGA WAVEGUIDES:
FOR MET.: $\quad 17.0+11.35=28.35 \mathrm{ft}^{2}=2.63 \mathrm{~m}^{2}=\mathrm{AREA}$

FOR DEBRIS: $25.57+17.08=3.96 \mathrm{~m}^{2}=$ EFF. AREA

FOR A $1 / 2^{\prime \prime}$ PENETRATION HOLE, $\quad D=1 / 2^{\prime \prime}=1.27 \mathrm{~cm}$
$d=$?
$t=.0794 \mathrm{~cm}$
$V=20 \mathrm{~km} / \mathrm{s}$
*AREA IS AN APPROXIMATION, NOT EXACT.

$$
D / d=\left(0.9+0.45 V(t / d)^{2 / 3}\right)
$$

METEOROID

$$
\begin{aligned}
& \text { GUESS } \mathrm{d}=.25 \mathrm{~cm} \\
& \begin{aligned}
(1.27 / .25) & =\left(.9+.45(20)(.0794 / .25)^{2 / 3}\right) \\
5.08 & =5.09
\end{aligned} \\
& \begin{aligned}
\mathrm{m}=\rho \mathrm{V}= & (.5)\left(\frac{\pi .25^{3}}{6}\right)=.00409 \mathrm{~g}
\end{aligned} \\
& \begin{aligned}
\text { FLUX }=\mathrm{Nc} & =2.88325 \times 10^{-15}(.00409)^{-1.213} \\
& =2.27 \times 10^{-12 / \mathrm{m}^{2}} \mathrm{SEC}
\end{aligned} \\
& \begin{aligned}
\text { Po critical } & =\mathrm{e} .\left(2.27 \times 10^{-12}\right)(2.63)\left(6.3072 \times 10^{7}\right) \\
2 & =.9996
\end{aligned}
\end{aligned}
$$

5 YRS: \quad Po critical $=.9991$

10 YRS: \quad Po critical $=.9981$

15 YRS: \quad Po critical $=.9972$

DEBRIS

GUESS d $=.63 \mathrm{~cm}$
$(1.27 / .63)=\left(.9+.45(10)(.0794 / .63)^{2 / 3}\right)$
$2.02=2.03$
$m=\rho V=(2.81)\left(\pi \frac{.63^{3}}{6}\right)=.36790 \mathrm{~g}$

FLUX: LOG Nc $=-2.52$ (LOG d) --5.46

LOG Nc $=-2.52($ LOG .63) -5.46

$$
N c=1.11 \times 10^{-5} / \mathrm{m}^{2} . Y R
$$

2 YRS: Po critical $=e^{- \text {NAT }}=e^{-\left(1.11 \times 10^{-5}\right)}$ (3.96) (2)

$$
=.9999
$$

5 YRS: Po critical $=.9999$

10 YRS: Po critical $=.9999$

15 YRS: Po critical $=.9999$

APPENDIX 3

APERTURE DOOR (REF . 2)

$$
A R E A=119.23 \times 122 \div 144=101.0 \mathrm{FT}^{2}
$$

LIGHT SHIELD (REF . 2)

$$
.57^{\prime \prime} \text { SPACE } \longrightarrow .0105^{\prime \prime} \text { MLI }
$$

- 121 OD

FORWARDSHELL (REF. $2 \&$ DRAWING \# 679-5795 MAIN BAFFLE ASS!Y)

(IIc)	FOSR
	.050' MAGNESIUM AZ31B - H24
$\left[4-30^{\circ}\right.$ SECTIONS]	3 " SPACE
	.012' ALUMINUM 7075 -- T7351
AREA $=\left(120^{\circ}\right)(\pi / 180)(168 / 2)(138) / 144=168.6 \mathrm{FT}^{2}$	
(IIb)	$\begin{aligned} & \text { FOSR } \\ & .0322^{\prime \prime} \text { ALUMINUM } 7075-\text { T7351 } \end{aligned}$
[4-15 ${ }^{\circ}$ SECTIONS]	3' SPACE
	.0065' MLI
AREA $=\left(60^{\circ}\right)\left(\pi / 180(168 / 2)(138) / 144=84.30 \mathrm{FT}^{2}\right.$	
3	FOSR .050'" MAGNESIUM AZ31B - H24
[4-30 ${ }^{\circ}$ SECTIONS]	3' SPACE
	.0105" MLI
AREA $=\left(120^{\circ}\right)(\pi / 180)(168 / 2)(138) / 144=168.6 \mathrm{FT}^{2}$	
4	FOSR .035" ALUMINUM 7075 - T7351
[4-15 ${ }^{\circ}$ SECTIONS]	
	$3^{\prime \prime}$ SPACE
	.012' ALUMINUM 7075 - T7351
AREA $=\left(60^{\circ}\right)(\pi / 180)(168 / 2)(138) / 144=84.3 \mathrm{FT}^{2}$	

APPENDIX 4

- EXAMPLE OF CALCULATIONS FOR NO PENETRATION OF ST STRUCTURE LIGHT SHIELD

$$
\begin{array}{ll}
.57^{\prime \prime} \text { SPACE } & .0105^{\prime \prime} \text { MLI } \\
& .035^{\prime \prime} \text { MAGNESIUM AZ31B }
\end{array}
$$

MLI: $\quad \rho=1.741 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{e}=0.50 \mathrm{in} / \mathrm{in}$
MAG.: $\rho=1.769 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{e}=0.08 \mathrm{in} / \mathrm{in}$

$$
K_{1}=0.816 /\left(e^{1 / 18} \rho^{1 / 2}\right)
$$

$$
e=\text { MATERIAL ELONGATION cm/cm }
$$

$$
\rho=\text { MATERIAL DENSITY } \mathrm{gm} / \mathrm{cm}^{3}
$$

$$
\begin{aligned}
& K_{1}(\text { MLI })=0.816 /(.50)^{1 / 18}(1.741)^{1 / 2}=0.643 \\
& K_{1}(\text { MAG })=0.816 /(.08)^{1 / 18}(1.769)^{1 / 2}=0.706 \\
& K_{1}(A I)=0.816 /(.08)^{1 / 18}(2.81)^{1 / 2}=0.560
\end{aligned}
$$

FIND THE EQUIVALENT ALUMINUM THICKNESSES FOR THE MLI AND THE MAGNESIUM.

$$
t=K_{1} m^{.352} \rho_{m}{ }^{1 / 6} v^{.875}
$$

FOR $m, \rho, \& V$ CONSTANT,$\frac{t_{1}}{t_{2}}=\frac{K_{1}}{K_{2}}$

$$
\begin{aligned}
& t_{A I}=\frac{K_{A I}}{K_{M L I}} t_{M L I}=\frac{(.560)}{(.643)}(.0105)=.0091^{\prime \prime} \mathrm{AI} \\
& t_{A I}=\frac{K_{A I}}{K_{M A G}} t_{M A G}=\frac{(.560)}{(.706)}(.035)=.0278^{\prime \prime} \mathrm{AI}
\end{aligned}
$$

B. L. $=2.88 \times 10^{-3}\left(\frac{\mathrm{t}_{1}}{\mathrm{~d}}\right)^{1.9}\left(\frac{\mathrm{t}_{2}}{\mathrm{~d}}\right)^{3.6}\left(\frac{\mathrm{~h}}{\mathrm{~d}}\right)^{5}$

$$
\begin{aligned}
\mathrm{t}_{1} & =\text { BUMPER THICKNESS, } \mathrm{mm}=0.231 \mathrm{~mm} \\
\mathrm{t}_{2} & =\text { HULL THICKNESS, } \mathrm{mm}=0.706 \mathrm{~mm} \\
\mathrm{~h} & =\text { SPACING, } \mathrm{mm}=14.478 \mathrm{~mm} \\
\mathrm{~d} & =\text { PARTICLE DIAMETER, } \mathrm{mm} \\
\text { B. } . & =\text { PARTICLE VELOCITY, BALLISTIC LIMIT, } \mathrm{km} / \mathrm{sec} \\
& =20 \mathrm{~km} / \mathrm{sec} \text { for meteoroid }
\end{aligned}
$$

$$
\begin{aligned}
& 20= 2.88 \times 10^{-3}\left(\frac{.231}{3}\right)^{1.9}\left(\frac{.706}{d}\right)^{3.6}\left(\frac{14.478}{d}\right)^{5} \\
& d=1.047 \mathrm{~mm}=.1047 \mathrm{~cm}
\end{aligned}
$$

$$
\text { MASS }=\left(.5 \mathrm{~g} / \mathrm{cm}^{3}\right)(\pi / 6)(.1047)^{3}=.00030 \mathrm{~g}
$$

$$
F L U X=N c=2.88325 \times 10^{-15}(.00030)^{-1.213}
$$

$$
=5.409 \times 10^{-11} / \mathrm{m}^{2} . \mathrm{SEC}
$$

FOR 2 YEARS

$$
\begin{aligned}
\text { Po } & =e^{-N A T}=e^{-\left(5.409 \times 10^{-11}\right)\left(416 \mathrm{FT}^{2} \times .0929 \mathrm{~m}^{2} / \mathrm{FT}^{2}\right)\left(6.3072 \times 10^{7} \mathrm{SEC}\right)} \\
& =.8765
\end{aligned}
$$

```
FOR 5 YEARS Po = . }719
FOR 10 YEARS: Po = .5173
FOR 15 YEARS: Po = . }372
```

DEBRIS
$\mathrm{BL}=10 \mathrm{~km} / \mathrm{s}=2.88 \times 10^{-3}\left(\frac{.231}{d}\right)^{1.9}\left(\frac{.706}{d}\right)^{3.6}\left(\frac{14.478}{d}\right)^{5}$
$d=1.116 \mathrm{~mm}=.1116 \mathrm{~cm}$
MASS $=\left(2.81 \mathrm{~g} / \mathrm{cm}^{3}\right)(\pi / 6)(.1116)^{3}=.00205 \mathrm{~g}$
FLUX: LOG N = - 2.52 LOG (.1116) -5.46

$$
\mathrm{N}=.0008707 / \mathrm{m}^{2} . Y R
$$

FOR 2 YEARS: $\quad P o=e^{-N A T}=e^{-(.0008707)(416 \times .0929)(2)}$

$$
=.9349
$$

FOR 5 YEARS: \quad Po $=.8451$

FOR 10 YEARS: \quad Po $=.7143$

FOR 15 YEARS: \quad Po $=.6037$

Appendix 5--Test Fiesults

EXAMPLE - LIGHT SHIELD

FROM THE TEST SAMPLE, A 5.2 mg AI $\left(\rho=2.81 \mathrm{~g} / \mathrm{cm}^{3}\right)$ PROJECTILE AT $4.99 \mathrm{~km} / \mathrm{sec}$ PRODUCED THE EQUIVALENT OF A $.050 \mathrm{~cm}^{2}$ HOLE (DIA. $=.0042 \mathrm{~cm}$)

METEOROID ANALYSIS

CONVERT THE PARTICLE MASS AND VELOCITY TO THAT OF A METEOROID PARTICLE:
$m_{\text {MET }} .352\left(20^{.875}\right)\left(.5^{1 / 6}\right)=\left(5.2 \times 10^{-3.352}\right)\left(4.99^{.875}\right)\left(2.81^{1 / 6}\right)$
$m_{\text {MET }}=.00037 \mathrm{~g} \mathrm{AT} 20 \mathrm{~km} / \mathrm{sec}$ (DIA. $=.1126 \mathrm{~cm}$)

MINIMALLY DEGRADED

ALLOWABLE HOLE SIZE PER SQUARE METER: $10 \mathrm{~mm}^{2} / \mathrm{m}^{2}=.1 \mathrm{~cm}{ }^{2} / \mathrm{m}^{2}$
TOTAL ALLOWABLE HOLE FOR LS $=\left(.1 \mathrm{~cm}^{2} / \mathrm{m}^{2}\right)(415.77 \times .0929)$

$$
=3.863 \mathrm{~cm}^{2}
$$

COMPARE TO HOLE SIZE
FROM THE TEST $\quad\left\{\frac{3.863}{.050}=77.26\right.$ TIMES LARGER
ASSUMING AN INCREASED KINETIC ENERGY RESULTS IN A PROPORTIONALLY INCREASED HOLE AREA, THEN 77.26 TIMES THE MASS FROM the test will result in the hole area allowable for minimally DEGRADED PERFORMANCE.

MASS $\times 77.26=.00037 \times 77.26=.028857 \mathrm{~g}$

THEN USE THIS MASS TO FIND THE FLUX:

$$
\begin{aligned}
\mathrm{Nc} & =2.88325 \times 10^{-15}(.028857)^{-1.213} \\
& =2.126 \times 10^{-13} / \mathrm{m}^{2} . \mathrm{SEC}
\end{aligned}
$$

FOR 2 YEARS: $\quad P_{1}=e^{-\left(2.126 \times 10^{-13}\right)(415.77 \times .0929)\left(6.3072 \times 10^{7} \mathrm{SEC}\right)}$

$$
=.9999
$$

THIS IS THE PROBABILITY THAT IN 2 YEARS THERE WILL BE ONE OR LESS PENETRATIONS OF A PARTICLE WHICH WOULD RESULT IN MINIMALLY DEGRADED PERFORMANCE OF THE LS VISUAL CAPABILITIES

FOR 5 YEARS: $\quad P_{1}=.9999$

FOR 10 YEARS: $\quad P_{1}=.9999$

FOR 15 YEARS: $\quad P_{1}=.9999$

DEGRADED ($10 \times$ MINIMAL)

$$
m=10 \times .028857=.28857 \mathrm{~g}
$$

$$
N c=2.88325 \times 10^{-15}(.28857)^{-1.213}=1.302 \times 10^{-14} / \mathrm{m}^{2} . \text { SEC }
$$

FOR 2 YEARS: $\quad P_{1}=e^{-\left(1.302 \times 10^{-14}\right)(415.77 \times .0929)\left(6.3072 \times 10^{7}\right)}+\left(e^{- \text {NAT }}\right.$ NAT $)$

$$
=.9999
$$

FOR 5 YEARS. $\quad P_{1}=.9998$

FOR 10 YEARS $\quad P_{1}=.9997$

FOR 15 YEARS: $\quad P_{1}=.9995$

SEVERELY DEGRADED ($10 \times$ DEGRADED)

$$
m=10 \times .28857=2.8857 \mathrm{~g}
$$

$$
\begin{aligned}
N c & =2.88325 \times 10^{-15}(2.8857)^{-1.213} \\
& =7.97 \times 10^{-16} / \mathrm{m}^{2} . \mathrm{SEC}
\end{aligned}
$$

FOR 2 YEARS: $\quad P_{1}=e^{-}\left(7.97 \times 10^{-16}\right)(415.77 \times .0929)\left(6.3072 \times 10^{7}\right)+\left(e^{- \text {NAT }}\right.$ NAT $)$
$=.9999$

FOR 5 YEARS: $\quad P_{1}=.9999$

FOR 10 YEARS: $\quad P_{1}=.9999$
FOR 15 YEARS: $\quad P_{1}=.9999$

DEBRIS ANALYSIS

CONVERT THE TEST PARTICLE TO A DEBRIS PARTICLE:
m $_{\text {DEB }} .352\left(10^{.875}\right)\left(2.81^{1 / 6}\right)=\left(5.2 \times 10^{-3}\right) .352\left(4.99^{.875}\right)\left(2.81^{1 / 6}\right)$
$m_{\text {DEB. }}=.00092 \mathrm{~g} \mathrm{AT} 10 \mathrm{Km} / \mathrm{sec}$

MINIMALLY DEGRADED

ALLOWABLE HOLE SIZE PER SQUARE METER: $10 \mathrm{~mm}^{2} / \mathrm{m}^{2}=.1 \mathrm{~cm}^{2} / \mathrm{m}^{2}$
TOTAL ALLOWABLE HOLE FOR LS $=3.863 \mathrm{~cm}^{2}$
COMPARE TO HOLE SIZE FROM TEST $\left\{\frac{3.863}{.05}=77.26\right.$ TIMES
MIN. DEG. MASS $=.00092 \mathrm{~g} \mathrm{X} 77.26=.07108 \mathrm{~g}$
DIA. $=.3642 \mathrm{~cm}$

FLUX: LOG N = - 2.52 LOG (.3642) - 5.46

$$
\mathrm{N}=4.4 \times 10^{-5} / \mathrm{m}^{2} . \mathrm{YR}
$$

$$
\text { Aeff }=22.87 \mathrm{~m}^{2}
$$

FOR 2 YEARS: $\quad P_{1}=e^{-\left(4.4 \times 10^{-5}\right)(22.87)(2)}+\left(e^{\cdot N A T}\right.$ NAT $)$

$$
=.9999
$$

FOR 5 YEARS: $\quad P_{1}=.9999$

FOR 10 YEARS: $\quad P_{1}=.9999$

FOR 15 YEARS: $\quad P_{1}=.9999$

WHERE Aeff $=\underset{\uparrow}{(1.86)}(121 \times 157.5)\left(\frac{.0929}{144}\right)$
FLUX FACTOR FOR DEBRIS (FRONT PROJECTED AREA)

$$
\text { Aeff }=22.87 \mathrm{~m}^{2}
$$

DEGRADED

$$
\begin{aligned}
\text { MASS }_{\text {DEGRADED }} & =10 \times \text { MASS }_{\text {MIN.DEG. }} \\
& =10 \times .07108 \mathrm{~g}=.7108 \mathrm{~g} \\
\text { DIA. } & =.7847 \mathrm{~cm}
\end{aligned}
$$

FLUX: LOG N = - 2.52 LOG (.7847) -5.46

$$
N=6.39 \times 10^{-6} / \mathrm{m}^{2} . Y R
$$

FOR 2 YEARS: $\quad P_{1}=e^{-\left(6.39 \times 10^{-6}\right)(22.87)(2)}+\left(e^{- \text {NAT }}\right.$ NAT $)$

$$
=.9999
$$

FOR 5 YEARS: $\quad P_{1}=.9999$

FOR 10 YEARS: $\quad P_{1}=.9999$

FOR 15 YEARS: $P_{1}=.9999$

SEVERELY DEGRADED

MASS $_{\text {SEV. DEG. }}=10 \times$ MASS DEG.

$$
=10 \times .7108=7.108 \mathrm{~g}
$$

DIA. $=1.6905 \mathrm{~cm}$

```
FLUX: \(\quad\) LOG \(N=-5.444-1.358\) LOG \((1.6905)+.352(\operatorname{LOG}(1.6905))^{2}\)
    \(N=1.84 \times 10^{-6} / \mathrm{m}^{2} . Y R\)
FOR 2 YEARS: \(\quad P_{1}=e^{-\left(1.84 \times 10^{-6}\right)(22.87)(2)}+\left(e^{-N A T}\right.\) NAT \()\)
    \(=.9999\)
```

FOR 5 YEARS: $\quad P_{1}=.9999$

FOR 10 YEARS: $P_{1}=.9999$

FOR 15 YEARS: $\mathbf{P}_{\mathbf{1}}=.9999$

APPROVAL

HUBBLE SPACE TELESCOPE METEOROID/DEBRIS PROTECTION ANALYSIS

By Jennifer Horn and Juan Maldonado

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or nuclear energy activities or programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

A. A. McCOOL

Director, Structures \& Propulsion Laboratory

